AMATH

3.1. AMATH 231

3.1.1. Topics

Before you brush your teeth, parametrize your curves.

- Vector Calculus
- gradient vector field
- Conservation in physics
- line (path) integral

$$
\begin{gathered}
\int_{C} f d s=\int_{a}^{b} f(\mathbf{g}(t))\left\|\mathbf{g}^{\prime}(t)\right\| d t \\
W=\int_{C} \mathbf{F} \cdot d \mathbf{x}=\int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}^{\prime}(t) d t
\end{gathered}
$$

- Path-independence and the Fundamental Theorems of Calculus for Line Integrals

$$
\int_{C_{A B}} \mathbf{F} \cdot d \mathbf{x}=\int_{C_{A B}} \vec{\nabla} f \cdot d \mathbf{x}=f(B)-f(A)
$$

- First Fundamental Theorem for Line Integrals

$$
f(\mathbf{x})=\int_{x_{0}}^{x} \mathbf{F} \cdot d \mathbf{y} \Longrightarrow \vec{\nabla} f(\mathbf{x})=\mathbf{F}(\mathbf{x})
$$

- over closed curves

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{x} \\
\oint_{C} \mathbf{F} \cdot d \mathbf{x}=\int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \mathbf{g}^{\prime}(t) d t=\oint^{2} f d s
\end{gathered}
$$

where the scalar valued function $f(\mathbf{g}(t))=\mathbf{F}(\mathbf{g}(t)) \cdot \widehat{\mathbf{T}}(t)$

- Green's Theorem

$$
\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{x}=\iint_{\mathcal{D}}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\iint_{\mathcal{D}}(\nabla \times \mathbf{F})_{z} d A
$$

- divergence

$$
\operatorname{div} \mathbf{F}=\vec{\nabla} \cdot \mathbf{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

- divergence of position vector

$$
\vec{\nabla} \cdot \frac{1}{r^{3}} \mathbf{r}=0 \quad(x, y, z) \neq 0
$$

- curl

$$
\begin{gathered}
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\vec{\nabla} \times \mathbf{F}=\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathbf{k} \\
\nabla \times \mathbf{F}=\mathbf{0} \Longrightarrow \mathbf{F} \text { is gradient }
\end{gathered}
$$

- vorticity
$\mathbf{v}(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right)$, then vorticity is

$$
\Omega(x, y)=\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}
$$

- Mean value theorem for (double) integrals

$$
\begin{gathered}
f\left(x^{*}, y^{*}\right)=\bar{f}_{D}=\frac{1}{A(D)} \iint_{D} f(x, y) d A \\
{\left[\operatorname{curl} \mathbf{F}\left(p_{1}, p_{2}\right)\right]_{z}=\Omega\left(p_{1}, p_{2}\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \oint_{C_{\varepsilon}} \mathbf{F} \cdot d \mathbf{x}}
\end{gathered}
$$

- Total outward flux

$$
\oint_{C} \mathbf{F} \cdot \widehat{\mathbf{N}} d s=\int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \widehat{\mathbf{N}}(t) d s=\int_{a}^{b} \mathbf{F}(\mathbf{g}(t)) \cdot \widehat{\mathbf{N}}(t)\left\|\mathbf{g}^{\prime}(t)\right\| d t
$$

- Divergence Theorem

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot \widehat{\mathbf{N}} d s=\iint_{D}\left[\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}\right] d A=\iint_{D} \vec{\nabla} \cdot \mathbf{F} d A \\
\vec{\nabla} \cdot \mathbf{F}(\mathbf{p})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi \varepsilon^{2}} \oint_{C_{\varepsilon}} \mathbf{F} \cdot \widehat{\mathbf{N}} d s \\
\vec{\nabla} \cdot \mathbf{F}(\mathbf{p})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\frac{4}{3} \pi \varepsilon^{3}} \iint_{S_{\varepsilon}} \mathbf{F} \cdot \widehat{\mathbf{N}} d s
\end{gathered}
$$

- Circulation integrals/Outward flux integrals around singularities
- Surface integration
* Surface parametrizations
* Normal vectors to surfaces from parameterizations

$$
\mathbf{N}\left(u_{0}, v_{0}\right)= \pm \mathbf{T}_{u}\left(u_{0}, v_{0}\right) \times \mathbf{T}_{v}\left(u_{0}, v_{0}\right)
$$

where $\mathbf{T}_{u}=\frac{\partial \mathbf{g}(u, v)}{\partial u}$.

* surface integrals of scalar functions

$$
\int_{S} f d S=\iint_{u, v} f(\mathbf{g}(u, v))\|\mathbf{N}(u, v)\| d u d v
$$

* surface area

$$
S=\iint_{\mathcal{D}_{u v}}\left\|\frac{\partial \mathbf{g}}{\partial u} \times \frac{\partial \mathbf{g}}{\partial v}\right\| d u d v
$$

* flux integral

$$
\iint_{S} \mathbf{F} \cdot \widehat{\mathbf{N}} d S=\iint_{D_{u v}} \mathbf{F}(\mathbf{g}(u, v)) \cdot \mathbf{N}(u, v) d A
$$

* Gauss Divergence Theorem in \mathbb{R}^{3}

$$
\underbrace{\iint_{S} \mathbf{F} \cdot \widehat{\mathbf{N}} d S}_{\text {surface integral }}=\underbrace{\iiint_{D} \operatorname{div} \mathbf{F} d V}_{\text {volume integral }}
$$

- Let $U(t)$ denote the total amount of substance X in region D at time $t . u(\mathbf{x}, t)$ denote the concentration of substance X at a point $\mathbf{x} \in R \subset \mathbb{R}^{3}$.

$$
U(t)=\iiint_{D} u(\mathbf{x}, t) d V \Longrightarrow U^{\prime}(t)=\iiint_{D} \frac{\partial u}{\partial t}(\mathbf{x}, t) d V
$$

- The flow of X is defined by the flux density vector $\mathbf{j}(\mathbf{x}, t)$. The net outward substance X through an infinitesimal element of surface area $d S$ centered at point $x \in \partial D$ is given by $\mathbf{j}(\mathbf{x}, t) \cdot \widehat{\mathbf{N}}(\mathbf{x}) d S$. The total outward flux: $\iint_{\partial D} \mathbf{j}(\mathbf{x}, t) \cdot \widehat{\mathbf{N}}(\mathbf{x}) d S$. By Divergence Theorem, we have

$$
\iint_{\partial D} \mathbf{j}(\mathbf{x}, t) \cdot \widehat{\mathbf{N}}(\mathbf{x}) d S=\iiint_{D} \vec{\nabla} \cdot \mathbf{j}(\mathbf{x}, t) d V
$$

and $U^{\prime}(t)=-\iiint_{D} \vec{\nabla} \cdot \mathbf{j}(\mathbf{x}, t) d V$, then integral form of the conservation law for substance X:

$$
\iiint_{D}\left(\frac{\partial u}{\partial t}(\mathbf{x}, t)+\vec{\nabla} \cdot \mathbf{j}(\mathbf{x}, t)\right) d V=0
$$

- ∇ operator

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
\frac{\partial u}{\partial v_{1}}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial v_{1}}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial v_{1}}=\nabla u \cdot \frac{\partial \mathbf{x}}{\partial v_{1}}
\end{gathered}
$$

∇ in polar/cylindrical/spherical coordinates in \mathbb{R}^{3}

- Stoke's Theorem

$$
\int_{C} \mathbf{F} \cdot d \mathbf{x}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \widehat{\mathbf{N}} d S
$$

- final calculation (using spherical polar coordinate is easiest)

$$
\mathbf{F}=\frac{1}{r^{n}} \mathbf{r}=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}}[x \mathbf{i}+y \mathbf{j}+z \mathbf{k}] \Longrightarrow \vec{\nabla} \cdot \mathbf{F}=\frac{3-n}{r^{n}}
$$

- Fourier Series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x, \quad x \in[-\pi, \pi]
$$

- piecewise C^{1}
- pointwise convergence for a Fourier series (2π-period and piecewise C^{1})
- even \& odd extension of a function defined on $(0, \pi)$

$$
\left\langle f_{n}, f_{n}\right\rangle=\frac{a_{0}^{2}}{2} \pi+\pi \sum_{k=1}^{n}\left[a_{k}^{2}+b_{k}^{2}\right] \leq\|f\|_{2}^{2}
$$

- $\left\{f_{n}\right\}$ converges pointwise to $f: \lim _{n \rightarrow \infty}\left|f_{n}(x)-f(x)\right|=0$, for all $x \in[a, b]$.
- Series $\sum_{k=1}^{\infty} a_{k}$ in $C[a, b]$ converges uniformly to f means that the sequence $\left\{S_{n}\right\}$ of partial sums converges uniformly to f

$$
\lim _{n \rightarrow \infty}\left\|f-\sum_{k=1}^{\infty} a_{k}\right\|_{\infty}=0
$$

- Series $\sum_{k=1}^{\infty} a_{k}$ in $C[a, b]$ converges in the mean to f means that the sequence $\left\{S_{n}\right\}$ of partial sums converges in the mean to f

$$
\lim _{n \rightarrow \infty}\left\|f-\sum_{k=1}^{\infty} a_{k}\right\|_{2}=0
$$

- Weierstrass M-test (also covered in MATH 148): If $\left|a_{n}(x)\right|<M_{n}, \quad \forall x \in[a, b]$, $\sum_{n=1}^{\infty} M_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}(x)$ converges absolutely for each $x \in[a, b]$, with sum $f(x)$, it converges uniformly to $f(x)$ on $[a, b]$.
- $\quad f_{p}$ piecewise continuous \Longrightarrow converges in the mean to f_{p} on any finite interval * f_{p} piecewise $C^{1} \Longrightarrow$ converges pointwise to f_{p} for all $x \in \mathbb{R}$
* f_{p} piecewise C^{1} and continuous \Longrightarrow converges uniformly to f_{p} on any finite interval
- Complex Fourier series of a τ-periodic function
- Parseval's formula: $\langle f, f\rangle=\|f\|_{2}^{2}=\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} f(t)^{2} d t=\tau \sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}$
- Fourier Transform:

$$
\mathcal{F}\{f(t)\}=F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

3.1.2. Selected Proof

Conservation of Energy Assumptions: $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is conservative. Proof

$$
E(t)=\frac{1}{2} m\|\mathbf{v}(t)\|^{2}+V(\mathbf{x}(t))
$$

$$
\begin{gathered}
E^{\prime}(t)=\frac{m}{2} \frac{d}{d t}[\mathbf{v}(t) \cdot \mathbf{v}(t)]+\frac{d}{d t} V\left(x_{1}(t), \ldots, x_{n}(t)\right) \\
\frac{d}{d t}[\mathbf{v}(t) \cdot \mathbf{v}(t)]=\mathbf{v}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{v}(t) \cdot \mathbf{v}^{\prime}(t)=2 \mathbf{a}(t) \cdot \mathbf{v}(t)
\end{gathered}
$$

By chain rule:

$$
\frac{d}{d t} V\left(x_{1}(t), \ldots, x_{n}(t)\right)=\frac{\partial V}{\partial x_{1}} \frac{d x_{1}}{d t}+\ldots+\frac{\partial V}{\partial x_{n}} \frac{d x_{n}}{d t}=\vec{\nabla} V \cdot \mathbf{v}
$$

Put together,

$$
E^{\prime}(t)=\mathbf{v}(t) \cdot[m \mathbf{a}(t)]+\mathbf{v}(t) \cdot \vec{\nabla} V=\mathbf{v}(t) \cdot[m \mathbf{a}(t)+\vec{\nabla} V]=\mathbf{v}(t) \cdot[m \mathbf{a}(t)-\mathbf{F}(\mathbf{x}(t))]=\mathbf{v}(t) \cdot \mathbf{0}=0
$$

Work Integrals

$$
\mathbf{F}=-\vec{\nabla} V
$$

Proof

$$
W=\int_{C_{A B}} \mathbf{F} \cdot d \mathbf{x}=\int_{C_{A B}} \vec{\nabla} V \cdot d \mathbf{x}=-[V(B)-V(A)]=V(A)-V(B)=-\Delta V
$$

Second Fundamental Theorem of Line Integrals Let $\mathbf{F}: \mathcal{U} \rightarrow \mathbb{R}^{n}$ be a continuous vector field on a connected open set $\mathcal{U} \subset \mathbb{R}^{n}$, and let $\mathbf{x}_{1}, \mathbf{x}_{2}$ be two points in \mathcal{U}. If $\mathbf{F}=\nabla f$, where $f: \mathcal{U} \rightarrow \mathbb{R}$ is a C^{1} scalar field, and \mathcal{C} is any curve in \mathcal{U} joining \mathbf{x}_{1} to \mathbf{x}_{2}, then

$$
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{x}=f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right)
$$

Proof

- Let \mathcal{C} be given by $\mathbf{x}=\mathbf{g}(t), \quad t_{1} \leq t \leq t_{2}$, so that $\mathbf{x}_{1}=\mathbf{g}\left(t_{1}\right), \mathbf{x}_{2}=\mathbf{g}\left(t_{2}\right)$. Bt the hypothesis,

$$
\begin{array}{rll}
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{x} & =\int_{\mathcal{C}}(\nabla f) \cdot d \mathbf{x} \\
& =\int_{t_{1}}^{t_{2}} \nabla f(\mathbf{g}(t)) \cdot \mathbf{g}^{\prime}(t) d t & \text { by definition of line integral } \\
& =\int_{t_{1}}^{t_{2}} \frac{d}{d t}[f(\mathbf{g}(t))] d t & \text { Chain rule } \\
& =f\left(\mathbf{g}\left(t_{2}\right)\right)-f\left(\mathbf{g}\left(t_{1}\right)\right) & \text { second FTC } \\
& =f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right) &
\end{array}
$$

Proposition 5.1

$$
\begin{aligned}
\|f\|_{2}^{2} & =\int_{a}^{b} f(x)^{2} d x \\
& \leq \max _{a \leq x \leq b}[f(x)]^{2}(b-a) \\
& =\left[\max _{a \leq x \leq b}|f(x)|\right]^{2}(b-a) \\
& =(b-a)\|f\|_{\infty}^{2}
\end{aligned}
$$

Proposition 5.2 If f_{n} converges uniformly in piecewise continuous $[a, b]$, then converges in (i) mean and (ii) pointwise. Proof

- For (i), use prop 5.1 and squeeze theorem. For (ii) by definition, $\left|f_{n}(x)-f(x)\right| \leq\left\|f_{n}-f\right\|_{\infty}$, then...

3.2. AMATH 251

3.2.1. Topics

- First-order DEs
- An equation relating an unknown function and one or more of its derivatives is called a differential equation.
- The order of a differential equation is the order of the highest derivative that appears in it.
- IVP \& IC
- Ordinary differential equations: the unknown function (dependent variable) depends on only a single independent variable.
- If the dependent variable is a function of two or more independent variables, then partial derivatives are likely to be involved; if they are, the equation is called a partial differential equation.
- general \& particular solution
- Slope fields \& solution curves
- Theorem Existence and Uniqueness of Solutions
$\frac{d y}{d x}=f(x, y), \quad y(a)=b$. has only one solution is defined on I, if $f(x, y) \& \frac{\partial f}{\partial y}$ are continuous on some rectangle R in the $x y$-plane that contains the point (a, b) in its interior.
- Separable Equations
- Linear First-Order

$$
\frac{d y}{d x}+P(x) y=Q(x), \quad y\left(x_{0}\right)=y_{0}
$$

Integrating factor: $\rho(x)=e^{\int P(x) d x}$

- Theorem Unique solution for linear first-order equation $P(x)$ and $Q(x)$ are continuous on the open interval I containing x_{0}
- Substitution Methods
* $\frac{d y}{d x}=F\left(\frac{y}{x}\right) \longrightarrow v=\frac{y}{x}$
* Bernoulli Equation

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n} \quad \longrightarrow v(x)=y^{1-n}
$$

- Exactness (will not be tested on the final)

$$
M(x, y)+N(x . y) \frac{d y}{d x}=0 \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \Longleftrightarrow \text { exact in an open rectangle } R
$$

- Reducible Second-Order Equations

