MATH 237 Instructor: Spiro Karigiannis Spring 2018

Contents

1	Lecture 1 Basic ideas of this course	2
	1.1 What is calculus?	2
	1.2 What to focus? \ldots	
	1.2.1 Some advices on triple integral \ldots	3
2	Lecture 2 Continuity 2.1 Just sth	4 4
3	Lecture ∞ Some linear algebra staff	5
	3.1 Important $\mathbb{A}T_{\mathbb{E}}X$ Theorem	5
	3.2 Trying with dot product	6

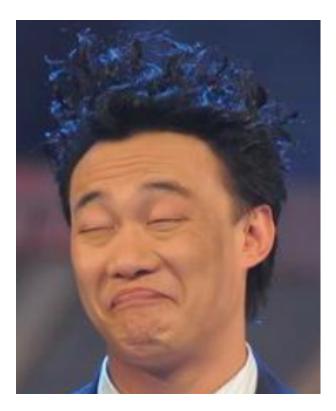


Figure 1: Close-up of a Eason

1 Lecture 1 Basic ideas of this course

1.1 What is calculus?

Calculus: how things *change*

1.2 What to focus?

$$\mathbb{R}^n \to \mathbb{R}^m$$
 $n=2,3$ $m=1$

1.2.1 Some advices on triple integral

For a triple integral, there are 6 different orders of integration¹:

dxdydz, dxdzdy, dydzdx, dydxdz, dzdxdy, dzdydx

Order of integration that you choose depends on 2 factors:

- 1. the region might be easier to describe in terms of inequalities using some particular order.
- 2. it might be easier to find anti-derivatives with respect to one particular variable versus the others.

Theorem 1.2.1 (EVT). If $f : \mathbb{R}^n \to \mathbb{R}$ is continuous, and S is compact, then f has a global max and a global min on S.

¹ Integration, the computation of an integral

2 Lecture 2 Continuity

2.1 Just sth...

Let $f : \mathbb{R}^n \to \mathbb{R}$. Let $\vec{a} \in Dom(f)$. Suppose \vec{a} is an interior point. i.e. f is is defined at all points sufficiently close to \vec{a} .

Definition 2.1.1. We say f is <u>continuous</u> at \vec{a} if

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x})$$

exists and equals $f(\vec{a})$.

Informally, f is continuous at \vec{a} means $f(\vec{x})$ gets close to $f(\vec{a})$ as \vec{x} gets close to \vec{a} .

${\bf 3} \quad {\bf Lecture} \ \infty \quad {\bf Some \ linear \ algebra \ staff}$

3.1 Important LATEX Theorem

Theorem 3.1.1 (WTF theorem). Let $A \in M_{n \times n}(\mathbb{C})$ be normal.

- 1. $||A\vec{z}|| = ||A^*\vec{z}||$ for all $\vec{z} \in \mathbb{C}^n$
- 2. $A \lambda I$ is normal for all $\lambda \in \mathbb{C}$
- 3. $A\vec{z} = \lambda \vec{z} \implies A^*\vec{z} = \overline{\lambda}\vec{z}$

Proof. $||A\vec{z}||^2 = \langle A\vec{z}, A\vec{z} \rangle = ... = \langle A^*\vec{z}, A^*\vec{z} \rangle = ||A^*\vec{z}||^2$

3.2 Trying with dot product

- $a \cdot b$ bit small...
- $a \bullet b$ too thick...
- $a \cdot b$ great!!!