Contents

1	Thm has a name				
	1.1	Chapter 7	2		
	1.2	Chapter 8	2		
	1.3	Chapter 9	2		
	1.4	Chapter 10	2		
	1.5	Chapter 11	2		

Thm has a name

Chapter 7

Theorem 1.1.1 (Dimension Thm). If A is an $m \times n$ matrix, then rank $A + \dim \text{Null } (A) = n$.

Chapter 8

Theorem 1.2.1 (Rank-Nullity Thm). Let \mathbb{V} be an *n*-dimensional vector space and let \mathbb{W} be a vector space. If $L: \mathbb{V} \to \mathbb{W}$ is linear, then

$$rank(L) + nullity(L) = n$$

Chapter 9

Theorem 1.3.1 (Gram-Schmidt Orthogonalization Thm). Let $\{\vec{w}_1, \ldots, \vec{w}_n\}$ be a basis for an inner product space W. If we define $\vec{v}_1, \ldots, \vec{v}_n$ successively as follows:

$$\begin{split} \vec{v}_1 &= \vec{w}_1 \\ \vec{v}_2 &= \vec{w}_2 - \frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 \\ \vec{v}_i &= \vec{w}_i - \frac{\langle \vec{w}_i, \vec{v}_1 \rangle}{||\vec{v}_1||^2} \vec{v}_1 - \dots - \frac{\langle \vec{w}_i, \vec{v}_{i-1} \rangle}{||\vec{v}_{i-1}||^2} \vec{v}_{i-1} \end{split}$$

Theorem 1.3.2 (QR-Decomposition). I just type this out since it has a name...

Theorem 1.3.3 (The Fundamental Theorem of Linear Algebra). If A is an $m \times n$ matrix, then $\operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^T)$ and $\operatorname{Row}(A)^{\perp} = \operatorname{Null}(A)$. In particular,

$$\mathbb{R}^n = \text{Row}(A) \oplus \text{Null}(A)$$
 and $\mathbb{R}^m = \text{Col}(A) \oplus \text{Null}(A^T)$

Theorem 1.3.4 (Approximation Thm). Let \mathbb{W} be a finite dimensional subspace if an inner product space \mathbb{V} . If $\vec{v} \in \mathbb{V}$, then the vector closest to \vec{v} in \mathbb{W} is $\operatorname{proj}_{\mathbb{W}}(\vec{v})$. That is,

$$||\vec{v} - \operatorname{proj}_{\mathbb{W}}(\vec{v})|| < ||\vec{v} - \vec{w}||$$

For all $\vec{w} \in \mathbb{W}, \vec{w} \neq \text{proj}_{\mathbb{W}}(\vec{v})$.

Chapter 10

Theorem 1.4.1 (Triangularization Thm). If A is an $n \times n$ matrix with real eigenvalues, then A is orthogonally similar to an upper triangular matrix T.

Theorem 1.4.2 (Principal Axis Thm). Every symmetric matrix A is orthogonally diagonalizable.

Chapter 11

Theorem 1.5.1 (Schur's Thm). If $A \in M_{n \times n}(\mathbb{C})$, then A is unitarily similar to an upper triangular matrix T. Moreover, the diagonal entries of T are the eigenvalues of A.

Theorem 1.5.2 (Spectral Theorem for Hermitian Matrices). If A is Hermitian, then A is unitarily diagonalizable.

Theorem 1.5.3 (Spectral Theorem for Normal Matrices). A matrix A is normal if and only if it is unitarily diagonalizable.

Theorem 1.5.4 (Cayley-Hamilton Thm). If $A \in M_{n \times n}(\mathbb{C})$, then A is a root of its characteristic polynomial $C(\lambda)$.