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Abstract
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Chapter 1

lec 09

syntax | semantics
Define wif ‘ truth tables, satisfiability

1.1 A proof system for propositional logic

Desirable properties of proof system:
1. Tt can only prove “correct” statements
2. There is a “method” to check a given object is a valid proof
3. Every “correct” statement has a proof

When “correct statement” stands for a propositional tautology, a proof of a will be a truth table for « that has only
T’s in the rightmost column.

Our proof system consists of two components: Axioms and Deduction rules.

Axioms The set of axioms - and wff of one of the following forms:
L (a=(8—a)
2. ((a=(B=7) = (@= ) = (@=7))

3. (((ma) = (=8)) = (B = a))

Example

It’s an axiom.
((p = q) = ((=q) = (-p)))
Not an axiom. purely syntactic. check it symbol by symbol.

{—,—} is an adequate set of connectives.
Examples (p — p) is not one of axioms (but a tautology), just 5 symbols -every axiom has more.

Deduction Rule The second component of the proof system is a deduction rule. %fﬁ Modus ponens.
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The set of provable wif’s is
I(Axioms, {modus ponens})

e A formal proof is a construction sequence in the structure. Namely, aq, ..., a,, is a formal proof of some g, if
each q; is either an axiom or the result of applying Modus Ponens (MP) to some «;, ay, for j, k < i.

Example

(0 = (@ = a) = «a)) axiom 1

(= (la=a)= a))= (o —(la2ad)=(0o = o)) Ax2
A % c A % A c

Then MP, ((a = (o — a)) = (o = «))

(a = (a—=a)) Ax 1

MP, a — a.

Notation We will use F to denote “formally proves”. F a. “ « has a formal proof.”

Example For every o, F ((=(-a)) — )

(7o = (ra = 2 a)) Azl
(-~ = (~a = =) = (- = =a) = (~=ma = ~-a)))  Ax
((ma = —a) = (7—a = o)) MP
(= = —a) = (7——a — 7—a)) — (next time))

Theorem (Soundness) For every wif o, if F « then « is a tautology.

Proof By generalized induction on I(Axioms, M P). Base case: Check that every axiom is tautology. Induc-
tion Step: Assume both « and (a — ) are tautologies, need to show that 3 is a tautology.
By way of contradiction, assume £ is not a tautology, then for some truth assignment v, 7(8) = F. ©(«a) = T since
a is a tautology by IH. (e — ) = F contradicts the assumption “(a — ) is tautology”. O

F a (syntax). « tautology (semantics)
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2.1 Formal Proofs in Prop Logic
The set of formal theorems is
Th = I(Azioms, {MP})

A formal proof is a construction sequence for this structure.
We use F a to denote “a is a formal theorem”.

We showed that, for any «, F (o — «).

The Soundness Theorem Any formal theorem is a tautology.

2.2 Proof from assumptions

Let ¥ be a set of wft’s. The set of formal theorems under the assumptions ¥ is

Th(X) = I(Azioms UX, {MP})

Qi,...,0, is a formal proof under X if each «; is either axiom or a member of ¥ or follows from some
o, o, J, k <t using MP.

Example Let ¥ ={A4,(A— B)}. Claim: {4,(A— B)} B

A (€)
(A— B) (€
B MP

— (—a))) Azl

(
((=8) = (ma) Mmp
Formal Proof (((=8) = (-a)) = (a = B)) Aa3
o S
3 MP



2.3. PROPERTIES OF PROOFS FROM ASSUMPTIONS )

2.3 Properties of proofs from assumptions

Extended Soundness Theorem For every 3, a, if 3 F «, then 3 F «a. (Substituting > = (), yields the basic
Soundness Theorem)

Proof (Notice that we can rephrase this theorem as: for any « € I(Az U X, {MP}), ¥ F )
I leave the proof to the assignment.

Monotonicity For every ¥, % . f ¥ F o, and ¥ C ¥/, then ¥’ F . In other words, X C ¥ = Th(X) C
Th(X).
(Note that human reasoning does not enjoy this property)

Quest F"") There will be a class today
Quest, Piazza (Shai is sick) #("") There will be a class today

Proof Since ¥ | «, thereis a construction seq (formal proof) of am based on X U Ax,
a...ap =«

each o is either an axiom or a; € X, but in that case, ay € X', or «; is the outcome of MP on earlier a;, oy,
therefore o ..., is also a proof from Y'.

Strong Monotonicity If for every o € ¥/, 3 F «, then Th(X') C Th(X).

Example Let ¥ ={A4,(4— B)}.Y ={B}.
Y F X (every o € ¥’ has a proof under ¥) = Th({B}) C Th({A, (A — B)})

The deduction theorem For every 3, a, 3, YU{a}Fpgifand only if ¥ + (o — B)
(in particular {a} F g iff - (a — )

Example For every a, 3, 7. {la=8,6—=7)}F (a—7)

Proof Applying deduction theorem, if suffices to show

{la=B,8—=7),al b~y

Proof of deduction theorem

Easy direction Assume ¥ F (o — ), by monotonicity,
YU{a}tF (o= P)

by strong monotonicity, it suffices to show that

Y =YU{a}U{a—=B}F3
Y
We know o, — 8, (M P) is a proof from ¥’

The harder direction Show that if ¥ U {a} F § then Z F (o — ).
Rephrase this statement as, for all 8 € Th(X U {a}), X F (a = ).
Now prove by generalized induction on Th(X U {3 U {a}}) =I(AzUX U {a}, MP)

Base case (3 is in the core set



2.4. IMPORTANT SYNTACTIC NOTION - CONSISTENCY

Ié] (aziom)
e case 1: (s an axiom S — (o — () axl
(o — B) MP
15} assumption
ecase2: fe€X [— (a—f) axl
a—f MP

e case 3: 0= a.
So X F (o — B) is, in fact, ¥ F (o — «), we showed that @ F (o — «). Use monotonicity.

The induction Step

s (75_> 5) MP

Assume X F (o = ) and  F (o — (v — §)) need to show ¥+ (o — 0)
So by our assumptions plus strong monotonicity, imply that it suffices to show:

YU{la=7y),(a=(y—=98)}F (a—=9)

(a=(y—=0)—= ((a—=7) = (a—=d) Ax2
(= (y—9)) ass
(a—=7v) = (a—9) MP
(a—7) Ass
(a0 —0) MP

Example Claim: for every a, F (m—a — «).

Proof By the deduction theorem, it suffices to show {(——a)} F «

(/@) = (7= a — —a)) Ax1
imtel Assumption
(m=——a = =) MP
(ﬁﬁﬁﬁa — ﬁﬁa) — (ﬁa — ﬁﬁﬁa) Ax3
formal proof (—a — ——a) MP
(o = —==a) = (7—a — «)) Ax3
o=« MP
- ass
o MP

2.4 Important syntactic notion - Consistency

Definition 1 ¥ is consistent if

For no a, X+ a and ¥  (—a).
Definition 2 Y is consistent if there exists some « such that X ¥ «.

Claim The two definitions are equivalent.
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Definition 1 A set of wil’s ¥ is consistent if

For no a, X F o and ¥ + (—a).
Definition 2 ¥ is consistent if there exists some « such that ¥ ¥ «.

Claim The two definitions are equivalent.

Proof Assume that for no a does ¥ - «, and 3 ¥ a.
Pick any «, say a = p, either 3 ¥ a, or, if it does, then X /¥ —a. In any case, we found some (8 such that 3 ¥ 3.

Assume that for some [, ¥ §. If the first definition is violated, then for some «, ¥ F o and ¥ F —«. There-
fore ¥ F X U {a, —a} F {a, ~a}
{a,-a} - B for every a, 8. So X F B for every 3, contradiction.

Let ¥ C ¥ if ¥/ is consistent, then so is X.

Corollary If any set of wff’s is consistent, then in particular, () is consistent.

Is O consistent?

The soundness Theorem If - «, then « is tautology. In particular, ¥ p.

syntax | semantics
definition of wiff truth assignments

proof system « satisfiable
Y consistent Y satisfiable
Fa « tautology

aFE S

Y« YEa

compactness theorem

Theorem Every satisfiable ¥ is consistent.
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Proof By way of contradiction, assume ¥ is inconsistent. So for some a, both ¥ - o and ¥ F —a. If ¥ is
satisfiable, then for some truth assignment v, v satisfies all wff’s in ¥. By soundness, ¥ F a and ¥ F —«. So for that
assignment v, we get v(a) =T, and v(—a) = T, violating the truth table of —. Contradiction.

Is ¥ = {(pi — pj) : i,j € N} consistent? By out previous theorem, it suffices to show that 3 is satisfiable.
For example that all-true v satisfies every member of 3.

Definition We say that ¥ is maximally consistent if ¥ is consistent but, for every a either ¥ F o or Y U {a} is
inconsistent.
(note that whenever ¥ F a, ¥ U {a} is no stronger than 3. Namely, for every S, if ¥ U {a} F 3, then X I 5.)

Example Let 3 = {p;} (over the variables pips...)

Claim 1 {p;} is consistent. Since it is satisfiable.

Claim 2 {p;} is not maximally consistent.
Let o = ps. {p1} ¥ ps, by soundness, it suffices to show that {p;} ¥ p3. Consider any truth assignment such that
v(p1) = T,v(p3) = F, then v satisfies p; but not ps.

Finally note that {p1,ps} is consistent, since it is satisfiable.

Claim X{p; :¢ € N} is maximally consistent (over {pips...})

Proof Why is ¥ consistent? It is satisfiable by all T assignment.

Why is it maximally consistent? Need to show that for every «, if ¥ ¥ a, ¥ U {«a} is inconsistent. We can
already show that if ¥ ¥, then ¥ U {«} is not satisfiable. (since ¥ is maximally satisfiable)

Y consistent ~ A set of vectors A is linearly independent

¥ maximally consistent ~ A set of vectors A is maximally linearly independent ~ A is a basis

Lemma For every consistent X, there exists a maximally consistent ¥/ D X

Proof Let ajas...aq, ... be alist of all wifs over {p1...p,...}
Let 3 be X, and construct a sequence of sets of wifs

S C%...C8, C...

such that
1. each X; is consistent.
2. For every i, either ¥; F a; or 3; ¥ «;.
The construction of the ¥;’s is by induction on 3.
Y9 = X clearly satisfies our requirements 1 and 2.
Given %; if ¥; F —ay, let X;41 = X,;. (then if 3; satisfies 1 and 2, then so will ¥;41).
If on the other hand, ¥; ¥ —a;41, then let ¥;41 = 3; U {ai41}

Claim If ¥; satisfies 1 and 2, then so does ;1.
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Proof of claim requirement 2 follows by the definition of ¥;;1. But why is ;11 consistent? By way of
contradiction, otherwise ¥; 11 F —a;41 (inconsistent ¥ proves everything)

Claim if ¥ U {a} F —q, then ¥ - —a (for every ¥, a)
by the claim, if ¥;; is inconsistent, the ¥;11 F —a;41 but X;41 = 3; U {a;41} so ¥; F —a;41. Contradiction.
We assumed 3; ¥ —a;4+1 and defined ¥;11 = ¥; U {a; }.

E’:UEi

ieN

Finally define

is maximally consistent.
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Thm Any consistent set of wifs ¥ can be extended ¥’ D ¥ that is maximally consistent.

Proof We construct a sequence of sets of wifs X9 C 37 C ... %, C¥;yq...
s.t

1. %=X
2. For all 4, 3; is consistent

3. For some fixed enumeration of all wit’s. ay,ag,...ay, ... (over py,...p,)
For all i, either ¥; - a; or X; F -y

Zi if Zi = 0G4

Assuming ¥; is defined and meets the requirements. Let ¥; 1 = .
Y, U{a;y1} otherwise

Claim Assuming ¥; meets the requirements then so will ¥,,; (defined above)

Side Claim For every X, o, if ¥ U {a} F —a, then ¥ F -«
To prove the side claim, it suffices to show that

Fla— —a) = -«

why does it suffice? Assume X U {a} F —a. Then by deduction thm, ¥ F (o = —«)

Corollary Our construction of 3;’s can be carried out while respecting requirements 1,2,3

Given X, we constructed ¥ C ...%; C ...
Now define

5 = [j D
i=1

Claim The ¥’ we constructed is maximally consistent.

Proof maximality: For every «, a = a; for some ¢ € N. Therefore by 2, ¥ F a; or ¥ - —q;. In other words,
Y FaorX; Foa.
Each ¥; is a subset of ¥'(= UY;), therefore, by monotinicity, ¥’ F « or ¥’ - —a.

10
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Consistency: by contradiction, it’s not. In that case, for some a, ¥’ F a and ¥’ F —a. Let 31 ... 5 be a formal
proof of a from ¥'. Let ~1 ... be a formal proof of =« from Y.

each f3; that is an assumption from ¥’ belongs to some %,,,. Similarly, each 7; that is an assumption belongs
to some X,,,. Since both formal proofs (of alpha and neg alpha) are finite. there is some i* bigger than all of these
m;’s and m;’s. Therefore for each f; or ; that are used as assumptions 3;,7; € ¥;«. Now X;- - o and ¥« F —ov.
So ¥;« is inconsistent, contradict 2 in our construction.

Theorem Every consistent ¥ is satisfiable

proof Let X' be a max consistent set of wifs st ¥ C ¥/, Define a truth assignment vsy as follows:

T if 3k p;
UE/ =
F otherwise

Claim For every formula a, vs/(a) =T iff ¥’ F «.
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The completeness thm Every consistent ¥ is satisfiable.

pf First step: pick ¥’ D ¥ which is maximally consistent.
Second: Define a truth assignment Vy as follows, for any prop variable p,

T Y Fp

F  otherwise

Vi (p) = {

Claim For every formula o, ¥' - a0 iff U5 () =T

Proof of the claim By generalized induction on the set of all wffs

I(Prop variables, {—,—})

Base « = p for some prop. var. p,
If ¥' F p, by def of Vs, Vs (p) = T.
If X' ¥ p, then Vs (p) = F.

Induction Step Assume the claim holds for a and for 8, need to show it for (—a) and (o — ).

e First case: (—a). B o
if ¥/  —a by the consistency of ¥/, ¥’ ¥ «. So by ind. hyp. Vs/(a) = F. So by truth table of =, Vs (-a) = T.

if ¥/ ¥ (—a), then by its maximallity, ¥’ F . so by ind. hyp, Vs/(a) =T, then Vs (—-a) = F.

e second case (o — ). if ¥’ = a — B. Either ¥’ - o in which case X' - 3. -
Using the ind. hyp, we get Vy/(a) =T, and Vs (8) =T, so by truth table if =, Vs (o — 8) =T.

otherwise ¥’ ¥ a, so by the ind. hyp, Vs/(a) = F, then Vs (o — ) = T.

Assume X' F o — .

Then X' ¥ §, if it does, we can use the axiom 5 — (o — () and MP to get X' (o — ) contradiction. So by
ind. hyp, Vs (B) = F.

We need to show Vv (a — B) = F. Since we know already Vs (8) = F. Our claim holds unless Vy/(a) = F.
Now by ind. hyp, this implies that ¥/ ¥ «, so by maximality, ¥’ F -, then ¥’ F (o — ). Contradiction.

Subclaim If¥'F athen ¥’ F (o — ). Use deduction, suffices to show that YU{a} F g iff SU{a}U{-a} F B

12
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Completeness thm for all @ and any set of wifs . If ¥ F o then ¥ F «a.

Proof Otherwise, then ¥ U {—a} is consistent. So by out last result, ¥ U {—a} is satisfiable, so ¥ ¥ a.

Claim If ¥ is maximally consistent, then it is maximally satisfiable.

Proof consistent = satisfiable
Since for every «, ¥ F « or ¥ F —a. We get by soundness, ¥ F a or X F —a.
If ¥ is maximally satisfiable, satisfiable = consistent. Since for every o, X F a or X F —a. We get by completeness,
Y F aor ¥ F —a, so X us maximally consistent.

Recall Compactness thmm ¥ satisfiable iff every finite A C ¥ is satisfiable.

One big question: is there a polynomial time algorithm to figure out if a given « is satisfiable, P vs NP

lengths of proofs: Is there a polynomial p(n) such that for every tautology «, there is a formal proof of < p(|a])
length?

Existence of proof system.
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p: Every man is mortal.
q: Socrates is a man.

s: Socrates is mortal.

{p.q}Fs

6.1 First order logic (predicate calculus)

Objects ‘ properties
man mortal
socrates

Actually we shall discuss a large family of languages.

Common to all logical symbols
—, A\, V, = propositional connectives
V, 3 quantifiers

= equality

constant symbols
Language specific symbols  relation symbols
function symbols

6.1.1 (Informal) examples of specific languages

1. A language for number theory
constant symbols 0,1 a,b
relation symbols < R
function symbols +, * f,g
d(x) =VyVz (9(y,2) = -y =V z =) “x is a prime number’
Y(x) =3zf(z,2) =z “zis an even number”

i

“ there are co many prime numbers” Va 3y (R(z,y) A ¢(y))

2. A language for set theory

14



6.1. FIRST ORDER LOGIC (PREDICATE CALCULUS)

relation symbols € R  R(zx,y) stands for x € y
¢(z) = “x is an empty set.” Vy(=R(y,z))
“there is only one empty set”  VaVy(o(z) A d(y) = x =y)
zCy Vz(R(z,z) = R(z,y))

What can we say in the minimal language. No constant symbols, no function symbols, no relation symbols.

VaVy(x = y) = “there is only one element in my universe”

there are more than 2 elements FrIyIz (—(z =y) A-(y = 2) A =(x = 2))
there are at most 2 elements VaVyVz (x =yVy=zVa=z)

syntax semantics
what is wif aFE S
proof system | ¥ is satisfiable
consistency

YFa

Fix a language

constant symbols ajas ...
function symbols f1, fo,...
arity 1, 1, 3, 2

relation symbols Ri, Rs ...
arity 1, 1, 2

e Step 1: Define the collection of “words” that denote objects - terms

the set of Terms is defined as I(A, P) where A- all constant symbols and all variable symbols x5 . ..

P {Oy : f is a function symbol} f(ttlffz) ﬁ

Examples of terms

1. language for number theory

a,b,x1za . .. f(a,b),g(m,a),f(x,y) f(g(x,a),y)
g(f(b,b),x) — 2z
flg(@,2), F(f(y,9),9)) = * + 3y

2. The terms of the language of set theory
No function symbols, therefore P is empty. I(A, P) = A

3. The terms in the empty language
Same- just variable symbols

e Step 1.5: defining the set of atomic formulas

{R(t1,....tx) : R is a k-ary relation symbol, and ¢; ...t are terms}

Example

1. number theory
R(a,b) (0<1)
R(f(a,z),g(f(b;b),y)) x+0<2y
2. set theory

yeXNZ R(y,z)AR(y,z) (not atomic)
y=zrey
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e Step 2: Defining our wif’s, again as I(A, P)
The set of wils in a given language L (given constants, function, relations)

I(atomic formulas, {A, V, —, =, Oy, O3})

¢ ¢
O g % 39
L = wff'sof L
2z + 2 term
VYV

2(2z + y? = x) atomic formula
Vz(2z + y? = x) formula (not atomic)

6.1.2 Important syntactic notion - free variable

We define by induction on the construction on the set of wif’s, F'(¢) - the set of free variables of ¢. If ¢ is atomic -
F(¢) = all variables occurring in ¢.

Examples F(f(b,b) = g(z, f(b,y))) =,y

(1 A ¢2() Z)F(Qﬁfl\/ $2) = F(zl — ¢2) = F(¢1) U F(¢2)
F(—¢
(Vxg) = F(¢) \ {x} similar for 3

o
&
I
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Recall logical symbols: brackets, connectives, quantifiers, equals, variables.
language-dependent: constants (cq, ¢, . ..) functions, relations (R;, R2)

Defn (Terms)

I{er e, ooy, 1 {1 fo )

“atomic formulas” {R;(t1,...,tx) : R; is a k-ary relation and ¢; are terms (1 < j < k)}
“wif” I(atomic formulas, {—, A, V,—}U{V,3})
“free variable” of ¢, some variable not in the scope of V, 3 somewhere in ¢.

eg Vz(R(z,y)) {y} is free.
(Ve (R(z,y)) A P(x))) {z,y}
Vadyf(x,y,z) not a wif

Defn if ¢ has no free variables, ¢ is a sentence.

Defn Given some (syntactical) language [c1, .. .constants, fi, ... functions, Ry, ...relations], a “structure” consists
of:

e a universe U (domain), non-empty!

e give an element in U to each constant ¢;

e a mapping for each f; : U* — U (f; k-ary)

e a relation for each R; : U* — {T, F} (R; k-ary)

number theory language
constants: a, b

functions: f, g

relation: R

All above are syntax

structure:
U=N a=0,b=1 fz,y)=x+4+y, gz,y)=x-y R,y =Tifx<y

defn An assignment function s : V. — U

17



7.1. GRAPH THEORY

Extend stos: T — U

Extent 5 (one last time) to handle any wif ¢.
L ¢=(m),s(¢)=T < 5(n) =F
2. ¢ = (n — (AV)®) then use truth table

S(x) ifx; £x

d ifx, =2

wlog consider ¢ = Vx;(1), define 5¢(z) = {

3(¢p) =T <= for all d €U we have 5¢(n) =T
Thm Any wif has a unique decomposition

Cor 3 is well-defined.

7.1 graph theory

Define a language for graph theory.

syntax
e constants to be our vertices
e no functions

e R, P relations

deld

;/NQ Y

b c

structure d ¢
U=1{a,b,c,d,re, f}

R(u,v) =T <= (u,v) is a directed edge

P(u,v) =T <= uto v is connected

R(u,v) = P(u,v)
Yuvv((P(u,v) A =R(u,v)) = Jz(P(u, 2) A P(z,v) A =(u =
These two fully defines P

18
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8.1 Semantics for 1st order logic

Given a language L =< R, F,a >
Semantics for the first order logic over L is a rule that assigns T or F to every wif.

Need to fix

1. A structure for L: a universe set and interpretations for the symbols of L

Example L=< R, F(),G(),a,b>
M =<N, < +,%,0,1>
¢ =VaIy(—(r =y) ANR(y,z)) false in My, My ¥ ¢

2. An assignment of variables to elements of the structure’s universe

Lemma Let ¢ be a wff in some language L and M a structure for L, then for every assignments s1,ss (to the
universe of M) if for every variable that occurs free in ¢, s1(x) = s2(x). Then M k;, ¢ iff M Eg, ¢

Cor 1If ¢ is a sentence (no free var) then for any sq,s2, M Eg, ¢ iff M E,, ¢. Therefore, when we discuss truth
values of sentences we do not specify any assignments.

Proof of the Lemma By generalized induction on the structure of ¢.

Base step Atomic formulas: (t; = t2) or R(x,y,a)
(Note that for every term ¢, if s1, so agree on the variables in ¢, then 5;(t) = $2(t))

Induction step —,A,V,—V, 3.

8.2 semantic notions

1. ¢ is a logical truth if for every structure for the language of ¢ and every assignment s to that structure M E, ¢

2. X logically implies ¢ if for every M, s, that make every member of X get true. M E, ¢

19



8.2. SEMANTIC NOTIONS

Lemma For every ¥, a,8, XU {a} ESiff B F (a — p)

Cor WzR(x,y)E VaIyR(z,y)

20
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