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CHAPTER 1

Theory of Second-order Linear DEs

1. List of solution strategy for DEs

(a) Method od undetermined coefficients

(b) Integration Factor

(c) Separable DEs

(d) Variation of Parameter

(e) Reduction of order

2. Approximation Method

(a) Perturbation Method

(b) Series Solution

(c) Numerical Methods

• Newton’s Method

• Euler’s Method

• Runge-Kutta Method

Comment Some reasons why we study linear second order ODEs

• have some various applications to nature (most, frequently used)

• the general theory extend quite naturally to higher order linear DEs
i.e. we can write all linear DEs as a system of first order DEs
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4 CHAPTER 1. THEORY OF SECOND-ORDER LINEAR DES

1.1 Classification of DEs

Defn A DE involves at least one independent variable (say x) and a dependent variable (say y)
and their derivatives. If such DE only has one independent variable, it is called ordinary DE (ODE).
A general form of nth order ODE is of the form

F

(
dny

dxn
, . . . ,

dy

dx
, y, x

)
= 0

Defn We say that ODE is linear if

1. y or any of its derivatives appear only to the first power

2. y or any of its derivatives are not multiplied by any of y or its derivatives

3. y or any any of its derivatives are not arguments of any nonlinear functions.

Linear ODEs are of the form

an(x)
dny

dxn
+ . . .+ a1

dy

dx
+ a0y = f(x)

The above equation is homogeneous if f(x) = 0 with constant coefficient. All ai(x) constant

Examples

1. y′ = 5 linear first order

2. xy′ = 5 linear first order

3. yy′ = 5 nonlinear first order

4. y′′ + x ln y = 0 nonlinear second order

1.2 Second order linear DEs

The most general form of SOLDE is

a2(x)
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = f(x)

Assume that a2(x) 6= 0. We divide by a2(x)

=⇒ d2y

dx2
+ P (x)

dy

dx
+Q(x)y = R(x)

where P (x) = a1(x)
a2(x)

, Q(x) = a0(x)
a2(x)

, R(x) = f(x)
a2(x)

The associated homogeneous Equation is

y′′(x) + P (x)y +Q(x)y = 0 (1)
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Normal Form of Homo. DE: u′′ + qu = 0

We define
y(x) = u(x)v(x)
y′ = u′v + v′u
y′′ = u′′v + v′′u+ 2u′v′

Sub all above into (1)

(u′′v + v′′u+ 2u′v′) + P (x)(u′v + uv′) +Q(x)uv = 0

vu′′ + (vP (x) + 2v′)u′ + (v′′ + P (x)v′ +Q(x)v)u = C (2)

We pick v(x) such that Pv + 2v′ = 0 =⇒ v′

v
= −P (x)

2

v(x) = ec exp

(
−
∫
P (x)dx

2

)
Put C = 0,

v(x) = exp

(
−
∫
P (x)dx

2

)
eq (2) becomes

u′′ +

(
v′′

v
+ P

(
v′

v

)
+Q

)
u = 0

2v′ + Pv = 0 diff wrt x,
2v
′′

v
+ P ′ + P v′

v
= 0

v′′

v
= P 2

4
− P ′

2
...

u′′ +

Q(x)− P ′

2
− P 2

4︸ ︷︷ ︸
q(x)

u = 0

=⇒ u′′ + q(x)u = 0 Normal form of Homo. eq

where q(x) = Q(x)− P ′(x)
2
−
(
P (x)

2

)2

Theorem Existence and Uniqueness Thm for SOLDE
The SOLDE is in the form

y′′ + P (x)y′ +Q(x)y = R(x)

Let P (x), Q(x), R(x) are continuous functions in closed interval [a, b]. If x0 ∈ [a, b], and if y(x0) and
y′(x0) are any numbers, then the above DE has only one solution on the entire interval such that
initial conditions are satisfied.

General Solution of SOLDE y(x) = yh + yp
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Step 1 Find the general solution of homogeneous solution, yh = c1y1 + c2y2, where c1, c2 ∈ R,
and y1 y2 are linearly independent solutions.

Step 2 particular solutions (1) variation of parameter (2) method of undetermined coefficient

Def Let y1, y2 be 2 solutions of SOLDE. We define Wronskian of 2 solutions as

W (y1, y2) =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1

We have W (y1, y2) 6= 0 =⇒ y1&y2are LI solutions
If W (y1, y2) = 0 then y1, y2 are linearly dependent solutions. i.e. y2 = αy1

Theorem (Uniformity and Wronskian)
If y1(x) and y2(x) are solutions of homogeneous problem, y′′(x) + P (x)y′ +Q(x)y(x) = 0, then the
Wronskian is either 0 or never zero on the given interval [a, b]

Proof We have

W (y1, y2) =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣
= y1y

′
2 − y′1y2

Diff wrt x
W ′ = y1y

′′
2 − y2y

′′
1

Since y1&y2 are solutions of homogeneous problem,

y′′1 = −Py′1 −Qy1

y′′2 = −Py′2 −Qy2

Take them into W ′, we got W ′ = −P [y1y
′
2 − y′1y2] = P (x)W

=⇒ W = W0 exp
(
−
∫
P (x)dx

)
where W0 = ec for some arbitrary constant c.

Then W depends on W0, so it is either zero or never zero on given interval [a, b].

Lemma (Linear Dependence & Wronskian)
If y1(x) and y2(x) are two solutions of the homogeneous problem, then they are LD on given interval
[a, b] iff W (y1, y2) = 0.

Proof Suppose y1, y2 are LD. Then y2 = αy1 where α is a constant. Then

W (y1, y2) =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ =

∣∣∣∣y1 αy1

y′1 αy′1

∣∣∣∣ = 0

Now suppose that W (y1, y2) = 0, then

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ = 0. Since the determinant is zero, then the

matrix is singular, so one of the column in the scalar multiple of the other column. Then y2 = αy1.
So y1&y2 are LD.
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Example Show that y = c1 sinx sinx + c2 cosx is GS of y′′ + y = 0 on any interval. Find yp for
y(0) = 2 and y′′(0) = 3.

Solution Let y1 = sinx, y2 = cosx. Can verify that y′′1 + y1 = 0, y′′2 + y2 = 0. From
superposition principle, GS of given DE in

y = c1y1 + c2y2 = c1 sinx+ c2 cosx

y′ = c1 cosx− c2 sinx

Using ICs, then we can know c2 = 2, c1 = 3, then

yp = 3 sin x+ 2 cosx

1.3 (Initial Value Problem) IVPs VS (Boundary Value Prob-

lems) BVPs

ODEs can be classified into IVPs and BVPs. The equation themselves can be same, what differs
are the conditions that are imposed to determine the unknown constants.

For IVP, 2 conditions are imposed at the same time. Time is independent parameter.

eg: y(0) = α, y′(0) = β.

For BVP, 2 conditions are imposed at different time or locations. In general, we pick space
coordinates independent parameter.

eg: y(0) = α, y′(1) = β

1.4 Reduction of Order - SOLDE

The idea is to use the known solution to find another solution. The homogeneous problem is
y′′ + P (x)y +Q(x)y = 0 (1)
Let y1(x) be one of the solution for eq(1). Let’s assume the second solution is of the form

y2(x) = v(x)y1(x) (2)

Where v(x) is an unknown function.

y′2 = v′y1 + vy′1 (3)

y′′2 = v′′y1 + v′y′1 + v′y′1 + vy′′1

y′′2 = v′′y1 + 2v′y′1 + vy′′1 (4)

Sub 2,3,4 into 1, we obtain,

=⇒ y′′2 + P (x)y′2 +Q(x)y2 = 0
collect the terms, then

v(y′′1 + P (x)y′1 +Q(x)y1) + v′(2y′1 + Py1) + v′′(y1) = 0
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then
v′′

v′
= −2

y′1
y1

− P (x)

then

ln |v′| = −2 ln |y1| −
∫
P (x)dx+ C

v′ =
A

y2
1

exp

(
−
∫
P (x)dx

)
where A = ±eC

WLOG, take C = 0, A = 1, then ...

v =

∫
1

y2
1

exp

(
−
∫ x

0

P (s)ds

)
dx (6)

so

y2(x) = y1

∫
1

y2
1

exp

(∫
P (s)ds

)
dx

where y1(x) in the solution of Eq(1) (Homogeneous problem)

W (y1, y2) = . . . = e−
∫
P (x)dx 6= 0 =⇒ independent solutions

Example Let y1(x) = sinx be one of solutions of DE y′′ + y = 0. Find another solution using
reduction of order.

Soln Suppose y2(x) = v(x)y1(x) = v(x) sin(x) (1)
be the second solution of DE y′′ + y = 0 (2)
y′2 = v cosx+ v′ sinx (3)
y′′2 = v′ cosx− v sinx+ v′ cosx+ v′′ sinx
y′′2 = v′′ sinx+ 2v′ cosx− v sinx (4)
Sub 1,3,4 into 2, (after some cancellation)

v′′

v′
= −2

cosx

sinx

then solve it, we have
v′ = A csc2(x) A = ±ec

v(x) = −A cotx+B WLOG, B = 0, A = −1, then v(x) = cot x, then y2(x) = v(x)y1(x) = cos x

Example Let y1(x) = x2 be one of the solution the DE x2y′′ + xy′ − 4y = 0. Find the second
solution using reduction of order.
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Soln We write this E in standard form. x 6= 0, divide by x.

y′′ +
1

x
y′ − y

x2
y = 0 (1)

Compose it with standard form,

y′′ + P (x)y′ +Q(x)y = 0 (2)
Use the formula, we get

y2(x) = v(x)y1(x) = y1(x)

∫
1

y2
1(x)

exp

(
−
∫
P (s)ds

)
dx

then ...

y2 =
1

x2

GS: y = c1y1 + c2y2 = c1x
2 + c2

x2

1.5 Variation of Parameter

Let y1(x)&y2(x) be linearly independent solutions of a homogeneous DE

y′′ + P (x)y′ +Q(x)y = 0 (1.1)

Consider
y′′ + P (x)y′ +Q(x)y = R(x) (1.2)

We assume yp is of the form
yp(x) = v1(x)y1(x) + v2(x)y2(x) (1.3)

y′p = v′1y1 + v1y
′
1 + v′2y2 + v2y

′
2

Choose v1&v2 such that
v′1y1 + v′2y2 = 0 (1.4)

y′p = v1y
′
1 + v2y

′
2 (1.5)

y′′p = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2

=⇒ . . . =⇒ v1[y′′1 + P (x)y′1 +Q(x)y1] + v2[y′′2 + P (x)y′2 +Q(x)y2] + v′1y
′
1 + v′2y

′
2 = R(x)

v′1y1 + v′2y2 = 0

v′1y
′
1 + v′2y

′
2 = R(x)

=⇒
[
y1 y2

y′1 y′2

] [
v′1
v′2

]
=

[
0

R(x)

]

Inverse of 2× 2 non-singular matrix[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
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[
v′1
v′2

]
=

1

W

[
y′2 −y2

−y′1 y1

] [
0

R(x)

]
=
R(x)

W

[
−y2

y1

]
where W = y1y

′
2 − y2y

′
1

=⇒ v1(x) =

∫
−y2(x)R(x)

W (y1, y2)
dx v2(x) =

∫
y1(x)R(x)

W (y1, y2)
dx

yp = v1y1 + v2y2 = y1(x)

[∫
−y2(x)R(x)

W (y1, y2)
dx

]
+ y2(x)

[∫
y1(x)R(x)

W (y1, y2)
dx

]
Particular solution of inhomogeneous DE y′′ + P (x)y′ +Q(x)y = R(x)

Example Find a particular solution of y′′ + y = csc(x) using variation of parameter.

Sol The GS of y′′ + y = 0 is yh = c1y1 + c2y2 =⇒ y1 = sinx, y2 = cosx

=⇒ W (y1, y2) = . . . = −1 6= 0

Hence, y1, y2 are independent, then using the formula

yp = sinx

[∫
− cosx cscx

−1
dx

]
+ cosx

[∫
sinx cscx

−1
dx

]
= sinx ln | sinx| − x cosx

is the particular solution of y′′ + y = cscx

Ex Verify it!
d

dx
|x| = x

|x|
, x 6= 0

d

dx
ln |x| = 1

x
, x 6= 0

(these two by chain rule)

Soln
yp = sinx ln | sinx| − x cosx

y′p = cosx ln | sinx|+ x sinx

y′′p = − sinx ln | sinx|+ cos2 x

sinx
+ x cosx+ sinx

y′′p + yp = . . . =
1

sinx
= cscx
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1.6 Example of 2nd order ODEs with non-constant coeffi-

cients

1. Bessel’s Equation
x2y′′ + xy′ + (x2 − p2)y = 0, p ∈ Z

It determines the radial structure of the solution to Laplace’s equation in both polar & spher-
ical polar coordinates.

2. Legendre’s Equation

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0, p ∈ Z

It determines the angular structure of the solution to Laplace’s equation in both polar &
spherical polar coordinates.

3. Laguerre’s Equation
xy′′ + (1− x)y′ + ay = 0, a ∈ R

It represents the radial part of eigenfunction for hydrogen atom.

4. Hermite’s Equation
y′′ − 2xy′ + 2ay = 0, a ∈ R

it represents the set of eigenfunction for quantum mechanical harmonic oscillator.



CHAPTER 2

Series Solution and Special Functions

We will construct the power series to SOLDE with non-constant coefficients.

Def Transcendental Function:
Elementary functions that consists of algebraic functions such as trig, exponential, log and their in-
verses with operations: addition, subtraction, multiplication, and division are called Transcendental
Function.

Ex

y = tan

[
xe−x + ln(x2 + 1)

arcsin(1 + 3x2)− ln(x2 + 5) + |x+ 3|

]

Def Special function: Any function that is not a transcendental function is called special function.

Ex Bessel’s function, Hermite Function

2.0.1 Review

Def A power series in x about x0 is defined yo be

∞∑
n=0

an(x− x0)n = a0 + a1(x− x0) + . . .

Normally, we set x0 = 0, however, we can pick x0 6= 0.

12



13 CHAPTER 2. SERIES SOLUTION AND SPECIAL FUNCTIONS

Def A series is said to converge at x if

1. limm→∞
∑m

n=0 anx
n exists

2. The sum of the series is the value of the limit

Def Suppose a power series converges for |x| < R for some R > 0, then R is called radius of
convergence. Let us define its sum by f(x) then

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + . . .

Then the function f(x) is smooth. In other words, it has continuous derivatives. Additionally, we
can differentiate it term by term.

f ′(x) =
∞∑
n=1

nanx
n−1 = a1 + 2a2x+ . . .

and

f ′′(x) =
∞∑
n=2

n(n− 1)anx
n−2 = 2a2 + 3 · 2a3x+ . . .

Def A function f(x) is said to be analytic at a point x0 if there exists a power series

∞∑
n=0

an(x− x0)n

such that

f(x) =
∞∑
n=0

an(x− x0)n

∀x sufficiently close to x0.

Equivalently, the function f is analytic at x0 if its Taylor Series

∞∑
n=0

fn(x0)

n!
(x− x0)n

converges to f(x) ∀x sufficiently close to x0.

2.1 Series Solution to First order ODE

Consider y′ = y (1) 1

We suggest a power series solution of the form

y =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + . . . (2)

1also can be solved by using separation of variable
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y′ =
∞∑
n=1

nanx
n−1 = a1 + 2a2x+ . . . (3)

Sub 2 3 into 1
∞∑
n=1

anx
n =

∞∑
n=0

anx
n

Not in comparable form, then index shifting

∞∑
n=1

nanx
n−1 index shifting−−−−−−−→

∞∑
n=0

(n+ 1)an+1x
n−1+1 =

∑
n=0

an+1x
n

Then,
∞∑
n=0

((n+ 1)an+1 − an)xn = 0

This equation in the power series representation of zero. =⇒ each of the coefficients in the series
is exactly zero.

=⇒ an+1 =
an

n+ 1
, n = 0, 1, 2, . . .

then ...

an =
a0

n!
=⇒ y = a0

∑
n=0

xn

n!

If we have IC y(0) = 1

=⇒ y =
∞∑
n=0

xn

n!
= ex

Defn Standard form of SOLDE (homogeneous) is

y′′ + P (x)y′ +Q(x)y = 0

The behavior of the solution near x0 is completely determined by the behavior of P (x) and Q(x).

We say x0 is an ordinary point if P (x) and Q(x) are analytic at x0.

Defn Any point that is not an ordinary point is called singular point.

Ex
y′′ + y = 0

Let’s assume the power series solution of the form y =
∑∞

n=0 anx
n, |x| < R with R > 0

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=1

n(n− 1)anx
n−2
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y′′ =
∞∑
n=0

(n+ 1)(n+ 2)an+1x
n

y′′ + y = 0 =⇒
∞∑
n=0

[(n+ 1)(n+ 1)an+2 + an]xn = 0 =⇒ (n+ 1)(n+ 1)an+2 + an = 0

an+2 = − an
(n+ 1)(n+ 2)

n = 0, 1, 2, . . .

To specify a unique solution, we need to know a0&a1.

. . . =⇒ a2n = (−1)n
a0

(2n)!
, a2n+1 = (−1)n

a1

(2n+ 1)!

We can write

y = a0

∞∑
n=0

(−1)n
x2n

(2n)!
+ a1

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

y = a0 cosx+ a1 sinx

Note If we assume f(x) =
∑∞

n=0 anx
n, then

f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

nanx
n−1

This is because n = 0 term of the derivatives is zero which means it does not change the value of
the series. We can include the zero and not as needed.

=⇒ f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

f(x) =
∑∞

n=0 anx
n

f ′′(x) =
∑∞

n=0(n+ 1)(n+ 2)an+2x
n by index shifting

Note
y′′ do index shifting
x2y′′ use

∑∞
n=1(n)(n− 1)anx

n−2

}
→ you are trying to get

∞∑
n=0

( )xn

y′ − do index shifting

2xy′ − do not use index shifting

Ex find the series solution for the Legendre’s equation

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0 where p is a constant

y′′ − 2x

1− x2
y′ +

p(p+ 1)

1− x2
y = 0
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Compare with y′′ + P (x)y +Q(x)y = 0

P (x) =
−2x

1− x2
Q(x) =

p(p+ 1)

1− x2

Here, P (x) and Q(x) are analytic about x = 0, x = 0 is an ordinary point.

x = ±1 is a singular point since P (x) and Q(x) are not defined (or analytic)

To find series solution we propose y =
∑∞

n=0 anx
n. We need power series representation for

y′′ − x2y′ − 2xy′ and p(p+ 1)y

p(p+ 1)y =
∞∑
n=0

p(p+ 1)anx
n

y′ =
∞∑
n=1

nanx
n−1 =

∑
n=0

nanx
n−1

=⇒ −2xy′ =
∞∑
n=0

(−2nan)xn

y′′ =
∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

n(n− 1)anx
n−2

=⇒ −x2y′′ =
∞∑
n=0

−n(n− 1)anx
n

y′′ =
∞∑
n=0

(n+ 1)(n+ 2)an+2x
n → index shifting

Sub into the DE,
y′′ − x2y′′ − 2xy′ + p(p+ 1)y = 0

=
∞∑
n=0

((n+ 1)(n+ 2)an+2 − n(n− 1)an − 2nan + p(p+ 1)an)xn = 0

It is essential to write each term in the DE as a power series with the nth term a multiple of xn

=⇒ (n+ 1)(n+ 2)an+2 = [n(n− 1) + 2n− p(p+ 1)]an

an+2 =
[n(n− 1) + 2n− p(p+ 1)]an

(n+ 1)(n+ 2)

−p(p+ 1) + n2 + n = −[p2 + p− n2 − n]

= −[(p2 − n2) + (p− n)]

= −[(p− n)(p+ n+ 1)]

=⇒ an+2 =
−[(p− n)(p− n+ 1)]

(n+ 1)(n+ 2)
an

We need a0 and a1 to start with

• For even terms:

a2n =
(−1)n

[∏n−1
i=0 (p− 2i)

]
[
∏n

i=1(p+ 2i− 1)]

(2n)!
a0

• For odd terms:

a2n+1 =
(−1)n [

∏n
i=1(p+ 2i)]

[∏n−1
i=0 (p− 2i− 1)

]
(2n+ 1)!

a1
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y =
∞∑
n=0

anx
n =

∞∑
n=0

a2n︸︷︷︸
L0
p

x2n +
∞∑
n=0

a2n+1︸ ︷︷ ︸
L1
p

x2n+1

Lp0: even Legendre’s polynomial of order p
Lp1: odd Legendre’s polynomial of order p

L0
p = a0

[
1− p(p+ 1)

2!
x2 +

p(p− 2)(p+ 1)(p+ 3)

4!
− . . .

]
L1
p = a1

[
x− (p− 1)(p+ 2)

3!
x3 +

(p− 1)(p− 3)(p+ 2)(p+ 4)

5!
x5 − . . .

]
for

p = 0 L0
0 = 1

p = 1 L1
1 = x

p = 2 L0
2 = 1− 3x2

p = 3 L1
3 = x− 5

3
x3

Theorem (Power Series Solution at ordinary part)
Let x0 be the ordinary point of our standard homogeneous DE and let a0 and a1 are arbitrary
constraints. Then there exists a unique function f(x) that is analytic at x0 and that is the solution
of given DE in a certain neighbourhood of this point and it satisfies the ICs

y(x0) = a0, y′(x0) = a1

Note Let x0 be a singular point.
Consider homogeneous DE y′′ + P (x)y′ +Q(x)y = 0 (1).
If either (or both) P (x) & Q(x) are not analytic at x0.

Defn Suppose that x0 is a singular point of Eq (1) such that (x− x0)P (x) and (x− x0)2Q(x) are
analytic at x0, then x0 is a Regular Singular Point (RSP). Otherwise, x0 is an irregular singular
point.

Ex Legendre’s Eq

y′′ − 2x

1− x2
y′ +

p(p+ 1)

1− x2
y = 0, p =?

show that x = ±1 are regular singular point.

Soln Here, P (x) = − 2x
1−x2 , Q(x) = p(p+1)

1−x2
Consider x = 1, we notice that P (x) and Q(x) are not analytic at x = 1.
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Consider (x− 1)P (x) = (x− 1) 2x
x2−1

= 2x
x+1

(x− 1)2Q(x) =
(x− 1)p(p+ 1)

(1 + x)

=⇒ we see that (x− 1)P (x)&(x− 1)2Q(x) are analytic at x = 1.

∴ x = 1 is RSP.

Example Bessel’s equation x2y′′ + xy′ + (x2 − p2)y = 0
Check x = 0?

Soln In standard form,

y′′ +
1

x
y′ +

x2 − p2

x2
y = 0

=⇒ P (x) = 1
x
, Q(x) = x2−p2

x2

At x = 0, P (x)&Q(x) are not analytic =⇒ x = 0 is a singular point.

xP (x) = 1, x2Q(x) = x2 − p2 =⇒ analytic

So x = 0 RSP

To solve Bessel’s equation about RSP x = 0, let us consider the associated Euler’s equation

x2y′′ + p0xy + q0y = 0

where p0 = limx→0 xP (x) = 1 and q0 = limx→0 x
2Q(x) = −p2

Note The general for associated Euler’s equation is

ax2 + bxy′ + cy = 0

around x = 0

General Method for RSP

We get the general Method for Regular singular point x = x0 as

(x− x0)2y′′ + p0(x− x0)y′ + q0y

(associated Euler’s Eq) where {
p0 = limx→x0(x− x0)P (x)

q0 = limx→x0(x− x0)Q(x)

We propose the general solution of above DE as y = xr into [x2y′′ + p0xy + q0y = 0]
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=⇒ r(r − 1) + p0r + q0 = 0 Indicial eq

=⇒ r2 + (p0 − 1)r + q0 = 0

=⇒ r1,2 =
−(p0 − 1)±

√
(p0 − 1)2 − 4q0

2
We have 3 cases:

1© Real & distinct roots (r1 6= r2)
GS: y(x) = c1x

r1 + c2x
r2

2© Real & Equal (r1 = r2)
GS: y(x) = c1x

r1 + c2(lnx)xr1

3© Complex Roots r1,2 = α± iβ

xr = elnxr = er lnx

= elnx(α±iβ)

= eα lnxe±iβ lnx

= eα lnx[cos(β lnx)± i sin(β lnx)]

where x > 0

Indicial Equation

r(r − 1) + p0r + q0 = 0 =⇒ r1,2 =
−(p0 − 1)±

√
(p0 − 1)2 − 4q0

2
Real and equal roots: r1 = r2

(p0 − 1)2 = 4q0

one of solution will be
y1 = xr1 = x−( p0−1

2 ) =⇒ p0 = 1− 2r1

Second solution using reduction of order

y2(x) = v(x)y1(x) = y1(x)

[∫
1

y2
exp

(
−
∫
P (x)dx

)
dx

]
=⇒ v′ = . . . =

1

x
=⇒ v(x) = ln |x|

For x > 0, v(x) = ln x, so y2(x) = vy1 = ln(x)xr1

GS
y = c1x

r1 + c2(lnx)xr1

Method of Frobenius (for singular points)

In general, we define power series of the form

y(x) = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r
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with a0 6= 0 and an = 0 ∀n < 0.

Ex Consider 2x2y′′ + x(2x+ 1)y′ − y = 0 around x = 0.

Solution DE:

y′′ +

( 1
2

+ x

x

)
y′ −

(
1

2x2

)
y = 0

on standard form

P (x) =

( 1
2

+ x

x

)
Q(x) = −

(
1

2x2

)
Now

xP (x) =
1

2
+ x, x2Q(x) = −1

2
=⇒ analytic at x = 0

p0 = lim
x→0

xP (x) =
1

2

q0 = lim
x→0

x2Q(x) = −1

2

Corresponding Indicial Equation is

r(r − 1) + p0r + q0 = 0 =⇒ r = 1,−1

2

We propose the series solution of the form

y =
∞∑
n=0

anx
n+r, a0 6= 0, an = 0 for n < 0

We need expression for 2x2y′′, 2xy′, xy′,−y

−y =
∞∑
n=0

−anxn+r

y′ =
∞∑
n=0

(n+ r)anx
n+r−1

xy′ = x
∞∑
n=0

(n+ r)anx
n+r−1 =

∞∑
n=0

(n+ r)anx
n+r

2x2y′ = 2x2

∞∑
n=0

(n+ r)anx
n+r−1 =

∞∑
n=1

2(n+ r − 1)an−1x
n+r

2x2y′′ = 2x2

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2 =

∞∑
n=0

2(n+ r)(n+ r − 1)anx
n+r

Take them in to the DE
=⇒ . . . =⇒ 2(r− 1)ra0x

r +
∑∞

n=1 2(n+ r)(n+ r− 1)anx
n+r +

∑∞
n=1 2(n+ r− 1)an−1x

n+r + (r−
1)a0x

r +
∑∞

n=1(n+ r − 1)anx
n+r = 0
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continued r = 1,−1
2

=⇒
∞∑
n=1

[(n+ r − 1)((2(n+ r) + 1)an + 2an−1)]xn = 0

n+ r − 1 6= 0 =⇒ (2(n+ r) + 1)an + 2an−1 = 0

Recursion Relation

an =
−an−1

n+ r + 1
2

, n = 1, 2, . . .

• For r = 1, an = −an−1

n+ 3
2

a1 = −2

5
a0, a2 =

4

35
a0

• For r = −1
2
, an = −an−1

n

a1 = −a0, a2 =
a0

2

∴ 2 LI solution are

y1 = x1

(
1− 2

5
x+

4

35
x2 − . . .

)
y2 = x−

1
2

(
1− x+

1

2
x2 − . . .

)
Therefore, the GS

y = c1y1 + c2y2 = c1x

(
1− 2

5
x+

4

35
x2 − . . .

)
+ c2x

− 1
2

(
1− x+

1

2
x2 − . . .

)

2.1.1 Extended Method of Frobenius

Around x = x0 (R.S.P), we have associated Euler’s Equation as (x−x0)2y′′+p0(x−x0)y′+ q0y = 0

p0 = lim
x→x0

(x− x0)P (x)

q0 = lim
x→x0

(x− x0)2Q(x)

By substitution,
y = (x− x0)r

We obtain Indicial eq:
r(r − 1) + p0r + q0 = 0

Consider r1 ≥ r2 ∈ R

1. There is one solution of the form

y1 = (x− x0)r1
∞∑
n=0

an(x− x0)n, a0 6= 0
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2. If r1 − r2 6= Z, second LI solution will be

y2 = (x− x0)r2
∞∑
n=0

bn(x− x0)n, b0 6= 0

3. If r1 = r2 = r, second LI solution using reduction of order is

y = y1 ln(x− x0) + (x− x0)r
∞∑
n=0

cn(x− x0)n, c0 6= 0

4. r1 − r2 is a positive integer, the second LI solution

y2 = αy1 ln(x− x0) + (x− x0)r1
∞∑
n=0

an(x− x0)n, d0 6= 0

2.1.2 Bessel’s Function

The solution of
x2y′′ + xy′ + (x2 − p2)y = 0

is called Bessel’s function.

x = 0 RSP =⇒ (standard form)

y′′ +
1

x
y′ +

x2 − p2

x2
y = 0

p0 = lim
x→0

xP (x) = lim
x→0

x · 1

x
= 1

q0 = lim
x→0

x2Q(x) = lim
x→0

x2 · x
2 − p2

x2
= −p2

Indicial Eq:
r(r − 1) + p0r + q0 = 0

r2 − p2 = 0 =⇒ r = ±p

We consider r = p > 0

y =
∞∑
n=0

anx
n+r

We need expression for
x2y′′, xy′, x2y,−p2y
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−p2y =
∞∑
n=0

−p2anx
n+r

x2y′ =
∞∑
n=2

an−2x
n+r

xy′ =
∞∑
n=0

an(n+ r)xn+r

x2y′′ =
∞∑
n=0

an(n+ r)(n+ r − 1)xn+r

x2y′′ + xy′ + x2y − p2y = 0 =⇒
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

an(n+ r)xn+r + . . . = 0

=⇒
∞∑
n=2

an−2x
n+r +

∞∑
n=0

an[(n+ r)2 − p2]xn+r = 0

since a0 6= 0 and r = p > 0

=⇒
∑
n=2

[an−2 + an((n+ r)2 − p2)]xn+r + a0(r2 − p2)xr + a1((r + 1)2 − r2)xr+1 = 0

Since r = p > 0, and 2r + 1 6= 0 =⇒ a1 = 0

We must have
an−2 + an((n+ r)2 − r2) = 0

−an−2 = an(n(n+ 2r))

an =
−an−2

n(n+ 2r)
, n = 2, 3, 4, . . .

We derived a1 = 0 =⇒ a3 = a5 = a7 = 0. So all odd term coefficients

=⇒ a2k+1 = 0, k = 0, 1, 2 . . .

a2k =
(−1)ka0

22kk!(1 + r) . . . (k + r)

one of our solution is

y = a0x
p

[
1 +

∞∑
k=1

(−1)kx2k

22kk!(1 + p) . . . (k + p)

]

Bessel’s Function To find second solution, we discuss different cases

1. r1 − r2 = 2p is not an integer, second LI solution. Choose p→ −p

y2 = a0x
−p

[∑
k=0

(−1)kx2k

22kk!(1− p) . . . (k − p)

]

2. r1 = r2, use reduction of order.

3. r1 − r2 = 2p is an positive integer, we can use reduction of order to find second LI solution.
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2.2 Point at Infinity

y′′ + P (x)y′ +Q(x)y = 0

It is often desirable in physics, applied and pure math to study long time behaviour of the

y′′ + P (x) +Q(x) = 0 (2.1)

for a very large value of independent variable. For instance, if independent variable is time, we may
want to know the solution of the system once the transient disturbances are faded away. In other
words, t→∞.

We sub t = 1
x

in the original equation and transform in given DE into a new variable.

t =
1

x
=⇒ dt

dx
=
−1

x2
= −t2

y′ =
dy

dx
=
dy

dt

dt

dx
= −t2dy

dt

y′′ = . . . = t4
d2y

dt2
+ 2t3

dy

dt

Sub into original DE, we have
...

d2y

dt2
+

[
2

t
−
P
(

1
t

)
t2

]
dy

dt
+
Q
(

1
t

)
t4

y = 0

=⇒ ÿ +

(
2

t
− P (1/t)

t2

)
ẏ +

Q(1/t)

t4
y = 0 (2.2)

Here dot represent differentiation wrt t.

If we say Eq(2.1) has x = ∞ are ordinary point, a regular SP with y = erx with exponential
roots r1 and r2, or an irregular SP, then t = 0 is ordinary point, a regular SP, or irregular SP with
Eq(2.2).

Example Consider

y′′ +
4

x
y′ +

2

x2
y = 0 at x =∞

=⇒ x2y′′ + 4xy′ + 2y = 0

what’s the nature of the point?

sub t = 1
x

=⇒ y′ = −t2y, y′′ = 2t3ẏ + t4ÿ

Original DE becomes
t4ÿ + 2t3ẏ + 4t(−t2ẏ) + 2t2y = 0

ÿ − 2

t
ẏ +

2

t2
y = 0 near t = 0
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Here P (t) = −2
t

and Q(x) = 2
t2

are not analytic at t = 0, and

lim
t→0

tP (t) = −2, lim
t→0

t2Q(x) = 2, analytic

this implies t = 0 is a regular SP of equation 2.
=⇒ x =∞ is a regular SP of equation 1



CHAPTER 3

Systems of First-order DEs - FODEs

Defn If x1(t), x2(t), x3(t), . . . are unknown functions of a single variable t then the most general
FODE in these unknown functions is,

ẋ1 = f1(x1, . . . , xn, t)

ẋ2 = f2(x1, . . . , xn, t)

...

ẋn = fn(x1, . . . , xn, t)

In compact form,
~̇x(t) = ~f(~x, t)

or
~̇y = ~f(~y, t)

n = 2, the non-linear system:
example (Predator-Prey Model)
Lotta-Volterra Equation

ẋ1 = −ax1 + bx1x2

ẋ2 = cx2 − dx1x2

where a, b, c, d > 0, where
x1 → concentration of predator

x2 → concentration of prey

Example n = 2, linear system: Simple Harmonic Oscillator,

ẋ1 = x2

ẋ2 = −ω2x1

ẍ1 = ẋ2 = ω2x1 =⇒ ẍ1 + ω2x1 = 0

26
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G.S: x1(t) = c1 sin(ωt) + c2 cos(ωt)

The most general form for a linear system of FODEs is

~̇x = A(t)~x+~b(t)

or
d~y

dt
= . . .

where A(t) is an n × n matrix of coefficients aij(t). ~b(t) is 1 × n matrix of column vectors, with
coefficients bi(t).

Reconsider the SHM example

ẋ1 = x2

ẋ2 = −ω2x1

}
=⇒



A(t) =

[
0 1

−ω2 0

]

~b(t) =

[
0

0

]

~x =

[
x1

x2

]
[
ẋ1

ẋ2

]
=

[
0 1
−ω2 0

] [
x1

x2

]
+

[
0
0

]
Any nth order DE in function f(t), linear or nonlineaer, can be expressed as system of FODEs as
follows:

1© We assume that DE in y(t) can be

y(n) = g(y, ẏ, ÿ, . . . , y(n−1), t)

2© Define
x1(t) = y(t) =⇒ ẋ1(t) = ẏ(t) = x2(t)

x2(t) = ẏ(t) =⇒ ẋ2(t) = ÿ(t) = x3(t)

...
...

xn(t) = y(n−1)(t) =⇒ ẋn(t) = y(n)(t) = g(x1, x2, . . . , xn, t)

Why do we use system of FODEs?

1© For theoretical reason: Existence-Uniqueness Theorem (Easy to prove).

2© For practical purpose: (Easy to apply numerical methods).

System of FODEs
d~y

dx
= ~f(x, ~y) with ICs ~y(x0) = ~y0
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In 1D: dy
dx

= f(x, y) with y(x0) = y0. If we consider dy
dx

= y, y(x0) = y0.

G.S. y(x) = y0e
x

Consider dy
dx

= y
1
2 , y(x0) = y0

Unique Solution exists only if y0 > 0.
2y

1
2 = x+ c. Solving if c = 0.

y = x2

4
(two solution).

y0 = 0 unique solution doesn’t exist.

In short, we can relax the condition of differentiablility. We need a weaker form of ODE.

Weaker form of ODE

System of FODEs: d~y
dx

= ~f(x, ~y), ~y(x0) = ~y0

In 1D, dy
dx

= f(x, y) with IC y(x0) = y0.
Integrating, ∫ x

x0

dy

ds
ds =

∫ x

x0

f(s, y(s))ds

=⇒ y(x)− y(x0) =

∫ x

x0

f(s, y(s))ds

or

y(x) = y(x0) +

∫ x

x0

f(s, y(s))ds

weaker → no need to differentiate the function.

3.1 Picard’s Method

We will construct an approximate solution to ODE while using the interval/weaker form of ODE.

To begin with
y0(x) = y0 (IC condition)

Roughest Approximation to the solution. It obeys only ICs. We will construct a solution using
successive iterations.

y1(x) = y0 +

∫ x

x0

f (s, y0(s)) ds

y2(x) = y0 +

∫ x

x0

f (s, y1(s)) ds

yn(x) = y0 +

∫ x

x0

f (s, yn−1(s)) ds
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Example y′ = x, y(0) = 1. exact soln: y = ex.
Picard’s Approximation:

y0 = 1

y1(x) = 1 +

∫ x

0

y0(s)ds = 1 + x

y2(x) = 1 +

∫ x

0

y1(s)ds = 1 + x+
x2

2

y3(x) = 1 +

∫ x

0

y2(s)ds = 1 + x+
x2

2
+
x3

3!

· · ·

yn(x) = 1 +

∫ x

0

yn−1(s)ds = 1 + x+
x2

2
+
x3

3!
+ · · ·+ xn

n!

lim
n→∞

= ex

Example consider y′ = x+ y, y(0) = 1.

=⇒ y(x) = −(x+ 1) + Cex, y(0) = 1

=⇒ y(x) = −1− x+ 2ex exact solution

by Picard’s Approximation: we have

y0(x) = 1

y1(x) = 1 +

∫ x

0

[s+ 1]ds = 1 + x+
x2

2!

y2(x) = 1 +

∫ x

0

[
1 + 2s+

s2

2!

]
ds = 1 + x+ x2 +

x3

3!

y3(x) = 1 +

∫ x

0

[
1 + 2s+ s2 +

s3

3!

]
ds = 1 + x+ x2 +

x3

3
+
x4

4!

y4(x) = 1 +

∫ x

0

[
1 + 2s+ s2 +

s3

3!
+
s4

4!

]
ds = 1 + x+ x2 +

x3

3
+

x4

3 · 4
+
x5

5!
...

yn(x) = 1 + x+ 2

(
x2

2!
+
x3

3!
+ · · ·+ xn

n!

)
+

xn+1

(n+ 1)!

lim
n→∞

yn = −1− x+ 2ex
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3.2 Linear System and the Fundamental Matrix

3.2.1 Transforming a Scalar Equation to a system

We showed that any nth order scalar equation (ODE) can be written as a system of n first order
DEs. We show how to works for particular linear scalar equation of order n as follows. We have

dny

dxn
+ P1(x)

dn−1y

dxn−1
+ . . .+ Pn−1(x)

dy

dx
+ Pn(x)y = g(x)

We define
y1 = y

y2 = y′

y3 = y′′

...

yn = y(n−1)

we have
dny

dxn
= −Pny1 − Pn−1y2 − · · · − P1yn + g(x)

d

dx


y1(x)
y2(x)
· · ·

yn−1(x)
yn(x)

 =


0 1 0 · · · 0
0 0 1 · · · 0
· · ·
0 0 0 · · · 1

−Pn(x) −Pn−1(x) −Pn−2 · · · −P1(x)




y1(x)
y2(x)
· · ·

yn−1(x)
yn(x)

+


0
0
· · ·
0

g(x)


In general form

d~y

dx
= A(x)~y +~b, ~y(x0) = ~y0

Ex we consider general form of homogeneous second order DE

y′′ + P (x)y′ +Q(x)y = 0

y′′ = −P (x)y′ −Q(x)y

We define
y1 = y(x)

y2 = y′(x)

}
=⇒ d

dx

(
y1

y2

)
=

[
0 1
−Q −P

](
y1

y2

)
+

(
0

0

)

Theorem (Picard’s Theorem for Linear System)
Let A(x) and b(x) be continuous functions on the closed interval I ∈ [α, β]. Then there exists a
unique solution to the IVP. So

d~y

dx
= A(x)~y +~b(x), ~y0(x0) = ~y0

where x0 is the initial point in i and ~y0 is a constant vector with n-components. Solution exists
throughout the interval I.
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3.3 Homogeneous Linear System of Equations

Defn If A is a constant, it is called an autonomous system. If RHS of

d~y

dx
= A(x)~y

depends on x explicitly, we say the system is non-autonomous.

Remark We define the solution ~y as a vector of the form ~y(x) =


y1(x)
y2(x)

...
yn(x)

 where ~y is C1 (contin-

uously differentiable) vector-valued function is the given interval I ∈ Rn.

Defn If A is constant, we define L (a linear operator) as L~y =
(
d
dx
− A

)
~y. We define the space

of solutions for L~y = ~0 as the kernel of the linear operator L.

3.3.1 Solution space for system of DEs

From the linear algebra, we have

1© Identity element

2© Algebraic closure → Principle of Superposition

Theorem Let ~y′ = A(x)~y where A(x) is continuous on interval I. If a solution ~y satisfies ~y(x0) = 0
for some x0 ∈ I, then ~y(x) = ~0 for all x ∈ I.

Theorem Let ~y′ = A(x)~y where A(x) is continuous on interval I. If solutions ~y1(x), . . . , ~yn(x) are
linear independent at point x0 ∈ I, then they are linear independent for all x ∈ I.

Def We define Wronskian for a system of equations as

W [~y1(x), . . . , ~yn(x)] = det[~y1(x), . . . , ~yn(x)]

Theorem (Dimension of a solution space)
The solution space of d~y

dx
= A(x)~y, where A(x) is continuous in a n-dimensional vector space.

Remark A basis of the solution space is a set of n-solutions to DE which are linearly independent
on given interval I.

That is, Wronskian of solution is nonzero on I. To construct a standard basis for solution space,
we begin with standard basis of Rn. i.e. {~e1, . . . , ~en} where ~ej = {0, . . . , 0, 1, 0, . . . , 0} with only 1
in the j-th entry.
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3.3.2 Basis for solution space

In Rn, we write {~e1, . . . , ~en} as standard basis of Rn. We take the standard basis vectors to be
initial conditions for our DE and thus the standard basis for system of DE consists of

{~y1(x), . . . , ~yn(x)}

where the ICs at x0 are ~yj(x0) = ~ej for j = 1, 2, . . . , n.

Def The fundamental matrix at x0 denoted by Φ(x, x0) is

Φ(x, x0) = [~y1(x), . . . , ~yn(x)]

The fundamental matrix is formed with standard basis vectors as the columns of the matrix.

3.4 Finding solutions using eigenvalues

3.4.1 Review

We have the solution for homogeneous scalar equation as y = eλx. This may have real & distinct
roots or real & repeated roots or complex conjugated roots.

To solve system of equations
d~y

dx
= ~y′ = A~y (3.1)

we need the solution of the form
~y = ~veλx (3.2)

Sub (3.2) into (3.1)
λ~v = A~v eλx>0

we find that |A− λI| = 0 for non-trivial solution.

To find eigenvalue and eigenvectors. Then we write G.S. using superposition principle.

Ex Find the eigenvalue of matrix

A =

[
1 1
y 1

]
for

d~y

dx
= A~y

Soln We consider the trial function ~y = eλx. Sub it into given DE, we obtain

(A− λI)~v = ~0

Then λ must satisfy CE (characteristic equation), ... then λ = −1, 3.

For λ = −1, ~vλ=−1 =
(

1
−2

)
.
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For λ = 3, ~vλ=3 =
(

1
2

)
~y = c1e

−x
(

1

−2

)
+ c2e

3x

(
1

2

)
This solution can be determined completely in terms of finding c1 & c2 with given ICs.

To compute fundamental matrix, we must find 2 solutions that have ICs to be standard basis
of R2. We pick

~y1(0) = ~e1 =

(
1

0

)
~y2(0) = ~e2 =

(
0

1

)
Now

~y1(0) =

[
1 1
−2 2

](
c1

c2

)
=

(
1

0

)
=⇒ c1 = c2 =

1

2

So

~y1(x) =

(
1
2
e−x + 1

2
e3x

−e−x + e3x

)
Similarly,

~y2(0) =

[
1 1
−2 2

](
c1

c2

)
=

(
0

1

)
= ~e2 =⇒ c1 = −1

4
, c2 =

1

4

∴

~y2(x) =

(−1
4
e−x + 1

4
e3x

1
2
e−x + 1

2
e3x

)
We obtain fundamental matrix as

Φ(x, o) = [~y1(x), ~y2(x)] = . . .

Se sub x = 0, Φ(0, 0) = I2×2 as required.

Theorem Suppose the matrix A has n-eigenpairs, such that eigenvalues are real and distinct,
then

{eλ1x~v1, . . . , e
λnx~vn}

forms the basis of solution space to the system of equations d~y
dx

= A~y. Hence the G.S. is

~y = c1e
λ1x~v1 + c2e

λ2x~v2 + . . .+ cne
λnx~vn

3.4.2 Finding Solution Using Eigenvalues for Complex Eigenvectors

We have the eigenvalues in complex conjugate pair. For the eigenvalue λ = µ + iν, we write
corresponding eigenvector (function) as ~v where ~v = ~a+ i~b.
Complex eigenvector

~u(x) = eλx~v, ~v∗ = ~a− i~b
~u∗(x) = eλ

∗x~v∗ , λ∗ = µ− iν
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We have
~y1(x) = Re{~u(x)}

~y2(x) = Im{~u(x)}

~u(x) = eλx~v + e(µ+iµ)x(~a+ i~b) = ... = eµx(~a cos(νx)−~b sin(νx)) + ieνx(~a sin(νx) +~b cos(νx))

So
~y1(x) = Re{~u(x)} = eµx(~a cos(νx)−~b sin(νx))

~y2(x) = Im{~u(x)} = eνx(~a sin(νx) +~b cos(νx))

where λ = µ+ iν, ~v = ~a+ i~b.

If all eigenvalues are real and distinct except 2 in complex conjugate pair, then G.S. is

~y(x) c1~y1(x) + c2~y2(x)︸ ︷︷ ︸
complex conjugate

+ c3e
λ3x~v3 + . . .+ cne

λnx~vn︸ ︷︷ ︸
real and distinct

Ex Find the G.S. of vector DE

d

dt
~x = ~x′ = A~x, A =

[
1 5
−1 −3

]

Soln ... λ = −1± i

When λ = −1 + i, v =
(

5
−2+i

)
.

We have the complex solution as ~x = ...

~x = e−t(cos t+ i sin t)

[(
5

−2

)
+ i

(
0

1

)]
= e−t

[(
5 cos t

−2 cos t− sin t

)
+ i

(
5 sin t

−2 sin t+ cos t

)]
There are 2 solutions are linearly independent G.S. is

~x = e−t
[
c1

(
5 cos t

−2 cos t− sin t

)
+ c2

(
5 sin t

−2 sin t+ cos t

)]
where c1 and c2 are arbitrary constants.

Ex Find the G.S. to the system

d

dx
~y =

−4 5 −3
−17

3
4
4

7
3

4
3

−25
3

−4
3

 ~y
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Soln We need to find the solution of CE, det(A− λI) = 0

=⇒ λ = −2,−1± 8i Trial and Error method

We have eigenvectors as

~v1 =

−1/2 + i/2
−1/2− i/2

1

 , ~v2 =

−1/2− i/2
−1/2 + i/2

1

 , ~v3 =

1
1
1


From this we obtain the real & imaginary eigenvectors as

~a =

−1/2
−1/2

1

 , ~b =

 1/2
−1/2

0


We get the G.S as

~y = c1e
−x(~a cos(8x)−~b sin(8x)) + c3e

−2x~v3 + c2e
−x(~a sin(8x) +~b cos(8x))

3.4.3 Fundamental Matrix (Properties)

In case of autonomous system (A =constant) we have

1. Identity property:

Φ(x0, x0) = [~y1(x0), . . . , ~yn(x0)] = [~e1, . . . , ~en] = In×n

2.
~y(x) = Φ(x)~a

is a unique solution to IVP ~y′ = A~y for ~y(0) = ~a

3. Φ(x) satisfies the matrix DE Φ′(x) = AΦ(x)

4. Multiplication Property
Φ(x1 + x2) = Φ(x1) · Φ(x2)

5. Inverse property
Φ(−x) = [Φ(x)]−1

6. Time-invariant Property: If A = constant in linear system ~x′ = A~x, then if ~x(t) in the
solution to the above DE, then ~x(t − a) is also a solution, a ∈ R. We can also mention
Φ(t, t0) = Φ(t− t0, 0).

In other words, it is only time-interval matters, not the starting or end points.
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3.5 Exponential Matrix

Consider an autonomous system (~y′ = A~y) with ICs ~y(0) = ~a = ~y0.

In scalar form, we have y′ = ay, y(0) = a = y0, the solution to IVP,

y(x) = y0e
ax

The solution to vector problem is
~y = Φ(x, 0)~a = exA~a

We denote exA an exponential matrix where An×n is constant. Using Taylor’s Series, we have

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

We get

eA = I + A+
1

2!
A2 + . . .+

An

n!
+ . . .

where both A and eA are n× n

3.5.1 Properties of Exponential Matrix

We consider An×n for n = 2. These properties can be generalized for n ≥ 2.

1. e0 = I2×2

2. eA+B = eAeB is true only iff A and B commute, i.e. AB = BA

3. e−A = [eA]−1 (inverse property)

1. Diagonal Matrix (2 real distinct roots)

A =

[
a 0
0 b

]
=⇒ eA =

[
ea 0
0 eb

]

eA = I + A+
A2

2!
+ . . .

=

[
1 0
0 1

]
+

[
a 0
0 b

]
+

[
a2

2!
0

0 b2

2!

]
+ . . .

=

[
1 + a+ a2

2!
+ . . . 0

0 1 + b+ b2

2!
+ . . .

]
=

[
ea 0
0 eb

]
2. Upper triangular Matrix or (non-diagonalizable matrix)

(2 real and equal roots)

A =

[
a 1
0 a

]
=⇒ eA =

[
ea ea

0 ea

]
we write

A = aI +N,N =

[
0 1
0 0

]
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where N is nilpotent matrix.

eN = I +N +
N2

2!
+ . . . = I +N

eA = eaI+N = eaIeN = eaI(I +N)

= eaI(I +N) = ea(I +N)

= ea
([

1 0
0 1

]
+

[
0 1
0 0

])
= ea

[
1 1
0 1

]
3. Antisysmmetric matrix (complex conjugate pair)

If A =

[
a b
−b a

]
, then eA =

[
cos b sin b
− sin b cos b

]
ea.

We have A = aI +B,B =

[
0 b
−b 0

]
Since B and I commute,

eA = eaI+B = eaIeB = eaeB

where eB = I +B + B2

2!
+ . . .

B2 = . . . = −b2I

B3 = . . . =

[
0 −b3

b3 0

]
B4 = b4I

Hence

eB =

[
1− b2

2!
+ . . . b− b3

3!
+ . . .

−b+ b3

3!
− . . . 1− b2

2!
+ . . .

]
=

[
cos b sin b
− sin b cos b

]
eA = ea

[
cos b sin b
− sin b cos b

]
These 3 different cases are 3 Jordan Canonical form for 2× 2 matrices.

1. Diagonalizable Matrix (2 real & distinct)

2. non-diagonalizable matrix (real & equal)

3. complex conjugate matrix (complex conjugate)

3.5.2 Linear system of ODE & Exponential Matrix

Theorem The solution to the standard IVP ~y′ = A~y with ~y(0) = ~y0 and An×n = constant matrix
(time-invariant), then

~y = exA~y0
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Proof
~y = exA~y0

=

(
I + xA+

x2A2

2!
+ . . .

)
~y0

Differentiate both sides wrt x,

d~y

dx
= ~y′ =

d

dx

(
I + xA+

x2A2

2!
+ . . .

)
~y0

~y′ =

(
A+

x

1!
A+

x2

2!
A3 + . . .

)
~y0 = A

(
I + xA+

x2A2

2!
+ . . .

)
~y0

So ~y′ = A~y.

Ex Consider the system of ODEs

~y′ = A~y, A =

[
a 0
0 b

]
with two distinct real roots.

Soln We want to find solution ~y = exA~y0, we have exA =

[
eax 0
0 ebx

]
.

If ~y(0) = ~y0, then we have

~y = exA ~y0︸︷︷︸
(a1
a2

)

=

(
a1e

ax

a2ebx

)

This is a solution to linear system of ODEs with constant coefficients (real & distinct eigenval-
ues). Hence general solution is ~y = c1~y1 + c2~y2 = c1e

ax + c2e
bx

Ex2 Consider the system of ODEs,

~y′ = A~y = A~y, A =

[
a 1
0 a

]
with real & equal roots

Soln We want to find (solution)
~y = exA~y0

where A = aI +N, N =

[
0 1
0 0

]
exA = ex(aI +N) = eaxIexN = eaxI[I + xN ] = eax

[
1 x
0 1

]
The solution is

~y = exA~y0 = eax
[
1 x
0 1

](
a1

a2

)
= eax

(
a1 + a2x

a2

)
For real single root of multiplicity 2, we obtain the G.S. as

~y =

(
(a1 + a2x)eax

a2eax

)
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Ex3 Consider ~y′ = Ay, A =

[
a b
−b a

]

Soln Let B =

[
0 b
−b 0

]
exA = ex(aI+B) = eaxIexB

...

~y = . . . =

(
eax(a1 cos(bx) + a2 sin(bx))

eax(−a1 sin(bx) + a2 cos(bx))

)
We can extend this opposed to n× n matrices sing Eigenvalue decomposition (singularity transfor-
mation)

A = CBC−1

where B = diag(λ1, λ2, . . . , λn) for λi → real and distinct eigenvalues. C: consists of column vectors
that are eigenvectors of the original matrix A.

C = [~v1, ~v2, . . . , ~vn]

where ~vi is corresponding eigenvector for eigenvalue λi.

For a 2× matrix, we write 2× 2 block

[
λ 1
0 λ

]
if eigenvalues are repeated.

If eigenvalues are complex λ1,2 = a± ib, then Jordan Block is in the form

[
a b
−b a

]
exA = exCBC

−1

= I + xCBC−1 +
x2

2!
(CBC−1)(CBC−1) + . . .

= CIC−1 + xCBC−1 +
x2

2!
(CBC−1)(CBC−1) + . . .

= C

[
I + xB +

x2

2
B2 + . . .

]
C−1

= CexBC−1

Ex Consider ~y′ = A~y, A =

[
1 1
4 1

]

Soln λ1 = 3, λ2 = −1
~v1 =

(
1
2

)
, ~v2 =

(
1
−2

)
B =

[
3 0
0 −1

]
C =

[
1 1
2 −2

]
G.S

exA = CexBC−1 = . . . =

1
2
e3x + 1

2
e−x 1

4
e3x − 1

4
e−x

e3x − e−x 1
2
e3x + 1

2
e−x

→ Fundamental matrix
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Ex Consider the vector DE ~y′ = A~y, A =

[
2 1
−1 2

]

Soln To find eigenvalues, we put det(A− λI) = 0 =⇒ λ = 2± i

~v1 =

(
−i
1

)
, ~v2 =

(
i

1

)
, B = diag(λ1, λ2) =

[
2 + i 0

0 2− i

]

exB =

[
ex(2+i) 0

0 ex(2−i)

]
, C =

[
−i i
1 1

]
, C−1 =

[−1
2i

1
2

1
2i

1
2

]
so

exA = CexBC−1 = . . . = e2x

[
cosx sinx
− sinx cosx

]
since cos x = eix+e−ix

2
, sinx = eix−e−ix

2i

3.6 Non-homogeneous linear system of Equations

We start with
d~y

dx
= A(x)~y + ~f(x), ~y(x0) = ~y0

where A(x) represents the internal dynamic of the system and ~f(x) represents the external force,
which is responsible for inhomogeneity. The solution for the homogeneous part is the fundamental
matrix.

Let’s consider the scalar case

dy

dx
= ay + f(x), y(x0) = y0

dy

dx
− ay = f(x), Using IF, I(x) = eax

Multiply by IF,

e−ax
dy

dx
− ae−ayy = e−axf(x)

d

dx
(e−ax) = e−axf(x)

Integrate then we get G.S. for scalar cases for any given IC,

y = y0e
a(x−x0) +

∫ x

x0

ea(x−s)f(s)ds

Consider the vector case, out solution to homogeneous part is

~yh = Φ(x, x0)~a, ∀~a (IC)

We can write our particular solution using variation of parameters as

~yp = Φ(x, x0)~v(x)
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Diff both sides,

d

dx
~yp = ~v(x)

dΦ(x, x0)

dx
+ Φ(x, x0)

d~y

dx
= A(x)Φ(x, x0) + ~f(x)

Now dΦ(x,x0)
dx

= AΦ(x, x0)

=⇒ AΦ(x, x0)~v0 + Φ(x, x0)
d~v

dx
= AΦ(x, x0)~v0 + ~f(x) =⇒ Φ(x, x0)

d~v

dx
= ~f(x)

By inverse Property,
d~v

dx
= [Φ(x, x0)]−1 ~f(x) = Φ(x0, x)~f(x)

~v =

∫
x0

Φ(x0, s)~f(s) ds

~yp = Φ(x, x0)~v(x) = Φ(x, x0)

∫ x

x0

Φ(x0, s)~f(s) ds =

∫ x

x0

Φ(x, x0)Φ(x0, s)~f(s) ds =

∫ x

x0

Φ(x, s)~f(s) ds

By multiplicative property
[x→ x0, x0 → s =⇒ x→ s]

∴ GS of our inhomogeneous problem is

~y = ~yh + ~yp = Φ(x, x0)~y0 +

∫ x

x0

Φ(x, s)~f(s) ds

Remark If system is time-invariant, the fundamental matrix is equal to exponential Matrix. So
in this case

Φ(x, x0) = Φ(x− x0, 0) = eA(x−x0)

So GS for linear system is

~y = eA(x−x0)~y0 +

∫ x

x0

eA(x−s) ~f(s) ds

Ex For time invariant system, we are given

d

dt
~x(t) = A~x(t) +~b(t)

where A =

[
1 1
4 1

]
,~b(t) =

[
e−2t

0

]

Soln at t0 = 0, we have

~x(t) = eAt~x0 +

∫ t

0

eA(t−s)~v(s)ds

We obtain eigenpairs λ1 = 3, λ2 = −1, ~v1 =
(

1
2

)
, ~v2 =

(
1
−2

)
B =

[
3 0
0 −1

]
and C =

[
1 1
2 −1

]
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exB =

[
e3x 0
0 e−x

]
exA = CexBC−1 =

1
2
e3x + 1

2
e−x 1

4
e3x − 1

4
e−x

e3x − e−x 1
2
e3x + 1

2
e−x


we have

~xp =

∫ t

0

eA(t−s)~b(s)ds

=

∫ t

0

1
2
e3(t−s) + 1

2
e−(t−s) 1

4
e3(t−s) − 1

4
e−(t−s)

e3(t−s) − e−(t−s) 1
2
e3(t−s) + 1

2
e−(t−s)

(e−2s

0

)
ds

= . . .

~x(t) = ~xh + ~xp =

1
2
e3x + 1

2
e−x 1

4
e3x − 1

4
e−x

e3x − e−x 1
2
e3x + 1

2
e−x

 ~x0 +
1

10
e−2t

(
e5t + 5et − 6

2e5t − 2e5 + 8

)

Ex (Previous Final Exam)

Given A =

[
p 0
s q

]
, find eA, p 6= q 6= 0, p, q, s ∈ R.

Soln Let ~x′ = A~x

Step 1 (To find eigenpairs)

det(A− λI) = 0 =⇒ λ1 = p, λ2 = q

For λ1 = p =⇒ v2 = s
p−qv1 =⇒ v1 =

(
p−q
s

)
For λ2 = q =⇒ ~v2 =

(
0
1

)
Step 2 G.S

~x = c1~x1 + c2~x2 =

(
c1(p− q)ept

c1sept + c2eqt

)

Step 3 If x0 =
(

1
0

)
=
(
c1(p−q)
c1s+c2

)
=⇒ c1 = 1

p−q , c2 = s
q−p

If x0 =
(

0
1

)
=
(
c1(p−q)
c1s+c2

)
=⇒ c1 = 0, c2 = 1

Step 4 Fundamental Matrix

Φ(t, 0) =

[
(p− q)ept 1

p−q 0
1
p−q + s

q−pe
qt eqt

]
Therefore

Φ(t, 0) =

[
ept 0

s
p−q (e

pt − eqt) eqt

]
= eAt
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Step 5 Put t = 1,

eA = Φ(1, 0) =

[
ep 0

s
p−q (e

p − eq) eq

]



CHAPTER 4

Laplace Transform Methods

LTM1 provide important tools to solve Linear Order DEs and PDEs. It is especially useful when
parts of the problem are discontinuous or non-differentiable.

Defn Given a real or complex valued function, y(t), the LT, L, of y(t) is defined by

L{y(t)} = Y (s) =

∫ ∞
0

e−sty(t)dt ∀s ∈ C

such that the above improper integral converges.

Ex Given f(t) = ect, c 6= 0, L{f(t)} =?

Soln

L{f(t)} = L
{
ect
}

=

∫ ∞
0

ecte−stdt = lim
b→∞

∫ b

0

e(c−s)tdt = . . . =
1

s− c
assume Re(s) > Re(c).

∴ L
{
ect
}

=
1

s− c
, Re(s) > Re(c)

If we have f(t) = 1

L{1} =

∫ ∞
0

e−stdt = lim
b→∞

∫ b

0

e−stdt = lim
b→∞
− est

s

∣∣∣∣b
0

=
−1

s
lim
b→∞

[e−sb−1] =
−1

s
[0−1] =

1

s
, Re(s) > 0

Theorem If f(t) = tn, n ∈ N = {1, 2, . . . , }

L {tn} =

∫ ∞
0

e−sttndt =
n!

sn+1

1Laplace Transform Methods

44
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Proof

L{tn} =

∫ ∞
0

tne−stdt

= lim
b→∞

∫ b

0

tne−stdt

= lim
b→∞

tn

�
�
���

0
e−st

−s

∣∣∣∣b
0

+ lim
b→∞

∫ b

0

ntn−1

(
e−st

s

)
dt

=
n

s
lim
b→∞

∫ b

0

tn−1
(
e−st

)
dt

=
n

s
lim
b→∞

∫ b

0

e−sttn−1dt

L{tn} =
n

s
L
{
tn−1

}
IBP repetitively,

L{tn} =
n!

sn+1
, assume that Re(s) > 0

4.1 Properties of LT

1. Linearity: LT is a linear operator

L{c1f + c2g} = c1L{f}+ c2L{g}

where c1 & c2 are arbitrary constants.

2. Existence: If f(t) is a piecewise defined function at each interval [0, b] for b > 0 and there
exists a constant α such that

f(t) = O(eαt)

as t → ∞, then f(t) is said to be if exponential order α as t → ∞. In other words, F (s) =
L{f(t)} exists for Re(s) > α.

Remark Big O notation is a convenient way to describe how fast a function is growing. Let
T (n) & f(n) be 2 positive functions, we write T (n) = O(f(n)), and T (n) has order of f(n),
there exists positive constants M and n0 such that T (n) ≤Mf(n) for all n ≥ n0.

3. Differentiation: If f is continuous and f ′ is piecewise continuous on any interval [0, b] for b > 0
and f is of exponential order α as t→∞

L{f ′} sL{f} − f(0) for Re(s) > α
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Proof

L{f ′} =

∫ ∞
0

e−stf ′(t)dt

= lim
b→∞

∫ b

0

e−stf ′(t)dt

= lim
b→∞

e−stf(t)
∣∣b
0
− lim

b→∞

∫ b

0

e−st(−s)f(t)dt

= (0− f(0)) + s lim
b→∞

[∫ b

0

e−stf(t)dt

]
= −f(0) + sF (s) = sF (s)− f(0)

Similarly
L{f ′′(t)} = s2L{f} − sf(0)− f ′(0)

L
{
f (n)(t)

}
= snL{f} − sn−1f(0)− sn−2f ′(0)− . . .− sf (n−2)(0)− s0f (n−1)(0)

with the conditions that f, f ′, f ′′, . . . , f (n−1) are all continuous and f (n) is piecewise continuous.

4. Shifting Properties:

(a) 1st shift theorem: (FST)
If F (s) = L{f(t)} exists for Re(s) > α with α ≥ 0, then

L
{
ectf

}
= F (s− c) for Re(s− c) > α

where c is a constant

Ex Find L{t3ect}

Soln

L
{
t3
}

=
3!

s3+1
=

6

s4
for Re(s) > 0

So by FST,

L
{
t3ect

}
= F (s− c) =

6

(s− c)4
for Re(s− c) > 0

Ex Find L{t5e10t}

Soln L{t5} = 120
s6

Re(s) > 0.
By FST,

L
{
t5e10t

}
=

120

(s− 10)6

Re(s− 10) > 0 or s > 10.
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Heavy side Function and its LT

H(t) =

{
0 t < 0

1 t ≥ 0
=⇒ H(t− a) =

{
0 t < a

1 t ≥ a

L{H(t− a)} =
e−as

s
for s > 0, a > 0 where a is a constant

(b) 2nd Shift Theorem (SST)
If F (s) = L{f(t)} exists for Re(s) > α > 0 and c is a positive constant, then

L{H(t− c)f(t− c)} = e−ctF (s) for Re(s) > α ≥ 0

Ex If F (s) = p(s)
q(s)

, q(s) 6= 0. p and q are polynomial. We can use partial fraction decomposition /
completing the square

Ex Find L−1
{

s
s2+5s+6

}
(PFD)

Soln
s

s2 + 5s+ 6
=

3

s+ 2
− 2

s+ 3

L−1

{
s

s2 + 5s+ 6

}
= 3L−1

{
1

s+ 2

}
− 2L−1

{
1

s+ 3

}
= 3e−2t − 2e−3t

Completing the square

Ex

L−1

{
s

s2 + 4s+ 5

}

Soln Completing the squares. To apply FST, we need to express everything in terms of (s+2)

L−1

{
s

(s+ 2)2 + 1

}
= L−1

{
(s+ 2)− 2

(s+ 2)2 + 1

}
= L−1

{
s+ 2

(s+ 2)2 + 1

}
− 2L−1

{
1

(s+ 2)2 + 1

}
= e−2t cos(t)− 2e−2t sin(t)

4.2 Solving DEs with Laplace Transform

Ex Solve the following first order DE using LTM,

y′ + ky = kA cos(ωt), y(0) = y0
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Soln Apply LT to DE and using linear properties/ICs. (For simplicity, w and ω are equivalent)

L{y′ + ky} = kAL{cos(ωt)}

L {y′}+ kL{y} = kA

(
s

s2 + w2

)
We define L{y(t)} = Y (s)

sY (s)− y0 + kY (s) = kA

(
s

s2 + w2

)

Y (s) =
y0

s+ k
+ kA

(
s

(s+ k)(s2 + w2)

)

s

(s+ k)(s2 + w2)
=

D

s+ k
+
Es+ F

s2 + w2
=⇒



D = −k
k2+w2

E = k
k2+w2

F = w2

k2+w2

Y (s) =
y0

s+ k
+

kA

k2 + w2

(
−k 1

s+ k
+ k

s

s2 + w2
+ w

w

s2 + w2

)
Applying ILT, then

L−1 {Y (s)} = y(t) = y0L−1

{
1

s+ k

}
+

kA

k2 + ω2

[
kL−1

{
s

s2 + ω2

}
− kL−1

{
1

s+ k

}
+ ωL−1

{
ω

s2 + ω2

}]

=⇒ y(t) = y0e
−kt +

kA

k2 + ω2
[k(cos(ωt)− e−kt) + ω sin(ωt)]

Ex Solve the following SOLDE with constant coefficients by using LT:

y′′ + 3y′ + 2y = ex, y(0) = 1, y′(0) = 2

Soln Taking LT and applying linearty property,

L{y′′}+ 3L{y′}+ 2L{y} = L{ex}

=⇒ [s2 − sy(0)− y′(0)] + 3[sY (s)− y(0)] + 2Y (s) =
1

s− 1

Using ICs

[s2Y (s)− s− 2] + 3[Y (s)− 1] + 2Y (s) =
1

s− 1

Y (s)[s2 + 3s+ 2]− (s+ 5) =
1

s− 1
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Y (s) =
s+ 5

(s+ 1)(s+ 2)
+

1

(s− 1)(s+ 1)(s+ 2)

=
4

s+ 1
− 3

s+ 2
+

1

6

1

s− 1
− 1

2

1

s+ 2
+

1

3

1

s+ 2

=
7

2

1

s+ 1
− 8

3

1

s+ 2
+

1

6

1

s− 1
Then

L−1 {Y (s)} = y(t) =
7

2
e−x − 8

3
e−2x +

1

6
ex

4.3 Convolution of Two functions

Consider the general case with non-homogeneous boundary conditions

y′′ + py′ + qy = u(t), y(0) = y0, y
′(0) = v0

Taking LT and applying linear property,

L{y′′}+ pL{y′}+ qL{y} = L{u(t)}
[s2Y (s)− sy(0)− y′(0)] + p[sY (s)− y(0)] + qY (s) = U(s)

Applying ICs

Y (s) =
(s+ p)y0 + v0

s2 + ps+ q︸ ︷︷ ︸
(i)

+
U(s)

s2 + ps+ q︸ ︷︷ ︸
(ii)

Part (i) Homogeneous Problem and it can be solved using PFD2 / completing the squares

yh

Part (ii) represents the external force called forcing term. It represents a particular solution yp.
we have

U(s)

s2 + ps+ q
= U(s)G(s)

where G(s) = 1
s2+ps+q

is called Transfer Function.

Y (s) = Yh(s) + Yp(s)

y(t) = L−1 {Yh(s)}+ L−1 {Yp(s)} = yh + L−1 {U(s)G(s)}
In general

L{fg} 6= L{f}L {g}
we need convolution theorem to solve our particular solution.

We say that h is the convolution of 2 functions defined as f ∗ g where

h(t) = (f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ

2partial fraction decomposition
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4.3.1 Properties

1. Commutative
(f ∗ g)(t) = (g ∗ f)(t)

Proof

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ)dτ

Change of variable, u = t− τ, du = −dτ .

(f ∗ g)(t) =

∫ 0

t

f(u)g(t− u)(−du) =

∫ t

0

g(t− u)f(u)du = (g ∗ f)(t)

2. Distribution
f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2

3. Associativity
(f ∗ g) ∗ h = f ∗ (g ∗ h)

4. With zero is zero
f ∗ 0 = 0 ∗ f = 0

Ex f(t) = t, g(t) = 1. Calculate f ∗ g.

Soln

F (s) = L{f(t)} = L{t} =
1

s2

G(s) = L{g(t)} = L{1} =
1

s

F (s)G(s) =
1

s3

t ∗ 1 =

∫ t

0

(t− τ)1 dτ =
t2

2

we have

H(s) = L
{
t2

2

}
=

1

s3
= F (s)G(s)

or
h(t) = L−1 {H(s)} = L−1 {F (s)G(s)} = (f ∗ g)(t)
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4.3.2 Convolution Theorem

If f(t) and g(t) have LTs F (s) G(s) respectively for Re(s) > α, then if we define H(s) = F (s)G(s),
we have

h(t) = L−1 {H(s)} = (f ∗ g)(t) = (g ∗ f)(t)

where (f ∗ g)(t) =
∫ t

0
f(t− τ)g(τ)dτ .

IVP y′′ + py′ + qy = u(t), y(0) = y0, y
′(0) = v0

We had

Y (s) = G(s)U(s) +
(s+ p)y0 + v0

s2 + ps+ q

= Yp(s) + Yh(s)

Homo soln:

yh(t) = L−1

[
(s+ p)y0 + v0

s2 + ps+ q

]
Non homo

yp(t) = L−1 {Yp(s)} = (g ∗ u)(t) =

∫ t

0

g(t− τ)u(τ)dτ where g(t) = L−1

[
1

s2 + ps+ q

]

As an aside, it is worth mentioning that yh(t) solves the homogeneous DE with nonhomogeneous
ICs whereas yp(t) solves the nonhomogeneous DE with homogeneous ICs.

Ex
y′′ + y = u(t), with y(0) = y0, and y′(0) = v0

Soln See pg 116 of course note
and continued... If u(t) = sin(ωt)

y(t) = I + y0 cos(t) + v0 sin(t)

I =
1

2

(
1

1 + ω
(sinωt+ sin(t))− 1

ω − 1
(sin(ωt)− sin t)

)
If ω 6= 1,

y(t) = I + y0 cos(t) + v0 sin(t)

If ω = 1, we are forcing the equation at the resonant frequency. There is no need to recalculate the
integral. We can take the limit ω → 1 and apply L’ Hopital’s Rule as follows

lim
ω→1

∫ t

0

sin(t− τ) sin(ωt)dτ =
sin(t)− t cos t

2

In case of resonance, the solution grows linearly in time, for all time.



52 CHAPTER 4. LAPLACE TRANSFORM METHODS

4.4 Linear System of FODEs

Consider the system of DEs (Time invariant systems)

~x′ = A~x+ ~f(t)

with ~x(0) = ~x0 where A is a constant matrix.

We complete LT of this vector DE

L{~x′} = AL{~x}+ L
{
~f(t)
}

s ~X(s)− ~x0 = A ~X(s) + ~F (s)

...

X(s) = (sI−A)−1x0 + (sI−A)−1F(s)

The matrix (sI−A)−1 is known as the transfer function matrix.

Theorem For any constant n× n matrix A,

L
[
etA
]

= (sI−A)−1

for values of s that satisfy Re(s) > Re(λ) for all eigenvalues λ of A.

4.5 Laplace Transform of Heaviside (unit step) function

H(t) =

{
0 t < 0

1 t ≥ 0

H(t− a) =

{
0 t < a

1 t ≥ a

4.5.1 Properties

1. L{H(t)} = 1
s

2. L{H(t− a)} = e−as

s
, a > 0

3. second shift theorem/Time displacement Theorem, where

L{H(t− a)f(t− a)} = e−asF (s), F (s) = L{f(t)}
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Ex sketch the following function and obtain their LTs.

1. f(t) =


0 t < b

B b ≤ t < c

0 t ≥ c

=⇒ f(t) = B[H(t− b)−H(t− c)]

b, c, B are positive constants

rectangular Pulse

t
b c

f(t)

B

L{f(t)} =
B

s
(e−bs − e−cs)

2. f(t) =


0 t < a

et−a a ≤ t < b

0 t ≥ b

0 < a < b constants.

t
a b

f(t)

1

eb−a

f(t) = et−a[H(t− a)−H(t− b)]

L{f(t)} = . . . = e−as
1

s− 1
− L

{
et−aH(t− b)

}
a 6= b arguments is diff.

t− a = (b− a) + (t− b)

et−a = eb−aet−b
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L{f(t)} = e−as
1

s− 1
− eb−aL

{
H(t− b)et−b

}
= e−as

1

s− 1
− eb−a e

−bs

s− 1

= final answer

3. f(t) =


0 t < 0

sin t 0 ≤ t < π

0 t ≥ π

t

f(t)

π

f(t) = sin(t)[H(t)︸︷︷︸
start

−H(t− π)︸ ︷︷ ︸
end

]

L{f(t)} = L{sin(t)H(t)} − L{sin(t)H(t− π)}
= L{sin(t)H(t)}+ L{sin(t− π)H(t− π)}

=
1

s2 + 1
+ e−πs

1

s2 + 1

=
1 + e−πs

s2 + 1

4.6 Dirac Deltas Functions & its LT

Heaviside Function is used for switching states. We use Dirac Delta Function when a large force
acts over a small period of time (e.g. high pulsed impulse, hammering)

4.6.1 Properties of Dirac Delta Function

1.
δ(t− a) = 0, t 6= a

2. ∫ a+ε

a−ε
δ(t− a)dt = 1

or ∫ +∞

−∞
δ(t− a)dt = 1
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e.g. ∫ 3

1

δ(t− 5)dt = 0

since 5 6∈ [1, 3] ∫ 3

1

δ(t− 2)dt = 1

since 2 ∈ [1, 3]

3. ∫ a+ε

a−ε
f(t)δ(t− a)dt = f(a)

or ∫ +∞

−∞
f(t)δ(t− a)dt = f(a)

4.

L{δ(t− a)} =

∫ ∞
0

e−stδ(t− a)dt = e−as a ≥ 0

Ex Solve the IVP

y′′ + 2y′ − 15y = 6δ(t− 9) y(0) = −5, y′(0) = 7

Soln Apply LT, using linearity property, and ICs.

L{y′′}+ 2L{y′} − 15L{y} = 6L{δ(t− 9)}

. . . = 6e−9s

=⇒ Y (s) =
6e−9s

s2 + 2s− 15
− 5s+ 3

s2 + 2s− 15
= 6e−9sF (s)−G(s)

Y (s) = 6e−9s

(
1/8

s− 3
− 1/8

s+ 5

)
− using partial fractions

f(t) = L−1 {F (s)} =
1

8
e3t − 1

8
e−5t

g(t) = L−1 {G(s)} =
9

4
e3t +

11

4
e−5t

y(t) = L−1 {Y (s)} = shift theorem = 6H(t− 9)f(t− 9)− g(t)

4.6.2 Relation b/w Dirac Delta Function and Heaviside (Unit Step)
Function ∫ ∞

−∞
δ(u− a)du =

{
0 t < a

1 t ≥ a
= H(t− a)

By Fundamental thm of calculus

d

dt
H(t− a) =

d

dt

∫ ∞
−∞

δ(u− a)du = δ(t− a)
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Ex Solve the IVP (Previous Final Exam)

2y′′ + 10y = 3H(t− 12)− 5δ(t− 4) with y(0) = −1, y′(0) = −2

Soln We apply LT, linearity Property, and use ICs,

2L{y′′}+ 10L{y} = 3L{H(t− 12)} − 5L{δ(t− 4)}

2(s2Y (s)− sy(0)− y′(0)) + 10Y (s) = 3
e−12s

s
− 5e−4s

Y (s) = e−12s 1

s(2s2 + 10)︸ ︷︷ ︸
F (s)

−5e−4s 1

2s2 + 10︸ ︷︷ ︸
G(s)

− 2s+ 4

2s2 + 10︸ ︷︷ ︸
H(s)

f(t) = L−1 {F (s)} =
1

10
− 1

10
cos
(√

5t
)

g(t) = L−1 {G(s)} =
1

2
√

5
sin
(√

5t
)

h(t) = L−1 {H(s)} = cos
(√

5t
)

+
2√
5

sin
(√

5t
)

y(t) = 3H(t− 12)f(t− 12)− 5H(t− 4)g(t− 4)− h(t)

4.7 Periodic application of Dirac Delta Function

(pg 128-130) Suppose there is a radioactive material in a container that decays at a rate of k. x0 is
the initial concentration of the radioactive material. We can describe it as IVP

dx

dt
= −kx, x(0) = x0

with solution
x(t) = x0e

−kt (vanishes at t =∞)

case 2 We add A amount of the same material at any time t = a. Then at t = a, we have
x(t) = x0e

−ka + A. In terms of Heaviside Function

x(t) =

{
x0e
−kt 0 ≤ t < a

(x0e
−ka + A)e−k(t−a) t ≥ a

x(t) = x0e
−kt + Ae−k(t−a)H(t− a)

we have
d

dt
x(t) = −kx(t) + f(t)

where f(t) = Aδ(t− a) describes the instantaneous addition of A to the material at t = a.
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case 3 We add A amount of same material periodically at every time T (units of time) we write

dx

dt
= −kx+ f(t)

where f(t) = A
∑∞

k=1 δ(t− nT )

We take LT,
(sX(s)− x(0)) + kX(s) = F (s)

X(s) =
x0

s+ k
+
F (s)

s+ k

Inverse LT,
x(t) = x0e

−kt︸ ︷︷ ︸
=xh

+ (g ∗ f)(t)︸ ︷︷ ︸
xp

where g(t) = L−1
{

1
s+k

}
= e−kt

xh → 0 as t→∞

Remark ICs don’t make any contribution towards long-time behaviour.

xp(t) = (g ∗ f)(t) =

∫ t

0

f(t− τ)f(τ)dτ

= A
∞∑
n=1

∫ t

0

ekτδ(τ − nR)dτ

= Ae−kt
∞∑
n=1

∫ t

0

ekτδ(τ − nT )dτ Dirac Delta (prop. 3)

= Ae−kt
∞∑
n=1

eknT

= Ae−kt
[
ekT + e2kT + . . .+ eNkT

]
= Aek(T−t) [1 + ekT + e2kT + . . .+ e(N−1)kT

]
Assuming t = NT + u, 0 ≤ u < T

xp = Aek(−(N−1)T−u)[1 + ekT + . . .+ e(N−1)kT ]

= Ae−ku[1 + e−kT + . . .+ e−(N−1)kT ]

In the limit N →∞, (t→∞),

xp =
Ae−ku

1− e−kT
long time behaviour



CHAPTER 5

Perturbation Methods (Theory)

Very few DEs are exactly solvable. So we need approximate methods.

Approximate Methods

1. Numerical Methods

2. Perturbation Theory (Method)

We introduce a small parameter ε in the given equation by writing approximate solution in term of ε.
If we take N(steps)→∞, then Perturbation Solution will converge to exact solution. Our solution
will have leading term (0th order), first order and second order correction. 3 different techniques

• Regular PT

• Singular PT

• Poincare PT

5.1 Regular PT

(to find roots of algebraic Equation)

Consider algebraic equation

x2 + (y + ε)x+ (3− 2ε) = 0 (5.1)

Roots of quadratic are

x± =
−(y + ε)±

√
(y + ε)2 − 12 + 8ε

2
(5.2)

58
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Assuming ε� 1, we write our approximate solution as

x(ε) = x0 + εx1 + ε2x2 + . . . (5.3)

sub (5.3) into (5.1)

(x0 + εx1 + ε2x2 + . . .)2 + (y + ε)(x0 + εx1 + ε2x2 + . . .) + (3− 2ε) = 0

(x2
0 + yx0 + 3)ε0 + (2x0x1 + yx1 + x0 − 2)ε1 + (x2

1 + 2x0x2 + yx2 + x1)ε2 + . . . = 0

compare the coefficients

ε0 : x2
0 + yx0 + 3 = 0 =⇒ x0 = −3,−1

These are roots of given equation by subbing ε = 0.

ε1 : 2x0x1 + yx1 + x0 − 2 = 0 =⇒ x1 =
2− x0

2x0 + y

For
x0 = −3 x1 = −5/2 x2 = 15/8
x0 = −1 x1 = 3/2 x2 = −15/8

similarly, to find x2,

ε2 : x2
1 + 2x0x2 + 4x2 + x1 = 0 =⇒ x2 =

−x2
1 − x1

2x0 + 4

We obtain 2 approximate solution as

x = x0 + εx1 + ε2x2 + . . . =⇒
x = −3− 5

2
ε+ 15

8
ε2 + . . .

x = −1 + 3
2
ε− 15

8
ε2 + . . .

To find the exact solution, we use linear approximation

√
(4 + ε)2 − 12 + 8ε = 2

√
1 + 4ε+

ε2

4
≈ 2
√

1 + 4ε

( ε
2

4
being very small, neglected)

(If |x| < 1 =⇒ (1 + x)n = 1 + nx Binomial expansion )

=⇒ x± =
−4− ε± (2 + 4ε)

2
=


−1 + 3

2
ε

−3− 5
2
ε

PT is acceptable
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5.2 Singular Perturbation Method

Consider equation
εx2 + 2x− 1 = 0 (5.1)

Roots of quadratic equation are

x± =
−2±

√
4 + 4ε

2ε

We propose approximate solution as (ε� 1)

x(ε) = x0 + εx1 + ε2x2 + . . . (5.2)

sub (5.2) into (5.1)

=⇒ . . . =⇒ (2x0 − 1)ε0 + (x2
0 + 2x1)ε1 + ε2(2x0x1 + 2x2) = 0

ε0 : 2x0 = 1 =⇒ x0 = 1/2 heading order correction
ε1 : x2

0 + 2x1 = 0 =⇒ x1 = −1/8 first order correction
ε2 : 2x0x1 + 2x2 = 0 =⇒ x2 = 1/16 second-order correction

Our approximate solution is

x =
1

2
− 1

8
ε+

1

16
ε2 + . . .

This gives us only one solution using Regular PT because the equation is singular. We need to
rescale the original equation.

Let
X = xεν as ε→ 0 (5.3)

x =
X

εν

sub this into (5.1), we obtain
ε1−2νX2 + 2Xε−ν − 1 = 0 (5.4)

We want to balance the magnitude of first term (ε1−2νX2) and the second term (+2Xε−ν) to obtain
a solution for quadratic equation

=⇒ 1− 2ν = −ν =⇒ ν = 1

so x = X
ε

Eq (5.4) becomes
X2 + 2X − ε = 0 (5.5)

We propose approximate solution as

X = X0 − εX1 + ε2X2 + . . . (5.6)

Sub (5.6) into (5.5), we obtain

(X1 + εX1 + ε2x2 + . . .)2 + 2(X1 + εX1 + ε2x2 + . . .)− ε = 0
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(X2
0 + 2X0) + ε1(2X0X1 + 2X1 − 1) + ε2( ) + . . . = 0

ε0 : coeff = 0 =⇒ X0 = 0,−2

ε1 : coeff = 0 =⇒ X1 =
1

2
,
−1

2

=⇒

{
X = −2− 1

2
ε+ . . .

X = 0 + 1
2
ε− 1

8
ε2 + . . .

x = X
ε {

X = −2− 1
2
ε+ . . . x = 1

2
− 1

8
ε+ 1

16
ε2 + . . .

X = 0 + 1
2
ε− 1

8
ε2 + . . . x = −2

ε
− 1

2
+ . . .

already found the first solution using RPT. We have assumed that |x0| > |x1| > |x2.

5.3 Example

Ex Given
f(x, ε) = x2 − 1 + ε = 0 (5.1)

a© apply RPT to find correction to second order by using

x(ε) = x0 + x1ε+ x2ε
2 + . . . (5.2)

b© The exact roots of (5.1) are know i.e.

x(1) =
√

1− ε, x(2) = −
√

1− ε

Show that perturbation roots from (a) agree with Taylor series expansion for x(i) to order ε2.
(i = 1, 2)

(a) Given (5.1) with unperturbed roots, f(x, 0) = 0 =⇒ x = ±1 (2). Approx solution using
the form (5.2). Sub 5.2 into 5.1,

(X0 + εX1 + ε2X2 + . . .)

=⇒ ...

collecting powers of εn 
X0 = ±1 as expected

X1 = −1
2X0

X2 = − X2
1

2X0
= − 1

8X3
0

• for X0 = 1, X1 = −1
2
, X2 = −1

8

x(1) = 1− 1

2
ε− 1

8
ε2 +O(ε3)

• X0 = −1, X1 = 1
2
, X2 = 1

8

X(2) = −1 +
1

2
ε+

1

8
ε2 +O(ε3)
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(b) Taylor Series expansion of g(ε) =
√

1− ε

g(ε) = (1− ε) 1
2 about ε = 0 to O(ε2)

g(0) = 1, g′(0) = −1

2
, g′′(0) = −1

4

x(1) = g(0) + g′(0)ε+
g′′(0)

2!
ε2 +O(ε3)

agree with the previous result.

Similarly to x(2)

5.4 Definition of Order Symbol O, o,∼

eg f(x) = sin(3x), g(x) = x =⇒ f(x) = O(g(x)) as x→ 0 because limx→0

∣∣∣f(x)
g(x)

∣∣∣ = 3 <∞

sin(3x) = O(x)
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eg f(x) = sin(x), g(x) =
√
x =⇒ f(x) = o(g(x)) as x→ 0.

eg f(x) = sinx, g(x) = x as x→ 0, f(x) ∼ g(x) by defn

5.5 Duffing’s Equation

The non linear equation of pendulum is given by

ML
d2θ

dt2
= −Mg sin θ
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where L is the length of the pendulum, M is the mass of the bob, g is the force of gravity, t is time
and θ is the angle that the pendulum makes with the vertical. Let’s assume

u =
θ

ε
and t =

√
L

g
x

then
d2u

dx2
= −sin(εu)

ε

with
u(0) = 1, and u′(0) = 0

Using Taylor’s expansion
sin(εu)

ε
= u− ε2

6
u3 +O

(
ε4
)

redefining ε = −ε2/6. Then we get Duffing’s equation in terms of t

d2u

dt2
+ u+ εu3 = 0 (5.1)

with ε� 1, u(0) = 1, and u′(0) = 0.

We propose approximate solution as

u(t, ε) = u0(t) + εu1(t) + . . . (5.2)

ε� 1, u0 > u1 > u2 . . ..

sub 5.2 into 5.1

d2

dt2
(u0(t) + εu1(t) + . . .) + (u0(t) + εu1(t) + . . .) + ε(u0(t) + εu1(t) + . . .)3 = 0[

d2u0

dt2
+ u0

]
+

[
d2u1

dt2
+ u1 + u3

0

]
ε+O

(
ε2
)

= 0

with Boundary conditions
u0(0) + εu1(0) + · · · = 1

ddu0
dt

(0) + ε
du1

dt
(0) + · · · = 0

leading term ε0: u0(t) = cos(t)

High orders ε1: d2u1
dt2

+ u1 = −u3
0. To solve it use laplace transform. see course note for details.

PT solution to Duffing’s Equation is

u(t) = cos(t) + ε[−3

8
t sin t︸ ︷︷ ︸

secular term

+
1

32
(cos 3t− cos t)]

here u1(t)� u0(t) as t→∞ Not allowed since u0 > u1 > u2 . . ..

The reason why this appears is that the forcing term in u1 is resonant because the natural
frequency of the leading term and next higher order term are same. → solution is Poincare Method.
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5.6 Poincare Method

d2u

dt2
+ u+ εu3 = 0, u(0) = 1,

du(0)

dt
= 0

Here RPT approach failed. We propose a new solution of the form (to get rid of secular term)

t =
(
1 + εω1 + ε2ω2 + · · ·

)
τ

We have introduced new parameter τ w1 and w2 are unknown parameter (to be determined)

d

dt
=
dτ

dt

d

dτ
=
(
1 + εω1 + ε2ω2

)−1 d

dτ

d2

dt2
=

(
dτ

dt

)2
d2

dτ 2
=
(
1 + εω1 + ε2ω2

)−2 d2

dτ 2

=⇒
d2u
dτ2

+ (1 + εω1 + ε2ω2)
2

(u+ εu3) = 0
d2u
dτ2

+ (1 + 2εω1 + ε2 (ω2
1 + 2ω1)) (u+ εu3) = 0

We propose
u = u0(τ) + εu1(τ) + ε2u2(τ) +O

(
ε2
)

and resulting equations is

d2

dτ 2

(
u0 + εu1 + ε2u2

)
+
(
1 + 2εω1 + ε2

(
ω2

1 + 2ω1

)) (
u0 + εu1 + ε2u2 + ε

[
u3

0 + 3εu2
0u1

])
= O

(
ε3
)

We can then write down the equations for the first three orders

d2u0
dτ2

+ u0 = 0
d2u1
dτ2

+ u1 = −u3
0 − 2ω1u0

d2u2
dτ2

+ u2 = −3u2
0u1 − 2ω1 (u1 + u3

0)− (ω2
1 + 2ω2)u0

The ICs yield,
u0(0) = 1, du0

dτ
(0) = 0

u1(0) = 0, du1
dτ

(0) = 0
u2(0) = 0, du2

dτ
(0) = 0

u0(τ) = cos(τ) and u1:

d2u1

dτ 2
+ u1 = −u3

0 − 2ω1u0

= − cos3 τ − 2ω1 cos τ

=

(
−2ω1 −

3

4

)
cos τ − 1

4
cos 3τ

The first term on RHS represents secular term. We avoid this term by plugging coeff of cos(τ) = 0

=⇒ −2w1 −
3

4
= 0 =⇒ w1 = −3

8
=⇒ d2u1

dτ 2
+ u1 = −1

4
cos(3τ)
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The homogeneous solution is u1h = A cos τ + B sin τ and the particular solution is of the form
u1p = C cos 3τ . By substituting into the equation, C = 1

32
. Therefore, our complex solution at

order ε is

u1 = A cos τ +B sin τ +
1

32
cos 3τ

To satisfy the zero ICs we need A = −1
32
, B = 0, to yield

u1 =
1

32
(cos 3τ − cos τ)

PT solution (upto first order, 2 first term correction)

u = cos τ +
ε

32
(cos 3τ − cos τ)

with

t =

(
1 +

3ε

8
− 95

1024
ε2
)
τ
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