AMATH

3.1. AMATH 231
3.1.1. Topics

Before you brush your teeth,
parametrize your curves.

Edward R. Vrscay

e Vector Calculus
— gradient vector field

— Conservation in physics

line (path) integral

b
/C f ds= / fe®)]e' (1)) dt

b
W:/CF-dx:/a F(g(t)- & (t)dt

Path-independence and the Fundamental Theorems of Calculus for Line Integrals

/cABF'dX= /C v -dx=f(B)- f(4)

First Fundamental Theorem for Line Integrals

G- | Fody — 9f(x)=F(x)

%F-dx
C

éF ~dx = /:F(g(t)) g'(t)dt = ;ﬁf ds

where the scalar valued function f(g(t)) = F(g(t)) - T(t)

— over closed curves

16



3. AMATH

— Green’s Theorem

/aDF'dX:%(%‘%)dA=%(VxF)sz

OF), 0F, OF;
+ +
or Oy 0z

— divergence

divF =V -F =

— divergence of position vector

o1
V~r—3r=0 (z,y,2) #0

— curl

- F: F'
CurlF:VxF:vxF:(Q_b)k
oxr Oy
VxF =0 =— F is gradient
— vorticity
v(z,y) = (v1(z,y),v2(x,y)), then vorticity is

87)2 81;1
Qz,y) = — - ==
(z,9) = o~ o

— Mean value theorem for (double) integrals

c a = 1
fm,y>:fD=Zaﬁzﬁf@unm4

. 1
[carlF(p1,p2)]s = Q(p1,p2) = lim —2515 F-dx
e—0 1€ C.

— Total outward flux
éFNm=A%@myﬁmw=ﬁ%@myﬂmmvwﬁ
— Divergence Theorem
}I%F-Nds://[)[%+%—1;2]dz4://ljﬁ-F dA

- .1 <

B} 1 =~
v-F(p) =lim éwé”// F-Nds
3 Se

— Circulation integrals/Outward flux integrals around singularities

— Surface integration
x Surface parametrizations

*x Normal vectors to surfaces from parameterizations
N(ug,vo) = T (ug, vo) x Ty (uo,v0)

where T, = %.
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3. AMATH

x surface integrals of scalar functions

/ fds = / £ (@t 0)) [N (u, v) |dudy
S u,v

5= Jo. Jo
//SF.Ndsz//DM F(g(u,v)) N(u,v)dA

Gauss Divergence Theorem in R?

//SFNdsz///DdivF dv

surface integral volume integral

surface area

*

*

flux integral

*

— Let U(t) denote the total amount of substance X in region D at time ¢. u(x,t)
denote the concentration of substance X at a point x € R c R3.

Ut) - /// w(x, 1)dV —> U'( // Ou % t)d

— The flow of X is defined by the flux density vector j(x,t). The net outward sub-
stance X through an infinitesimal element of surface area dS centered at point

x € D is given by j(x,t)-N(x)dS. The total outward flux: // j(x,t) - N(x)dS.
oD

By Divergence Theorem, we have

// ix,t)-R)ds - ///D T -j(x, )V

and U'(t) = /// (x,t)dV, then integral form of the conservation law
for substance X:
/// (x t) +V-j(x, t))dV 0

i j k

— V operator

-2 0 9
VxF= or Oy 0z

Iy Fi

Ou Ou Ox 8u Oy vu‘ﬁ_x
87)1 "~ or 87}1 8y 81}1 vy

V in polar/cylindrical /spherical coordinates in R3

/F~dx:/ (VxF)-NdS
C S

— final calculation (using spherical polar coordinate is easiest)

— Stoke’s Theorem

1 1 . . - 3-n
F—r—nr— (x2+y2+22)n/2[x1+y_]+zk] = V-F=

rn
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3. AMATH

e Fourier Series

f(:c)—?+ Zancosnx+2b sinnz, x€[-m ]
n=1

— piecewise C!
— pointwise convergence for a Fourier series (2m-period and piecewise C’l)

— even & odd extension of a function defined on (0, 7)

2 n
<fnafn :EO Z_: ak+b2 <||fH2

— {fn} converges pointwise to f: lim |f,(z) - f(x)| =0, for all = € [a, b].

— Series Y ay in C[a,b] converges uniformly to f means that the sequence {S,} of
k=1
partial sums converges uniformly to f

lim || f - Z agll =0
neee k=1 oo
— Series Y aj, in C[a,b] converges in the mean to f means that the sequence {S,}
k=1

of partial sums converges in the mean to f

[e o]
~ S || =
k=1 2

lim
n—oo

— Weierstrass M-test (also covered in MATH 148): If |a,(z)| < M, Vz € [a,b],

Z M, converges, then Z an(x) converges absolutely for each x € [a,b], with sum
n=1 n=1
f(x), it converges uniformly to f(x) on [a,b].

— * fp piecewise continuous == converges in the mean to f, on any finite interval
* fp piecewise C!' = converges pointwise to fpforall zeR

. . 1 . . .
* fp piecewise C* and continuous == converges uniformly to f;, on any finite
interval

— Complex Fourier series of a T—periodic function

— Parseval’s formula: (f, f) = | f||§= C P24t = TZ|Cn|

w\—\

— Fourier Transform:

FU(1)} = F(w) = / : F(t)e-

3.1.2. Selected Proof

Conservation of Energy Assumptions: F : R"™ — R"” is conservative.
Proof

>

B(t) = smlv () + V (x(2))
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3. AMATH

B (1) = %%[v(t) (1] + %V(wl(t), (D)

%[V(t) V()] = V() v(t) +v(t) - v'(t) = 2a(t) - v(t)
By chain rule:

d AV daxy v dz, -
SV(@t),. .z (#) = — 2L 2D Gy,
dt (@1(2),- - 2a(t)) ooy at e @ VY

Put together,
E'(t) =v(t)-[ma(t)] +v(t) - VV = v(t) - [ma(t) + VV] = v(t) - [ma(t) - F(x(t))] = v(¢)-0=0

O

Work Integrals
F=-vV

Proof

>

W:/ F-dx:/ VV-dx=-[V(B)-V(A)]=V(4)-V(B) =-AV
Cas CaB

O

Second Fundamental Theorem of Line Integrals Let F : U/ — R" be a continuous vector
field on a connected open set U c R", and let x1,x9 be two points in U. If F = Vf, where
f:U - Risa C! scalar field, and C is any curve in U joining x; to X3, then

/ Fdx = f(x2) - f(x1)
C

Proof
» Let C be given by x = g(t), 1 <t <ts, so that x3 = g(t1), x2 = g(t2). Bt the hypothesis,

/CF.dxz/c(vf)-dx

t2
= / Vi(g(t)) g'(t)dt by definition of line integral

t1

- / Q%Lf(g(t))]dt Chain rule

t1

= f(g(t2)) - f(g(t1)) second FTC
= f(x2) - f(x1)

Proposition 5.1

b
IF12 = / f(2)2de
< max [f(2)]2 (b~ a)

a<z<b

- [mas s @-a)

a<z<b

= (b-a)lfI%
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3. AMATH

Proposition 5.2 If f,, converges uniformly in piecewise continuous [a,b], then converges in
(i) mean and (ii) pointwise. Proof
» For (i), use prop 5.1 and squeeze theorem. For (ii) by definition, |f,(z) - f(z)| < || fn

_f”oo?
then... =

3.2. AMATH 251

3.2.1. Topics
e First-order DEs
— An equation relating an unknown function and one or more of its derivatives is
called a differential equation.
— The order of a differential equation is the order of the highest derivative that
appears in it.
— IVP & IC

— Ordinary differential equations: the unknown function (dependent variable) de-
pends on only a single independent variable.

— If the dependent variable is a function of two or more independent variables, then
partial derivatives are likely to be involved; if they are, the equation is called a
partial differential equation.

— general & particular solution

— Slope fields & solution curves

— Theorem Existence and Uniqueness of Solutions
d

d_y = f(z,y), wy(a)=">. has only one solution is defined on I, if f(z,y) & Z—f are
a Y

continuous on some rectangle R in the xy-plane that contains the point (a,b) in
its interior.

— Separable Equations
— Linear First-Order

L P =),y =u

Integrating factor: p(x) = ol Bl

— Theorem Unique solution for linear first-order equation
P(x) and Q(z) are continuous on the open interval I containing z

— Substitution Methods

*@:F(a)_,vzg
dz @ @

* Bernoulli Equation

Y P@y=Q@y (@) =y

— Exactness (will not be tested on the final)

M N
M(z,y) + N(xy)d—y =0 8— = 6— <= exact in an open rectangle R
dx oy Ox

— Reducible Second-Order Equations
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