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Info

Instructor

Jim Geelen (Instructor)

• Office MC 5124

• Phone x35594

• Email jim.geelen@uwaterloo.ca

• Office hour: 3:00 to 4:00 p.m. Tuesday (or by appointment)

TA

Adam Brown (TA)

• Office MC 5462

• Email ajmbrown@uwaterloo.ca

• Office hours: By appointment

Overview

This course serves as an introduction to optimization, with particular emphasis on convex optimization,
linear optimization, and combinatorial optimization.

Topics

• Introduction

• Linear Programming: feasibility, unboundedness, duality

• Polyhedra: polyhedral cones, extreme points, faces, constructing polyhedra

• Solving Linear Programs: Simplex Algorithm, testing feasibility, finding extreme points, perturba-
tion method

• Combinatorial Optimization: integer programming, total unimodularity, weighted bipartite match-
ing
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• Convex Geometry: Separating Hyperplane Theorem, duality for cones, extreme points

• Convex Optimization: convex functions, normal cones and tangent cones, optimality conditions,
Ellipsoid Method

• Complexity Theory: linear algebra, linear programming, integer linear programming

Suggested reading

• A. Schrijver, Theory of Integer and Linear Programming, Wiley 1998.

• V. Chvatal, Linear Programming, W.H. Freeman and Company, 1983.

• J.M. Borwein and A.S. Lewis, Convex Analysis and Nonlinear Optimization, Second Edition, Springer,
2006. (Electronic copy.)

Assignments

Assignments 40%
There will be six assignments:

• Assignment 1, due September 19

• Assignment 2, due October 3

• Assignment 3, due October 17

• Assignment 4, due October 31

• Assignment 5, due November 14

• Assignment 6, due November 28

Solutions will not be posted.

Late policy: You may submit one assignment late (but not Assignment 6) provided that you email the
instructor before the start of class in which the assignment is due. Late assignments should be submitted
at the start of the following class.

Uncollected assignments will be disposed of after the final exam.

Final

Final exam 60%
Information will be posted in November.



Intro

Given a set S (the feasible region) and a function f : S → R (the objective function) solve

min(f(x) : x ∈ S) (1)

max(f(x) : x ∈ S) (2)

Note that
max(f(x) : x ∈ S) = min(−f(x) : x ∈ S)

Problem (1) may not be well posed. For example:

• (1) may be infeasible: that is S = ∅

• (1) may be unbounded: that is there may exist x ∈ S with f(x) arbitrarily small

Even if (1) is feasible and bounded it may not be well posed.
For example, min(x : x > 1)

Infinum and Supremum

Consider
max(z ∈ R : z ≤ f(x) for all x ∈ S) (3)

If (1) is feasible and bounded, then (3) has an optimal solution.
We define,

inf(f(x), x ∈ S) =

 ∞ (1) is infeasible
−∞ (1) is unbounded
max (z ∈ R : z ≤ f(x) for all x ∈ S) otherwise

and sup(f(x) : x ∈ S) = −inf(−f(x) : x ∈ S).

Optimal Value

We let
OPT(1) = inf(f(x) : x ∈ S)

and
OPT(2) = sup(f(x) : x ∈ S)

5
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0.1 Some optimization problems

Linear programming
f(x) = cTx and S = {x ∈ Rn : Ax ≤ b}

where A ∈ Rm×n,b ∈ Rm and c ∈ Rn

Integer Linear programming

f(x) = cTx and S = {x ∈ Zn : Ax ≤ b}

Convex Optimization
S ⊆ Rn is convex and f : S → R is convex

S ⊆ Rn is convex if for each x, y ∈ S and λ ∈ [0, 1],

λx+ (1− λ)y ∈ S

f : S → R is convex if for each x, y ∈ S and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

The convex hull of S ⊆ Rn, denoted conv(S), is (unique) minimal convex set contains S.

Consider an optimization problem min(f(x) : x ∈ S) where S ⊆ Rn. and f : Rn → R

We can ”reduce” this to a convex optimization problem with a linear objective function.

Step 1 Linearize the objective function.

Let Ŝ = {
(
x
y

)
: x ∈ S, y = f(x)} ⊆ Rn+1

Then min(f(x) : x ∈ S) = min(y :

(
x
y

)
∈ Ŝ)
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Step 2 Convexify S
If f : Rn → R is linear, then

min(f(x) : x ∈ S) = min(f(x) : x ∈ conv(S))

This one is theoretically true.

Recall: (9.10)

• Linear Programming

• Integer Programming

• Convex Optimization

Examples:

1. A two player game
Given A ∈ Rm×n, Rose chooses i ∈ {1, · · · ,m}, and Colin chooses j ∈ {1, · · · , n} (independently),
then Colin pays Rose $ aij .

eg

A =

[
2 −2
1 5

]
If Rose chooses 1, then her return is at least -2.
If Rose chooses 2, then her return is at least 1.

If Rose chooses with equal probability then her expected return is ≥ min(
1

2
(2 + 1),

1

2
(−2 + 5)) =

3

2
Rose will choose her strategy maximizing her expected return in the worst case (i.e. that Colin
guesses her strategy)  max(minj∈{1,··· ,n}

∑m
i=1 piaij)

p1 + · · ·+ pm = 1
p1, · · · , pm ≥ 0

or equivalently

(R)


max z
↓ subject to z ≤

∑m
i=1 piaij , j ∈ {1, · · · , n}

p1 + · · ·+ pm = 1
p1, · · · , pm ≥ 0

Note that (R) is a linear program.
Likewise Colin will choose his strategy using the following linear program:

(C)


min z
↓ subject to
z ≥

∑n
j=1 qjaij , i ∈ {1, · · · ,m}

q1 + · · ·+ qn = 1
q1, · · · , qm ≥ 0

Note that

OPT(R) ≤ OPT(C)

Surprising Fact: (R) and (C) have the same optimal value.
Hence, it does not harm either Rose or Colin to reveal strategy.

2. Weighted bipartite matching.
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Problem: Given n jobs, n workers, and a utility aij of worker i performing job j, find an assign-
ment of workers to jobs of maximum total utility.

Variables: xij ∈ {0, 1} where xij indicates assigning worker i to job j.

Formulation:

(P )


max

∑n
i=1

∑n
j=1 uijxij

↓ subject to
∑n
i=1 xij = 1, j = 1, · · · , n∑n
j=1 xij = 1, i = 1, · · · , n

xij ∈ {0, 1} i, j ∈ {1, · · · , n}

This is an integer linear program.
The linear relaxation of (P) is the linear program (P’) obtained by replacing the last constraint with

0 ≤ xij ≤ 1, i, j ∈ {1, · · · , n}

Note that

OPT(P) ≤ OPT(P’)

Surprising Fact: In this case OPT(P) = OPT(P’)

3. 3D-Matching Problem

Problem: Given A ∈ Rn×n×n where aijk is the utility of person i performing job j on machine k,
find an assignment of maximum total utility.

Formulation

max

n∑
i=1

n∑
j=1

n∑
k=1

aijkxijk

subject to
n∑
j=1

n∑
k=1

xijk = 1, i = 1, · · · , n

n∑
i=1

n∑
k=1

xijk = 1, j = 1, · · · , n

n∑
i=1

n∑
j=1

xijk = 1, k = 1, · · · , n

xijk ∈ {0, 1} i, j, k ∈ {1, · · · , n}

− −−−−−−−−−−−−−−−−−−−−−−− (P )

In this case the inequality

OPT(P) ≤ OPT(P’)

may be strict.

Remark: 3D matching is NP-hard, so integer linear programming is NP-hard. Note that we can
replace z ∈ {0, 1} with z(z − 1) = 0. so ”quadratic programming” is NP-hard.
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Recall: Integer linear programming is NP-hard.

4. Integer solutions to Diophantine Equations.

Example

(P )


min sin(πx)2 + sin(πy)2 + sin(πz)2

↓ subject to{
x3 + y3 = z3

x, y, z ≥ 1

Note that OPT(P) ≥ 0, and a feasible solution (x, y, z) has objective value zero if and only if x, y, z
are positive integers satisfying x3 + y3 = z3.

A Diophantine Equations is an equation

p(x1, · · · , xn) = 0

where p(x1, · · · , xn) is a polynomial with integer coefficients.

Hilbert’s 10th problem: Given a Diophantine equation, decide whether it has an integer solution.

Formulation:

(P )

 min sin(πx1)2 + · · ·+ sin(πxn)2

↓ subject to
p(x1, · · · , xn) = 0

Remarks: Many famous problems are instances:

• The Four-Colour Theorem

• Riemann Hypothesis

• Goldbach’s Conjecture

Summary

Optimization is hard. We need restrictive assumptions to develop theory and algorithms, even for convex
optimization.



1
Linear Programming

1.1 Linear Programming Feasibility

Problem: Given A ∈ Rm×n and b ∈ Rm, does there exist x ∈ Rn such that Ax ≥ b

Remark: For vectors a,b ∈ Rn, we can have neither a ≥ b nor a ≤ b. For example, a =

[
1
−1

]
and

b =

[
−1
1

]

Eliminating a variable.

(Fourier-Motzkin Elimination)

Example:
x2 ≤ 2
x1 − x2 ≥ −1
2x1 + x2 ≥ 2
x1 − 3x2 ≤ 1

 (1)

Rewrite as
x2 ≤ 2 does not use x1
x1 ≥ x2 − 1
x1 ≥ − 1

2x2 + 1

}
lower bounds on x1

x1 ≤ 3x2 + 1 upper bound on x1

So (1) has a solution if and only if there exists x2 ∈ R satisfying:

(2.1) x2 ≤ 2
(2.2) max (x2 − 1,− 1

2x2 + 1) ≤ 3x2 + 1

or equivalently

x2 ≤ 2
x2 − 1 ≤ 3x2 + 1
− 1

2x2 + 1 ≤ 3x2 + 1

 (3)

that is 0 ≤ x2 ≤ 2

10



CHAPTER 1. LINEAR PROGRAMMING 11

More generally, consider (1) Ax ≥ b where A ∈ Rm×n and b ∈ Rm

Rewrite as 
f(x1) ≥ 0
...
f(xm) ≥ 0

where fi(x) ≥ ai1x1 + · · ·+ ainxn − bi

Scale so that ain ∈ {0, 1,−1} for each i ∈ {1, · · · ,m}

Define
A1 = {i ∈ {1, · · · ,m} : ain ∈ A1}

A−1 = {i ∈ {1, · · · ,m} : ain ∈ A−1}

A0 = {i ∈ {1, · · · ,m} : ain ∈ A0}

Rewrite (2) as:

(3.1) xn ≥ gi(x1, · · · , xn−1), i ∈ A1

(3.2) xn ≤ gi(x1, · · · , xn−1), i ∈ A−1
(3.3) 0 ≤ gi(x1, · · · , xn−1), i ∈ A0

Hence (1) has a solution if and only if the following system does

(4.1) 0 ≤ gi(x1, · · · , xn−1), i ∈ A0

(4.2) gi(x1, · · · , xn−1) ≤ gj(x1, · · · , xn−1)
↑—— for each i ∈ A1 and j ∈ A−1

The system (4) has only n− 1 variables, but it has O(m2k) constraints, so this method is inefficient.

1.2 Polyhedra

A polyhedron is a set of the form {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. A polytope is a
bounded polyhedron.

Recall:

• Fourier-Motzkin Elimination (Page 9)

• Polyhedra
A polyhedron is a set of the form {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. A polytope is
a bounded polyhedron.
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1.3 Projection

Let P ⊆ Rn, let l < n, and P ′ =
{x1...

xl

 : x ∈ P
}

. We call P ′ the projection of P onto x1, · · · , xl

Theorem 1.1

If P ⊆ Rn is a polyhedron and P ′ is the projection of P onto x1, · · · , xl, then P ′ is a polyhe-
dron.

Proof: Use Fourier-Motzkin elimination

1.4 Certifying infeasibility

Recall

Fundamental Theorem of Linear Algebra

Let F be a field. For A ∈ Fm×n and b ∈ Fm, exactly one of the following systems has a
solution:

(1) (Ax = b,x ∈ Fn)

(2) (yTA = 0,yTb = 1,y ∈ Fm)

(That is if Ax = b is infeasible, then we can obtain the equation 0 = 1 by taking a linear combination
of the rows)

Farkas’ Lemma

Let A ∈ Rm×n and b ∈ Rm. Exactly one of the following systems has a solution:

(1) (Ax ≥ b,x ∈ Rn)

(2) (yTA = 0,yTb = 1,y ≥ 0,y ∈ Rm)

(That is if Ax ≥ b has no solution then we can obtain the inequality 0 ≥ 1 as a non-negative
combination of the constraints)
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Claim: Easy direction (1) and (2) cannot both hold.

Proof: If (1) and (2) hold, then 0 = (yTA)x = yT (Ax) ≥ yTb = 1

Example:

x+ 2y ≤ 2 (1.1)
x− y ≥ 0 (1.2)

3x+ 2y ≤ 6 (1.3)
y ≥ 1 (1.4)

Consider (1.1)-(1.2)-3(1.4)

0 = (x+ 2y)− (x− y)− 3y ≤ 2− 0− 3× 1 = −1

Hence (1) is infeasible

Implied inequalities

A linear inequalities aTx ≥ a0 is implied by a system Ax ≥ b if there is a non-negative vector y ∈ Rm

such that a = ATy and a0 = yTb

(This definition is non-standard; the more standard definition allows a0 ≤ yTb)

The hard direction of the Farkas’ Lemma is that, if Ax ≥ b is infeasible, then the inequality 0 ≥ 1 is
implied by Ax ≥ b

Note that A′x ≥ b′ is a set of implied inequalities of Ax ≥ b, and A′′x ≥ b′′ is a set of implied
inequalities of A′x ≥ b′. Then A′′x ≥ b′′ is implied by Ax ≥ b.

Claim: The system obtained from Ax ≥ b by Fourier-Motzkin Elimination is implied by Ax ≥ b

Proof: Consider
xn ≤ g1(x1, · · · , xn−1) (1)

xn ≥ g2(x1, · · · , xn−1) (2)

Now (1)− (2) gives (1) minus (2)

g2(x1, · · · , xn−1) ≤ g1(x1, · · · , xn−1)

Hard direction of the Farkas’ Lemma.

Theorem

If Ax ≥ b is infeasible, then 0 ≥ 1 is an implied inequality.

Proof: An easy induction based on the previous claim.
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Example

x+ 2y ≤ 2 (1.1)
x− y ≥ 0 (1.2)

3x+ 2y ≤ 6 (1.3)
y ≥ 1 (1.4)

Eliminate x:

0 ≤ −3y + 2 (1.1)− (1.2)
0 ≤ − 5

3y + 2 1
3 (1.3)− (1.2)

y ≥ 1 (1.4)
Thus

y ≤ 2
3

1
3 ((1.1)− (1.2))

y ≥ 1 (1.4)

Eliminating y: 1 ≤ 2

3

1

3
((1.1)− (1.2))− (1.4)

Thus 1 ≤ 0 (1.1)− (1.2)− 3(1.4)

Other forms:

Theorem 1.2 (Another form of Farkas’ Lemma)

Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following systems has a solution.

(1) (Ax = b, x ≥ 0)

(2) (yTA ≥ 0,yTb = −1)

If x satisfies (1) and y satisfies (2), then

0 ≤ (yTA)x = yT (Ax) = yTb = −1

— contradiction
So (1) and (2) cannot both have a solution.

Suppose that (1) has no solution, we can rewrite (1) as (Ax ≥ b, Ax ≤ b,x ≥ 0)

or equivalently  A
−A
I

x ≥

b
b
0

 (i)

By Farkas Lemma, if (i) has no solution, then there exist non-negative vectors y1,y2 ∈ Rm and z ∈ Rn
such that

[y1
T ,y2

T , zT ]

 A
−A
I

 = 0

and

[y1
T ,y2

T , zT ]

 b
−b
0

 = 1

That is
y1
TA− y2

TA+ z = 0, y1
Tb− y2

Tb = 1
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So
(y2 − y1)TA ≥ 0, (y2 − y1)Tb = −1

Setting y = y2 − y1 gives a solution to (2)

1.5 Geometric Intepretation

A set K ∈ Rn is a cone if

• 0 ∈ K

• for each x ∈ K and λ ≥ 0, we have λx ∈ K, and

• K has to be convex

For a set S ∈ Rn we let cone(S) denote the smallest cone containing S (note that this is well-defined)

Lemma 1.3

If a1, · · · , an ∈ Rn, then: cone({a1, · · · , an}) = {λ1a1 + · · ·+ λkak : λ1, · · · , λk ≥ 0}

Proof: Exercise. Similar to the assignment

Remark: b ∈ conv({a1, · · · , an}) if and only if

[
1
b

]
∈ conv(

{[
1
a1

]
, · · · ,

[
1
ak

]}
)

Let A ∈ Rm×n and b ∈ Rm and let a1, · · · , an denote the columns of A.

The following are equivalent:

(i) b /∈ cone({a1, · · · , an})

(ii) (Ax = b, x ≥ 0) has no solution

(iii) (yTA ≥ 0, yT b = −1) has a solution

Let H = {z ∈ Rm : yT z = 0}

H is a hyperplane that separates b from cone({a1, · · · , an})
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Exercise: prove the Farkas Lemma from Theorem 1.2

• Recall that an infeasible system of linear equations in n variables contains an infeasible subsystem of
size at most n+ 1.

1.6 Minimally Infeasible Subsystems

Theorem 1.3

Let A ∈ Rm×n and b ∈ Rm. If the system Ax ≥ b is infeasible, then there is an infeasible
subsystem with at most n+ 1 inequalities.

Lemma 1.4

Let A ∈ Rm×n and b ∈ Rm. If (Ax = b,x ≥ 0) has a solution, then there is a solution x∗

with at most m non-zero entries.

Proof Assignment 1, Problem 5

Geometric Interpretation:

If b, a1, . . . , an ∈ Rn and b ∈ cone({a1, . . . , an}), then there exists X ⊆ {a1, . . . , an} with |x| ≤ m such
that b ∈ cone(X)

Proof of Theorem 1.3
By the Farkas Lemma, if Ax ≥ b is infeasible, then there exists y ∈ Rm such that

yTA = 0,yTb = 1, y ≥ 0

That is [A,b]Ty =

[
0
1

]
, y ≥ 0

By Lemma 1.4, there is a solution y∗ with at most n+ 1 non-zero entries.
We get the result by taking the inequalities in Ax ≥ b indexed by the support of y∗



2
Linear Programming

Theorem 2.1 (Fundamental Theorem of Linear Programming)

A linear program is either

• infeasible

• unbounded, or

• has an optimal solution

We’ll prove it later.

Note that min(
1

x
: x ≥ 1) is feasible and bounded but it has no optimal solution.

Consider a linear program
(LP) min(cTx : Ax ≥ b) where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn

• Let P = {x ∈ Rn : Ax ≥ b}

Lemma 2.2

Let x ∈ P and d ∈ Rn. Then

(i) {x+ λd : λ ≥ 0} ⊆ P if and only if Ad ≥ 0, and

(ii) {x+ λd : λ ∈ R} ⊆ P if and only if Ad = 0

Proof: see Assignment 1

17
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Theorem 2.3 (Unboundedness Theorem)

(LP) is unbounded if and only if (LP) is feasible, and there exists d ∈ Rn such that Ad ≥ 0
and cT d < 0
(That is, P contains a ray R and min(cTx : x ∈ R) is unbounded)

We’ll prove it later.

Claim (Easy direction):

If (LP) is feasible and d ∈ Rn satisfies (Ad ≥ 0, cT d < 0), then (LP) is unbounded.

Proof: Let x ∈ P and let λ ≥ 0. By Lemma 2.2 (i), x+ λd ∈ P . Moreover cT (x+ λd) = cTx+ λcT d.
So lim

λ→∞
cT (x+ λd) = −∞

2.1 Duality

Question: How do we show that an (LP) is bounded?
Answer: use implied inequalities.

Example

(LP)


min(x1 + x2) subject to
2x1 + x2 ≥ 4 (a)
2x1 + x2 ≥ 6 (b)
x1 + 4x2 ≥ 4 (c)
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3
7 (a) + 1

7 (c) : x1 + x2 ≥
16

7

Hence OPT(LP) ≥ 16

7

Question: what is the best lower bound that we can get by using implied inequalities?
Each implied inequality has the form:

(2y1 + 2y2 + y3)x1 + (y1 + 3y2 + 4y3)x2 ≥ 4y1 + 6y2 + 4y3 where y1, y2, y3 ≥ 0
we multiply y1 on both sides of (a), y2 on (b), y3 on (c)

If
2y1 + 2y2 + y3 = 1
y1 + 3y2 + 4y3 = 1

, then we have the inequality x1 + x2 ≥ 4y1 + 6y2 + 4y3

So to get the best lower bound, we want to solve

(D)


max(4y1 + 6y2 + 4y3) subject to
2y1 + 2y2 + y3 = 1
y1 + 3y2 + 4y3 = 1
y1, y1, y3 ≥ 0

By construction, OPT(D) ≤ OPT(LP)

Note that x∗ =

[
3/2
1

]
is a feasible solution to (LP) with objective value

5

2
, and y∗ =

1/4
1/4
0

 is a feasible

solution to (D) with objective value
5

2
. Hence x∗ is optimal for (LP) and OPT(LP) = 5

2 .

More generally, consider

(P) min(cTx : Ax ≥ b) where A ∈ Rm×n, b ∈ Rm and c ∈ Rn

The dual of (P)

(D) max(bT y : AT y = c, y ≥ 0)

Weak Duality Theorem

If x is a feasible solution for (P) and y is a feasible solution for (D), then cTx ≥ bT y

Proof: cTx = (AT y)Tx = yT (Ax) ≥ yT b = bT y

Corollary 2.4: If (D) is feasible, then (P) is bounded.

Proof: Immediate

Corollary 2.5: If (P) is feasible, then (D) is bounded.

Proof: Immediate

Corollary 2.6: If x is feasible for (P), y is feasible for (D), and cTx = bT y, then x is optimal for (P)
and y is optimal for (D).
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Proof: Immediate

Strong Duality Theorem

If (P) has an optimal solution, then (D) has an optimal solution and OPT(P) = OPT(D)

Proof: Later

(P)
(D) infeasible unbounded has optimal solution

infeasible 3 3 7

unbounded 3 7 7

has opti-
mal solu-
tion

7 7 3

• Strong Duality Theorem

• Corollary 2.4

• Corollary 2.5

• Use the Farkas Lemma (Assignment 2)

• this can happen (example Assignment 3)

Theorem 2.7 (LP Uber Theorem)

Either

(I) (P) and (D) both have optimal solutions and OPT(P) = OPT(D), or

(II) There exists y ∈ Rm such that (yTA = 0, yT b = 1, y ≥ 0) and hence (P) is infeasible, or

(III) (P) is feasible and there exists d ∈ Rn such that (cT d < 0, Ad ≥ 0) and hence (PP) is
unbounded

Remark: this implies

• Fundamental Theorem

• the Unboundedness Theorem, and

• the Strong Duality Theorem

We’ll assume that neither (I) nor (II) hold, and will show that (III) holds.
By the Farkas’ Lemma, since (II) does not hold, (P) is feasible. We can rewrite (I) as
(A) (Ax ≥ b, AT y = c, y ≥ 0, bT y ≥ cTx)

Consider the system:
(B) (AT y = zc,Ax ≥ zb, bT y − cTx = 1, y ≥ 0, z ≥ 0)

Claim 1 Exactly one of (A) and (B) has a solution.
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Proof Exercise

Claim 2 z = 0 (z ∈ R)

Proof Suppose that z > 0. Let


x′ =

1

z
· x

y′ =
1

z
· y

Then

AT y′ = c, Ax′ ≥ b, bT y′ − cTx′ =
1

z
(bT y − cTx) =

1

z
> 0, y′ ≥ 0

Thus x′, y′ satisfies (A), contrary to Claim 1

Since bT y − cTx = 1, either bT y > 0 or cTx < 0

case 1: bT y > 0
Thus AT y = 0, bT y > 0, y ≥ 0
We can scale y to obtain a solution to (AT y = 0, bT y = 1, y ≥ 0) and hence (III) holds

contradiction

case 2: cTx < 0
Then Ax ≥ 0, and cTx < 0
So d = x satisfies (III)
This proves Theorem 2.7

2.2 Complementary Slackness Conditions

Consider
(P ) min(cTx : Ax ≥ b)
(D) max(bT y : AT y = c, y ≥ 0)

Let a1
T , . . . , am

T be the rows of A
If x is feasible for (P) and y is feasible for (D)

cTx− bT y = (AT y)
T
x− yT b

= yT (Ax− b)

=

m∑
i=0

yi︸︷︷︸
≥0

(ai
T − bi)︸ ︷︷ ︸
≥0

≥ 0

(2.1)

Moreover, equality holds if and only if

(∗) for each i ∈ {1, . . . ,m}, either

ai
T = bi or yi = 0

(That is, at most one of the inequalities ai
T ≥ bi and yi ≥ 0 is strict)

We call (∗) the complementary slackness conditions.

Theorem 2.8

Let x be a feasible solution for (D). Then cTx = bT y if and only if for each i ∈ {1, . . . ,m}
either ai

T = bi or yi = 0

Proof See above
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2.3 Certifying Optimality

An equality ai
T ≥ bi is an equality constant for x if ai

T = bi
and the set of all equality constraints is called the equality subsystem for
x

Theorem 2.9

Let x be a feasible solution for

min(cTx : Ax ≥ b)

where A ∈ Rm×n, b ∈ Rn, and c ∈ Rn, and let A=x ≥ b= be the equality
subsystem for x. Then there is an optional solution if and only if there is a
non-negative vectors y such that

c = (A=)
T
y

Proof Follows immediately from Theorem 2.8

Remark: If a1, . . . , an are the rows of A=, then the following are equivalent:

(a) there is a non-negative vector y such that c = (A=)
T
y, and

(b) c ∈ cone({a1, . . . , ak})

2.4 Cost Splitting

For each i ∈ {1, . . . ,m}. Let P1 = {x ∈ Rn : aTi x ≥ bi}. Then (P) can be rewritten as:

min(cTx : x ∈ P1

⋂
. . .
⋂
Pm)

Theorem 2.10 (Weak Cost-Splitting Theorem)

Let S1, . . . , Sm ⊆ Rn, c ∈ Rn, and x ∈ S1

⋂
. . .
⋂
Sm. If there exist c1, . . . , cm ∈ Rn, such

that c = c1 + . . . + cm and minimizes (cTi x : x ∈ Si), for each i ∈ {1, . . . ,m}, then x minimizes
(cTx : x ∈ S1

⋂
. . .
⋂
Sm).

Proof Let x̃ ∈ S1

⋂
. . .
⋂
Sm

For each i ∈ {1, . . . ,m}, we have cTi x̃ ≥ cTi x.
So

cT x̃ = (cT1 + . . .+ cTm)x̃

= cT1 x̃+ . . .+ cTmx̃

≥ cT1 x+ . . .+ cTmx

= (cT1 + . . .+ cTm)x

= cTx
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Hence, x miminizes (cTx : x ∈ S1

⋂
. . .
⋂
Sm)

Theorem 2.11 (Strong Cost-Splitting Theorem for Linear Programming)

If x minimizes (cTx : x ∈ S1

⋂
. . .
⋂
Sm), then there exists c1, . . . , cm ∈ Rn such that c =

c1 + . . .+ cm and x minimizes (cTi x : x ∈ Pi) for each i ∈ {1, . . . ,m}.

Proof Exercise

Economic Interpretation Cost-Splitting has an economic interpretation, the cost cTx of x can be
divided up as cT1 x, . . . , c

T
mx and apportioned to the constraints.

Physical Interpretation Consider an optional solution x and a cost-splitting c = c1 + . . .+ cm given
by by Theorem 2.11

• Newton’s Third Law: for every action, there is an equal and opposite reaction.
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2.5 Duality (other forms)

Example

(P ′)

 max cTx subject to
Ax ≤ b
x ≥ 0

y ≥ 0

(D′)

 max bT y subject to
AT y ≥ c
y ≥ 0

x ≥ 0

If x is feasible for (P ′) and y is feasible for (D′), then

cTx ≤ (AT y)Tx

= yT (Ax)

≤ yT b
= bT y

Hence OPT(P ′) ≤ OPT(D′)

Theorem 2.12

If (P ′) has an optimal solution, then (D′) has an optimal solution and OPT(P ′) = OPT(D′)

Proof We can rewrite (P ′) as

(P ′′)

 min −cTx subject to
−Ax ≥ −b y ≥ 0
Ix ≥ 0 s ≥ 0

The dual of (P ′′) is

(D′′)

 max −bT y subject to
−AT y + s = −c
y, s ≥ 0

If x is an optimal solution to (P ′), then x is also optimal solution to (P ′′). By the String Duality Theorem,
there is an optimal solution y, s to (D′′) and OPT(D′′) = OPT(P ′′) = −OPT(P ′). Note that y is feasible
for (D′) and

OPT(P ′) ≤ bT y = −OPT(D′′) = OPT(P ′)

Hence OPT(P ′) = OPT(D′)

Another Ex

(P )


max 3x1 − x2 + x3 subject to
2x1 + 2x2 = 4 y1
x1 − 2x2 + 2x3 ≤ 3 y2 ≥ 0
x1, x3 ≥ 0

Consider the implied inequality

(2y1 + y2)x1 + (2y1 − y2)x2 + 2y2x3 ≤ 4y1 + 3y2

We want
3x1 − x2 + x3 ≤ (2y1 + y2)x1 + (2y1 − 2y2)x2 + 2y2x3
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for all x1, x2, x3 ∈ R with x1, x3 ≥ 0
That is  2y1 + y2 ≥ 3

2y1 − 2y2 = −1
2y2 ≥ 1

The dual of (P) is

(D)


min 4y1 + 3y2 subject to
2y1 + y2 ≥ 3 x1 ≥ 0
2y1 − 2y2 = −1 x2
2y2 ≥ 1 x3 ≥ 0
y2 ≥ 0

2.6 Cheat Sheet

(P) max (D) min

≤ constraint non-negative
≥ constraint non-positive
= constraint free variable

non-negative variables ≥ constraint
non-positive variables ≤ constraint

free variable = constraint

Note that we have variables on the left of the inequalities.



3
Geometry of Polyhedra

Recall

A polyhedron is a set of the form {x ∈ Rn : Ax ≥ b}. A polytope is a bounded polyhedron.

We’ll prove:

Theorem 3.1

A set P ⊆ Rn is a polytope if and only if P = conv(X) for some finite set X ⊆ Rn

Definition: For sets A,B ⊆ Rn, we let A+B = {a+ b : a ∈ A, b ∈ B}

Theorem 3.2

A set P ⊆ Rn is a polyhedron if and only if there exist finite sets X,D ⊆ Rn such that

P = conv(X) + cone(D)

We start by proving that conv(X) is a polytope:

26
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Lemma 3.3

If a1, . . . , ak ∈ Rn, then

conv({a1, . . . , ak}) = {λ1a1 + . . .+ λkak : λ ∈ Rn, λ ≥ 0, λ1 + . . .+ λk = 1}

Theorem 3.4

If a1, . . . , ak ∈ Rn, then conv({a1, . . . , ak}) is a polytope.

Proof
Since conv({a1, . . . , ak}) is bounded, it suffices to show that conv({a1, . . . , ak}) is a polyhedron.

Let P0 =

{(
x
λ

)
: x ∈ Rn, λ ∈ Rk, λ ≥ 0, λ1 + . . .+ λk = 1, x = λ1a1 + . . .+ λkak

}
By definition, P0 is a polyhedron, and by Lemma 3.3, conv({a1, . . . , ak}) is the projection of P0 onto

x. Then, by Theorem 1.1, conv({a1, . . . , ak}) is a polyhedron.

3.1 Extreme Points

Let S ⊆ Rn be a convex set and x ∈ S, we call x ∈ S an extreme point of S if there are no two distinct
points x1, x2 in S such that

x ∈ {λx1 + (1− λ)x2 : 0 < λ < 1}

Equivalently, S \ {x} is convex

Theorem 3.5

Let P = {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. Let x ∈ P , and let A=x ≥ b= be
the subsystem for x, then x is an extreme point if and only if rank(A=) = n

Proof Suppose that rank(A=) < n, and let d ∈ Rn be a non-zero vector such that A=d = 0

Note that A=(x + λd) = A=x + λA=d = b= for all λ ∈ R. Then there exists ε > 0 such that
x+ εd, x− εd ∈ P , and hence x is not an extreme point.

Conversely, suppose that x is not an extreme point, then there exist distinct x1, x2 ∈ P and λ ∈ (0, 1)
such that x = λx1 + (1− λ)x2
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Note that

b= = A=x

= λA=x1 + (1− λ)A=x2

≥ λb= + (1− λ)b=

= b=

Then, since 0 < λ < 1
A=x1 = b= and A=x2 = b=

Thus A=(x2 − x1) = 0 and hence rank(A=) < n

Remark: x is the unique solution to A=x = b= if and only if rank(A=) = n

Corollary 3.6

Polyhedra have only finitely many extreme points.

Proof Let P = {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. Now consider an extreme
point x and its associated equality subsystem A=x ≥ b=. By Theorem 3.5, rank(A=) = n. Therefor x is
the solution to A=x = b=. There are only 2m subsystems of Ax ≥ b, so there are at most 2m extreme
points.

3.2 Supporting Hyperplanes

A hyperlane of Rn is a set of the form

{x ∈ Rn : aTx = a0}

where a ∈ Rn \ {0} and a0 ∈ R

A supporting hyperplane for a set S ⊆ Rn is a hyperplane H = {x ∈ Rn : aTx = a0} such that

(i) S is contained in either {x ∈ Rn : aTx ≥ a0} or {x ∈ Rn : aTx ≤ a0}, and

(ii) H
⋂
S 6= ∅

Note that: if H is a supporting hyperplane for a convex set S ⊆ Rn and H
⋂
S = {x}, then x is an

extreme point.
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In general, the converse may not hold.

Example

S = {x ∈ R2 : 0 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 0} ∪ {x ∈ R2 : (x1 − 1)2 + x22 ≤ 1}

Then x = 0 is an extreme point, but there is no supporting hyperplane H with H
⋃
S = {x}

Theorem 3.7

If x is an extreme point of a polyhedron P ⊆ Rn, then there is a supporting hyperplane such
that P

⋂
H = {x}.

Proof Suppose that P = {x ∈ Rn : Ax ≥ b} and let


aT1 x ≥ b1
...
aTk x ≥ bk

be the equality subsystem for x

Let a = a1 + . . .+ ak, a0 = b1 + . . .+ bk, and H = {x ∈ Rn : aTx = a0}

Note that H is a supporting hyperplane for P .

Consider x̃ ∈ P
⋂
H

Thus

a0 = aT x̃

= aT1 x̃+ . . .+ aTk x̃

≥ b1 + . . .+ bk

= a0

Therefore aT1 x̃ = b1, . . . , a
T
k x̃ = bk

However, by Theorem 3.5, x is the unique solution to


aT1 x ≥ b1
...
aTk x ≥ bk

So H
⋂
P = {x}.

Theorem 3.8

Every polytope is the convex hull of its extreme points.
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Proof Let X be the set of extreme points of a polytope. P = {x ∈ Rn : Ax ≥ b}. Let x ∈ P and
A=x ≥ b= be the equality subsystem for x. Since X ⊆ conv(X), we may assume x 6∈ X and, hence,
rank(A=) < n. However by Lemma 2.2, rank(A) = n (Since P is bounded). So A 6= A=. We may assume
that each point in P that has more equality constraints than x is contained in conv(X).
Since rank(A=) < n, there is a non-zero vector d such that A=d = 0. Let

λ+ = max(λ ∈ R : x+ λd ∈ P )
λ− = min(λ ∈ R : x+ λd ∈ P )

Note that these exist since P is closed and bounded
Since A=d = 0, we have A=(x+ λ−d) = b= and A=(x+ λ+d) = b=. Therefore, by our choice λ+ and λ−,
we have λ+ < 0 < λ− and x+λ+d and x+λ−d both have equality constraints that x does. By our choice
of x, x+ λ−d, x+ λ+d ∈ conv(X). Then since x is on the line segment between x+ λ+d and x+ λ−d, we
have x ∈ conv(X)

Note that Theorem 3.1 is implied by Theorem 3.4 and 3.7 and Corollary 3.6

3.2.1 Application (Helly’s Theorem)

Recall

Theorem 1.3

Let A ∈ Rm×n and b ∈ Rn. If Ax ≥ b is infeasible, then there is an infeasible
subsystem with at most n+ 1 constraints.

Equivalently If H1, . . . ,Hm ⊆ Rn are closed half-spaces with H1

⋂
. . .
⋂
Hm = ∅, then there is a sub-

collection of at most n+ 1 of these half-spaces that have empty intersection.

Corollary 3.9

If P1, . . . , Pm ⊆ Rn, are polyhedra with P1

⋂
. . .
⋂
Pm = ∅, then there is a subcollection of at

most n+ 1 of these polyhedra that have empty intersection.

Proof Each Pi is itself or intersection of closed half-spaces.

Question Does that hold if we allow infinitely many polyhedra?
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Let Pi = {x ≥ i} i = 1, 2, 3 . . .
P1

⋂
P2

⋂
. . . = ∅, but each finite subcollection has non-empty intersection

Theorem 3.10 (Helly’s Theorem)

If S1, . . . , Sm ⊆ Rn are convex sets with S1

⋂
. . .
⋂
Sm = ∅, then there is a subcollection of

at most n+ 1 of these sets has empty intersection.

Proof Suppose otherwise. There is a set X with |X| ≤
(
m
n+1

)
such that each subcollection of n+1 of the

sets contains an element of X in its intersection. Let Pi = conv(X
⋂
Si). By Theorem 3.1, P1, . . . , Pm are

polyhedra. By construction, P1

⋂
. . .
⋂
Pm = ∅, but the intersection of any n+1 P1, . . . , Pm is non-empty.

Contrary to Corollary 3.9.

Theorem 3.11

If X and D are finite subsets of Rn, then conv(X) + cone(D) is a polyhedra.

Proof Exercise

In the following results D = {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm

3.3 Pointed Polyhedra

Pointed Polyhedra

A polyhedra is pointed if it is nonempty and contains no line.

For a subspace S ⊆ Rn we define S⊥ = {y ∈ Rn : yTx = 0 for each x ∈ S}

Lemma 3.12

Let S = {x ∈ Rn : Ax = 0} and let P0 = P
⋂
S⊥. If P 6= ∅, then P0 is pointed and P = P0+S

Proof If L = {x̃+λd̃ : λ ∈ R} is a line in P , then, by Lemma 2.2, d̃ ∈ S.Hence L is not contained in P0.
Hence P0 is pointed. It remains to prove that we can write x = z + d z ∈ S⊥ and d ∈ S. By Lemma
2.2, z ∈ P , hence z ∈ P0 and X = P0 + S

Lemma 3.13

Let X be the set of extreme points of P , and let K = {x ∈ Rn : Ax ≥ 0}. If P is pointed,
then P = conv(X) +K

Proof Exercise

Theorem 3.14

A polyhedra is pointed if and only if it has an extreme point.
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Proof Immediate by Lemma 3.13

3.4 Polyhedral Cones

Exercise Show that, if P ⊆ Rn is both a polyhedra and a cone, then P = {x ∈ Rn : Ax ≥ 0} where
A ∈ Rm×n

Theorem 3.15

If P ⊆ Rn is a polyhedral cone, then P = cone(D) for some finite set D ⊆ P

Proof Let Q1 = {x ∈ P : −1 ≤ x ≤ 1}
So Q is a polytope and P = cone(Q). By Theorem 3.1, there is a finite set D ⊆ Rn such that Q = conv(D).
Now P = cone(Q) = cone(conv(D)) = cone(D) since conv(D) ⊆ cone(D)

3.5 Proof of Theorem 3.2

The ”if direction” was proved in Theorem 3.11. For the converse, consider a polyhedron P = {x ∈
Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm. Let S = {x ∈ Rn : Ax = 0} and P0 = P

⋂
S⊥. By

Lemma 3.12, P0 is pointed and P = P0 + S. Let d1, . . . , dk be a basis for the subspace S and let
D0 = {d1,−d1, . . . , dk,−dk}. Then S = cone(D0) and hence P = P0 + cone(D0)

Since P0 is a polyhedron, so we can write P0 = {x ∈ Rm : Ãx ≥ b̃} where A ∈ Rm̃×n and b̃ ∈ Rm̃. Let

X be the set of extreme points of P0 and let K = {x ∈ Rn : Ãx ≥ 0}. By Lemma 3.13, P0 = conv(X)+K.
By Theorem 3.15, K = cone(D1) for some finite set D1 ⊆ K.

Therefore

P = P0 + cone(D0)

= conv(X) +K + cone(D0)

= convX + cone(D1) + cone(D0)

= conv(X) + cone(D1

⋃
D0)

1it’s a box



4
Algorithms for Linear Programming

Given A ∈ Qm×n, b ∈ Qm, and c ∈ Qn, consider

(P )

{
min cTx subject to
Ax ≥ b

Let P = {x ∈ Rn : Ax ≥ b}

Feasibility Problem:
Find a feasible solution if it exists

Optimization Problem:
Given a feasible solution x̃ ∈ Qn, find a optimal solution if it exists.

The dual of (P) is
(D) max(bT y : AT y = c, y ≥ 0)

Note that (P) has an optimal solution if and only if the following system is feasible:
Ax ≥ b
AT y = c

y ≥ 0

bT y = cTx

So the optimization problem reduces to the feasibility problem.

Consider the following auxiliary problem

(AP )

 min s1 + . . .+ sm subject to
Ax+ s ≥ b
s ≥ 0

(AP) is feasible; take x̃ = 0 and s̃j = max(0, bj) for j ∈ {1, . . . ,m}
Now (P) is feasible if and only if OPT(AP) = 0
This reduces the Feasibility Problem to the Optimization Problem. We will solve the Optimization

Problem.

33
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4.1 Simplex Method (Revised dual Simplex method and pertur-
bation method)

Idea: Move from extreme point to extreme point around the boundary improving the objective value.

Finding an extreme point

Problem 1

P may not have an extreme point.
We are assuming that P 6= ∅

By Lemma 2.2 and Theorem 3.4, the following are equivalent

• P has no extreme point,

• P contains a line, and

• rank(A) ≤ n

Suppose that rank(A) < n, and let d be a non-zero vector in Rn such that Ad = 0.
Let x ∈ P and consider the line L = {x+ λd : λ ∈ R}
By Lemma 2.2, L ∈ P .

Claim If cT d 6= 0, then (P) is unbounded.

Proof By replacing d with −d we may assume that cT d < 0. Then by unboundedness theorem, (P)
is unbounded.

We may assume that cT d = 0
Choose i ∈ {1, . . . , } such that di 6= 0

Claim For each x̃ ∈ P , there exists x′ ∈ P such that

cTx′ = cT x̃ and x′i = 0
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Proof Let λ = x̃i

di
, and let x′ = x̃− λd. Since cT d = 0, we have cT x̃ = cTx′. Moreover

x′i = x̃i −
x̃i
di
di = 0

Let (P’) be the problem obtained from (P) by setting xi = 0. Now (P’) has fewer variables than (P)
and, by the claim, OPT(P ) = OPT(P ′).

Hence we’ll assume that rank(A) = n and hence that P has an extreme point.

Problem 2

Given x̃ ∈ P , find an extreme point of P .

Algorithm

Step1 Construct the equality subsystem A=x ≥ b= for x̃. If rank(A=) = n. STOP (x̃ is an extreme
point)

Step2 Find a non-zero vector d ∈ Rn such that A=d = 0. If Ad ≥ 0, replace d with −d.

Step3 Let λ− = max(λ ∈ R : x+ λd ∈ P ). Replace x̃ with x̃+ λ−d. Repeat from Step1.

Exercise Show that the algorithms works.

Problem 3

Given an extreme point x̃ ∈ P , solve (P).
x̃ is optimal if and only if there exists y satisfies

(c = (A=)
T
y, y ≥ 0),

where A=x ≥ b= is the equality subsystem for x̃

Let A=x ≥ b= be the equality subsystem for x̃
Let aT1 , . . . , a

T
m denote the rows

Let (B,N) be the partition of (1, . . . ,m) such that aTi x̃ = bi if and only if i ∈ B.
By Theorem 2.9, x̃ is optimal if and only if there exists y ∈ Rn satisfying

(∗) (c = (A=)
T
y, y ≥ 0)

Remark Since rank(A=) = n, x̃ is the unique solution to A=x̃ = b=. If A= has more than n rows, then
A=x = b= is overdetermined. In this cases, we call x̃ degenerate.
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Assume that x̃ is non-degenerate.

Thus A= is square and non-singular. Therefore there is a unique solution y to (A=)
T
y = c. By (∗), x̃

is optimal if and only if y ≥ 0.

Suppose otherwise and choose j ∈ B such that yj < 0

Define ej ∈ Rn such that ej =



0
0
...
1
...
0


, where 1 denotes the jth row.

Let d denote the unique solution to A=d = ej

Claim 1 cT d < 0

Proof cT d = (yTA=)d = yT ej = yi < 0

Claim 2 For sufficient small ε > 0, x+ ε d ∈ P

Proof It suffices to prove that for each i ∈ {1, . . . ,m}, aTi (x̃+ ε d) ≥ bi for sufficiently small ε > 0
If i ∈ N , the result clearly holds since aTi x̃ > bi
If i ∈ B, since A=d = ej , we have

aTi (x̃+ εd) = bi + εaTi d =

{
bi i 6= j

bi + ε i = j

• case 1: Ad ≥ 0
Then by the Unboundedness Theorem, (P) is unbounded

• case 2:
There exists i ∈ N , such that aTi d < 0.
(Note that aTi d ≥ 0 for each i ∈ B since A=d = ej)

Choose λ ∈ R maximum such that x+ λd ∈ P

Claim 3 x̃+ λd is an extreme point and cT (x̃+ λd) < cT x̃

Proof By Claims 1 and 2, cT (x̃+ λd) < cT x̃
Let L = {x+ αd : α ∈ R}

Note that
L = {x ∈ Rn : aTi = bi, i ∈ B \ {j}}.

By our choice of λ, there exists ` ∈ N such that

aT` (x̃+ λd) = b` and aT` (x+ αd) < b`

for each α > λ
Hence x̃+ λd is the unique solution to

(aTi x = bi : i ∈ (B \ {j}) ∪ {`})

Then x̃+ λd is an extreme point
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4.1.1 Simplex Algorithm

Given an extreme point x̃ to (P)

Step 1 Check non-degeneracy
Let B = {i ∈ {1, . . . ,m} : aTi x̃ = bi}.
Let N = {1, . . . ,m} \ B, and let A=x ≥ b= be the equality subsystem. If |B| 6= n, STOP (x̃ is

degenerate)

Step 2 Test for optimality
Solve (A=)T = c for ỹ. If ỹ ≥ 0, STOP (x̃ is optimal)

Step 3 Choosing leaving constraint.
Choose j ∈ B, such that yj < 0

Step 4 Check unboundedness
Solve A=d = ej for d̃ and let z = A=d̃. If z ≥ 0, STOP ( (P ) is unbounded)

Step 5 Choose entering constraint

Choose i ∈ N with zi < 0 minimizing
aTi x̃− bi
−zi

Step 6 Update.

Let λ =
aTi x̃− bi
−zi

, replace x̃ with x̃+ λd̃, and repeat from Step 1.

Remark If there are no degenerate extreme points, then the algorithm will terminate, (Since there are
at most

(
m
n

)
extreme points) and will solve (P) correctly.

Example 
min x1 + x2 subject to
2x1 + x2 ≥ 4 (1)
2x1 + 3x2 ≥ 6 (2)
x1 + 4x2 ≥ 4 (3)

Consider a feasible solution x̃ =

[
12/5
2/5

]
The equality subsystem is

{
2x1 + 3x2 ≥ 6 (2) y2
x1 + 4x2 ≥ 4 (3) y3

So x̃ is a non-degenerate extreme point. Solve

{
2y2 + y3 = 1

3y2 + 4y3 = 1
. we get ỹ2 = 3

5 and ỹ3 = − 1
5

So the leaving constraint is (3). Solve

{
2d1 + 3d2 = 0

d1 + 4d2 = 1
we get d =

[
−3/5
2/5

]
Let x̂ =

[
12/5
2/5

]
︸ ︷︷ ︸

x̃

+λ

[
−3/5
2/5

]
︸ ︷︷ ︸

d

Choose λ maximum subject to 2x̂1 + x̂2 ≥ 4 (1).
We get λ = 3

2 and the entering constraint is (1)
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The new extreme point is x̂ =

[
3/2
1

]
and the equality subsystem is

{
2x1 + x2 ≥ 4 (1)

2x1 + 3x2 ≥ 6 (2)
. So x̂ is

degenerate.

Solve

{
2y1 + 2y2 = 1

y1 + 3y2 = 1
. We get ỹ1 = ỹ2 = 1

4 . Since ỹ1, ỹ2 ≥ 0. Note that ỹ =

1/4
1/4
0

 is an optimal

solution for the dual of (P).

4.1.2 Perturbation Method (avoiding degeneracy)

(P ) min(cTx : Ax ≥ b)
(P ′) min(cTx : Ax ≥ b′) for b′ =


b1 − ε
b2 − ε2

...
bm − εm


and ε is a variable that we think of as a small positive real number.

For polynomials, p(ε) and q(ε), we write p(ε) < q(ε) if p(ε′) < q(ε′) for all sufficiently small ε′ > 0

Example 1 + ε+ 1000ε2 < 1 + 2ε

Claim (P’) has not degenerate points

Proof Consider an extreme points x̃ of (P’). Let X = {i ∈ {1, . . . ,m} : aTi x̃ = b′i}. If x̃ is degenerate,
then the vectors {ai : i ∈ X} are linearly independent. So there is a non-zero λ ∈ RX such that∑
i∈X

λiai = 0. Thus

0 =
∑
i∈X

λia
T
i x̃ =

∑
i∈X

b′i =
∑
i∈X

λi(bi − εi).

However, since λ 6= 0,
∑
i∈X

λi(bi − εi) is a non-zero polynomial in ε - contradiction

Remarks

(1) Since (P’) is non-degenerate, the Simplex Method will solve (P’) correctly.

(2) There is some computational overhead in applying this method, but we can switch between (P) and
(P’) easily, so we need only use (P ∗) when we are at a degenerate solution for (P)

(3) the equality subsystem has m′ constraints, we need only perturb m′ − n of them.
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Integer Programming

Definition An integer program is problem of the form:

(IP) min(cTx : Ax ≥ b, x ∈ Zn),

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn

The linear programming relaxation of (IP) is

(LP) min(cTx : Ax ≥ b)

Note that OPT(LP) ≤ OPT(IP), since each feasible solution for (IP) is also feasible for (LP).

Let Z be the set of feasible solutions for (IP)
Then conv(Z) ⊆ {x ∈ Rn : Ax ≥ b}.
Equality is unusual, even when A ∈ Zm×n and b ∈ Zm.

Definition A polyhedron P ⊆ Rn is integral is P = conv(P ∩ Zn).

Note that if P is integral, then min(cTx : x ∈ P ∩ Zn) = min(cTx : x ∈ P )

Lemma 5.1

A polytope P ⊆ Rn is integral if and only if its points are integer valued.

Proof This form Theorem 3.8

39
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5.1 Totally Unimodular Matrices

A Matrix is totally unimodular (TU) if each of its square submatrices has determinant 0 ^ ±1. (In
particular, the entries are 0,±1)

Let A ∈ {0,±1}m×n be TU and b ∈ Zm, then the extreme points of P = {x ∈ Rn : Ax ≥ b}
are integer valued.

Proof Let x̃ be an extreme point of P , then there is a subsystem A′x ≥ b′ of Ax ≥ b such that A′x̃ = b′

and A′ is square non-singular. Since A is TU, detA = ±1. By Cramer’s Rule, each entry of (A′)−1 is
integer valued. Hence each entry of x̃ = (A′)−1b′ is integer valued.

Let A ∈ {0,±1}m×n be TU, then

(1) AT is TU

(2)
[
I , A

]
is TU

(3) If A′ is obtained from A by scaling a row or column by −1, then A′ is TU

(4)
[
A , −A

]
is TU.

Exercises Let A ∈ {0,±1}m×n be TU and let b ∈ Zm:

• Show that the extreme points of {x ∈ Rn : Ax ≥ b, x ≥ 0} are integer valued. ([I, A]T )

• Show that the extreme points of {x ∈ Rn : Ax = b, x ≥ 0} are integer valued. ([A, −A]T )

Lemma 5.3

If A ∈ {0,±1}m×n is TU, b ∈ Zm, and l, u ∈ Zn, then P = {x ∈ Rn : Ax ≥ b, l ≤ x ≤ u} is
integral.

Proof Let A′ =

 AI
−I

 and b′ =

bl
u

. Note that P = {x ∈ Rn : A′x ≥ b′}. By the constructions (1) -

(4) above, A′ is TU. By Lemma 5.2, each extreme point of P is integer valued. Moreover, P is polytope
since l ≤ x ≤ u for each x ∈ P . So by Lemma 5.1, P is integral.

Theorem 5.4

If A ∈ {0,±1}m×n is TU and b ∈ Zm, then P = {x ∈ Rn : Ax ≥ b} is integral.

Proof Exercise. (Hint: use Lemma 5.3)

Lemma 5.5

Let A ∈ {0,±1}m×n. If each column of A has at most one 1 and at most one -1, then A is
TU.
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A =



. . . 0 . . .
...

...
...

... 0
...

... 0
...

... −1
...

... 0
...

... 1
...

... 0
...

...
...

...
. . . 0 . . .



±1

0 ··· ··· ···

0 ··· ··· ···

... ··· ··· ···

0 ··· ··· ···


Proof Suppose otherwise and consider a counterexample A ∈ {0,±1}m×n with (m+ n) minimum.

Clearly m = n and det 6∈ {0,±1}. Since we have a minimum counterexample, each contains both a 1
and -1. But then the rows of A sum to zero. Hence det(A) = 0, a contradiction.

5.2 Incidence Matrix of a Graph

G = (V,E)

a b

c d

1

2 3
4

1 2 3 4


a 1 1 0 0
b 1 0 1 1
c 0 1 1 0
d 0 0 0 1

1, 2, 3, 4 are edges, and abcd are vertices. Note that

(i) The column-sums are all 2.

(ii) The row-sum for row v ∈ V is the number of neighbours of v and is denoted deg(v).

The incidence matrix need not to be TU.
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Example

A′ =

1 2 3[ ]a 1 1 0
b 1 0 1
c 0 1 1

det(A′) = −2

5.2.1 Bipartite Graphs

a

b

c

1

2

3

X Y

A graph G = (V,E) is bipartite with bipartition (X,Y ). If (X,Y ) is a partition of V , then each edge
has an end in X and an end in Y .

Theorem 5.6

The incidence matrix of a bipartite graph is TU.

1

1X

Y

Proof Let (X,Y ) be a partition of a graph G = (V,E) and let A be the incidence matrix. Let A′ be
obtained by the rows indexed by Y by −1. By Lemma 5.5, A′ is TU, and hence, A is TU.

Let A be the incidence matrix of graph G = (V,E). Define

• matching M(G) = {x ∈ RE : Ax ≤ 1, x ≥ 0}, and

• perfect matching PM(G) = {x ∈ RE : Ax = 1, x ≥ 0}.

For x ∈ RE , let Support(x) = {e ∈ E : xe 6= 0}.

Note that

(1) For x ∈ {0, 1}E , x ∈M(G) if and only if Support(x) is a matching, and

(2) For x ∈ {0, 1}E , x ∈ PM(G) if and only if Support(x) is a perfect matching.

Let M(G) = M(G) ∩ {0, 1}E , and PM(G) = PM(G) ∩ {0, 1}E .
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Theorem 5.7

If G is a bipartite graph, then

• conv(M(G)) = M(G), and

• conv(PM(G)) = PM(G).

Proof See above

5.2.2 Regular

A graph G is r-regular if each of its vertices has degree r.

Theorem 5.8

For each r ≥ 1, if G is an r-regular bipartite graph, then G has a perfect matching.

Proof Let

x̃ =

[
1

r
, . . . ,

1

r

]T
Hence Ax̃ = 1, and x̃ ≥ 0. Then by Theorem 5.7, x̃ ∈ conv(PM(G)), then PM(G) 6= ∅.

5.2.3 Multigraph

u v

e1

e2

A multigraph is a graph which we allow parallel edges.

Theorem 5.9

For each r ≥ 1, if G is an r-regular bipartite multigraph, then G has a perfect matching.

Proof Same as for Theorem 5.8.

4

13
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Exercise Show that if we arrange a deck of cards in a rectangle with 4 rows and 13 columns, then
rearranging the cards within each column, we can get each row containing the cards

ace, two, three, four, five, six, seven, eight, nine, ten, jack, queen, king

in same order.

Exercise Show that if each row and column sum of a matrix A ∈ Rm×n is zero, then there is a matrix
B ∈ Zm×n such that

(1) each row and column of B sums to zero, and

(2) baijc ≤ bij ≤ daije for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

5.2.4 Covers

a

b

c

1

2

3

C = {1, b}

C ⊆ V is a cover if G− C has no edges.

Note that if C is a cover and M is a matching, |M | ≤ |C|. Equality is not always attained.

5.2.5 Kőnig’s Theorem

In a bipartite graph, the maximum size of a matching is equal to the minimum size of a cover.

Proof Let A be the incidence matrix of a bipartite graph G.
Consider

(P ) max

(∑
e∈E

xe : Ax ≤ 1, x ≥ 0

)
and its dual

(D) min

(∑
v∈V

yv : AT y ≥ 1, y ≥ 0

)
Note that (P ) is feasible (x = 0) and (D) is feasible (y = 1). Hence (P ) and (D) both have optimal
solutions and OPT(P ) = OPT(D).

Moreover, since A is TU, the feasible regions of both (P ) and (D) are integral. Hence (P ) and (D)
have optimal solutions, x̃ and ỹ say, that are both integer valued.

Note that x̃ ∈ {0, 1}E and ỹ ∈ {0, 1}V . Let M = Support(x̃) and C = Support(ỹ).
Note that M is a matching and C is a cover.
Moreover, since OPT(P ) = OPT(D),

|M | =
∑
e∈E

x̃e =
∑
v∈V

ỹv = |C|

as required.
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5.2.6 Finding a maximum matching

Let G = (V,E) be a bipartite graph with bipartition (X,Y ) and M be a matching.

Problem Find a larger matching if possible.

Example

a

b

c

d

1

2

3

4

M = {b1, c2, d3}

a and 4 are M -exposed

P = (a, 1, b, 3, d, 4)

M ′ = {b1, c2, d3} ∆ E(P ) = {a1, b3, c2, d4}

Claim M is a maximum matching in G if and only if there is no directed path form an M -exposed
vertex in X to an M -exposed vertex in Y .

Proof Exercise.

This an efficient algorithm for finding a maximum matching in a bipartite graph.

Problem How would you find a minimum cover in bipartite graph?

Note that if v ∈ V is a minimum cover if and only if the matching number of G decreases when we
delete v. By repeating deleting vertices we can find a minimum cover.

5.2.7 Perfect Matchings

Example
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a

b

c

d

1

2

3

4

N({a, b, d}) = {1, 2}, so
G has no perfect matching.

Here N(X) denotes the set of vertices
in V rX that have a neighobour in X

5.2.8 Hall’s Theorem

A bipartite graph G with bipartition (X,Y ) has a perfect matching if and only if |X| = |Y | and |N(A)| ≥
|A| for each A ⊆ X.

X

A

C ∩X

C ∩ Y

Y

N

Proof The conditions are
clearly necessary. Suppose
that G has no perfect match-
ing and that |X| = |Y |.

By Kőnig’s Theorem, G
has a cover C with |C| < |X|.
Let A = X r C and N =
C r X. Since C is a cover,
N(A) ≤ N . Moreover, since
|X| = |Y |,

|A| = |X| − |C|+ |N |
> |N |
≥ |N(A)|

5.3 Minimum Cost Perfect Matching in Bipartite Graphs

Instance A bipartite graph G = (V,E) and c ∈ QE .

Problem Find a perfect matching M minimizing c(M).

Here, c(M) =
∑
e∈M

c(e).
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a 1

4 d

2 b

c 3

1

1 0

2

1

0

2

2

6

6

M̃ = {a2, b3, c4, d1}

2 4

Claim M̃ is optimal.

Idea Suppose c′(e) =

{
c(e) + α : e incident with a

c(e) : otherwise

Then for any perfect matching M , c′(M) = c(M) + α. For ỹ ∈ RV , we define the reduced cost of
e = uv ∈ E to c̃e = ce − ỹu − ỹv. Then for any perfect matching M ,

c̃(M) = c(M)− ỹ(V )

Since ỹ(V ) is constant, M̃ is optimal for c̃ if and only if M̃ is optimal for c.

a 1

4 d

2 b

c 3

1

1 0

2

1

0

2

2

6

6

2 4

, 1

, 0 , 1

, 1

, 1 , 0, 0

, 1

, 2

, 0

, 2

3 2

2 -1

-1

Vertex labels: ỹv
Edge labels: ce , c̃e

, 0

1-1

1
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Note that c̃ ≥ 0 and c̃(M̃) = 0, so M̃ is optimal for c̃, and hence for c.

Theorem 5.10

If M is a minimum cost perfect matching, then there exist ỹ ∈ RV such that c̃ ≥ 0 and
c̃(M) = 0.

Proof Consider the linear program:

(P ) min
(
cTx : Ax = 1, x ≥ 0

)
and its dual

(D) max
(
y(V ) : AT y ≤ c

)
where A is the incidence matrix of G.
Since A is TU, OPT(P ) = c(M). Let ỹ be the optimal solution for (D). Note that

c̃ = c−AT y ≥ 0

By strong Duality Theorem,
ỹ(V ) = OPT(P ) = c(M)

So c̃(M) = c(M)− ỹ(V ) = 0.

5.3.1 Minimum cost perfect matching algorithm

We call ỹ ∈ RV feasible if c̃ ≥ 0. The equality subgraph G=(ỹ), has vertex set V and edge set E=(ỹ) =
{e ∈ E : c̃e = 0}. Thus if M is a perfect matching of G=(ỹ), then M is optimal.

Example To be completed...



6
Convex Optimization

To be completed...
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