My first

Sibelius

December 15, 2018

hello

Let \mathbb{L} be the vector space of all linear mappings from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ under standard addition and scalar multiplication of linear mappings. Let

$$
\mathbb{S}=\{L \in \mathbb{L} \mid L(1,0)=(0,0)\}
$$

Given that \mathbb{S} is a subspace of L, find a basis for S.
Solution: Let $L \in \mathbb{S}$ and let $[L]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then, by definition, L satisfies

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=L(1,0)=[L]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right]
$$

Hence, $a=0$ and $c=0$. Thus we have

$$
[L]=\left[\begin{array}{ll}
0 & b \\
0 & d
\end{array}\right]
$$

Therefore, every $L \in \mathbb{S}$ satisfies

$$
L\left(x_{1}, x_{2}\right)=[L]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b x_{2} \\
d x_{2}
\end{array}\right]=b\left[\begin{array}{c}
x_{2} \\
0
\end{array}\right]+d\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right]
$$

Thus, if we define

$$
L_{1}\left(x_{1}, x_{2}\right)=\left(x_{2}, 0\right), \quad \text { and } \quad L_{2}\left(x_{1}, x_{2}\right)=\left(0, x_{2}\right)
$$

Then, $\left\{L_{1}, L_{2}\right\}$ spans \mathbb{L} and is clearly linearly independent (since neither vector is a scalar multiple of each other) and hence is a basis.

