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3.1. AMATH 231

3.1.1. Topics

Before you brush your teeth,
parametrize your curves.

Edward R. Vrscay

• Vector Calculus

– gradient vector field

– Conservation in physics

– line (path) integral ˆ
C
f ds =

ˆ b

a
f(g(t))∥g′(t)∥ dt

W =
ˆ
C
F ⋅ dx =

ˆ b

a
F(g(t)) ⋅ g′(t)dt

– Path-independence and the Fundamental Theorems of Calculus for Line Integrals
ˆ
CAB

F ⋅ dx =
ˆ
CAB

∇⃗f ⋅ dx = f(B) − f(A)

– First Fundamental Theorem for Line Integrals

f(x) =
ˆ x

x0

F ⋅ dy Ô⇒ ∇⃗f(x) = F(x)

– over closed curves ‰
C
F ⋅ dx

‰
C
F ⋅ dx =

ˆ b

a
F(g(t)) ⋅ g′(t)dt =

‰
f ds

where the scalar valued function f(g(t)) = F(g(t)) ⋅ T̂(t)
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3. AMATH

– Green’s Theoremˆ
∂D

F ⋅ dx =
¨
D

(∂F2

∂x
− ∂F1

∂y
)dA =

¨
D

(∇ ×F)zdA

– divergence

divF = ∇⃗ ⋅F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

– divergence of position vector

∇⃗ ⋅ 1

r3
r = 0 (x, y, z) ≠ 0

– curl
curlF = ∇ ×F = ∇⃗ ×F = (∂F2

∂x
− ∂F1

∂y
)k

∇ ×F = 0 Ô⇒ F is gradient

– vorticity
v(x, y) = (v1(x, y), v2(x, y)), then vorticity is

Ω(x, y) = ∂v2
∂x

− ∂v1
∂y

– Mean value theorem for (double) integrals

f(x∗, y∗) = fD = 1

A(D)

¨
D
f(x, y)dA

[curlF(p1, p2)]z = Ω(p1, p2) = lim
ε→0

1

πε2

‰
Cε

F ⋅ dx

– Total outward flux
‰
C
F ⋅ N̂ds =

ˆ b

a
F(g(t)) ⋅ N̂(t)ds =

ˆ b

a
F(g(t)) ⋅ N̂(t)∥g′(t)∥dt

– Divergence Theorem
‰
C
F ⋅ N̂ds =

¨
D

[∂F1

∂x
+ ∂F2

∂y
]dA =

¨
D
∇⃗ ⋅F dA

∇⃗ ⋅F(p) = lim
ε→0

1

πε2

‰
Cε

F ⋅ N̂ds

∇⃗ ⋅F(p) = lim
ε→0

1
4
3πε

3

¨
Sε

F ⋅ N̂ds

– Circulation integrals/Outward flux integrals around singularities

– Surface integration

∗ Surface parametrizations

∗ Normal vectors to surfaces from parameterizations

N(u0, v0) = ±Tu(u0, v0) ×Tv(u0, v0)

where Tu = ∂g(u,v)
∂u .
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3. AMATH

∗ surface integrals of scalar functionsˆ
S
f dS =

¨
u,v
f(g(u, v))∥N(u, v)∥dudv

∗ surface area
S =
¨
Duv

∥∂g
∂u

× ∂g
∂v

∥dudv

∗ flux integral ¨
S
F ⋅ N̂dS =

¨
Duv

F(g(u, v)) ⋅N(u, v)dA

∗ Gauss Divergence Theorem in R3

¨
S
F ⋅ N̂dS

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
surface integral

=
˚

D
divF dV

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
volume integral

– Let U(t) denote the total amount of substance X in region D at time t. u(x, t)
denote the concentration of substance X at a point x ∈ R ⊂ R3.

U(t) =
˚

D
u(x, t)dV Ô⇒ U ′(t) =

˚
D

∂u

∂t
(x, t)dV

– The flow of X is defined by the flux density vector j(x, t). The net outward sub-
stance X through an infinitesimal element of surface area dS centered at point

x ∈ ∂D is given by j(x, t) ⋅ N̂(x)dS. The total outward flux:
¨
∂D

j(x, t) ⋅ N̂(x)dS.
By Divergence Theorem, we have¨

∂D
j(x, t) ⋅ N̂(x)dS =

˚
D
∇⃗ ⋅ j(x, t)dV

and U ′(t) = −
˚

D
∇⃗ ⋅ j(x, t)dV , then integral form of the conservation law

for substance X: ˚
D

(∂u
∂t

(x, t) + ∇⃗ ⋅ j(x, t))dV = 0

– ∇ operator

∇×F =

RRRRRRRRRRRRRRRRRRRRRRRR

i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

RRRRRRRRRRRRRRRRRRRRRRRR
∂u

∂v1
= ∂u
∂x

∂x

∂v1
+ ∂u
∂y

∂y

∂v1
= ∇u ⋅ ∂x

∂v1

∇ in polar/cylindrical/spherical coordinates in R3

– Stoke’s Theorem ˆ
C
F ⋅ dx =

¨
S
(∇ ×F) ⋅ N̂dS

– final calculation (using spherical polar coordinate is easiest)

F = 1

rn
r = 1

(x2 + y2 + z2)n/2
[xi + yj + zk] Ô⇒ ∇⃗ ⋅F = 3 − n

rn
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3. AMATH

• Fourier Series

f(x) = a0
2
+

∞

∑
n=1

an cosnx +
∞

∑
n=1

bn sinnx, x ∈ [−π,π]

– piecewise C1

– pointwise convergence for a Fourier series (2π-period and piecewise C1)

– even & odd extension of a function defined on (0, π)
–

⟨fn, fn⟩ =
a20
2
π + π

n

∑
k=1

[a2k + b
2
k] ≤ ∥f∥22

– {fn} converges pointwise to f : lim
n→∞

∣fn(x) − f(x)∣ = 0, for all x ∈ [a, b].

– Series
∞

∑
k=1

ak in C[a, b] converges uniformly to f means that the sequence {Sn} of

partial sums converges uniformly to f

lim
n→∞

∥f −
∞

∑
k=1

ak∥
∞

= 0

– Series
∞

∑
k=1

ak in C[a, b] converges in the mean to f means that the sequence {Sn}

of partial sums converges in the mean to f

lim
n→∞

∥f −
∞

∑
k=1

ak∥
2

= 0

– Weierstrass M-test (also covered in MATH 148): If ∣an(x)∣ < Mn, ∀x ∈ [a, b],
∞

∑
n=1

Mn converges, then
∞

∑
n=1

an(x) converges absolutely for each x ∈ [a, b], with sum

f(x), it converges uniformly to f(x) on [a, b].
– ∗ fp piecewise continuous Ô⇒ converges in the mean to fp on any finite interval

∗ fp piecewise C1 Ô⇒ converges pointwise to fp for all x ∈ R
∗ fp piecewise C1 and continuous Ô⇒ converges uniformly to fp on any finite

interval

– Complex Fourier series of a τ-periodic function

– Parseval’s formula: ⟨f, f⟩ = ∥f∥22 =
ˆ τ

2

−
τ
2

f(t)2dt = τ
∞

∑
−∞

∣cn∣2

– Fourier Transform:
F{f(t)} = F (ω) =

ˆ
∞

−∞

f(t)e−iωtdt

3.1.2. Selected Proof

Conservation of Energy Assumptions: F ∶ Rn → Rn is conservative.
Proof
▸

E(t) = 1

2
m∥v(t)∥2 + V (x(t))

19



3. AMATH

E′(t) = m
2

d

dt
[v(t) ⋅ v(t)] + d

dt
V (x1(t), . . . , xn(t))

d

dt
[v(t) ⋅ v(t)] = v′(t) ⋅ v(t) + v(t) ⋅ v′(t) = 2a(t) ⋅ v(t)

By chain rule:

d

dt
V (x1(t), . . . , xn(t)) =

∂V

∂x1

dx1
dt

+ . . . + ∂V

∂xn

dxn
dt

= ∇⃗V ⋅ v

Put together,

E′(t) = v(t) ⋅ [ma(t)]+v(t) ⋅ ∇⃗V = v(t) ⋅ [ma(t)+ ∇⃗V ] = v(t) ⋅ [ma(t)−F(x(t))] = v(t) ⋅0 = 0

Work Integrals
F = −∇⃗V

Proof
▸

W =
ˆ
CAB

F ⋅ dx =
ˆ
CAB

∇⃗V ⋅ dx = −[V (B) − V (A)] = V (A) − V (B) = −∆V

Second Fundamental Theorem of Line Integrals Let F ∶ U → Rn be a continuous vector
field on a connected open set U ⊂ Rn, and let x1,x2 be two points in U . If F = ∇f , where
f ∶ U → R is a C1 scalar field, and C is any curve in U joining x1 to x2, thenˆ

C

F ⋅ dx = f(x2) − f(x1)

Proof
▸ Let C be given by x = g(t), t1 ≤ t ≤ t2, so that x1 = g(t1), x2 = g(t2). Bt the hypothesis,

ˆ
C

F ⋅ dx =
ˆ
C

(∇f) ⋅ dx

=
ˆ t2

t1

∇f(g(t)) ⋅ g′(t)dt by definition of line integral

=
ˆ t2

t1

d

dt
[f(g(t))]dt Chain rule

= f(g(t2)) − f(g(t1)) second FTC
= f(x2) − f(x1)

Proposition 5.1

∥f∥22 =
ˆ b

a
f(x)2dx

≤ max
a≤x≤b

[f(x)]2 (b − a)

= [max
a≤x≤b

∣f(x)∣]
2

(b − a)

= (b − a)∥f∥2
∞
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Proposition 5.2 If fn converges uniformly in piecewise continuous [a, b], then converges in
(i) mean and (ii) pointwise. Proof
▸ For (i), use prop 5.1 and squeeze theorem. For (ii) by definition, ∣fn(x) − f(x)∣ ≤ ∥fn − f∥∞,
then...

3.2. AMATH 251

3.2.1. Topics

• First-order DEs

– An equation relating an unknown function and one or more of its derivatives is
called a differential equation.

– The order of a differential equation is the order of the highest derivative that
appears in it.

– IVP & IC

– Ordinary differential equations: the unknown function (dependent variable) de-
pends on only a single independent variable.

– If the dependent variable is a function of two or more independent variables, then
partial derivatives are likely to be involved; if they are, the equation is called a
partial differential equation.

– general & particular solution

– Slope fields & solution curves

– Theorem Existence and Uniqueness of Solutions
dy

dx
= f(x, y), y(a) = b. has only one solution is defined on I, if f(x, y) &

∂f

∂y
are

continuous on some rectangle R in the xy-plane that contains the point (a, b) in
its interior.

– Separable Equations

– Linear First-Order
dy

dx
+ P (x)y = Q(x), y(x0) = y0

Integrating factor: ρ(x) = e
´
P (x)dx

– Theorem Unique solution for linear first-order equation
P (x) and Q(x) are continuous on the open interval I containing x0

– Substitution Methods

∗
dy

dx
= F (y

x
)Ð→ v = y

x

∗ Bernoulli Equation

dy

dx
+ P (x)y = Q(x)yn Ð→ v(x) = y1−n

– Exactness (will not be tested on the final)

M(x, y) +N(x.y)dy
dx

= 0
∂M

∂y
= ∂N
∂x

⇐⇒ exact in an open rectangle R

– Reducible Second-Order Equations
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