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Abstract
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Chapter 1

lec 09

syntax semantics
Define wff truth tables, satisfiability

1.1 A proof system for propositional logic

Desirable properties of proof system:

1. It can only prove “correct” statements

2. There is a “method” to check a given object is a valid proof

3. Every “correct” statement has a proof

When “correct statement” stands for a propositional tautology, a proof of α will be a truth table for α that has only
T’s in the rightmost column.

Our proof system consists of two components: Axioms and Deduction rules.

Axioms The set of axioms - and wff of one of the following forms:

1. (α→ (β → α))

2. ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))

3. (((¬α)→ (¬β))→ (β → α))

Example
(((¬p)→ q)︸ ︷︷ ︸

α

→ ( p︸︷︷︸
β

→ ((¬)p→ q)︸ ︷︷ ︸
α

))

It’s an axiom.
((p→ q)→ ((¬q)→ (¬p)))

Not an axiom. purely syntactic. check it symbol by symbol.

{¬,→} is an adequate set of connectives.

Examples (p→ p) is not one of axioms (but a tautology), just 5 symbols -every axiom has more.

Deduction Rule The second component of the proof system is a deduction rule. α,α→β
β . Modus ponens.
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The set of provable wff’s is
I(Axioms, {modus ponens})

• A formal proof is a construction sequence in the structure. Namely, α1, . . . , αm is a formal proof of some β, if
each αi is either an axiom or the result of applying Modus Ponens (MP) to some αj , αk for j, k < i.

Example
(α→ ((α→ α)→ α)) axiom 1
(( α︸︷︷︸

A

→ ((α→ α)︸ ︷︷ ︸
B

→ α︸︷︷︸
C

))→ (( α︸︷︷︸
A

→ (α→ α)︸ ︷︷ ︸
B

)→ ( α︸︷︷︸
A

→ α︸︷︷︸
C

))) Ax 2

Then MP, ((α→ (α→ α))→ (α→ α))
(α→ (α→ α)) Ax 1
MP, α→ α.

Notation We will use ` to denote “formally proves”. ` α. “ α has a formal proof.”

Example For every α, ` ((¬(¬α))→ α)
(¬¬¬α→ (¬α→ ¬¬¬α)) Ax1

((¬¬¬α→ (¬α→ ¬¬¬α))→ ((¬¬¬α→ ¬α)→ (¬¬¬α→ ¬¬¬α))) Ax2

((¬¬¬α→ ¬α)→ (¬¬¬α→ ¬¬¬α)) MP

(((¬¬¬α→ ¬α)→ (¬¬¬α→ ¬¬¬α))→ (next time))

Theorem (Soundness) For every wff α, if ` α then α is a tautology.

Proof By generalized induction on I(Axioms, MP ). Base case: Check that every axiom is tautology. Induc-
tion Step: Assume both α and (α→ β) are tautologies, need to show that β is a tautology.
By way of contradiction, assume β is not a tautology, then for some truth assignment v, v(β) = F . v(α) = T since
α is a tautology by IH. v(α→ β) = F contradicts the assumption “(α→ β) is tautology”.

` α (syntax). α tautology (semantics)
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2.1 Formal Proofs in Prop Logic

The set of formal theorems is
Th = I(Axioms, {MP})

A formal proof is a construction sequence for this structure.
We use ` α to denote “α is a formal theorem”.

We showed that, for any α, ` (α→ α).

The Soundness Theorem Any formal theorem is a tautology.

2.2 Proof from assumptions

Let Σ be a set of wff’s. The set of formal theorems under the assumptions Σ is

Th(Σ) = I(Axioms ∪ Σ, {MP})

α1, . . . , αn is a formal proof under Σ if each αi is either axiom or a member of Σ or follows from some
αj , αk, j, k < i using MP.

Example Let Σ = {A, (A→ B)}. Claim: {A, (A→ B)} ` B
A (∈)
(A→ B) (∈)
B MP

Example For every α, β, {α, (¬α)} ` β

Formal Proof

((¬α)→ ((¬β)→ (¬α))) Ax1
(¬α) ∈

((¬β)→ (¬α)) MP
(((¬β)→ (¬α))→ (α→ β)) Ax3

(α→ β) MP
α ∈
β MP

4
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2.3 Properties of proofs from assumptions

Extended Soundness Theorem For every Σ, α, if Σ ` α, then Σ � α. (Substituting Σ = ∅, yields the basic
Soundness Theorem)

Proof (Notice that we can rephrase this theorem as: for any α ∈ I(Ax ∪ Σ, {MP}),Σ � α)
I leave the proof to the assignment.

Monotonicity For every Σ,Σ′, α. If Σ ` α, and Σ ⊆ Σ′, then Σ′ ` α. In other words, Σ ⊆ Σ′ =⇒ Th(Σ) ⊆
Th(Σ′).
(Note that human reasoning does not enjoy this property)

Quest `(hr) There will be a class today
Quest, Piazza (Shai is sick) 0(hr) There will be a class today

Proof Since Σ ` α, thereis a construction seq (formal proof) of αm based on Σ ∪Ax,

α1 . . . αn = α

each α1 is either an axiom or αi ∈ Σ, but in that case, α1 ∈ Σ′, or αi is the outcome of MP on earlier αj , αk,
therefore α1 . . . αn is also a proof from Σ′.

Strong Monotonicity If for every α ∈ Σ′,Σ ` α, then Th(Σ′) ⊆ Th(Σ).

Example Let Σ = {A, (A→ B)}.Σ′ = {B}.
Σ ` Σ′ (every α ∈ Σ′ has a proof under Σ) =⇒ Th({B}) ⊆ Th({A, (A→ B)})

The deduction theorem For every Σ, α, β, Σ ∪ {α} ` β if and only if Σ ` (α→ β)
(in particular {α} ` β iff ` (α→ β))

Example For every α, β, γ. {(α→ β, β → γ)} ` (α→ γ)

Proof Applying deduction theorem, if suffices to show

{(α→ β, β → γ), α} ` γ

Proof of deduction theorem
Easy direction Assume Σ ` (α→ β), by monotonicity,
Σ ∪ {α} ` (α→ β)
by strong monotonicity, it suffices to show that

Σ′ = Σ ∪ {α} ∪ {α→ β} ` β

Σ ` Σ′

We know α, α→ β, β(MP ) is a proof from Σ′

The harder direction Show that if Σ ∪ {α} ` β then Σ ` (α→ β).
Rephrase this statement as, for all β ∈ Th(Σ ∪ {α}),Σ ` (α→ β).
Now prove by generalized induction on Th(Σ ∪ {Σ ∪ {α}}) = I(Ax ∪ Σ ∪ {α},MP )

Base case β is in the core set
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• case 1: β is an axiom
β (axiom)
β → (α→ β) ax1
(α→ β) MP

• case 2: β ∈ Σ
β assumption
β → (α→ β) ax1
α→ β MP

• case 3: β = α.
So Σ ` (α→ β) is, in fact, Σ ` (α→ α), we showed that ∅ ` (α→ α). Use monotonicity.

The induction Step

γ, (γ → δ)
δ MP

Assume Σ ` (α→ γ) and Σ ` (α→ (γ → δ)) need to show Σ ` (α→ δ)
So by our assumptions plus strong monotonicity, imply that it suffices to show:

Σ ∪ {(α→ γ), (α→ (γ → δ))} ` (α→ δ)

(α→ (γ → δ))→ ((α→ γ)→ (α→ δ)) Ax2
(α→ (γ → δ)) ass
(α→ γ)→ (α→ δ) MP
(α→ γ) Ass
(α→ δ) MP

Example Claim: for every α, ` (¬¬α→ α).

Proof By the deduction theorem, it suffices to show {(¬¬α)} ` α

formal proof

((¬¬α)→ (¬¬¬¬α→ ¬α)) Ax1
¬¬α Assumption
(¬¬¬¬α→ ¬¬α) MP
(¬¬¬¬α→ ¬¬α)→ (¬α→ ¬¬¬α) Ax3
(¬α→ ¬¬¬α) MP
((¬α→ ¬¬¬α)→ (¬¬α→ α)) Ax3
¬¬α→ α MP
¬¬α ass
α MP

2.4 Important syntactic notion - Consistency

Definition 1 Σ is consistent if

For no α,Σ ` α and Σ ` (¬α).

Definition 2 Σ is consistent if there exists some α such that Σ 0 α.

Claim The two definitions are equivalent.
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Definition 1 A set of wff’s Σ is consistent if

For no α,Σ ` α and Σ ` (¬α).

Definition 2 Σ is consistent if there exists some α such that Σ 0 α.

Claim The two definitions are equivalent.

Proof Assume that for no α does Σ ` α, and Σ 0 α.
Pick any α, say α ≡ p, either Σ 0 α, or, if it does, then Σ 0 ¬α. In any case, we found some β such that Σ 0 β.

Assume that for some β,Σ 0 β. If the first definition is violated, then for some α, Σ ` α and Σ ` ¬α. There-
fore Σ ` Σ ∪ {α,¬α} ` {α,¬α}
{α,¬α} ` β for every α, β. So Σ ` β for every β, contradiction.

Let Σ ⊆ Σ′ if Σ′ is consistent, then so is Σ.

Corollary If any set of wff’s is consistent, then in particular, ∅ is consistent.

Is ∅ consistent?

The soundness Theorem If ` α, then α is tautology. In particular, 0 p.

syntax semantics

definition of wff truth assignments
proof system α satisfiable
Σ consistent Σ satisfiable
` α α tautology

α � β
Σ ` α Σ � α

compactness theorem

Theorem Every satisfiable Σ is consistent.

7
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Proof By way of contradiction, assume Σ is inconsistent. So for some α, both Σ ` α and Σ ` ¬α. If Σ is
satisfiable, then for some truth assignment v, v satisfies all wff’s in Σ. By soundness, Σ � α and Σ � ¬α. So for that
assignment v, we get v(α) = T , and v(¬α) = T , violating the truth table of ¬. Contradiction.

Is Σ = {(pi → pj) : i, j ∈ N} consistent? By out previous theorem, it suffices to show that Σ is satisfiable.
For example that all-true v satisfies every member of Σ.

Definition We say that Σ is maximally consistent if Σ is consistent but, for every α either Σ ` α or Σ ∪ {α} is
inconsistent.
(note that whenever Σ ` α, Σ ∪ {α} is no stronger than Σ. Namely, for every β, if Σ ∪ {α} ` β, then Σ ` β.)

Example Let Σ ≡ {p1} (over the variables p1p2 . . .)

Claim 1 {p1} is consistent. Since it is satisfiable.

Claim 2 {p1} is not maximally consistent.
Let α = p3. {p1} 0 p3, by soundness, it suffices to show that {p1} 2 p3. Consider any truth assignment such that
v(p1) = T, v(p3) = F , then v satisfies p1 but not p3.

Finally note that {p1, p3} is consistent, since it is satisfiable.

Claim Σ{pi : i ∈ N} is maximally consistent (over {p1p2 . . .})

Proof Why is Σ consistent? It is satisfiable by all T assignment.

Why is it maximally consistent? Need to show that for every α, if Σ 0 α, Σ ∪ {α} is inconsistent. We can
already show that if Σ 2, then Σ ∪ {α} is not satisfiable. (since Σ is maximally satisfiable)

Σ consistent ∼ A set of vectors A is linearly independent

Σ maximally consistent ∼ A set of vectors A is maximally linearly independent ∼ A is a basis

Lemma For every consistent Σ, there exists a maximally consistent Σ′ ⊇ Σ

Proof Let α1α2 . . . αn . . . be a list of all wffs over {p1 . . . pn . . .}
Let Σ0 be Σ, and construct a sequence of sets of wffs

Σ0 ⊆ Σ1 . . . ⊆ Σn ⊆ . . .

such that

1. each Σi is consistent.

2. For every i, either Σi ` αi or Σi 0 αi.

The construction of the Σi’s is by induction on i.

Σ0 = Σ clearly satisfies our requirements 1 and 2.

Given Σi if Σi ` ¬αi, let Σi+1 = Σi. (then if Σi satisfies 1 and 2, then so will Σi+1).

If on the other hand, Σi 0 ¬αi+1, then let Σi+1 = Σi ∪ {αi+1}

Claim If Σi satisfies 1 and 2, then so does Σi+1.



CHAPTER 3. L11 9

Proof of claim requirement 2 follows by the definition of Σi+1. But why is Σi+1 consistent? By way of
contradiction, otherwise Σi+1 ` ¬αi+1 (inconsistent Σ proves everything)

Claim if Σ ∪ {α} ` ¬α, then Σ ` ¬α (for every Σ, α)

by the claim, if Σi+1 is inconsistent, the Σi+1 ` ¬αi+1 but Σi+1 = Σi ∪ {αi+1} so Σi ` ¬αi+1. Contradiction.

We assumed Σi 0 ¬αi+1 and defined Σi+1 = Σi ∪ {αi}.

Finally define

Σ′ =
⋃
i∈N

Σi

is maximally consistent.
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Thm Any consistent set of wffs Σ can be extended Σ′ ⊇ Σ that is maximally consistent.

Proof We construct a sequence of sets of wffs Σ0 ⊆ Σ1 ⊆ . . .Σi ⊆ Σi+1 . . .
s.t

1. Σ0 = Σ

2. For all i, Σi is consistent

3. For some fixed enumeration of all wff’s. α1, α2, . . . αn . . . (over p1, . . . pn)
For all i, either Σi ` αi or Σi ` ¬αi

Assuming Σi is defined and meets the requirements. Let Σi+1 =

{
Σi if Σi ` ¬αi+1

Σi ∪ {αi+1} otherwise

Claim Assuming Σi meets the requirements then so will Σi+1 (defined above)

Side Claim For every Σ, α, if Σ ∪ {α} ` ¬α, then Σ ` ¬α

To prove the side claim, it suffices to show that

` (α→ ¬α)→ ¬α

why does it suffice? Assume Σ ∪ {α} ` ¬α. Then by deduction thm, Σ ` (α→ ¬α)

Corollary Our construction of Σi’s can be carried out while respecting requirements 1,2,3

Given Σ, we constructed Σ ⊆ . . .Σi ⊆ . . .
Now define

Σ′ =

∞⋃
i=1

Σi

Claim The Σ′ we constructed is maximally consistent.

Proof maximality: For every α, α = αi for some i ∈ N. Therefore by 2, Σ ` αi or Σ ` ¬αi. In other words,
Σi ` α or Σi ` ¬α.
Each Σi is a subset of Σ′(= ∪Σi), therefore, by monotinicity, Σ′ ` α or Σ′ ` ¬α.

10
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Consistency: by contradiction, it’s not. In that case, for some α, Σ′ ` α and Σ′ ` ¬α. Let β1 . . . βk be a formal
proof of α from Σ′. Let γ1 . . . γk be a formal proof of ¬α from Σ′.

each βi that is an assumption from Σ′ belongs to some Σmi
. Similarly, each γi that is an assumption belongs

to some Σmj
. Since both formal proofs (of alpha and neg alpha) are finite. there is some i∗ bigger than all of these

mi’s and mj ’s. Therefore for each βi or γj that are used as assumptions βi, γj ∈ Σi∗ . Now Σi∗ ` α and Σi∗ ` ¬α.
So Σi∗ is inconsistent, contradict 2 in our construction.

Theorem Every consistent Σ is satisfiable

proof Let Σ′ be a max consistent set of wffs st Σ ⊆ Σ′. Define a truth assignment vΣ′ as follows:

vΣ′ =

{
T if Σ;` pi
F otherwise

Claim For every formula α, vΣ′(α) = T iff Σ′ ` α.
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The completeness thm Every consistent Σ is satisfiable.

pf First step: pick Σ′ ⊇ Σ which is maximally consistent.
Second: Define a truth assignment VΣ′ as follows, for any prop variable p,

VΣ′(p) =

{
T if Σ′ ` p
F otherwise

Claim For every formula α, Σ′ ` α iff vΣ′(α) = T

Proof of the claim By generalized induction on the set of all wffs

I(Prop variables, {→,¬})

Base α = p for some prop. var. p,
If Σ′ ` p, by def of VΣ′ , VΣ′(p) = T .
If Σ′ 0 p, then VΣ′(p) = F .

Induction Step Assume the claim holds for α and for β, need to show it for (¬α) and (α→ β).

• First case: (¬α).
if Σ′ ` ¬α by the consistency of Σ′, Σ′ 0 α. So by ind. hyp. V Σ′(α) = F . So by truth table of ¬, V Σ′(¬α) = T .

if Σ′ 0 (¬α), then by its maximallity, Σ′ ` α. so by ind. hyp, V Σ′(α) = T , then V Σ′(¬α) = F .

• second case (α→ β). if Σ′ ` α→ β. Either Σ′ ` α in which case Σ′ ` β.
Using the ind. hyp, we get V Σ′(α) = T , and V Σ′(β) = T , so by truth table if →, V Σ′(α→ β) = T .

otherwise Σ′ 0 α, so by the ind. hyp, V Σ′(α) = F , then V Σ′(α→ β) = T .

Assume Σ′ 0 α→ β.
Then Σ′ 0 β, if it does, we can use the axiom β → (α→ β) and MP to get Σ′ ` (α→ β) contradiction. So by
ind. hyp, V Σ′(β) = F .
We need to show V Σ′(α→ β) = F . Since we know already V Σ′(β) = F . Our claim holds unless V Σ′(α) = F .
Now by ind. hyp, this implies that Σ′ 0 α, so by maximality, Σ′ ` ¬α, then Σ′ ` (α→ β). Contradiction.

Subclaim If Σ′ ` α then Σ′ ` (α→ β). Use deduction, suffices to show that Σ∪{α} ` β iff Σ∪{α}∪{¬α} ` β

12
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Completeness thm for all α and any set of wffs Σ. If Σ � α then Σ ` α.

Proof Otherwise, then Σ ∪ {¬α} is consistent. So by out last result, Σ ∪ {¬α} is satisfiable, so Σ 2 α.

Claim If Σ is maximally consistent, then it is maximally satisfiable.

Proof consistent =⇒ satisfiable
Since for every α, Σ ` α or Σ ` ¬α. We get by soundness, Σ � α or Σ � ¬α.
If Σ is maximally satisfiable, satisfiable =⇒ consistent. Since for every α, Σ � α or Σ ` ¬α. We get by completeness,
Σ ` α or Σ ` ¬α, so Σ us maximally consistent.

Recall Compactness thm Σ satisfiable iff every finite A ⊆ Σ is satisfiable.

One big question: is there a polynomial time algorithm to figure out if a given α is satisfiable, P vs NP

lengths of proofs: Is there a polynomial p(n) such that for every tautology α, there is a formal proof of ≤ p(|α|)
length?

Existence of proof system.
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p: Every man is mortal.
q: Socrates is a man.

s: Socrates is mortal.

{p, q} � s

6.1 First order logic (predicate calculus)

Objects properties
man mortal
socrates

Actually we shall discuss a large family of languages.

Common to all logical symbols
→,∧,∨,¬ propositional connectives
∀,∃ quantifiers
= equality

Language specific symbols
constant symbols
relation symbols
function symbols

6.1.1 (Informal) examples of specific languages

1. A language for number theory
constant symbols 0, 1 a, b
relation symbols ≤ R
function symbols +, * f, g
φ(x) ≡ ∀y∀z (g(y, z) = x→ y = x ∨ z = x) “x is a prime number”
ψ(x) ≡ ∃zf(z, z) = x “x is an even number”

“ there are ∞ many prime numbers” ∀x∃y (R(x, y) ∧ φ(y))

2. A language for set theory

14
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relation symbols ∈ R R(x, y) stands for x ∈ y
φ(x) = “x is an empty set.” ∀y(¬R(y, x))
“there is only one empty set” ∀x∀y(φ(x) ∧ φ(y)→ x = y)
x ⊆ y ∀z(R(z, x)→ R(z, y))

What can we say in the minimal language. No constant symbols, no function symbols, no relation symbols.

∀x∀y(x = y) ≡ “there is only one element in my universe”

there are more than 2 elements ∃x∃y∃z (¬(x = y) ∧ ¬(y = z) ∧ ¬(x = z))
there are at most 2 elements ∀x∀y∀z (x = y ∨ y = z ∨ x = z)

syntax semantics
what is wff α � β

proof system Σ is satisfiable
consistency

Σ ` α
...

Fix a language
constant symbols a1a2 . . .
function symbols f1, f2, . . .
arity 1, 1, 3, 2
relation symbols R1, R2 . . .
arity 1, 1, 2

• Step 1: Define the collection of “words” that denote objects - terms

the set of Terms is defined as I(A,P ) where A- all constant symbols and all variable symbols x1x2 . . .
P {Of : f is a function symbol} t1,t2

f(t1,t2)
t

f(t)

Examples of terms

1. language for number theory
a, b, x1x2 . . . f(a, b), g(x, a), f(x, y) f(g(x, a), y)
g(f(b, b), x) 7→ 2x
f(g(x, x), f(f(y, y), y)) 7→ x2 + 3y

2. The terms of the language of set theory
No function symbols, therefore P is empty. I(A,P ) = A

3. The terms in the empty language
Same- just variable symbols

• Step 1.5: defining the set of atomic formulas

{R(t1, . . . .tk) : R is a k-ary relation symbol, and t1 . . . tk are terms}

Example

1. number theory
R(a, b) (0 ≤ 1)
R(f(a, x), g(f(b, b), y)) x+ 0 ≤ 2y

2. set theory
y ∈ X ∩ Z R(y, x) ∧R(y, z) (not atomic)
y = z x ∈ y



6.1. FIRST ORDER LOGIC (PREDICATE CALCULUS) 16

• Step 2: Defining our wff’s, again as I(A,P )
The set of wffs in a given language L (given constants, function, relations)

I(atomic formulas, {∧,∨,→,¬, O∀, O∃})

O∀x
φ

∀φ
O∃y

φ

∃yφ
L =⇒ wff ′s of L

2x+ y2 term

���
���XXXXXX∀x(2x+ y2)

x(2x+ y2 = x) atomic formula
∀x(2x+ y2 = x) formula (not atomic)

6.1.2 Important syntactic notion - free variable

We define by induction on the construction on the set of wff’s, F (φ) - the set of free variables of φ. If φ is atomic -
F (φ) = all variables occurring in φ.

Examples F (f(b, b)︸ ︷︷ ︸
t1

= g(x, f(b, y)))︸ ︷︷ ︸
t2

= x, y

F (φ1 ∧ φ2) = F (φ1 ∨ φ2) = F (φ1 → φ2) = F (φ1) ∪ F (φ2)
F (φ) = F (¬φ)
F (∀xφ) = F (φ) r {x} similar for ∃
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Recall logical symbols: brackets, connectives, quantifiers, equals, variables.
language-dependent: constants (c1, c2, . . .) functions, relations (R1, R2)

Defn (Terms)

I({c1, c2, . . . , x1, . . .}, {f1, f2 . . .})

“atomic formulas” {Ri(t1, . . . , tk) : Ri is a k-ary relation and tj are terms (1 ≤ j ≤ k)}
“wff” I(atomic formulas, {¬,∧,∨,→} ∪ {∀,∃})
“free variable” of φ, some variable not in the scope of ∀,∃ somewhere in φ.

eg ∀x(R(x, y)) {y} is free.
((∀x(R(x, y)) ∧ P (x))) {x, y}
∀x∃yf(x, y, z) not a wff

Defn if φ has no free variables, φ is a sentence.

Defn Given some (syntactical) language [c1, . . . constants, f1, . . . functions, R1, . . . relations], a “structure” consists
of:

• a universe U (domain), non-empty!

• give an element in U to each constant ci

• a mapping for each fi : Uk → U (fi k-ary)

• a relation for each Ri : Uk → {T, F} (Ri k-ary)

number theory language
constants: a, b
functions: f, g
relation: R
All above are syntax

structure:
U = N a = 0, b = 1 f(x, y) = x+ y, g(x, y) = x · y R(x, y) = T iff x 6 y

defn An assignment function s : V → U

17
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Extend s to s: T → U

Extent s (one last time) to handle any wff φ.

1. φ = (¬η), s(φ) = T ⇐⇒ s(η) = F

2. φ = (η → (∧∨)ψ) then use truth table

wlog consider φ = ∀xi(η), define sdi (x) =

{
s(x) if xi 6= x

d if xi = x
d ∈ U

s(φ) = T ⇐⇒ for all d ∈ U we have sdi (η) = T

Thm Any wff has a unique decomposition

Cor s is well-defined.

7.1 graph theory

Define a language for graph theory.

syntax

• constants to be our vertices

• no functions

• R, P relations

structure
a b c d e f

U = {a, b, c, d, r, e, f}
R(u, v) = T ⇐⇒ (u, v) is a directed edge
P (u, v) = T ⇐⇒ u to v is connected

R(u, v)→ P (u, v)
∀u∀v((P (u, v) ∧ ¬R(u, v))→ ∃z(P (u, z) ∧ P (z, v) ∧ ¬(u = z) ∧ ¬(v = z)))
These two fully defines P



Chapter 8

L16

8.1 Semantics for 1st order logic

Given a language L =< R,F, a >
Semantics for the first order logic over L is a rule that assigns T or F to every wff.

Need to fix

1. A structure for L: a universe set and interpretations for the symbols of L

Example L =< R,F (), G(), a, b >
M1 =< N,≤,+,×, 0, 1 >
φ ≡ ∀x∃y(¬(x = y) ∧R(y, x)) false in M1, M1 2 φ

2. An assignment of variables to elements of the structure’s universe

Lemma Let φ be a wff in some language L and M a structure for L, then for every assignments s1, s2 (to the
universe of M) if for every variable that occurs free in φ, s1(x) = s2(x). Then M �s1 φ iff M �s2 φ

Cor If φ is a sentence (no free var) then for any s1, s2, M �s1 φ iff M �s2 φ. Therefore, when we discuss truth
values of sentences we do not specify any assignments.

Proof of the Lemma By generalized induction on the structure of φ.

Base step Atomic formulas: (t1 = t2) or R(x, y, a)
(Note that for every term t, if s1, s2 agree on the variables in t, then s1(t) = s2(t))

Induction step →,∧,∨,¬∀,∃.

8.2 semantic notions

1. φ is a logical truth if for every structure for the language of φ and every assignment s to that structure M �s φ

2. Σ logically implies φ if for every M, s, that make every member of Σ get true. M �s φ

19
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Lemma For every Σ, α, β, Σ ∪ {α} � β iff Σ � (α→ β)

Cor ∃y∀xR(x, y) � ∀x∃yR(x, y)
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