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CHAPTER 1

Theory of Second-order Linear DEs

1. List of solution strategy for DEs
(a) Method od undetermined coefficients
(b) Integration Factor
(c) Separable DEs
(d) Variation of Parameter
(e) Reduction of order
2. Approximation Method
(a) Perturbation Method
(b) Series Solution
(¢) Numerical Methods
e Newton’s Method
e Buler’s Method
e Runge-Kutta Method

Comment Some reasons why we study linear second order ODEs

e have some various applications to nature (most, frequently used)

e the general theory extend quite naturally to higher order linear DEs
i.e. we can write all linear DEs as a system of first order DEs
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1.1 Classification of DEs

Defn A DE involves at least one independent variable (say x) and a dependent variable (say y)
and their derivatives. If such DE only has one independent variable, it is called ordinary DE (ODE).
A general form of n'* order ODE is of the form

d"y dy
Fl—=,...,-2 =
<dxn7 Jd‘r?ny) 0

Defn We say that ODE is linear if
1. y or any of its derivatives appear only to the first power
2. y or any of its derivatives are not multiplied by any of y or its derivatives
3. y or any any of its derivatives are not arguments of any nonlinear functions.
Linear ODEs are of the form
an(x)% +...+ a1% + agy = f(x)

The above equation is homogeneous if f(z) = 0 with constant coefficient. All a;(z) constant

Examples
1. ¢/ = 5 linear first order
2. xy =5 linear first order
3. yy' = 5 nonlinear first order

4. y" + xIny = 0 nonlinear second order

1.2 Second order linear DEs

The most general form of SOLDE is

d? d
as(x) 5 + ai(0) 22 + asla)y = f(a)
Assume that as(x) # 0. We divide by aq(z)
dy dy
I P22 -
— B P+ Q= R

where P(z) = ul) O(z) = @@ R(z) = [(z)

az(x) az(x)’ az(x)

The associated homogeneous Equation is

y'(x) + P(x)y+Qx)y =0 (1)
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Normal Form of Homo. DE: " 4+ qu =0

We define
y(x) = u(z)v(z)
Yy =u'v+v'u
y// — u//,U _"_ /U//u _"_ 2u/,U/
Sub all above into (1)

(u"v +v"u+ 2u'v") + P(x)(v'v 4+ w') + Q(x)uv = 0
vu” + (vP(x) + 20" )u' + (V" + P(z)v" + Q(x)v)u = C (2)
! P(z)

We pick v(r) such that Pv +2v' =0 = © = —=

o(z) = e exp (_ / P(a;)da:>
-en{ -5
1/+<%+P<%)+Q>u:0

Put C =0,

eq (2) becomes

20"+ Pv=20 diff wrt x,
22+ P+ PL =0

LU R i
v 4 2
P! pQ
" s _
u” + \Q(a:) 5 I u
q(z)
= u" +q(x)u=0 Normal form of Homo. eq

where g(r) = Q(r) — P — (M)’

Theorem Existence and Uniqueness Thm for SOLDE
The SOLDE is in the form

y'+ Pa)y + Qx)y = R(x)
Let P(x),Q(x), R(x) are continuous functions in closed interval [a, b]. If zq € [a, b], and if y(z() and

y'(zo) are any numbers, then the above DE has only one solution on the entire interval such that
initial conditions are satisfied.

General Solution of SOLDE y(x) =y, + v,
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Step 1 Find the general solution of homogeneous solution, y, = c¢1y1 + c2y2, Where ¢1,co € R,
and y; o are linearly independent solutions.

Step 2 particular solutions (1) variation of parameter (2) method of undetermined coefficient

Def Let y;,y> be 2 solutions of SOLDE. We define Wronskian of 2 solutions as

Y1 Y2
Y
We have W (y1,y2) # 0 = y1&yqare LI solutions
If W(y1,y2) = 0 then y;,yo are linearly dependent solutions. i.e. y, = ay;

W(yh y2) = = y1y§ - ygyi

Theorem (Uniformity and Wronskian)
If y1(x) and yo(x) are solutions of homogeneous problem, y”(x) + P(x)y" + Q(x)y(z) = 0, then the
Wronskian is either 0 or never zero on the given interval [a, b]

Proof We have

W(@/hyz) = ::in ::ZZ

= 1Yy — V1Y

Diff wrt x

W' =41y — yoyf
Since y1&y- are solutions of homogeneous problem,

yi = —Pyy — Quu

Yo = —Pyy — Qua
Take them into W', we got W' = —Ply1yh — y1y2| = P(x)W

= W =W, eXp(— [P (:L‘)dx) where W, = e° for some arbitrary constant c.
Then W depends on Wy, so it is either zero or never zero on given interval [a, b].

Lemma (Linear Dependence & Wronskian)
If y1 (x) and yo(x) are two solutions of the homogeneous problem, then they are LD on given interval
la, 0] iff W (y1,y2) = 0.

Proof Suppose y;,y, are LD. Then y = ay; where « is a constant. Then

Y1 Y2 Y1
W 5 - — =
A Rl A
Now suppose that W (y;,y2) = 0, then ??j} gj? = 0. Since the determinant is zero, then the
1 Yo

matrix is singular, so one of the column in the scalar multiple of the other column. Then y5 = ay;.
So y1 &y, are LD.
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Example Show that y = ¢;sinzsina 4 ¢y cosz is GS of ¥ + y = 0 on any interval. Find y, for
y(0) = 2 and y"(0) = 3.

Solution Let y; = sinz,ys = cosx. Can verify that y/ +y; = 0,95 + y» = 0. From
superposition principle, GS of given DE in

Y =cC1y1 + CoYyp = c18inx + cpycosx
Yy = clcosT — cysinx
Using ICs, then we can know ¢y = 2, ¢; = 3, then

Yp =3sinx + 2cosx

1.3 (Initial Value Problem) IVPs VS (Boundary Value Prob-
lems) BVPs

ODEs can be classified into IVPs and BVPs. The equation themselves can be same, what differs
are the conditions that are imposed to determine the unknown constants.

For IVP, 2 conditions are imposed at the same time. Time is independent parameter.
eg: y(0) = o, y'(0) = B.

For BVP, 2 conditions are imposed at different time or locations. In general, we pick space
coordinates independent parameter.

eg: y(0) =,y (1) =B

1.4 Reduction of Order - SOLDE

The idea is to use the known solution to find another solution. The homogeneous problem is
y'+ P(r)y +Qz)y =0 (1)
Let y1(z) be one of the solution for eq(1). Let’s assume the second solution is of the form

o) = v(@)y(x) (2

Where v(z) is an unknown function.

Yo =0y +oyr  (3)
vy ="y + Vs + 0y oyl
vy ="y + 20"y +oy) (4)
Sub 2,3,4 into 1, we obtain,

= Y5 + P(@)yy + Q(@)y2 =0
collect the terms, then

v(yy + P(x)y) + Q(z)y1) + v (2, + Pyr) +0"(y1) =0
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then

" /
LA LI 10
v hn

then
In|v'| = =2In|y| — /P(x)dx +C

v = %exp(—/P(x)dw)
i
WLOG, take C' =0,A =1, then ...
1 x
v= / —5 exp (—/ P(s)ds> dx (6)

41 0

1
y2(z) = 1 / 7 P (/ P(s)ds> dx

1

where y;(z) in the solution of Eq(1) (Homogeneous problem)

where A = +¢¢

SO

Wy, y2) = ... = e~ J Pla)de # 0 = independent solutions

Example Let y,(z) = sinz be one of solutions of DE y” + y = 0. Find another solution using
reduction of order.

Soln Suppose yz(x) = v(z)y1(x) = v(z) sin(x) (1)
be the second solution of DE ¢ +y =0 (2)
Yy =vcosx + v sinx (3)
yy =v' cosx —wvsinzx + v’ cosz + v sinx
yy =v"sinx + 20 cosx —vsinz (4)

Sub 1,3,4 into 2, (after some cancellation)

v cos T
— = —2—
v sin x
then solve it, we have
v = Acsc?(x) A = +e°

v(x) = —Acotz+B WLOG, B =0, A = —1, then v(x) = cot z, then yo(z) = v(x)y;(z) = cosx

Example Let y;(z) = 2 be one of the solution the DE z%y” + xy’ — 4y = 0. Find the second
solution using reduction of order.
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Soln  We write this E in standard form. = # 0, divide by .

1 Yy
/! !
2y = Zy=0 1
Y Yy 2 Y ( )
Compose it with standard form,

y'+ Py +Qx)y =0 (2)
Use the formula, we get

wala) = vla)ys(a) = (o) [ @exp(— / P(S)ds)da:

then ...

GS: y = a1y + coyo = 12 + %

1.5 Variation of Parameter

Let 41 (z)&y2(x) be linearly independent solutions of a homogeneous DE

y'+ P(x)y' + Q(x)y =0 (1.1)
Consider
y" + P(2)y + Q(v)y = R(x) (1.2)
We assume y, is of the form
Yp(x) = vi(2)y1(2) + va(2)y2() (1.3)
Y, = V1Y1 + 1y + UgYa + vays
Choose v;&wv4y such that
vy + v3y2 = 0 (1.4)
Yp = V191 + V21 (1.5)

Yy = V1yy + vy + vhys + vayy
= ... = uly] + P(@)y] + Q@] + valys + P(x)yh + Q(x)y2] + V1Y) + vhys = R(x)

Uiyl + U;y2 =0 Y1 Y2 Ull N 0
o = R@) ] w| T | RG@)
V1Y1 + VYo (z) Y Y2] V2
Inverse of 2 x 2 non-singular matrix

a b7 1 [d —b
c dl  ad—bc|—c a
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where W = 195 — 4oy

()R (2 R(a)
W (y1,2) ! W(yl,yz) W)
_ _ —1a(7) R(z) y1(z)R(z)
vt =) [ [ SR o | [ 65 5]
Particular solution of inhomogeneous DE " + P(z)y' + Q(x)y = R(x)

= vy(x) = vo(z) = x

Example Find a particular solution of y” + y = csc(z) using variation of parameter.

Sol The GSof y"+y=01is y, = c1y1 + Coyo = Yy = SinT,ys = COST
— W(yl,yg):...:—l%o

Hence, vy, y2 are independent, then using the formula

_ —cosx s sin x csc © _ ,
Yp =sinz —1d:v + cosx —1dx =sinzln|sinz| — xcosx

is the particular solution of ¢y’ +y = cscx

Ex Verify it!

d x
d
%ln|x|* ,x#0

(these two by chain rule)

Soln
Yy, =sinzIn|sinz| — zcosz
y, = coszln|sinz| + rsinx

2

X .
+xzcosx +sinx

y, = —sinzIn|sinz| 4+ —
sin x

"
Yp T Yp=...= = =Ccscx
sin x
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1.6 Example of 2"? order ODEs with non-constant coeffi-
cients

1. Bessel’s Equation
o2y + xy + (2* — p*)y = 0, peEZ

It determines the radial structure of the solution to Laplace’s equation in both polar & spher-
ical polar coordinates.

2. Legendre’s Equation
(1—2%)y" =22y +p(p+y=0, peLZ

It determines the angular structure of the solution to Laplace’s equation in both polar &
spherical polar coordinates.

3. Laguerre’s Equation
vy’ + (1 —2)y +ay =0, a€R

It represents the radial part of eigenfunction for hydrogen atom.

4. Hermite’s Equation
y" — 2xy + 2ay = 0, a€eR

it represents the set of eigenfunction for quantum mechanical harmonic oscillator.



CHAPTER 2

Series Solution and Special Functions

We will construct the power series to SOLDE with non-constant coefficients.

Def Transcendental Function:

Elementary functions that consists of algebraic functions such as trig, exponential, log and their in-
verses with operations: addition, subtraction, multiplication, and division are called Transcendental
Function.

Ex
re ¥ +1In(2? + 1)

arcsin(1 + 322) — In(a? + 5) + |z + 3|

Yy = tan

Def Special function: Any function that is not a transcendental function is called special function.

Ex Bessel’s function, Hermite Function

2.0.1 Review

Def A power series in x about g is defined yo be

Zan(x—xo)":a0+a1(x—:1:0)+...

n=0

Normally, we set xg = 0, however, we can pick xy # 0.

12
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Def A series is said to converge at z if
. m n .
L limy oo ) g Gn@™ exists

2. The sum of the series is the value of the limit

Def Suppose a power series converges for |x| < R for some R > 0, then R is called radius of
convergence. Let us define its sum by f(x) then

[e.9]

f(z) = Zanx” = ag + a1x + ax® + . ..
n=0

Then the function f(z) is smooth. In other words, it has continuous derivatives. Additionally, we
can differentiate it term by term.

= Znanx”_l =a; +2ax + ...

and

Znn—lanx = 2a9 + 3 - 2azx + . ..
n=2

Def A function f(x) is said to be analytic at a point z; if there exists a power series

Z an(x — )"
n=0
such that

oo
E Qp ZE—IO

Vx sufficiently close to xg.

Equivalently, the function f is analytic at z( if its Taylor Series

> )y

converges to f(z) Vaz sufficiently close to .

2.1 Series Solution to First order ODE

Consider ¢ =y (1) !
We suggest a power series solution of the form

oo

y:Zanx":a0+a1x+a2x2+... (2)
n=0

lalso can be solved by using separation of variable
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y = Z na,x" ' = a; + 2asx + . .. (3)
n=1
Sub 2 3 into 1 - -
S =S
n=1 n=0

Not in comparable form, then index shifting

[e.9] o0

_1 index shifting _
E na,zr" !t ———5 E (n+ 1apq2" 1 = E Apir 2"
Then,
o0
E (n+1)aps —ay)z" =0
n=0

This equation in the power series representation of zero. = each of the coefficients in the series
is exactly zero.

ap
n+1

= Qs = . n=0,12,...

then ...
agp z"
Ay = — — Y = Qo E —_—
n! n!
n=0

If we have IC y(0) =1

Defn Standard form of SOLDE (homogeneous) is
y'+ Pa)y + Qz)y =0
The behavior of the solution near x, is completely determined by the behavior of P(z) and Q(z).

We say xy is an ordinary point if P(z) and Q(x) are analytic at x.
Defn Any point that is not an ordinary point is called singular point.
Ex

y'+y=0

Let’s assume the power series solution of the form y = > 7  a,2",|z| < R with R > 0
o0
y/ _ Z na/nxnfl
n=1

y" = Zn(n — Da,z"?

n=1
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y' = Z(n +1)(n+2)ap412"
n=0

V' +y=0 = > [(n+1)(n+1an+a,)2" =0 = (n+1)(n+1)an2+a, =0
n=0
Qnp,

n+2 — :0,1,2,...
T T D2

To specify a unique solution, we need to know ap&ay.

Qg aq
J— n — —1 n , n fg n
i = (S gnp e = G g
We can write
oo xQn oo I2n+1
— ) L —1)
Y %Z;( >@mr+mgg( N Cr—

Y = apCosT + aysinx

Note If we assume f(z) =Y~ a,z", then

o0 o
f(z) = Znanx"_l = Z na,z" !
n=1 n=0

This is because n = 0 term of the derivatives is zero which means it does not change the value of
the series. We can include the zero and not as needed.

o0 o0 oo
= f'(z) = Znanajn_l = Znana:”_l = Z(n + Dap2™
n=1 n=0 n=0

f(x) =207 g ana”

oo

f'(x)=>"g(n+1)(n+ 2)a, 22" by index shifting

y”  do index shifting }

x2y// use Zzo:l(n)(n _ 1)ana:”_2 — you are trying to get Z( )x

n=0
y' — do index shifting
22y’ — do not use index shifting

Ex find the series solution for the Legendre’s equation

(1—a2*)y" — 22y +p(p+1)y=0  where p is a constant

) 20, plp+1)

_1—x2y 1—$2y:0
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Compare with v + P(x)y + Q(z)y =0

2 _plp+1)
1 —2a2 Q) = 1 — 22

Here, P(z) and Q(x) are analytic about = 0, z = 0 is an ordinary point.

P(x)

x = +£1 is a singular point since P(x) and @(z) are not defined (or analytic)

To find series solution we propose y = >~ a,z". We need power series representation for
y" — 2%y — 2zy’ and p(p + 1)y

plp+1)y = Zp(p + 1)a,z"

n=0

o0
y = g na,x" = E na,x" "
n=1 n=0

o0

— 21y = Z(—Znan)xn

n=0

y' = Zn(n —1Dap,z"? = Zn(n — 1ayz"?
n=0

n=2
oo

— —a%y = Z —n(n — 1)a,x"

n=0
oo

" = Z(n +1)(n + 2)a, 2™ — index shifting

n=0

Sub into the DE,
y" — a2y =22y +plp+1)y =0

= Z((n + 1) (n+2)ape — n(n — a, — 2na, + p(p + a,)z" =0

It is essential to write each term in the DE as a power series with the n'* term a multiple of 2"

= (n+1)(n+2)ay2 =[nn—1)+2n—pp+1)a,
[n(n—1)+2n —p(p+ 1)]a,
(n+1)(n+2)

Apy2 =

—p(p+ 1) +n?+n=—[p*+p—n®—n]
===+ (p—n)] = 2=
=—[lp—n)p+n+1)

We need ag and a; to start with

—[(p—n)(p—n+1)]
(n+1)(n+2)

n

e For even terms:
(=)™ [TTiZy (p — 20)] [TTi, (p + 20 — 1)]
(2n)!

Qop = ao

e For odd terms: .
(=)™ [Ty (p + 20)] [T (p — 2 — 1)]

(2n + 1)!

Aop+1 = a1
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2n
y—E apx" —E a2n$ +E a2n+135

nOLo

Lp°: even Legendre’s polynomial of order p
Lp': odd Legendre’s polynomial of order p

L0 = a {1_p(p+1) 2 P =2+ 1)p+3) _}

or ¢ 41
1 2 ~D(p-3 2 4
L;:al{x_(p (p+2) 5, (=1 -3)p+2)(p+ )x5_“}
31 51
for
p=0 Ly=1
p=1 L=z
p=2 Ly=1-32"
5
p= Lézx—gx?’

Theorem (Power Series Solution at ordinary part)

Let xp be the ordinary point of our standard homogeneous DE and let ay and a; are arbitrary
constraints. Then there exists a unique function f(x) that is analytic at xy and that is the solution
of given DE in a certain neighbourhood of this point and it satisfies the 1Cs

y(iﬂo) = Qyp, y,(iﬂo) =m

Note Let xg be a singular point.
Consider homogeneous DE 4" + P(z)y’ + Q(x)y =0 (1).
If either (or both) P(z) & Q(x) are not analytic at x.

Defn Suppose that z, is a singular point of Eq (1) such that (z — x¢)P(z) and (z — 20)?Q(z) are
analytic at xg, then zy is a Regular Singular Point (RSP). Otherwise, ¢ is an irregular singular
point.

Ex Legendre’s Eq
s 2z, pp+1)
1 — a2 1 — a2

show that x = 41 are regular singular point.

Y =0, p="?

Soln Here, P(z) = —12%,Q(z) = p+1)
Consider z = 1, we notice that P(z) and Q( ) are not analytic at z = 1.
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Consider (z — 1)P(x) = (v — 1)-2% = 2=

z2—1 x+1

(x—1Dp(p+1)
(1+ )

(z —17Q(x) =

= we see that (x — 1)P(z)&(z — 1)2Q(x) are analytic at z = 1.
.2 =11s RSP.

Example Bessel's equation 2%y” + xy’ + (2° — p?)y = 0
Check z = 07

Soln In standard form,
1 $2 2
y// + _y/ + 2p
x x

y=0

2

Q) = =2

At © =0, P(2)&Q(x) are not analytic = x = 0 is a singular point.
eP(z) =1, 2°Q(x) =2* —p* = analytic

So z =0 RSP
To solve Bessel’s equation about RSP x = 0, let us consider the associated Euler’s equation

2*y" + poxy + qoy =0

where py = lim,_,o xP(z) = 1 and ¢y = lim,_,o 2°Q(z) = —p?

Note The general for associated Euler’s equation is
az® + bry 4+ cy =0

around x = 0

General Method for RSP
We get the general Method for Regular singular point z = x( as
(z — 20)*y" + po(z — 20)y + qoy

(associated Euler’s Eq) where

po = lim, ., (2 — x0) P(2)
do = hmm%zo (LU - IO)Q('T)

We propose the general solution of above DE as y = 2" into [z%y” + pozry + qoy = 0]
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— r(r—1)4por+qo =0 Indicial eq
—_— r2—|—(p0—1)7’+qO=0

—(po — 1) £ v/(po — 1)2 — 4qo
2

- o=
We have 3 cases:
@ Real & distinct roots (ry # ra)
GS: y(z) = c12™ + o™
(2 Real & Equal (r; = r9)
GS: y(x) = c12™ + co(Inx)z™
(3) Complex Roots rig=axif

rinz

2t =e"" =e

_ 6ln:r:(aii,3)
— ealnxeizﬂlnz

= M eos(BIng) isin(BIn )]

where z > 0

Indicial Equation

—(po — 1) £ v/ (po — 1)? — 4qo
2

r(r—1)4+pr+qp=0 = rip=

Real and equal roots: r; = 1y
(po — 1) = 4qo

one of solution will be

ylzx”:x_< =) = po=1-—2nr

Second solution using reduction of order

For z > 0, v(z) = Inx, so yz(x) = vy = In(z)x™

GS

y=c12™ + cp(lnx)x™

Method of Frobenius (for singular points)

In general, we define power series of the form

o0 o0

y(x) =" Z ax" = Z anz" "
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with ag #0 and a,, =0 Vn < 0.
(2z + 1)y —y = 0 around x = 0.

Ex Consider 22%y" + x
Solution DE: )
3+ 1
/" 2 /
—(—)y=0
(7)) ()
on standard form .
;tw 1
P(z)= (2 =—|53
@- () aw--(5)
Now 1 1
zP(z) = 3 + z, 7’Q(z) = —5 = analytic at x = 0
Po = }sl_rf%)xP(:v) =3
g = lim 2°Q(z) = 1
0 z—0 2

1

Corresponding Indicial Equation is
r(r—=1)+pr+q¢gp=0 = r= 1,—5

We propose the series solution of the form
o0
y = Z anITH’T,
n=0

2y 2xy Y, —y

ag # 0,a, =0 forn <0

We need expression for 2z

o
_y pry E —an:(jn+r
n=0
oo

y/ _ Z(n + ,r)anxn—i—r—l

n=0
(n+1r)a,z"" 1 = Z(n +7r)aa"t"

n=0

zy =z
n=0
2x2y’ _ 21,2 Z(n + T)anl,n—l-r—l _ ZQ(n 4 — 1>an_1xn+r
n=0 n=1
S 2n )+ - Daga

n=0

2. 1

y" = 222 Z(n +7)(n+r—1a,a"™ % =

2x
n=0

Take them in to the DE
= 2(r—Drapz” +3 .- 2(n+7r)(n+r—1Da,z™ + > 2(n+7r—1)a,_ 2" + (r —

Dagz" +> 0" (n+7r —1)az"™ =0
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continued r=1,—3

:>Z (n+r—=1(2(n+7r)+1)a, +2a,-1)]2" =0

n=1
n+r—1#0 = 2(n+r)+1)a,+2a,-1=0

Recursion Relation

. = _anfll, n=1,2,
n+r+s;
e Forr=1,a, = —i’;’%l
2 4
a, = ——a ay = —a,
1 5 0, 2= 3500
o Forr=—3,a,=—"=2
Qo
a; = —ao, Qg = 5
*. 2 LI solution are
=21 2SB—|— 4x2
v 57 " 35
_1 1
Y=z 21—+ 23: —
Therefore, the GS
= + = 1 2 + i +ear2 (1 + 1 s
Y =CY1 T Y2 = 1T 53: 3533 CoXx T 2:15

2.1.1 Extended Method of Frobenius

Around z = x4 (R.S.P), we have associated Euler’s Equation as (z — z0)%y” + po(z — o)y’ + qoy = 0

po = lim (x — zo)P(x)

T—T0
g = lim (z — 20)?Q(x)
T—T0
By substitution,
y=(z—x)"

We obtain Indicial eq:
r(r—1)+por+q =0

Consider 1 > r, € R

1. There is one solution of the form

y1 = (x — xp)" Z an(x —x0)", 00 # 0
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2. If ry — ry # Z, second LI solution will be

Yo = (& — x9)"™ Z bp(x — x9)", by # 0
n=0

3. If ry = ro = r, second LI solution using reduction of order is

y =y In(x —x0) + (x — 29)" ch(az —x9)",c0 # 0
n=0

4. ry — ry is a positive integer, the second LI solution

y2 = gy In(z — mo) + (x — o)™ Zan(ﬂf — )", do#0
n=0

2.1.2 Bessel’s Function

The solution of
x2y// 4 xy’ 4 (12 _pZ)y =0
is called Bessel’s function.
x =0 RSP = (standard form)

2?2 — p?
22

1
y'+ -y + y=0
e

= limxP(x) = li —=1
po=limz (x) lim % .
22 — p? _

= lim 2°Q(x) = lim 22 -
do z—0 Q( ) x—0 {1}2

Indicial Eq:
r(r—1)+per+¢q =0

r?—pP=0 = r==4p

We consider r =p > 0

o0
y = E anpz" "
n=0

We need expression for
20 12 2
ry ,ryYy,ry,—py
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_p2y = Z —p2anl‘n+r
n=0

a:zy/ = Z an—ﬂnw
n=2

zy = Z an(n +r)z"*"

n=0

22y = an(n+7r)(n+r—1)2"*"
n=0

Py tay 427y —pPy=0 = > (n+r)(n+r—1Daa"" +> an+r)a" 4. =0
n=0 n=0

= Z Apox™ "+ Z an[(n +7)? — ™" =0
n=2 n=0
since ag #0and r=p >0

- Z[an,Q —+ (ln((n + T)2 _ p2)]xn+r + a0<7,2 _pQ)xr + a1<<7’ + 1)2 . T2)$r+1 -0
n=2
Sincer=p>0,and 2r+1#0 = a; =0

We must have
An—z+ ap((n+71)>—1*) =0

—Gp_9 = ap(n(n + 2r))

—Qp—2
n — PR :2,3,4,...
¢ n(n+ 2r) "
We derived a; =0 = a3 = a5 = a; = 0. So all odd term coefficients
:>0J2k+1:0, ]C:O,LQ
(=1)*ag

92 = R ). (k+ )
one of our solution is
> -1 k,.2k
Y
k:12 E1+p)...(k+Dp)

y = apx?

Bessel’s Function To find second solution, we discuss different cases

1. 71 — r9 = 2p is not an integer, second LI solution. Choose p — —p

B . (_1)k$2k
Y2 = dot [Z 9% EI(1 — p)... (K —p)]

k=0

2. r1 = 19, use reduction of order.

3. 11 —ro = 2p is an positive integer, we can use reduction of order to find second LI solution.
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2.2 Point at Infinity

y'+ P(a)y +Qx)y =0
It is often desirable in physics, applied and pure math to study long time behaviour of the
Y+ P(x)+Q(z) =0 (2.1)

for a very large value of independent variable. For instance, if independent variable is time, we may
want to know the solution of the system once the transient disturbances are faded away. In other
words, t — 00.

We sub t = % in the original equation and transform in given DE into a new variable.

1 dt -1

t=— — ==t
x — dr 22
gyt dy
dr  dt dx dt
d’y dy
"= =t"—ZL 4232
Y a7
Sub into original DE, we have
T ERIO) EP IO
dt? t 12 dt t4
L (2 PA)N . QML)
N c_ — 0 2.2
i+ (t 5 )y+ ay (2.2)

Here dot represent differentiation wrt ¢.

If we say Eq(2.1) has © = oo are ordinary point, a regular SP with y = €™ with exponential
roots r and ro, or an irregular SP, then ¢t = 0 is ordinary point, a regular SP, or irregular SP with
Eq(2.2).

Example Consider
" 4 / 2
vy +-y+—=5y=0 at r = 0o
x x
— 2% +dry +2y=0
what’s the nature of the point?

subt =1
z !

— y =1y, o =209+ t"
Original DE becomes
4 4 263 + 4t(—t2y) + 2%y = 0
2

j— T+

; 2E(y:O near t =0
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Here P(t) = =* and Q(z) = % are not analytic at ¢ = 0, and

limtP(t) = -2, limt*Q(x) = 2, analytic

t—0 t—0

this implies ¢ = 0 is a regular SP of equation 2.
—> x = oo is a regular SP of equation 1



CHAPTER 3

Systems of First-order DEs - FODEs

Defn If x(t), z5(t), z3(t), . .. are unknown functions of a single variable ¢ then the most general
FODE in these unknown functions is,

I:1 = fl(Il, . ,ZL‘n,t)

I:Q = fg(.Th P ,flfn,t)

In compact form,

or L
Y= (_’7 t)
n = 2, the non-linear system:
example (Predator-Prey Model)
Lotta-Volterra Equation
T = —axy + brixy

fg = CT9 — dlL‘leg

where a, b, c,d > 0, where
x1 — concentration of predator

x9 — concentration of prey

Example n = 2, linear system: Simple Harmonic Oscillator,

.Tflzl’g

ZL:Q = —Ld2l'1

T = 29 = w2x1 = I+ w21'1 =0

26
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G.S: x1(t) = ¢1 sin(wt) + 5 cos(wt)
The most general form for a linear system of FODEs is
i = AT+ b(t)
or
dy
priait

where A(t) is an n x n matrix of coefficients a;;(¢). b(t) is 1 x n matrix of column vectors, with
coefficients b;(t).

Reconsider the SHM example

$'1 = T2 - 0

l"l - 0 1 T + 0

St'g o —CUQ 0 i) 0
Any n'" order DE in function f(t), linear or nonlineaer, can be expressed as system of FODEs as
follows:

(1) We assume that DE in y(t) can be

@ Define

za(t) =y V() = da(t) = 4™ (8) = g(
Why do we use system of FODESs?

(1) For theoretical reason: Existence-Uniqueness Theorem (Easy to prove).

(2) For practical purpose: (Easy to apply numerical methods).
System of FODEs
d_) = 5 . — —
o =Jleg)  with ICs g(ao) = G
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In 1D: % = f(x,y) with y(xg) = yo. If we consider j—z =y, y(To) = Yo.

G.S. y(x) = ype”

Consider % = y%,y(xo) = Yo

Unique Solution exists only if y > 0.
1 . .

2yz = x + c. Solving if ¢ = 0.

y = % (two solution).

1o = 0 unique solution doesn’t exist.

In short, we can relax the condition of differentiablility. We need a weaker form of ODE.

Weaker form of ODE

—

System of FODEs: Z—g = [(2,9), ¥(xo) = Yo

In 1D, % = f(z,y) with IC y(z9) = yo.

Integrating,
x d x
| Gs= [ s e

:iyw—mmzf%@mmw

M@zmw+/ﬁ@mm@

weaker — no need to differentiate the function.

3.1 Picard’s Method

We will construct an approximate solution to ODE while using the interval /weaker form of ODE.

To begin with
Yo(x) = o (IC condition)

Roughest Approximation to the solution. It obeys only ICs. We will construct a solution using
successive iterations.

mm=m+/3@ww»w
mm—m+/7@ww»w
%w:m+/U@MH@MS
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Example ¢ = z,y(0) = 1. exact soln: y = e”.
Picard’s Approximation:

yo(s)ds=1+z

2

2 $3

X
ds =1 T
ya(s)ds +x+ 5 +3!

Ox LU2
yo(z) = 1+/ yi(s)ds=14+z+ —

0

/

z 172 IS "
(@) =1 i (s)ds = 1 e+
Yn () +/Oy 1(s)ds +x—|—2—|—3!—|— +

lim =¢e*
n—oo

Example consider ¢y =z +y, y(0)=1.

= y(x)=—(x+1)+Ce*, y(0)=1

= y(r) =—1—2+ 2" exact solution
by Picard’s Approximation: we have
yo(z) =1
2

yl(x)zl—l—/ [8+1]d5:1+x+%
0 .

T 82 1’3
ya(x) =1+ 1425+ —|ds=1+2+2"+ =
o | 2! 3!
[ 83 1’3 ZE4
yg(x)=1+/ 1+2s+s°+=|ds=1+x+2°+ =+
o | 3! 3 4l
T T 83 84 l’3 .134 1’5
=1 14+2s+s*+ =+ —|ds=1 o —+ =
Ya () +/0_+s+8+3!+4!}5 trtatt ot ety
1’2 IES " xn—i—l
n =1 20 ==+ .
hnl@) =1t <2!+3!+ +n!>+(n—|—1)!

lim y, = —1 —x + 2¢"

n—oo
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3.2 Linear System and the Fundamental Matrix

3.2.1 Transforming a Scalar Equation to a system

We showed that any n'" order scalar equation (ODE) can be written as a system of n first order
DEs. We show how to works for particular linear scalar equation of order n as follows. We have

dny dn—ly dy B
T + Pl@)% Tt Pnfl(x)% + Pu(7)y = g(z)
We define
n=y
Yo =
Ys = y”
Yn = y(nil)
we have
d™y
don w1 — Poo1ys — - — Pry, + g(x)
y1(x) 0 1 0 0 y1(x) 0
d y2(x) 0 0 1 0 Y2 () 0
Yn—1(x) 0 0 0 1 Yn—1(x) 0
yn(x) _Pn(x) _Pnfl(x) —P,_9 - _Pl(x> yn(m) g(SC)
In general form
dy R R
D AT, o) =i

Ex we consider general form of homogeneous second order DE
y'+ P)y +Qx)y =0

y'=—Px)y - Qz)y
of = )=l )0

Theorem (Picard’s Theorem for Linear System)
Let A(x) and b(x) be continuous functions on the closed interval I € [a, 8]. Then there exists a
unique solution to the IVP. So

dy _
dv

We define

A(@)g+b(x),  Folwo) = Fo

where xg is the initial point in 7 and 1 is a constant vector with n-components. Solution exists
throughout the interval I.
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3.3 Homogeneous Linear System of Equations

Defn If A is a constant, it is called an autonomous system. If RHS of

dy
S A)g
I (z)y

depends on x explicitly, we say the system is non-autonomous.

y1 ()

T
Remark We define the solution ¢ as a vector of the form y(x) = y2§ ) where ¢ is C* (contin-

uously differentiable) vector-valued function is the given interval I € R™.

Defn If A is constant, we define L (a linear operator) as Ly = (% — A) y. We define the space
of solutions for Ly = 0 as the kernel of the linear operator L.

3.3.1 Solution space for system of DEs

From the linear algebra, we have
(D Identity element

(2) Algebraic closure — Principle of Superposition

Theorem Let y = A(x)y where A(x) is continuous on interval /. If a solution ¥ satisfies y(xy) = 0
for some ¢ € I, then y(z) =0 for all z € I.
Theorem Let ¢ = A(z)y where A(z) is continuous on interval I. If solutions 4 (z), ..., yn(z) are

linear independent at point zy € I, then they are linear independent for all x € I.

Def We define Wronskian for a system of equations as

Wigi(2), ... gn(@)] = det[gi (@), ..., ()]

Theorem (Dimension of a solution space)
The solution space of % = A(x)y, where A(z) is continuous in a n-dimensional vector space.

Remark A basis of the solution space is a set of n-solutions to DE which are linearly independent
on given interval [I.

That is, Wronskian of solution is nonzero on I. To construct a standard basis for solution space,
we begin with standard basis of R". i.e. {é},...,€,} where €; = {0,...,0,1,0,...,0} with only 1
in the j-th entry.
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3.3.2 Basis for solution space

In R”, we write {é1,...,€é,} as standard basis of R". We take the standard basis vectors to be
initial conditions for our DE and thus the standard basis for system of DE consists of

where the ICs at g are y;(zo) = €j for j =1,2,...,n.

Def The fundamental matrix at xy denoted by ®(z, z) is
CI)('T?xO) = [gl(x)a e 71771(‘1.)]

The fundamental matrix is formed with standard basis vectors as the columns of the matrix.

3.4 Finding solutions using eigenvalues

3.4.1 Review

We have the solution for homogeneous scalar equation as y = e**. This may have real & distinct
roots or real & repeated roots or complex conjugated roots.

To solve system of equations

i
2 =9y = A7 1
o =0 7 (3.1)
we need the solution of the form
i = vel (3.2)
Sub (3.2) into (3.1)
M= Av M0

we find that |[A — A\I| = 0 for non-trivial solution.

To find eigenvalue and eigenvectors. Then we write G.S. using superposition principle.

Ex Find the eigenvalue of matrix

—

(11 dy .
A—[y 1} for %—Ay

Soln We consider the trial function i = e**. Sub it into given DE, we obtain
(A= XNT=0

Then A must satisfy CE (characteristic equation), ... then A = —1, 3.
For A = —1, they = ().
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For A = 3, /_3 = (;)

= —x 1 + 3x 1
= C1€ Co€
Y 1 _9 2 9

This solution can be determined completely in terms of finding ¢; & ¢y with given ICs.

To compute fundamental matrix, we must find 2 solutions that have ICs to be standard basis
of R%2. We pick

Now . )
= . 1 1 C1 . L
n (O) - [_2 2:| (CQ) - (O) = (1 =C =
So le—a: + 1e3x
SN (2 2
y1($> (_6:1: + eSx)
Similarly,
DR T AT 1
T [ o I

We obtain fundamental matrix as

Se sub x = 0, (0,0) = 5« as required.

Theorem Suppose the matrix A has n-eigenpairs, such that eigenvalues are real and distinct,
then
{eM5y, ... et T,

forms the basis of solution space to the system of equations % = Ay. Hence the G.S. is

A

y = e’ + 26Ty + ..+ e,

3.4.2 Finding Solution Using Eigenvalues for Complex Eigenvectors

We have the eigenvalues in complex conjugate pair. For the eigenvalue A = p + v, we write
corresponding eigenvector (function) as ¢ where v = a + ib.
Complex eigenvector

(z) = M0, T =a—ib

u
0 (x) = e, N = p—iv
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We have
vi(z) = Re{u(z)}
Yo(w) = Im{u(z)}
() = N0+ WG 4 ib) = ... = e (d cos(va) — bsin(va)) + ie”* (@ sin(vz) + beos(vr))
So .
71(z) = Re{t(z)} = e"*(dcos(vz) — bsin(vr))

Uo(z) = Im{i(x)} = " (dsin(vz) + beos(vr))

where A = p + iv, T=a-+ib.
If all eigenvalues are real and distinct except 2 in complex conjugate pair, then G.S. is
y(x) a1 (z) + et () +g36A3x173 +...+ cneA"”@}

real and distinct

complex conjugate

Ex Find the G.S. of vector DE

Soln ... A=—-1+41
When A\ = -1+, v = (725“).

We have the complex solution as ¥ = ...
F=e "(cost +isint) k +i X =e! b cost +i osint
N -2 1) —2cost —sint —2sint + cost
There are 2 solutions are linearly independent G.S. is
dcost n Ssint
c
*\—2sint + cost

Z=e¢t|¢ )
[ (—2 cost —sint

where c¢; and ¢y are arbitrary constants.

Ex Find the G.S. to the system
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Soln We need to find the solution of CE, det(A —AI) =0
= A=-2,—-1+& Trial and Error method

We have eigenvectors as

~1/2+1i/2 ~1/2—i/2 1
Go=|—1/2—i/2], G=|-1/2+i/2|, = ]1
1 1 1

From this we obtain the real & imaginary eigenvectors as

~1/2 T2
i=|-1/2|, b=|-1/2
1 0

We get the G.S as

7 = cre”*(a@ cos(8x) — bsin(8z)) + cse 27T + cpe” (@ sin(8x) + b cos(8x))

3.4.3 Fundamental Matrix (Properties)

In case of autonomous system (A =constant) we have

1. Identity property:

3. ®(z) satisfies the matrix DE ®'(z) = A®(z)

4. Multiplication Property
(I)(fﬂl + 1'2) = (I)(.I'1> . (I)(.Z'Q)

5. Inverse property

6. Time-invariant Property: If A = constant in linear system 7’ = AZ, then if Z(¢) in the
solution to the above DE, then #(t — a) is also a solution, a € R. We can also mention
@(t, to) - @(t - to, O)

In other words, it is only time-interval matters, not the starting or end points.
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3.5 Exponential Matrix

Consider an autonomous system (3’ = Ay) with ICs ¢(0) = a = .

In scalar form, we have y' = ay, y(0) = a = yq, the solution to IVP,

y(x) = yoe™
The solution to vector problem is
7= ®(z,0)d = e™a
We denote e* an exponential matrix where A, is constant. Using Taylor’s Series, we have
. 2,3

We get

1 A"

=T+ A+ AP
2! n!

where both A and e are n x n

3.5.1 Properties of Exponential Matrix

We consider A, ., for n = 2. These properties can be generalized for n > 2.
1. 60 = ]2><2
2. eAtB = 4¢P is true only iff A and B commute, i.e. AB = BA

3. e~ = [e/]! (inverse property)

1. Diagonal Matrix (2 real distinct roots)

_|la 0O A _|e* 0
a=lo 3 ==[0 &

A2
A=T+A+=+...

2!
_ Lol e 0] [5 0] .
01 0 b o 2]
Cta+e .. 0 fer 0
B 0 1+b+2+...] [0 €

2. Upper triangular Matrix or (non-diagonalizable matrix)

(2 real and equal roots)
_ja 1 A et e
=fa =0l

we write
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where N is nilpotent matrix.
2

N
eN:I+N+7+...:1+N

eA :eal—i-N :eaIeN — eal([—FN)

=e'I(I+N)=¢e*(I+N)

(1ol o1
~([o =10 o))
a1
~“ o1
3. Antisysmmetric matrix (complex conjugate pair)

_|la b 4 | cosb sinb| |,
IfA_{ b a},thene _{—sinb cosb]e'

We have A =al + B,B = {_Ob 8]

Since B and I commute,

e e = e
WhereeB:]+B+g—!2+...
B?=...=-b]
0 -
3_ _
St
B* =b'I
Hence . 5
5 1—%4—... —%—1—... | cosb  sinb
e = —b+§—?}—--. 1_‘;_2'4__,, ~ |—sinb cosb
A_ cosb sinb
© = —sinb cosb

These 3 different cases are 3 Jordan Canonical form for 2 x 2 matrices.
1. Diagonalizable Matrix (2 real & distinct)
2. non-diagonalizable matrix (real & equal)

3. complex conjugate matrix (complex conjugate)

3.5.2 Linear system of ODE & Exponential Matrix

Theorem The solution to the standard IVP ¢ = Ay with ¢(0) = ¢y and A,,«,, = constant matrix

(time-invariant), then

— TA —
Yy=¢€ Y
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Proof . Y
¥ ="
x2A? .
=(I+zA+ o1 +...)y0

Differentiate both sides wrt z,
dy/ d 2 A?
—y_gj_—(l+a:A+ +...>g0

dx dx 2!
2 2A2
F=(A+Za+Z 81 Ngp=A(I+za+Z2 4. )5
TR 9!
So 7 = Ajf

Ex Consider the system of ODEs
A A1l A =

with two distinct real roots.

Soln We want to find solution i = e*¢, we have e*4 = [60 684 .
If 4(0) = vy, then we have
. . . a 6(11
7= i :(1 bx)
N~ a2€

(a3)
This is a solution to linear system of ODEs with constant coefficients (real & distinct eigenval-

ues). Hence general solution is i = c131 + coffa = c1% + cpe™®

Ex2 Consider the system of ODEs,

i = Ay = Ay, A= [g ﬂ with real & equal roots
Soln  We want to find (solution)
7= e
01
where A=al + N, N = [0 01

e = e"(al + N) = e Ie™ = " [[I + xN] = ™ [(1) ﬂ

The solution is
— TA = ax |:1 $:| (al) ax <a1 + a2$>
Yy=€"Yy =¢€ =€
a2

0 1| \ay

For real single root of multiplicity 2, we obtain the G.S. as
| ((a1 + agw)e™
Y= aset®



39 CHAPTER 3. SYSTEMS OF FIRST-ORDER DES - FODES

Ex3 Consider § = Ay, A= [_ab Z]

0 b
Soln Let B = {—b O}

exA — eac(al-‘,-B) _ eaxlexB

P ( e (ay C():s(bx) + ay sin(ba)) )

e (—ayq sin(bz) + ay cos(bx))

We can extend this opposed to n x n matrices sing Eigenvalue decomposition (singularity transfor-
mation)

A=CBC™!

where B = diag(\, Ag, ..., \,) for A\; — real and distinct eigenvalues. C: consists of column vectors
that are eigenvectors of the original matrix A.

C: [171,272,...,17n]

where v; is corresponding eigenvector for eigenvalue ;.

For a 2x matrix, we write 2 x 2 block {/0\ /1\] if eigenvalues are repeated.

If eigenvalues are complex A o = a £ ib, then Jordan Block is in the form {_ab Z}

-1
e.Z’A — 6:1:C’BC

2
— [ +2CBC' + %(OBC‘l)(CBC‘I) .
‘ 2
— CIC™! + 2CBC' + %(030—1)(030—1) .
IEQ ‘
=C [I+xB+?BQ+...] c!

= Ce*PC!
: _, . 11
Ex Consider f = Ay, A= i1

Soln )\1 = 3,)\2 = -1

5= ()7 = ()

G.S

A =Ce"PC " = ... = — Fundamental matrix
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Ex Consider the vector DE i = Ay, A= [_21 ﬂ

Soln To find eigenvalues, we put det(A —A) =0 = A =2+
(=N L (i e 240 0
1 (1>7 UQ_(]_)’ B_dzaﬁg<)\17)\2)_|: 0 2—Z:|

x(2414) 0 s -1
B __ |€ . 1 -1 _ i
=T e o= [P e[ ]

cosx sinzx
—sinx cosx

N [ =D | =

SO
A = Ce"BO " = . = {

T _e—iT

eiz -‘1—677:1
2 29

since cosr = , sinx =

3.6 Non-homogeneous linear system of Equations

We start with dii
y . — _ —
o = A@F+f@), glze) = o

—

where A(z) represents the internal dynamic of the system and f(z) represents the external force,
which is responsible for inhomogeneity. The solution for the homogeneous part is the fundamental
matrix.

Let’s consider the scalar case

d
=yt 1@, y(a) =

d
% —ay = f(x), Using IF, I(z) = e**

Multiply by IF,

dy
dx
ey = e p(a)

Integrate then we get G.S. for scalar cases for any given 1C,

e—az

—ae Wy =e " f(x)

)= [

0

Consider the vector case, out solution to homogeneous part is
Yn = O(z, mo)d, Va (IC)
We can write our particular solution using variation of parameters as

Yo = O(x, 20)0(x)
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Diff both sides,

d dd(x, o) dy >

%ij = ’17(.%) dx + (I)(xwfo)% = A($)(I)(x7x0) + (3:)
Now % = Ad(z, )
S dv L= v >
> AD(2, 20)T + B, 10) 7 = AD(x,20)0 + [lx) = B, 1) = fla)
By inverse Property,
dv - S

o /xoq)(xo,s) F(s) ds

—

G, = D, 20)i(x) = B, 70) /xcpm,s) (s) ds:/xq><x,xo)q>(xo,s)f(s> ds:/xCI)(x,s) F(s) ds

xo o Zo
By multiplicative property
[t = 9,20 > 5 = x — 8]

.. GS of our inhomogeneous problem is

—

§=1+%=WWM%+/¢®@($%

o

Remark If system is time-invariant, the fundamental matrix is equal to exponential Matrix. So
in this case
q)(l"x()) = (I)<x — Xo, 0) = eA(wizO)

So GS for linear system is
?j: eA(:):f:ro)g*O +/ eA(mfs)f_"(S> ds
xo

Ex For time invariant system, we are given

1 1] » e 2
where A = {4 1} ,b(t) = { 0 }

Soln at ty = 0, we have

t
Z(t) = e, +/ eA=95(s)ds
0

We obtain eigenpairs \; = 3, Ay = —1, ] = (;),172 = (_12)

3 0 1 1
B_[O _1} and C—[2 _1}
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exA — Cechfl —

we have .
:T:p:/ eA=9)b(s)ds
0

A EC i T T 6_28)
_ ds

0 63(7&73) _ ef(tfs)

16333 + 16*1

1 1 _—
2 2 1 1 1 e’ + 5et — 6
f(t) th—i-fp = fo—i-—e_%( st 5
633c e %63;5 + %e_x 10 2e’t — 2e + 8

Ex (Previous Final Exam)

Given A = [Z; 2],ﬁnd eAp#q#0, pgscR

Soln Let & = A7

Step 1 (To find eigenpairs)
det(A—X)=0 = M =p,la=q

_ _ _s _ (r—q
For Ay =p = Uy = ;501 :>U1—(S)

FOI')\QZQ — 172:((1])

Step 2 G.S
ai(p — q)er! )

T = lel + Cgfg =
c18€Pt + coedt

Step 3 If zo = (1) = (Cl(p_‘”) = =1 =2

0 c1s+ca p—q q—p
fag= ()= (") = ¢, =0,=1

c18+c2

Step 4 Fundamental Matrix

Therefore
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Step 5 Putt=1,




CHAPTER 4

Laplace Transform Methods

LTM! provide important tools to solve Linear Order DEs and PDEs. It is especially useful when

parts of the problem are discontinuous or non-differentiable.

Defn Given a real or complex valued function, y(t), the LT, L, of y(t) is defined by

L{yt)} =Y(s) = /000 e Sty (t)dt Vs e C

such that the above improper integral converges.

Ex Given f(t) =e“ c#£0, L{f(t)} =?

Soln
b

L{f(t)}=L{e"} = / e“tedt = hm elem gt =

0
assume Re(s) > Re(c).

L") = . Re(s) > Re(c)
If we have f(t) =

b est
L{1} = / e *tdt = lim [ e *'dt = lim — —

b—o0 0 b—oo S

Theorem If f(t)=t",ne N={1,2,...,}

L{t"} / R T
= e =
0 Sn+1

Laplace Transform Methods

44

s —C
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Proof

LA{t"} = / t"etdt
0
b

= lim the stdt
b—00

b €_St
= lim t” + lim / nt" 1 ( ) dt
b—o0 S 0 b—)oo S

= — hm t" 1 _St) dt
S b—oo 0

b

n .. _ _
= — lim e St
S b—oo 0

L{ty==Lfe}

IBP repetitively,

LA{t"} = sy assume that Re(s) >0

4.1 Properties of LT

1. Linearity: LT is a linear operator

L{cif +cgt=cal{f}+cl{g}

where ¢; & ¢y are arbitrary constants.

. Existence: If f(t) is a piecewise defined function at each interval [0,b] for b > 0 and there

exists a constant « such that
f(t) = 0(e™)

as t — oo, then f(t) is said to be if exponential order a as t — 0o. In other words, F(s) =
LA{f(t)} exists for Re(s) > a.

Remark Big O notation is a convenient way to describe how fast a function is growing. Let
T(n) & f(n) be 2 positive functions, we write T'(n) = O(f(n)), and T'(n) has order of f(n),
there exists positive constants M and ng such that T'(n) < M f(n) for all n > ny.

. Differentiation: If f is continuous and f’ is piecewise continuous on any interval [0, b] for b > 0

and f is of exponential order o as t — oo

LA{f"ysC{f}— f(0)  for Re(s) > «
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Proof -
iy = e
b
= lim [ e f(t)dt
b—oo Jg
b
= lim ™ F) - Jim e (=) f(t)dt
b

=(0— f(0)) + sbliglo [/0 e‘“f(t)dt]

= —f(0) + sF(s) = sF(s) — f(0)
Similarly

L{f" ()} =s"L{f}—sf(0) = f(0)

LLFMW} = s"L{f} =" (0) = " 2F1(0) = = sf70(0) = °F7D(0)

with the conditions that f, f/, f”,..., f=Y are all continuous and f™ is piecewise continuous.

4. Shifting Properties:

(a) 1% shift theorem: (FST)
If F(s)=LA{f(t)} exists for Re(s) > a with o > 0, then

L{ef} =F(s—c) for Re(s —¢) > «

where ¢ is a constant
Ex Find L {t3"}

Soln N 6
3y 0
Lt }—F — for Re(s) >0

-
So by FST,

LAt} =F(s—c) = for Re(s —¢) >0

(s — )t
Ex Find £ {t°'"}

Soln L {t°} = 2 Re(s) > 0.
By FST,
120
t5 10t —
E{ c } (s —10)8

Re(s — 10) > 0 or s > 10.
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Heavy side Function and its LT

0 t<0 0 ¢
H(t) = SV Hit—a) = =
1 t>0

L{H(t—a)} =
for s > 0,a > 0 where a is a constant

(b) 27 Shift Theorem (SST)
If F(s) = LA{f(t)} exists for Re(s) > a > 0 and ¢ is a positive constant, then

L{H({t—c)f(t—c)} =e "F(s) for Re(s) >a >0

Ex If F(s) = qE ; q(s) # 0. p and ¢ are polynomial. We can use partial fraction decomposition /
completing the square

Ex Find £7*{ 2+5S+6} (PFD)

Soln
S B 3 2

245546 s+2 543

-1 S 1 1 -1 1 9t 3¢
—_ > = — =2 = —2
£ {32+5s+6} 3L {5—1-2} £ {S+3} 3¢ ‘

Completing the square

Ex

1 5
£ { s2+4s+5 }
Soln Completing the squares. To apply FST, we need to express everything in terms of (s+2)
E—l S _ £—1 (S + 2) -2
(s+2)2+1 (s+2)2+1
542 1
=Lt
{(s+2)2+1} {(s+2)2+1}

= e * cos(t) — 2e ' sin(t)

4.2 Solving DEs with Laplace Transform

Ex Solve the following first order DE using LTM,
Y+ ky = kAcos(wt),  y(0) =wo
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Soln Apply LT to DE and using linear properties/ICs. (For simplicity, w and w are equivalent)

LAy + ky} = kAL {cos(wt)}

) re (o =k ()

s2 + w?

We define £{y(t)} =Y (s)

s2 + w?

sY (s) —yo + kY (s) = kA (;>

Y(s) = s%fk‘ + kA ((3+k)(22+w2))

( —

D:k2+]iu2

s D +E5+F:> B _k
(s+k)(s2+w?) s+k s2+w? ke
2

kF:k;in

Yo kA 1 s w
Y(s) = —k k
(s) s+kz+k2+w2< s—l—k+ 32+w2+w52+w2>
Applying ILT, then

1 kA s 1 w
-1 Y — t) = —1 k -1 —k -1 -1
V) =y(t) = wk {s+k}+k’2+w2{£ {82+w2} : {s+k}+w£ {s2+w2}]

kA
k2 + w?

[k(cos(wt) — e™™) + wsin(wt)]

= y(t) = yoe M +

Ex Solve the following SOLDE with constant coefficients by using LT

y'+ 3y +2y =e€", y(0) =1,4'(0) =2

Soln Taking LT and applying linearty property,

LAY"y +3L{y' +2L4y} = L{e"}

1
s—1

= [s* = sy(0) — y'(0)] + 3[sY (s) — y(0)] +2Y (s) =
Using ICs )

[s°Y (s) =5 = 2] +3[Y(s) — 1] +2Y (s) = s—1

1

Y(s)[52+35+2]—(5+5):8_1
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¥ (s) s+5 L 1
S:
(s+1)(s+2) (s=1)(s+1)(s+2)
4 3 1 1 1 1 1 1
= — + = - = + =
s+ 1 s+2 6s—1 2s+2 3s+2
_7 1 8 1 +1 1
T 2s4+1 3s+2 6s—1
Then . 8 1
£t {Y(s)} =y(t) = 56’“ — 56721 + gem

4.3 Convolution of Two functions

Consider the general case with non-homogeneous boundary conditions

v oy +ay=ut),  y(0)=yo,y'(0) =y
Taking LT and applying linear property,
L{y"}+ oLy} + el iy} = L{u()}
[s*Y (s) — sy(0) — ¥/ (0)] + p[sY (s) — y(0)] + g (s) = U(s)
Applying ICs
(8 + p)yo + vg U(S)
_S°Hpstq sS4 ps+g

-~

(@) (i)

Y(s) =

Part (i) Homogeneous Problem and it can be solved using PFD? / completing the squares

Yn

Part (ii) represents the external force called forcing term. It represents a particular solution y,.
we have

U(s)

2 +ps+q = U(s)G(s)
where G(s) = m is called Transfer Function.
Y(s) = Ya(s) + Yp(s)
y(t) = L7 {Ya(s)} + LY, (s)} =y + L7 {U(s)G(s)}
In general

LA{fgy # LS} L{g}

we need convolution theorem to solve our particular solution.

We say that h is the convolution of 2 functions defined as f % g where

h(t) = (f * 9)(t) = / £(t — T)g(r)dr

2partial fraction decomposition
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4.3.1 Properties

1. Commutative

Proof

Change of variable, u =t — 7,

/f

2. Distribution
3. Associativity

4. With zero is zero

Ex f(t)=t,g(t)=1.

Soln

(f xg)(t) = (g* f)(t)

/ft_T

du =

g(t — ) (—du) = / gt —u) f(w)du = (g £)(1)
fr(gi+g)=Ff*xg+f*g
(fxg)xh=fx(g*h)

Fx0=0%f=0

Calculate f x g.

F(s) = L0} = £{1) =

G(s)

we have

or

h(t)

— L7Y{H(s)} = L7 {F(s)G(s)} =

= Lot} =01} =+

(f * g)(t)
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4.3.2 Convolution Theorem

If f(t) and g(t) have LTs F'(s) G(s) respectively for Re(s) > «, then if we define H(s) = F(s)G(s),
we have

h(t) = L7H{H(s)} = (f x9)(t) = (g% (1)
where (f * g)(t) = f(f ft—=7)g(r)dr.

IVP " +py' + qy = u(t), y(0) = yo,¥'(0) = vo

We had ( )
S+py0+U0
Y(s)=G(s)U(s) + ——————
(5) = Gl (s) + 5 P
=Y, (s) + Yi(s)
Homo soln: ( )
1 |8+ DP)yo+ v
=L
un() { 52+ps—|—q}
Non homo

w(0) =L 50} = g )0) = [t Dutriar where g(0) = £ | |

s2+ps+q

As an aside, it is worth mentioning that y,(¢) solves the homogeneous DE with nonhomogeneous
ICs whereas y,(t) solves the nonhomogeneous DE with homogeneous ICs.

Ex
v'+y=u(t), with y(0)=yy, and ¢'(0) =g

Soln See pg 116 of course note
and continued... If u(t) = sin(wt)

y(t) = I 4 yo cos(t) + vo sin(t)

: (sin(wt) - sint))

1 1
I = 3 (1 _I_w(sinwt +sin(t)) — o
If w#1,
y(t) = I + yo cos(t) + vg sin(t)
If w =1, we are forcing the equation at the resonant frequency. There is no need to recalculate the
integral. We can take the limit w — 1 and apply L’ Hopital’s Rule as follows

t .
t) —tcost
lim [ sin(t — 7)sin(wt)dr = sin(t) — ¢ cost
w—r1 0 2

In case of resonance, the solution grows linearly in time, for all time.
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4.4 Linear System of FODEs

Consider the system of DEs (Time invariant systems)

—

T =A%+ f(t)

with #(0) = &y where A is a constant matrix.

We complete LT of this vector DE

/\l

H}

E{:?:”}:AE{:E}JrL{
+

X(s) = (sI — A)"'xg + (sI — A)"'F(s)

The matrix (sI — A)~! is known as the transfer function matrix.

Theorem For any constant n X n matrix A,

L[] = (sI—A)™!

for values of s that satisfy Re(s) > Re(\) for all eigenvalues A of A.

4.5 Laplace Transform of Heaviside (unit step) function

t
H(t) = 0 t<0O
1 t>0
0 t
H(t—a)—{ =
1 t>a

4.5.1 Properties

L L{H(t)} =1
2. L{Ht—a)} =%, a>0

s

3. second shift theorem/Time displacement Theorem, where

LAH(t —a)f(t —a)} = e F(s), F(s)=L{f(1)}
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Ex sketch the following function and obtain their LTs.

0 t<b
1. ft) =<4 B b<t<c
0 t>c

= f(t)=B[H(t—b) — H(t — ¢)]

b, c, B are positive constants

f(t)
B o————o0
o . t
b c
rectangular Pulse
B —0s —CS
LU= (e —e)
0 t<a
2. f(t)y=Re™ a<t<b
0 t>b

0 < a < b constants.

ft)

L{f)) =... = e

a # b arguments is diff.

s—1

t—a=((b—a)+(t—0)

etfa — ebfaetfb
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1
L{ft)} = e — - e L {H(t—b)e' "}
—bs
— a8 1 o 6bfa €
s—1 s—1

= final answer

0 t<0
3. ft)y=(sint 0<t<m
0 t>m
f(#)

F(8) = sin(t){H(t) ~ H(t — 7

start end

LA} = LAysin(t)H (1)} — L {sin(t)H (t —m)}
=LA{sin(t)H(t)} + L{sin(t —7)H(t — )}

1 1
_52—|—1+e s2+1
e
o241

4.6 Dirac Deltas Functions & its LT

Heaviside Function is used for switching states. We use Dirac Delta Function when a large force
acts over a small period of time (e.g. high pulsed impulse, hammering)

4.6.1 Properties of Dirac Delta Function

1.
dt—a)=0, t#a

or
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e.g. )
/ 5(t — 5)dt = 0
since 5 ¢ [1, 3] 1
3 §(t—2)dt =1
since 2 € [1, 3] 1

or

Ex Solve the IVP
y'+2y =15y =60(t—9)  y(0)=-5, y(0)=7

Soln Apply LT, using linearity property, and ICs.
L") +2L{y'"Y = 15L{y} = 6L{0(t - 9)}

.= 6e%
Ge 9% 95+ 3
= YO =g ey P90
1/8 1/8
Y(s) = 6e (ﬁ — _{_ 5) — using partial fractions
—1 1 3t 1 —5t

f@) = L{F(s)} = ze” — ce
8" 8
9 11

9(t) = L7HG(s)} = 3" + e ™
y(t) = L7 {Y(s)} = shift theorem = 6H (t — 9)f(t — 9) — g(t)

4.6.2 Relation b/w Dirac Delta Function and Heaviside (Unit Step)
Function

1 t>a

/ooé(u—a)du:{o t<a:H(t—a)

By Fundamental thm of calculus

%Ht—a / (u—a)du = (t — a)



56 CHAPTER 4. LAPLACE TRANSFORM METHODS

Ex Solve the IVP (Previous Final Exam)

2" + 10y = 3H(t — 12) —50(t —4)  with y(0) = —1, ¢/(0) = —2

Soln We apply LT, linearity Property, and use ICs,

2L {y"} + 10L {y} = 3L {H(t — 12)} — 5L {5(t — 4)}

—12s

2(s°Y (s) — sy(0) — ¢/(0)) + 10V (s) =3 s 5e s
Y(s) = e 1% 5(2521+ o —5e 4 - ir - Qij j: ;lo
(s) (s)
F(s) G(s H(s
£(6) = L7 {F(5)} = 35 — 16 cos (V1)
g(t) =L {G(s)} = 2\1/5 sin<\/gt>
ht) =L {H(s)} = cos(\/§t> + % Sin(x/&f)

y(t) = 3H(t — 12)f(t — 12) — BH(t — 4)g(t — 4) — h(t)

4.7 Periodic application of Dirac Delta Function

(pg 128-130) Suppose there is a radioactive material in a container that decays at a rate of k. xq is
the initial concentration of the radioactive material. We can describe it as IVP

d
d—f = —kx, x(0) =z
with solution
x(t) = zge ™ (vanishes at t = c0)

case 2 We add A amount of the same material at any time ¢ = a. Then at ¢t = a, we have
2(t) = zoe " + A. In terms of Heaviside Function

—kt 0<t<
() = {xoe < a

(zoe™k 4 A)e k-2 ¢ > ¢

z(t) = zoe M + Ae FVH(t — a)

we have
d
alt) = —ket) + ()

where f(t) = Ad(t — a) describes the instantaneous addition of A to the material at ¢t = a.
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case 3 We add A amount of same material periodically at every time T (units of time) we write

dx

where f(t) =AY~ 6(t —nT)

We take LT,
(sX(s) —x(0)) + kX (s) = F(s)
xg F(s)
X pr—
(5) s+ k + s+ k
Inverse LT,

where g(t) = L7 {5} = e
z, > 0ast — o0

Remark ICs don’t make any contribution towards long-time behaviour.
t
5lt) = (g5 )0 = [ f- )5 (s
0

o t
=A> /0 e 5(r — nR)dr
n=1

00 g
= AeH Z/ " S(r — nT)dr Dirac Delta (prop. 3)
n=1"0

)
_ Ae—ktE :eknT
n=1

:Aefkt [ekT_._e2kT_|_.”+€NkT]

= AFTD 1 4 T 4 2T 4 4 W7D
Assuming t = NT +u, 0<u<T

T, = Aek(—(N—l)T—u)[l + ek:T o+ e(N—l)k:T]

=Ae ™14 4+ 6_(N_1)kT]

In the limit N — oo, (t — o),

long time behaviour
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Perturbation Methods (Theory)

Very few DEs are exactly solvable. So we need approximate methods.

Approximate Methods
1. Numerical Methods
2. Perturbation Theory (Method)

We introduce a small parameter € in the given equation by writing approximate solution in term of e.
If we take N(steps) — oo, then Perturbation Solution will converge to exact solution. Our solution
will have leading term (0% order), first order and second order correction. 3 different techniques

e Regular PT
e Singular PT

e Poincare PT

5.1 Regular PT

(to find roots of algebraic Equation)

Consider algebraic equation

22+ (y+e)r+(3—2€) =0 (5.1)

Roots of quadratic are

_ —(y+ea) £V (y+e? —12+8¢
2

Ty (5.2)

58
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Assuming € < 1, we write our approximate solution as
w(€) = 20 + exy + Exp + . .. (5.3)
sub (5.3) into (5.1)

(wo+exy+Exa+ .. )2 +(y+e)(mo+ery +Ex9+...) +(3—26) =0

(22 + yzo + 3)e® + (2mozy + Y1 + 70 — 2)€t + (27 4+ 22072 + Y2 +71)EE + ... =0

compare the coefficients

e x%—l—ymo—l—?):():xg:—?),—l

These are roots of given equation by subbing € = 0.

9 _
€ 2x0x1+y$1+x0—2:0:>a:1:2x fi/
0
For
LUOI—?) $1:—5/2 $2:15/8
l’o:—l I1:3/2 5132:—].5/8
similarly, to find x,,
2 2 —l’% — I
€ ]+ 2000 +4r2 + 711 =0 = 39 = S—
0
We obtain 2 approximate solution as
T=-3-2e+ 22+ ..
x:x0+ex1—|—62x2+... —
l‘:—l—FgG—%GQ—F...

To find the exact solution, we use linear approximation

2
\/(4+e)2—12+86:2\/1+46+€zzQ\/1—|—4e

(% being very small, neglected)
(If |x] <1 = (14 2)" = 1 + na Binomial expansion )

—4 — e+ (2 +4e) 2
:>-Ti: 2 =
—3— 3¢

PT is acceptable
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5.2 Singular Perturbation Method

Consider equation
e’ +2r—1=0 (5.1)

Roots of quadratic equation are

B —2+ /4 4+ 4e

T4+

2e
We propose approximate solution as (e < 1)
x(€) = 20 + exy + Exp + ... (5.2)
sub (5.2) into (5.1)
= ... = (229 — )" + (23 + 211)€' + € (2207, + 229) =0
e 209=1 = z9g=1/2 heading order correction
el x% +2r1=0 = 2, =-1/8 first order correction

€ : 2xw + 219 =0 = 3 =1/16 second-order correction

Our approximate solution is
1 1 N 1, N
rT==——€+—€+...
2 8 16
This gives us only one solution using Regular PT because the equation is singular. We need to

rescale the original equation.

Let
X =x"ase—0 (5.3)
X
r=—
61/
sub this into (5.1), we obtain
X2 42XV —1=0 (5.4)

We want to balance the magnitude of first term (e'~2*X?) and the second term (+2Xe ") to obtain
a solution for quadratic equation

= 1-2v=—v = rv=1

SO T = %
Eq (5.4) becomes
X2 42X —e=0 (5.5)
We propose approximate solution as
X=Xo—eX; +Xo+ ... (5.6)

Sub (5.6) into (5.5), we obtain

(X1 +eXi+lm+ . )+ 22X +eXi+ 2+ ..)—e=0
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(X3 +2X0) + ' 2Xo X1 +2X; — D)+ () +...=0
€ :coeff =0 = X, =0,-2
1 -1

el icoeff =0 = X; = =,

22

X:—Q—%e+...

= 0 le_ 12
X=0+g5e—g€e+...

o<

€

X:—Z—%e+... .73:%—%64—11—6624—...
X:O—F%E—%EQ—F... x:ﬁ—%+...

already found the first solution using RPT. We have assumed that |zg| > |z1| > |xa.

5.3 Example

Ex Given
flz,e)=2>—-14+e=0 (5.1)

@ apply RPT to find correction to second order by using

z(€) = 19 + 716 + T2€” + . .. (5.2)

(b) The exact roots of (5.1) are know i.e.
sW=y1—€ 2% =—-Vi—e

Show that perturbation roots from (a) agree with Taylor series expansion for () to order €2,
(1=1,2)

(a) Given (5.1) with unperturbed roots, f(z,0) =0 = x = £1 (2). Approx solution using
the form (5.2). Sub 5.2 into 5.1,
(X0+€X1 +€2X2 + )

collecting powers of €”
Xy = £1 as expected

2Xo
— X7 1
X 2X 8X3

1 1
g =1 56~ gEQ + O(€%)

11
X =14 €+ §e2 +O(e?)
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(b) Taylor Series expansion of g(e€) =+/1 — €
g(e) = (1 — €)2 about € = 0 to O(e?)

agree with the previous result.

Similarly to x(?

5.4 Definition of Order Symbol O, o0, ~

Definition 7.2.1 (Big Oh). Let f(z) and g(z) be two functions defined in some interval around
xg. We say that f is big-oh of g, or mathematically

f(x) =O(g(x)), asz— zo,

w1

T—rTg g :L')

):C’<oo.

That is to say the Taylor expansions of the two functions about xy both have the same first
non-zero term, but could have different coefficients.

f(z)

(@) =3 <00

eg f(x)=sin(3z),9(x) =2 = f(z) = O(g(x)) as x — 0 because lim,_,o

sin(3z) = O(x)
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Definition 7.2.2 (little oh). Let f(x) and g(x) be two functions defined in some interval around
xTo. We say that f is little-oh of g, or mathematically

f(z) = olg(z)), asz— o,

. (‘ (@)

220 \ | 9(x)

)=o

That is to say the first non-zero coefficient in the Taylor expansion of f about xy appears later
on than for g.

eg f(z) =sin(z),g(z) = V& = f(z) = o(g(x)) as = = 0.
Definition 7.2.3 (Similar). Let f(x) and g(z) be two functions defined in some interval around
To. We say that f is similar to g, or mathematically

f(z) ~g(z), asz— o,

1 (|57

)-1

That is to say the Taylor expansions of the two functions about xo both have the same first
non-gero term and their coefficients are equal.

eg f(z) =sinz,g(x) =x asx — 0, f(z) ~ g(z) by defn

5.5 Duffing’s Equation

The non linear equation of pendulum is given by

2
MLle_tf = —Mgsinf
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where L is the length of the pendulum, M is the mass of the bob, ¢ is the force of gravity, ¢ is time
and @ is the angle that the pendulum makes with the vertical. Let’s assume

[ L
u:Q and t=,/—=x
€ g

d*u _ sin(eu)

dx? €

then

with
w(0)=1, and u'(0)=0

Using Taylor’s expansion

sin(eu) e 4 A
=u—— O
; u—u+ (')
redefining € = —¢?/6. Then we get Duffing’s equation in terms of ¢
d2
d—tg—l—u—i-eugzo (5.1)
with e < 1, u(0) =1, and 4/(0)=0.
We propose approximate solution as
u(t,€) = uo(t) + eus(t) + ... (5.2)

e ug>u >us....
sub 5.2 into 5.1
d2

@(uo(t) +eup(t) +...) + (up(t) + eus(t) +...) + e(uo(t) + eus(t) +...)> =0

d*u d*u

with Boundary conditions

wo(0) + euy (0) +--- =1
» du1
d%e (0) + EE(O) 4+ =0
leading term €*: ug(t) = cos(t)
High orders €': d;;él +uy = —uj. To solve it use laplace transform. see course note for details.

PT solution to Duffing’s Equation is

3 1
u(t) = cos(t) + 6[_§ tsint +3—2(COS 3t — cost)]

secular term

here uy (t) > wug(t) as t — oo Not allowed since ug > uy; > us .. ..

The reason why this appears is that the forcing term in u; is resonant because the natural
frequency of the leading term and next higher order term are same. — solution is Poincare Method.
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5.6 Poincare Method

d*u 5 du(0)
w—l—u—i—eu =0, u(0)=1, 7

Here RPT approach failed. We propose a new solution of the form (to get rid of secular term)

=0

t:(1+ew1+62w2—|—-~-)7

We have introduced new parameter 7 wy and wy are unknown parameter (to be determined)

4 drd L d
— =" _ 2 —_
il Ca ) R
d? dr\? 2 , -2 d?
%Z(a) gz = et dw) "o

N Cu (14 ewr + Ewn)’ (u+ew?) =0
Lu 4 (1 + 2wy + € (w2 + 2w;)) (u + eu®) = 0
dr2 1 1 1

We propose
u = ug(7) + euy (1) + Euy(r) + O (62)
and resulting equations is
d2
) (uo + eu; + 62u2) + (1 + 2ew; + € (wf + 2w1)) (uo +euy + uy + € [ug + 3eu§u1}) =0 (63)

We can then write down the equations for the first three orders

2
duO+U0:O

7-2
Cu+uy = —ud — 2wiug
Cil;? +up = —3uduy — 2w (ug + ud) — (w¥ + 2ws) ug
The ICs yield,
up(0) =0, 22(0)=0
uz(0) =0, %2(0)=0
uo(7) = cos(7) and uy:
d2
d;gl + Uy = —Ug — QW1U0

= —cos® T — 2wy cos T

4
The first term on RHS represents secular term. We avoid this term by plugging coeff of cos(7) = 0

3 1
=(—2w; — -] cosT — ZCOSST

- —2 3 0 = 3 — du
1y ! 8 dr?

1
tu=—7 cos(37)
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The homogeneous solution is uy, = Acos7T + BsinT and the particular solution is of the form
uip, = Ccos37. By substituting into the equation, C' = 3% Therefore, our complex solution at
order € is

1
uy = AcosT + Bsint + 500337
To satisfy the zero ICs we need A = 5—21, B =0, to yield

1
u3 = —(cos 3T — cosT)

PT solution (upto first order, 2 first term correction)
€
U= CcosT + 3—2(008 3T —cosT)

with
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