аматн З

3.1. AMATH 231

3.1.1. Topics

Before you brush your teeth, parametrize your curves.

Edward R. Vrscay

- Vector Calculus
 - gradient vector field
 - Conservation in physics
 - line (path) integral

$$\int_C f \, ds = \int_a^b f(\mathbf{g}(t)) \| \mathbf{g}'(t) \| \, dt$$
$$W = \int_C \mathbf{F} \cdot d\mathbf{x} = \int_a^b \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) dt$$

– Path-independence and the Fundamental Theorems of Calculus for Line Integrals

$$\int_{C_{AB}} \mathbf{F} \cdot d\mathbf{x} = \int_{C_{AB}} \vec{\nabla} f \cdot d\mathbf{x} = f(B) - f(A)$$

- First Fundamental Theorem for Line Integrals

$$f(\mathbf{x}) = \int_{x_0}^x \mathbf{F} \cdot d\mathbf{y} \implies \vec{\nabla} f(\mathbf{x}) = \mathbf{F}(\mathbf{x})$$

- over closed curves

$$\oint_C \mathbf{F} \cdot d\mathbf{x}$$

$$\oint_C \mathbf{F} \cdot d\mathbf{x} = \int_a^b \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}'(t) dt = \oint f \, ds$$

ſ

where the scalar valued function $f(\mathbf{g}(t)) = \mathbf{F}(\mathbf{g}(t)) \cdot \widehat{\mathbf{T}}(t)$

- Green's Theorem

$$\int_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{x} = \iint_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA = \iint_{\mathcal{D}} (\nabla \times \mathbf{F})_z dA$$

- divergence

$$\operatorname{div} \mathbf{F} = \vec{\nabla} \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

- divergence of position vector

$$\vec{\nabla} \cdot \frac{1}{r^3} \mathbf{r} = 0$$
 $(x, y, z) \neq 0$

- curl

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \vec{\nabla} \times \mathbf{F} = \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$
$$\nabla \times \mathbf{F} = \mathbf{0} \implies \mathbf{F} \text{ is gradient}$$

- vorticity $\mathbf{v}(x,y) = (v_1(x,y), v_2(x,y))$, then vorticity is

$$\Omega(x,y) = \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}$$

- Mean value theorem for (double) integrals

$$f(x^*, y^*) = \overline{f}_D = \frac{1}{A(D)} \iint_D f(x, y) dA$$
$$[\operatorname{curl} \mathbf{F}(p_1, p_2)]_z = \Omega(p_1, p_2) = \lim_{\varepsilon \to 0} \frac{1}{\pi \varepsilon^2} \oint_{C_\varepsilon} \mathbf{F} \cdot d\mathbf{x}$$

- Total outward flux

$$\oint_C \mathbf{F} \cdot \widehat{\mathbf{N}} ds = \int_a^b \mathbf{F}(\mathbf{g}(t)) \cdot \widehat{\mathbf{N}}(t) ds = \int_a^b \mathbf{F}(\mathbf{g}(t)) \cdot \widehat{\mathbf{N}}(t) \| \mathbf{g}'(t) \| dt$$

- Divergence Theorem

$$\oint_{C} \mathbf{F} \cdot \widehat{\mathbf{N}} ds = \iint_{D} \left[\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} \right] dA = \iint_{D} \vec{\nabla} \cdot \mathbf{F} \ dA$$
$$\vec{\nabla} \cdot \mathbf{F}(\mathbf{p}) = \lim_{\varepsilon \to 0} \frac{1}{\pi \varepsilon^{2}} \oint_{C_{\varepsilon}} \mathbf{F} \cdot \widehat{\mathbf{N}} ds$$
$$\vec{\nabla} \cdot \mathbf{F}(\mathbf{p}) = \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3} \pi \varepsilon^{3}} \iint_{S_{\varepsilon}} \mathbf{F} \cdot \widehat{\mathbf{N}} ds$$

- Circulation integrals/Outward flux integrals around singularities
- Surface integration
 - * Surface parametrizations
 - * Normal vectors to surfaces from parameterizations

$$\mathbf{N}(u_0, v_0) = \pm \mathbf{T}_u(u_0, v_0) \times \mathbf{T}_v(u_0, v_0)$$

where $\mathbf{T}_u = \frac{\partial \mathbf{g}(u,v)}{\partial u}$.

* surface integrals of scalar functions

$$\int_{S} f \, dS = \iint_{u,v} f(\mathbf{g}(u,v)) \| \mathbf{N}(u,v) \| du dv$$

* surface area

$$S = \iint_{\mathcal{D}_{uv}} \left\| \frac{\partial \mathbf{g}}{\partial u} \times \frac{\partial \mathbf{g}}{\partial v} \right\| du dv$$

* flux integral

$$\iint_{S} \mathbf{F} \cdot \widehat{\mathbf{N}} dS = \iint_{D_{uv}} \mathbf{F}(\mathbf{g}(u, v)) \cdot \mathbf{N}(u, v) dA$$

* Gauss Divergence Theorem in \mathbb{R}^3

$$\underbrace{\iint_{S} \mathbf{F} \cdot \widehat{\mathbf{N}} dS}_{\text{surface integral}} = \underbrace{\iiint_{D} \text{div} \mathbf{F} \ dV}_{\text{volume integral}}$$

- Let U(t) denote the total amount of substance X in region D at time t. $u(\mathbf{x}, t)$ denote the concentration of substance X at a point $\mathbf{x} \in R \subset \mathbb{R}^3$.

$$U(t) = \iiint_D u(\mathbf{x}, t) dV \implies U'(t) = \iiint_D \frac{\partial u}{\partial t} (\mathbf{x}, t) dV$$

- The flow of X is defined by the flux density vector $\mathbf{j}(\mathbf{x},t)$. The net outward substance X through an infinitesimal element of surface area dS centered at point $x \in \partial D$ is given by $\mathbf{j}(\mathbf{x},t) \cdot \widehat{\mathbf{N}}(\mathbf{x}) dS$. The total outward flux: $\iint_{\partial D} \mathbf{j}(\mathbf{x},t) \cdot \widehat{\mathbf{N}}(\mathbf{x}) dS$. By Divergence Theorem, we have

$$\iint_{\partial D} \mathbf{j}(\mathbf{x}, t) \cdot \widehat{\mathbf{N}}(\mathbf{x}) dS = \iiint_{D} \vec{\nabla} \cdot \mathbf{j}(\mathbf{x}, t) dV$$

and $U'(t) = -\iiint_D \vec{\nabla} \cdot \mathbf{j}(\mathbf{x}, t) dV$, then integral form of the conservation law for substance X:

$$\iiint_{D} \left(\frac{\partial u}{\partial t} \left(\mathbf{x}, t \right) + \vec{\nabla} \cdot \mathbf{j}(\mathbf{x}, t) \right) dV = 0$$

 $-\nabla$ operator

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$
$$\frac{\partial u}{\partial v_1} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial v_1} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial v_1} = \nabla u \cdot \frac{\partial \mathbf{x}}{\partial v_1}$$

 ∇ in polar/cylindrical/spherical coordinates in \mathbb{R}^3

Stoke's Theorem

$$\int_C \mathbf{F} \cdot d\mathbf{x} = \iint_S (\nabla \times \mathbf{F}) \cdot \widehat{\mathbf{N}} dS$$

- final calculation (using spherical polar coordinate is easiest)

$$\mathbf{F} = \frac{1}{r^n} \mathbf{r} = \frac{1}{(x^2 + y^2 + z^2)^{n/2}} [x\mathbf{i} + y\mathbf{j} + z\mathbf{k}] \implies \vec{\nabla} \cdot \mathbf{F} = \frac{3 - n}{r^n}$$

• Fourier Series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx, \qquad x \in [-\pi, \pi]$$

- piecewise C^1
- pointwise convergence for a Fourier series $(2\pi$ -period and piecewise C^1)
- even & odd extension of a function defined on $(0,\pi)$

$$\langle f_n, f_n \rangle = \frac{a_0^2}{2}\pi + \pi \sum_{k=1}^n [a_k^2 + b_k^2] \le ||f||_2^2$$

- $\{f_n\}$ converges pointwise to $f: \lim_{n \to \infty} |f_n(x) f(x)| = 0$, for all $x \in [a, b]$.
- Series $\sum_{k=1}^{\infty} a_k$ in C[a, b] converges uniformly to f means that the sequence $\{S_n\}$ of partial sums converges uniformly to f

$$\lim_{n \to \infty} \left\| f - \sum_{k=1}^{\infty} a_k \right\|_{\infty} = 0$$

- Series $\sum_{k=1}^{\infty} a_k$ in C[a, b] converges in the mean to f means that the sequence $\{S_n\}$ of partial sums converges in the mean to f

$$\lim_{n \to \infty} \left\| f - \sum_{k=1}^{\infty} a_k \right\|_2 = 0$$

- Weierstrass M-test (also covered in MATH 148): If $|a_n(x)| < M_n$, $\forall x \in [a, b]$, $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} a_n(x)$ converges absolutely for each $x \in [a, b]$, with sum f(x), it converges uniformly to f(x) on [a, b].
- * f_p piecewise continuous \implies converges in the mean to f_p on any finite interval
 - * f_p piecewise $C^1 \implies$ converges pointwise to f_p for all $x \in \mathbb{R}$
 - * f_p piecewise C^1 and continuous \implies converges uniformly to f_p on any finite interval
- Complex Fourier series of a τ -periodic function

- Parseval's formula:
$$\langle f, f \rangle = ||f||_2^2 = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t)^2 dt = \tau \sum_{-\infty}^{\infty} |c_n|^2$$

– Fourier Transform:

$$\mathcal{F}{f(t)} = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

3.1.2. Selected Proof

►

Conservation of Energy Assumptions: $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ is conservative. **Proof**

$$E(t) = \frac{1}{2}m\|\mathbf{v}(t)\|^2 + V(\mathbf{x}(t))$$

3. AMATH

$$E'(t) = \frac{m}{2} \frac{d}{dt} [\mathbf{v}(t) \cdot \mathbf{v}(t)] + \frac{d}{dt} V(x_1(t), \dots, x_n(t))$$
$$\frac{d}{dt} [\mathbf{v}(t) \cdot \mathbf{v}(t)] = \mathbf{v}'(t) \cdot \mathbf{v}(t) + \mathbf{v}(t) \cdot \mathbf{v}'(t) = 2\mathbf{a}(t) \cdot \mathbf{v}(t)$$

By chain rule:

$$\frac{d}{dt}V(x_1(t),\ldots,x_n(t)) = \frac{\partial V}{\partial x_1}\frac{dx_1}{dt} + \ldots + \frac{\partial V}{\partial x_n}\frac{dx_n}{dt} = \vec{\nabla}V \cdot \mathbf{v}$$

Put together,

$$E'(t) = \mathbf{v}(t) \cdot [m\mathbf{a}(t)] + \mathbf{v}(t) \cdot \vec{\nabla} V = \mathbf{v}(t) \cdot [m\mathbf{a}(t) + \vec{\nabla} V] = \mathbf{v}(t) \cdot [m\mathbf{a}(t) - \mathbf{F}(\mathbf{x}(t))] = \mathbf{v}(t) \cdot \mathbf{0} = 0$$

Work Integrals

$$\mathbf{F} = -\vec{\nabla}V$$

Proof

►

$$W = \int_{C_{AB}} \mathbf{F} \cdot d\mathbf{x} = \int_{C_{AB}} \vec{\nabla} V \cdot d\mathbf{x} = -[V(B) - V(A)] = V(A) - V(B) = -\Delta V$$

Second Fundamental Theorem of Line Integrals Let $\mathbf{F} : \mathcal{U} \to \mathbb{R}^n$ be a continuous vector field on a connected open set $\mathcal{U} \subset \mathbb{R}^n$, and let $\mathbf{x}_1, \mathbf{x}_2$ be two points in \mathcal{U} . If $\mathbf{F} = \nabla f$, where $f : \mathcal{U} \to \mathbb{R}$ is a C^1 scalar field, and \mathcal{C} is any curve in \mathcal{U} joining \mathbf{x}_1 to \mathbf{x}_2 , then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{x} = f(\mathbf{x}_2) - f(\mathbf{x}_1)$$

\mathbf{Proof}

• Let C be given by $\mathbf{x} = \mathbf{g}(t)$, $t_1 \le t \le t_2$, so that $\mathbf{x}_1 = \mathbf{g}(t_1)$, $\mathbf{x}_2 = \mathbf{g}(t_2)$. Bt the hypothesis,

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{x} = \int_{\mathcal{C}} (\nabla f) \cdot d\mathbf{x}$$

$$= \int_{t_1}^{t_2} \nabla f(\mathbf{g}(t)) \cdot \mathbf{g}'(t) dt \qquad \text{by definition of line integral}$$

$$= \int_{t_1}^{t_2} \frac{d}{dt} [f(\mathbf{g}(t))] dt \qquad \text{Chain rule}$$

$$= f(\mathbf{g}(t_2)) - f(\mathbf{g}(t_1)) \qquad \text{second FTC}$$

$$= f(\mathbf{x}_2) - f(\mathbf{x}_1)$$

			I
			L
- 6	_	_	

Proposition 5.1

$$\|f\|_{2}^{2} = \int_{a}^{b} f(x)^{2} dx$$

$$\leq \max_{a \le x \le b} [f(x)]^{2} (b-a)$$

$$= \left[\max_{a \le x \le b} |f(x)|\right]^{2} (b-a)$$

$$= (b-a) \|f\|_{\infty}^{2}$$

Proposition 5.2 If f_n converges uniformly in piecewise continuous [a, b], then converges in (i) mean and (ii) pointwise. **Proof**

▶ For (i), use prop 5.1 and squeeze theorem. For (ii) by definition, $|f_n(x) - f(x)| \le ||f_n - f||_{\infty}$, then...

3.2. AMATH 251

3.2.1. Topics

- First-order DEs
 - An equation relating an unknown function and one or more of its derivatives is called a differential equation.
 - The order of a differential equation is the order of the highest derivative that appears in it.
 - IVP & IC
 - Ordinary differential equations: the unknown function (dependent variable) depends on only a single independent variable.
 - If the dependent variable is a function of two or more independent variables, then partial derivatives are likely to be involved; if they are, the equation is called a partial differential equation.
 - general & particular solution
 - Slope fields & solution curves
 - **Theorem** Existence and Uniqueness of Solutions $\frac{dy}{dx} = f(x, y), \quad y(a) = b.$ has only one solution is defined on *I*, if $f(x, y) \& \frac{\partial f}{\partial y}$ are continuous on some rectangle *R* in the *xy*-plane that contains the point (a, b) in its interior.
 - Separable Equations
 - Linear First-Order

$$\frac{dy}{dx} + P(x)y = Q(x), \qquad y(x_0) = y_0$$

Integrating factor: $\rho(x) = e^{\int P(x)dx}$

- Theorem Unique solution for linear first-order equation P(x) and Q(x) are continuous on the open interval I containing x_0
- Substitution Methods

*
$$\frac{dy}{dx} = F\left(\frac{y}{x}\right) \longrightarrow v = \frac{y}{x}$$

* Bernoulli Equation

$$\frac{dy}{dx} + P(x)y = Q(x)y^n \longrightarrow v(x) = y^{1-r}$$

- Exactness (will not be tested on the final)

$$M(x,y) + N(x,y)\frac{dy}{dx} = 0$$
 $\qquad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \iff \text{ exact in an open rectangle } R$

- Reducible Second-Order Equations