245e notes

Sibelius Peng

April 14, 2019

Abstract

This notes contains the lecture notes since lec09

Contents

1	lec 09		
	1.1 A proof system for propositional logic	2	
2	L10	4	
	2.1 Formal Proofs in Prop Logic	4	
	2.2 Proof from assumptions	4	
	2.3 Properties of proofs from assumptions	5	
	2.4 Important syntactic notion - Consistency	6	
3	L11	7	
4	L12	10	
5	L13	12	
6	L14	14	
	6.1 First order logic (predicate calculus)	14	
	6.1.1 (Informal) examples of specific languages	14	
	6.1.2 Important syntactic notion - free variable	16	
7	L15	17	
	7.1 graph theory	18	
8	L16	19	
	8.1 Semantics for 1st order logic	19	
	8.2 semantic notions	19	

lec 09

syntaxsemanticsDefine wfftruth tables, satisfiability

1.1 A proof system for propositional logic

Desirable properties of proof system:

- 1. It can only prove "correct" statements
- 2. There is a "method" to check a given object is a valid proof
- 3. Every "correct" statement has a proof

When "correct statement" stands for a propositional tautology, a proof of α will be a truth table for α that has only T's in the rightmost column.

Our proof system consists of two components: Axioms and Deduction rules.

Axioms The set of axioms - and wff of one of the following forms:

1.
$$(\alpha \to (\beta \to \alpha))$$

2. $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$
3. $(((\neg \alpha) \to (\neg \beta)) \to (\beta \to \alpha))$

Example

$$(\underbrace{((\neg p) \to q)}_{\alpha} \to \underbrace{(p)}_{\beta} \to \underbrace{((\neg)p \to q)}_{\alpha}))$$

It's an axiom.

$$((p \to q) \to ((\neg q) \to (\neg p)))$$

Not an axiom. purely syntactic. check it symbol by symbol.

 $\{\neg, \rightarrow\}$ is an adequate set of connectives.

Examples $(p \rightarrow p)$ is not one of axioms (but a tautology), just 5 symbols -every axiom has more.

Deduction Rule The second component of the proof system is a deduction rule. $\frac{\alpha, \alpha \to \beta}{\beta}$. Modus ponens.

The set of provable wff's is

$$I(Axioms, \{modus \ ponens\})$$

• A formal proof is a construction sequence in the structure. Namely, $\alpha_1, \ldots, \alpha_m$ is a formal proof of some β , if each α_i is either an axiom or the result of applying Modus Ponens (MP) to some α_j, α_k for j, k < i.

 $\begin{array}{l} \textbf{Example} \\ (\alpha \rightarrow ((\alpha \rightarrow \alpha) \rightarrow \alpha)) \text{ axiom } 1 \\ ((\underbrace{\alpha}_{A} \rightarrow (\underbrace{(\alpha \rightarrow \alpha)}_{B} \rightarrow \underbrace{\alpha}_{C})) \rightarrow ((\underbrace{\alpha}_{A} \rightarrow \underbrace{(\alpha \rightarrow \alpha)}_{B}) \rightarrow (\underbrace{\alpha}_{A} \rightarrow \underbrace{\alpha}_{C}))) & \text{ Ax } 2 \\ \text{Then MP, } ((\alpha \rightarrow (\alpha \rightarrow \alpha)) \rightarrow (\alpha \rightarrow \alpha)) \\ (\alpha \rightarrow (\alpha \rightarrow \alpha)) \text{ Ax } 1 \\ \text{MP, } \alpha \rightarrow \alpha. \end{array}$

Notation We will use \vdash to denote "formally proves". $\vdash \alpha$. " α has a formal proof."

Example For every α , $\vdash ((\neg(\neg\alpha)) \rightarrow \alpha)$

$$\begin{cases} (\neg \neg \neg \alpha \rightarrow (\neg \alpha \rightarrow \neg \neg \alpha)) & Ax1 \\ ((\neg \neg \neg \alpha \rightarrow (\neg \alpha \rightarrow \neg \alpha)) \rightarrow ((\neg \neg \neg \alpha \rightarrow \neg \alpha) \rightarrow (\neg \neg \neg \alpha \rightarrow \neg \alpha))) & Ax2 \\ (((\neg \neg \neg \alpha \rightarrow \neg \alpha) \rightarrow (\neg \neg \neg \alpha \rightarrow \neg \neg \alpha)) & MP \\ ((((\neg \neg \neg \alpha \rightarrow \neg \alpha) \rightarrow (\neg \neg \neg \alpha \rightarrow \neg \alpha)) \rightarrow (next time)) & \\ \end{cases}$$

Theorem (Soundness) For every wff α , if $\vdash \alpha$ then α is a tautology.

Proof By generalized induction on I(Axioms, MP). Base case: Check that every axiom is tautology. Induction Step: Assume both α and $(\alpha \to \beta)$ are tautologies, need to show that β is a tautology. By way of contradiction, assume β is not a tautology, then for some truth assignment $v, \overline{v}(\beta) = F$. $\overline{v}(\alpha) = T$ since α is a tautology by IH. $\overline{v}(\alpha \to \beta) = F$ contradicts the assumption " $(\alpha \to \beta)$ is tautology".

 $\vdash \alpha$ (syntax). α tautology (semantics)

L10

2.1 Formal Proofs in Prop Logic

The set of formal theorems is

 $Th = I(Axioms, \{MP\})$

A formal proof is a construction sequence for this structure. We use $\vdash \alpha$ to denote " α is a formal theorem".

We showed that, for any α , $\vdash (\alpha \rightarrow \alpha)$.

The Soundness Theorem Any formal theorem is a tautology.

2.2 **Proof from assumptions**

Let Σ be a set of wff's. The set of formal theorems under the assumptions Σ is

 $Th(\Sigma) = I(Axioms \cup \Sigma, \{MP\})$

 $\alpha_1, \ldots, \alpha_n$ is a formal proof under Σ if each α_i is either axiom or <u>a member of Σ </u> or follows from some $\alpha_j, \alpha_k, j, k < i$ using MP.

Example Let $\Sigma = \{A, (A \to B)\}$. Claim: $\{A, (A \to B)\} \vdash B$ $A \quad (\in)$ $(A \to B) \quad (\in)$ $B \quad MP$

 $\begin{array}{c|c} \textbf{Example} \quad \text{For every } \alpha, \beta, \{\alpha, (\neg \alpha)\} \vdash \beta \\ & ((\neg \alpha) \rightarrow ((\neg \beta) \rightarrow (\neg \alpha))) & Ax1 \\ & (\neg \alpha) & \in \\ & ((\neg \beta) \rightarrow (\neg \alpha)) & MP \\ \hline \textbf{Formal Proof} & ((((\neg \beta) \rightarrow (\neg \alpha)) \rightarrow (\alpha \rightarrow \beta)) & Ax3 \\ & (\alpha \rightarrow \beta) & MP \\ & \alpha & \in \\ & \beta & MP \end{array}$

2.3 Properties of proofs from assumptions

Extended Soundness Theorem For every Σ, α , if $\Sigma \vdash \alpha$, then $\Sigma \models \alpha$. (Substituting $\Sigma = \emptyset$, yields the basic Soundness Theorem)

Proof (Notice that we can rephrase this theorem as: for any $\alpha \in I(Ax \cup \Sigma, \{MP\}), \Sigma \models \alpha$) I leave the proof to the assignment.

Monotonicity For every Σ, Σ', α . If $\Sigma \vdash \alpha$, and $\Sigma \subseteq \Sigma'$, then $\Sigma' \vdash \alpha$. In other words, $\Sigma \subseteq \Sigma' \implies Th(\Sigma) \subseteq Th(\Sigma')$.

(Note that human reasoning does not enjoy this property)

Quest $\vdash^{(hr)}$ There will be a class today Quest, Piazza (Shai is sick) $\nvDash^{(hr)}$ There will be a class today

Proof Since $\Sigma \vdash \alpha$, there is a construction seq (formal proof) of α m based on $\Sigma \cup Ax$,

 $\alpha_1 \dots \alpha_n = \alpha$

each α_1 is either an axiom or $\alpha_i \in \Sigma$, but in that case, $\alpha_1 \in \Sigma'$, or α_i is the outcome of MP on earlier α_j, α_k , therefore $\alpha_1 \dots \alpha_n$ is also a proof from Σ' .

Strong Monotonicity If for every $\alpha \in \Sigma', \Sigma \vdash \alpha$, then $Th(\Sigma') \subseteq Th(\Sigma)$.

Example Let $\Sigma = \{A, (A \to B)\}$. $\Sigma' = \{B\}$. $\Sigma \vdash \Sigma'$ (every $\alpha \in \Sigma'$ has a proof under Σ) \implies $Th(\{B\}) \subseteq Th(\{A, (A \to B)\})$

The deduction theorem For every $\Sigma, \alpha, \beta, \qquad \Sigma \cup \{\alpha\} \vdash \beta$ if and only if $\Sigma \vdash (\alpha \rightarrow \beta)$ (in particular $\{\alpha\} \vdash \beta$ iff $\vdash (\alpha \rightarrow \beta)$)

Example For every α, β, γ . $\{(\alpha \to \beta, \beta \to \gamma)\} \vdash (\alpha \to \gamma)$

Proof Applying deduction theorem, if suffices to show

 $\{(\alpha \to \beta, \beta \to \gamma), \alpha\} \vdash \gamma$

Proof of deduction theorem

Easy direction Assume $\Sigma \vdash (\alpha \rightarrow \beta)$, by monotonicity, $\overline{\Sigma \cup \{\alpha\} \vdash (\alpha \rightarrow \beta)}$ by strong monotonicity, it suffices to show that

$$\Sigma' = \Sigma \cup \{\alpha\} \cup \{\alpha \to \beta\} \vdash \beta$$

 $\Sigma \vdash \Sigma'$ We know $\alpha, \alpha \to \beta, \beta(MP)$ is a proof from Σ'

<u>The harder direction</u> Show that if $\Sigma \cup \{\alpha\} \vdash \beta$ then $\Sigma \vdash (\alpha \to \beta)$. Rephrase this statement as, for all $\beta \in Th(\Sigma \cup \{\alpha\}), \Sigma \vdash (\alpha \to \beta)$. Now prove by generalized induction on $Th(\Sigma \cup \{\Sigma \cup \{\alpha\}\}) = I(Ax \cup \Sigma \cup \{\alpha\}, MP)$

- case 1: β is an axiom $\begin{array}{cc} \beta & (axiom) \\ \beta \rightarrow (\alpha \rightarrow \beta) & ax1 \\ (\alpha \rightarrow \beta) & MP \end{array}$
- case 2: $\beta \in \Sigma$ $\begin{array}{cc} \beta & assumption \\ \beta \to (\alpha \to \beta) & ax1 \\ \alpha \to \beta & MP \end{array}$
- case 3: $\beta = \alpha$. So $\Sigma \vdash (\alpha \to \beta)$ is, in fact, $\Sigma \vdash (\alpha \to \alpha)$, we showed that $\emptyset \vdash (\alpha \to \alpha)$. Use monotonicity.

The induction Step

 $\frac{\gamma, (\gamma \to \delta)}{\delta} \text{ MP}$ Assume $\Sigma \vdash (\alpha \to \gamma)$ and $\Sigma \vdash (\alpha \to (\gamma \to \delta))$ need to show $\Sigma \vdash (\alpha \to \delta)$ So by our assumptions plus strong monotonicity, imply that it suffices to show:

$$\Sigma \cup \{(\alpha \to \gamma), (\alpha \to (\gamma \to \delta))\} \vdash (\alpha \to \delta)$$

$(\alpha \to (\gamma \to \delta)) \to ((\alpha \to \gamma) \to (\alpha \to \delta))$	Ax2
$(\alpha \to (\gamma \to \delta))$	ass
$(\alpha \to \gamma) \to (\alpha \to \delta)$	MP
$(\alpha \rightarrow \gamma)$	Ass
$(\alpha \rightarrow \delta)$	MP

Example Claim: for every α , $\vdash (\neg \neg \alpha \rightarrow \alpha)$.

Proof	Proof By the deduction theorem, it suffices to show $\{(\neg \neg \alpha)\} \vdash \alpha$	
	$((\neg\neg\alpha) \to (\neg\neg\neg\neg\alpha \to \neg\alpha))$	Ax1
	$\neg \neg \alpha$	Assumption
	$(\neg\neg\neg\neg\alpha \rightarrow \neg\neg\alpha)$	MP
	$(\neg \neg \neg \neg \alpha \rightarrow \neg \neg \alpha) \rightarrow (\neg \alpha \rightarrow \neg \neg \neg \alpha)$	Ax3
formal proof	$(\neg \alpha \rightarrow \neg \neg \neg \alpha)$	MP
	$((\neg \alpha \to \neg \neg \neg \alpha) \to (\neg \neg \alpha \to \alpha))$	Ax3
	$\neg \neg \alpha \to \alpha$	MP
	$\neg \neg \alpha$	ass
	lpha	MP

2.4 Important syntactic notion - Consistency

Definition 1 Σ is consistent if

For no $\alpha, \Sigma \vdash \alpha$ and $\Sigma \vdash (\neg \alpha)$.

Definition 2 Σ is consistent if there exists some α such that $\Sigma \nvDash \alpha$.

Claim The two definitions are equivalent.

L11

Definition 1 A set of wff's Σ is consistent if

For no $\alpha, \Sigma \vdash \alpha$ and $\Sigma \vdash (\neg \alpha)$.

Definition 2 Σ is consistent if there exists some α such that $\Sigma \nvDash \alpha$.

Claim The two definitions are equivalent.

Proof Assume that for no α does $\Sigma \vdash \alpha$, and $\Sigma \nvDash \alpha$. Pick any α , say $\alpha \equiv p$, either $\Sigma \nvDash \alpha$, or, if it does, then $\Sigma \nvDash \neg \alpha$. In any case, we found some β such that $\Sigma \nvDash \beta$.

Assume that for some $\beta, \Sigma \nvDash \beta$. If the first definition is violated, then for some $\alpha, \Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$. Therefore $\Sigma \vdash \Sigma \cup \{\alpha, \neg \alpha\} \vdash \{\alpha, \neg \alpha\}$ $\{\alpha, \neg \alpha\} \vdash \beta$ for every α, β . So $\Sigma \vdash \beta$ for every β , contradiction.

Let $\Sigma \subseteq \Sigma'$ if Σ' is consistent, then so is Σ .

Corollary If any set of wff's is consistent, then in particular, \emptyset is consistent.

Is \emptyset consistent?

The soundness Theorem If $\vdash \alpha$, then α is tautology. In particular, $\nvDash p$.

syntax	semantics
definition of wff	truth assignments
proof system	α satisfiable
Σ consistent	Σ satisfiable
$\vdash \alpha$	α tautology
	$\alpha\vDash\beta$
$\Sigma \vdash \alpha$	$\Sigma \vDash \alpha$
	compactness theorem

Theorem Every satisfiable Σ is consistent.

Proof By way of contradiction, assume Σ is inconsistent. So for some α , both $\Sigma \vdash \alpha$ and $\Sigma \vdash \neg \alpha$. If Σ is satisfiable, then for some truth assignment v, v satisfies all wff's in Σ . By soundness, $\Sigma \vDash \alpha$ and $\Sigma \vDash \neg \alpha$. So for that assignment v, we get $v(\alpha) = T$, and $v(\neg \alpha) = T$, violating the truth table of \neg . Contradiction.

Is $\Sigma = \{(p_i \to p_j) : i, j \in \mathbb{N}\}$ consistent? By out previous theorem, it suffices to show that Σ is satisfiable. For example that all-true v satisfies every member of Σ .

Definition We say that Σ is maximally consistent if Σ is consistent but, for every α either $\Sigma \vdash \alpha$ or $\Sigma \cup \{\alpha\}$ is inconsistent.

(note that whenever $\Sigma \vdash \alpha$, $\Sigma \cup \{\alpha\}$ is no stronger than Σ . Namely, for every β , if $\Sigma \cup \{\alpha\} \vdash \beta$, then $\Sigma \vdash \beta$.)

Example Let $\Sigma \equiv \{p_1\}$ (over the variables $p_1 p_2 \dots$)

Claim 1 $\{p_1\}$ is consistent. Since it is satisfiable.

Claim 2 $\{p_1\}$ is not maximally consistent.

Let $\alpha = p_3$. $\{p_1\} \nvDash p_3$, by soundness, it suffices to show that $\{p_1\} \nvDash p_3$. Consider any truth assignment such that $v(p_1) = T, v(p_3) = F$, then v satisfies p_1 but not p_3 .

Finally note that $\{p_1, p_3\}$ is consistent, since it is satisfiable.

Claim $\Sigma\{p_i : i \in \mathbb{N}\}$ is maximally consistent (over $\{p_1 p_2 \dots\}$)

Proof Why is Σ consistent? It is satisfiable by all T assignment.

Why is it maximally consistent? Need to show that for every α , if $\Sigma \nvDash \alpha$, $\Sigma \cup \{\alpha\}$ is inconsistent. We can already show that if $\Sigma \nvDash$, then $\Sigma \cup \{\alpha\}$ is not satisfiable. (since Σ is maximally satisfiable)

 Σ consistent ~ A set of vectors A is linearly independent

 Σ maximally consistent ~ A set of vectors A is maximally linearly independent ~ A is a basis

Lemma For every consistent Σ , there exists a maximally consistent $\Sigma' \supseteq \Sigma$

Proof Let $\alpha_1 \alpha_2 \ldots \alpha_n \ldots$ be a list of all wffs over $\{p_1 \ldots p_n \ldots\}$ Let Σ_0 be Σ , and construct a sequence of sets of wffs

$$\Sigma_0 \subseteq \Sigma_1 \ldots \subseteq \Sigma_n \subseteq \ldots$$

such that

1. each Σ_i is consistent.

2. For every *i*, either $\Sigma_i \vdash \alpha_i$ or $\Sigma_i \nvDash \alpha_i$.

The construction of the Σ_i 's is by induction on *i*.

 $\Sigma_0 = \Sigma$ clearly satisfies our requirements 1 and 2.

Given Σ_i if $\Sigma_i \vdash \neg \alpha_i$, let $\Sigma_{i+1} = \Sigma_i$. (then if Σ_i satisfies 1 and 2, then so will Σ_{i+1}).

If on the other hand, $\Sigma_i \nvDash \neg \alpha_{i+1}$, then let $\Sigma_{i+1} = \Sigma_i \cup \{\alpha_{i+1}\}$

Claim If Σ_i satisfies 1 and 2, then so does Σ_{i+1} .

Proof of claim requirement 2 follows by the definition of Σ_{i+1} . But why is Σ_{i+1} consistent? By way of contradiction, otherwise $\Sigma_{i+1} \vdash \neg \alpha_{i+1}$ (inconsistent Σ proves everything)

Claim if $\Sigma \cup \{\alpha\} \vdash \neg \alpha$, then $\Sigma \vdash \neg \alpha$ (for every Σ, α)

by the claim, if Σ_{i+1} is inconsistent, the $\Sigma_{i+1} \vdash \neg \alpha_{i+1}$ but $\Sigma_{i+1} = \Sigma_i \cup \{\alpha_{i+1}\}$ so $\Sigma_i \vdash \neg \alpha_{i+1}$. Contradiction. We assumed $\Sigma_i \nvDash \neg \alpha_{i+1}$ and defined $\Sigma_{i+1} = \Sigma_i \cup \{\alpha_i\}$.

Finally define

$$\Sigma' = \bigcup_{i \in \mathbb{N}} \Sigma_i$$

is maximally consistent.

L12

Thm Any consistent set of wffs Σ can be extended $\Sigma' \supseteq \Sigma$ that is maximally consistent.

Proof We construct a sequence of sets of wffs $\Sigma_0 \subseteq \Sigma_1 \subseteq \ldots \Sigma_i \subseteq \Sigma_{i+1} \ldots$ s.t

- 1. $\Sigma_0 = \Sigma$
- 2. For all i, Σ_i is consistent
- 3. For some fixed enumeration of all wff's. $\alpha_1, \alpha_2, \ldots, \alpha_n \ldots$ (over p_1, \ldots, p_n) For all *i*, either $\Sigma_i \vdash \alpha_i$ or $\Sigma_i \vdash \neg \alpha_i$

Assuming Σ_i is defined and meets the requirements. Let $\Sigma_{i+1} = \begin{cases} \Sigma_i & \text{if } \Sigma_i \vdash \neg \alpha_{i+1} \\ \Sigma_i \cup \{\alpha_{i+1}\} & \text{otherwise} \end{cases}$

Claim Assuming Σ_i meets the requirements then so will Σ_{i+1} (defined above)

Side Claim For every Σ, α , if $\Sigma \cup \{\alpha\} \vdash \neg \alpha$, then $\Sigma \vdash \neg \alpha$

To prove the side claim, it suffices to show that

$$\vdash (\alpha \to \neg \alpha) \to \neg \alpha$$

why does it suffice? Assume $\Sigma \cup \{\alpha\} \vdash \neg \alpha$. Then by deduction thm, $\Sigma \vdash (\alpha \rightarrow \neg \alpha)$

Corollary Our construction of Σ_i 's can be carried out while respecting requirements 1,2,3

Given Σ , we constructed $\Sigma \subseteq \ldots \Sigma_i \subseteq \ldots$ Now define

$$\Sigma' = \bigcup_{i=1}^{\infty} \Sigma_i$$

Claim The Σ' we constructed is maximally consistent.

Proof maximality: For every α , $\alpha = \alpha_i$ for some $i \in \mathbb{N}$. Therefore by 2, $\Sigma \vdash \alpha_i$ or $\Sigma \vdash \neg \alpha_i$. In other words, $\Sigma_i \vdash \alpha$ or $\Sigma_i \vdash \neg \alpha$. Each Σ_i is a subset of $\Sigma'(= \cup \Sigma_i)$, therefore, by monotinicity, $\Sigma' \vdash \alpha$ or $\Sigma' \vdash \neg \alpha$. Consistency: by contradiction, it's not. In that case, for some α , $\Sigma' \vdash \alpha$ and $\Sigma' \vdash \neg \alpha$. Let $\beta_1 \dots \beta_k$ be a formal proof of α from Σ' . Let $\gamma_1 \dots \gamma_k$ be a formal proof of $\neg \alpha$ from Σ' .

each β_i that is an assumption from Σ' belongs to some Σ_{m_i} . Similarly, each γ_i that is an assumption belongs to some Σ_{m_j} . Since both formal proofs (of alpha and neg alpha) are finite. there is some i^* bigger than all of these m_i 's and m_j 's. Therefore for each β_i or γ_j that are used as assumptions $\beta_i, \gamma_j \in \Sigma_{i^*}$. Now $\Sigma_{i^*} \vdash \alpha$ and $\Sigma_{i^*} \vdash \neg \alpha$. So Σ_{i^*} is inconsistent, contradict 2 in our construction.

Theorem Every consistent Σ is satisfiable

proof Let Σ' be a max consistent set of wffs st $\Sigma \subseteq \Sigma'$. Define a truth assignment $v_{\Sigma'}$ as follows:

$$v_{\Sigma'} = \begin{cases} T & \text{if } \Sigma; \vdash p_i \\ F & \text{otherwise} \end{cases}$$

Claim For every formula α , $v_{\Sigma'}(\alpha) = T$ iff $\Sigma' \vdash \alpha$.

L13

The completeness thm Every consistent Σ is satisfiable.

pf First step: pick $\Sigma' \supseteq \Sigma$ which is maximally consistent. Second: Define a truth assignment $V_{\Sigma'}$ as follows, for any prop variable p,

$$V_{\Sigma'}(p) = \begin{cases} T & \text{if } \Sigma' \vdash p \\ F & otherwise \end{cases}$$

Claim For every formula $\alpha, \Sigma' \vdash \alpha$ iff $\overline{v}_{\Sigma'}(\alpha) = T$

Proof of the claim By generalized induction on the set of all wffs

 $I(Prop \ variables, \{\rightarrow, \neg\})$

Base $\alpha = p$ for some prop. var. p, If $\Sigma' \vdash p$, by def of $V_{\Sigma'}$, $V_{\Sigma'}(p) = T$. If $\Sigma' \nvDash p$, then $V_{\Sigma'}(p) = F$.

Induction Step Assume the claim holds for α and for β , need to show it for $(\neg \alpha)$ and $(\alpha \rightarrow \beta)$.

- First case: $(\neg \alpha)$. if $\Sigma' \vdash \neg \alpha$ by the consistency of $\Sigma', \Sigma' \nvDash \alpha$. So by ind. hyp. $\overline{V}_{\Sigma'}(\alpha) = F$. So by truth table of $\neg, \overline{V}_{\Sigma'}(\neg \alpha) = T$.
 - if $\Sigma' \nvDash (\neg \alpha)$, then by its maximallity, $\Sigma' \vdash \alpha$. so by ind. hyp, $\overline{V}_{\Sigma'}(\alpha) = T$, then $\overline{V}_{\Sigma'}(\neg \alpha) = F$.
- second case $(\alpha \to \beta)$. if $\Sigma' \vdash \alpha \to \beta$. Either $\Sigma' \vdash \alpha$ in which case $\Sigma' \vdash \beta$. Using the ind. hyp, we get $\overline{V}_{\Sigma'}(\alpha) = T$, and $\overline{V}_{\Sigma'}(\beta) = T$, so by truth table if \to , $\overline{V}_{\Sigma'}(\alpha \to \beta) = T$.

otherwise $\Sigma' \nvDash \alpha$, so by the ind. hyp, $\overline{V}_{\Sigma'}(\alpha) = F$, then $\overline{V}_{\Sigma'}(\alpha \to \beta) = T$.

Assume $\Sigma' \nvDash \alpha \to \beta$.

Then $\Sigma' \nvDash \beta$, if it does, we can use the axiom $\beta \to (\alpha \to \beta)$ and MP to get $\Sigma' \vdash (\alpha \to \beta)$ contradiction. So by ind. hyp, $\overline{V}_{\Sigma'}(\beta) = F$.

We need to show $\overline{V}_{\Sigma'}(\alpha \to \beta) = F$. Since we know already $\overline{V}_{\Sigma'}(\beta) = F$. Our claim holds unless $\overline{V}_{\Sigma'}(\alpha) = F$. Now by ind. hyp, this implies that $\Sigma' \nvDash \alpha$, so by maximality, $\Sigma' \vdash \neg \alpha$, then $\Sigma' \vdash (\alpha \to \beta)$. Contradiction.

Subclaim If $\Sigma' \vdash \alpha$ then $\Sigma' \vdash (\alpha \rightarrow \beta)$. Use deduction, suffices to show that $\Sigma \cup \{\alpha\} \vdash \beta$ iff $\Sigma \cup \{\alpha\} \cup \{\neg\alpha\} \vdash \beta$

Completeness thm for all α and any set of wffs Σ . If $\Sigma \vDash \alpha$ then $\Sigma \vdash \alpha$.

Proof Otherwise, then $\Sigma \cup \{\neg \alpha\}$ is consistent. So by out last result, $\Sigma \cup \{\neg \alpha\}$ is satisfiable, so $\Sigma \nvDash \alpha$.

Claim If Σ is maximally consistent, then it is maximally satisfiable.

 $\mathbf{Proof} \quad \mathrm{consistent} \implies \mathrm{satisfiable}$

Since for every α , $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. We get by soundness, $\Sigma \vDash \alpha$ or $\Sigma \vDash \neg \alpha$.

If Σ is maximally satisfiable, satisfiable \implies consistent. Since for every α , $\Sigma \vDash \alpha$ or $\Sigma \vdash \neg \alpha$. We get by completeness, $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$, so Σ us maximally consistent.

Recall Compactness thm Σ satisfiable iff every finite $A \subseteq \Sigma$ is satisfiable.

One big question: is there a polynomial time algorithm to figure out if a given α is satisfiable, P vs NP

lengths of proofs: Is there a polynomial p(n) such that for every tautology α , there is a formal proof of $\leq p(|\alpha|)$ length?

Existence of proof system.

L14

p: Every man is mortal.q: Socrates is a man.

s: Socrates is mortal.

 $\{p,q\}\vDash s$

6.1 First order logic (predicate calculus)

Objects	properties
man	mortal
socrates	

Actually we shall discuss a large family of languages.

Common to all logical symbols \rightarrow , \land , \lor , \neg propositional connectives \forall , \exists quantifiers = equality

Language specific symbols	rela
	fun

constant symbols relation symbols function symbols

6.1.1 (Informal) examples of specific languages

1. A language for number theory constant symbols 0, 1 a, brelation symbols $\leq R$ function symbols +, * f, g $\phi(x) \equiv \forall y \forall z (g(y, z) = x \rightarrow y = x \lor z = x)$ "x is a prime number" $\psi(x) \equiv \exists z f(z, z) = x$ "x is an even number"

" there are ∞ many prime numbers" $\forall x \exists y \left(R(x, y) \land \phi(y) \right)$

2. A language for set theory

6.1. FIRST ORDER LOGIC (PREDICATE CALCULUS)

 $\begin{array}{ll} \text{relation symbols} & \in & R \quad R(x,y) \text{ stands for } x \in y \\ \phi(x) = \text{``x is an empty set.''} \quad \forall y(\neg R(y,x)) \\ \text{``there is only one empty set''} \quad \forall x \forall y(\phi(x) \land \phi(y) \to x = y) \\ x \subseteq y \quad \quad \forall z(R(z,x) \to R(z,y)) \end{array}$

What can we say in the minimal language. No constant symbols, no function symbols, no relation symbols.

 $\forall x \forall y (x = y) \equiv$ "there is only one element in my universe"

there are more than 2 elements		$\exists x \exists y \exists z (\neg(x=y) \land \neg(y=z) \land \neg(x=z))$
there are at most 2 elements		$\forall x \forall y \forall z (x = y \lor y = z \lor x = z)$
syntax	semantics	
what is wff	$\alpha\vDash\beta$	
proof system	Σ is satisfiable	
consistency		
$\Sigma \vdash \alpha$		
:		

Fix a language

constant symbols $a_1a_2...$ function symbols $f_1, f_2, ...$ arity 1, 1, 3, 2 relation symbols $R_1, R_2...$ arity 1, 1, 2

• Step 1: Define the collection of "words" that denote objects - terms

the set of Terms is defined as I(A, P) where A- all constant symbols and all variable symbols $x_1x_2...$ $P \{O_f : f \text{ is a function symbol}\} = \frac{t_1, t_2}{f(t_1, t_2)} = \frac{t}{f(t)}$

Examples of terms

- 1. language for number theory $a, b, x_1 x_2 \dots f(a, b), g(x, a), f(x, y) = f(g(x, a), y)$ $g(f(b, b), x) \mapsto 2x$ $f(g(x, x), f(f(y, y), y)) \mapsto x^2 + 3y$
- 2. The terms of the language of set theory No function symbols, therefore P is empty. I(A, P) = A
- 3. The terms in the empty language Same- just variable symbols
- Step 1.5: defining the set of atomic formulas

 $\{R(t_1,\ldots,t_k): \mathbb{R} \text{ is a k-ary relation symbol, and } t_1\ldots,t_k \text{ are terms}\}$

Example

- 1. number theory R(a,b) (0 \leq 1) R(f(a,x),g(f(b,b),y)) $x + 0 \leq 2y$
- 2. set theory $y \in X \cap Z$ $R(y, x) \wedge R(y, z)$ (not atomic) $y = z \ x \in y$

6.1. FIRST ORDER LOGIC (PREDICATE CALCULUS)

• Step 2: Defining our wff's, again as I(A, P)The set of wffs in a given language L (given constants, function, relations)

 $I(\text{atomic formulas}, \{\land, \lor, \rightarrow, \neg, O_\forall, O_\exists\})$

$$O_{\forall x} \ \frac{\phi}{\forall \phi} \qquad O_{\exists y} \ \frac{\phi}{\exists y \phi}$$

 $L \implies wff's \ of \ L$

 $\begin{array}{l} 2x + y^2 \text{ term} \\ \overline{\forall x(2x + y^2)} \\ \overline{x(2x + y^2 = x)} \text{ atomic formula} \\ \overline{\forall x(2x + y^2 = x)} \text{ formula (not atomic)} \end{array}$

6.1.2 Important syntactic notion - free variable

We define by induction on the construction on the set of wff's, $F(\phi)$ - the set of free variables of ϕ . If ϕ is atomic - $F(\phi)$ = all variables occurring in ϕ .

Examples $F(\underbrace{f(b,b)}_{t_1} = \underbrace{g(x,f(b,y)))}_{t_2} = x, y$ $F(\phi_1 \land \phi_2) = F(\phi_1 \lor \phi_2) = F(\phi_1 \to \phi_2) = F(\phi_1) \cup F(\phi_2)$ $F(\phi) = F(\neg \phi)$ $F(\forall x\phi) = F(\phi) \smallsetminus \{x\}$ similar for \exists

L15

Recall logical symbols: brackets, connectives, quantifiers, equals, variables. language-dependent: constants $(c_1, c_2, ...)$ functions, relations (R_1, R_2)

Defn (Terms)

 $I(\{c_1, c_2, \ldots, x_1, \ldots\}, \{f_1, f_2 \ldots\})$

"atomic formulas" $\{R_i(t_1, \ldots, t_k) : R_i \text{ is a k-ary relation and } t_j \text{ are terms } (1 \le j \le k) \}$ "wff" $I(\text{atomic formulas}, \{\neg, \land, \lor, \rightarrow\} \cup \{\forall, \exists\})$ "free variable" of ϕ , some variable not in the scope of \forall, \exists somewhere in ϕ .

eg $\forall x(R(x,y)) \{y\}$ is free. (($\forall x(R(x,y)) \land P(x)$)) $\{x,y\}$ $\forall x \exists y f(x,y,z)$ not a wff

Defn if ϕ has no free variables, ϕ is a sentence.

Defn Given some (syntactical) language $[c_1, \ldots \text{ constants}, f_1, \ldots \text{ functions}, R_1, \ldots \text{ relations}]$, a "structure" consists of:

- a universe \mathcal{U} (domain), non-empty!
- give an element in \mathcal{U} to each constant c_i
- a mapping for each $f_i : \mathcal{U}^k \to \mathcal{U}$ (f_i k-ary)
- a relation for each $R_i : \mathcal{U}^k \to \{T, F\}$ (R_i k-ary)

number theory language

constants: a, b functions: f, g relation: R All above are syntax

structure: $\mathcal{U} = \mathbb{N}$ a = 0, b = 1 $f(x, y) = x + y, \quad g(x, y) = x \cdot y$ R(x, y) = T iff $x \leq y$

defn An assignment function $s: V \to \mathcal{U}$

7.1. GRAPH THEORY

Extend s to \overline{s} : $T \to \mathcal{U}$

Extent \overline{s} (one last time) to handle any wff ϕ .

- 1. $\phi = (\neg \eta), \overline{s}(\phi) = T \iff \overline{s}(\eta) = F$
- 2. $\phi = (\eta \to (\land \lor)\psi)$ then use truth table

wlog consider $\phi = \forall x_i(\eta)$, define $\overline{s}_i^d(x) = \begin{cases} \overline{s}(x) & \text{if } x_i \neq x \\ d & \text{if } x_i = x \end{cases}$ $d \in \mathcal{U}$ $\overline{s}(\phi) = T \iff \text{for all } d \in \mathcal{U}$ we have $\overline{s}_i^d(\eta) = T$

Thm Any wff has a unique decomposition

Cor \overline{s} is well-defined.

7.1 graph theory

Define a language for graph theory.

syntax

- constants to be our vertices
- no functions
- R, P relations

structure

 $\begin{aligned} \mathcal{U} &= \{a, b, c, d, r, e, f\} \\ R(u, v) &= T \iff (u, v) \text{ is a directed edge} \\ P(u, v) &= T \iff \text{ u to v is connected} \end{aligned}$

 $\begin{array}{l} R(u,v) \to P(u,v) \\ \forall u \forall v ((P(u,v) \land \neg R(u,v)) \to \exists z (P(u,z) \land P(z,v) \land \neg (u=z) \land \neg (v=z))) \\ \text{These two fully defines } P \end{array}$

L16

8.1 Semantics for 1st order logic

Given a language $L = \langle R, F, a \rangle$ Semantics for the first order logic over L is a rule that assigns T or F to every wff.

Need to fix

1. A structure for L: a universe set and interpretations for the symbols of L

 $\begin{array}{ll} \textbf{Example} \quad L = < R, F(), G(), a, b > \\ M_1 = < \mathbb{N}, \leq, +, \times, 0, 1 > \\ \phi \equiv \forall x \exists y (\neg (x = y) \land R(y, x)) & \text{false in } M_1, M_1 \nvDash \phi \end{array}$

2. An assignment of variables to elements of the structure's universe

Lemma Let ϕ be a wff in some language L and M a structure for L, then for every assignments s_1, s_2 (to the universe of M) if for every variable that occurs free in ϕ , $s_1(x) = s_2(x)$. Then $M \vDash_{s_1} \phi$ iff $M \vDash_{s_2} \phi$

Cor If ϕ is a sentence (no free var) then for any $s_1, s_2, M \vDash_{s_1} \phi$ iff $M \vDash_{s_2} \phi$. Therefore, when we discuss truth values of sentences we do not specify any assignments.

Proof of the Lemma By generalized induction on the structure of ϕ .

Base step Atomic formulas: $(t_1 = t_2)$ or R(x, y, a)(Note that for every term t, if s_1, s_2 agree on the variables in t, then $\overline{s}_1(t) = \overline{s}_2(t)$)

Induction step \rightarrow , \land , \lor , $\neg \forall$, \exists .

8.2 semantic notions

- 1. ϕ is a logical truth if for every structure for the language of ϕ and every assignment s to that structure $M \vDash_{s} \phi$
- 2. Σ logically implies ϕ if for every M, s, that make every member of Σ get true. $M \vDash_{s} \phi$

Lemma For every $\Sigma, \alpha, \beta, \Sigma \cup \{\alpha\} \vDash \beta$ iff $\Sigma \vDash (\alpha \rightarrow \beta)$

 $\mathbf{Cor} \quad \exists y \forall x R(x,y) \vDash \forall x \exists y R(x,y)$