AMATH 353

Sibelius Peng

May 10, 2019

Contents

1 May 6 2
1.1 Learning Objectives . 2
1.2 Modelling . 3
1.3 Other . 4

2 May $8 \quad 5$
3 May 10 7 7
3.1 Global Conservation Law . 8

CHAPTER 1

May 6

- Definition of PDE, examples, terminology
- 1D conservation law

Defn A partial differential equation is an equation that relates to an unknown function u and its partial derivatives (u is a function of 2 or more variables)

Example $\quad u=u(x, y) \leftrightarrow u$ is a function of x, y.
$\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y} \quad u=\frac{\partial u}{\partial x}+\left(\frac{\partial u}{\partial y}\right)^{2} \quad \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}=x^{2}+y^{2}$

1.1 Learning Objectives

- Solve PDEs
- Model physical processes using PDEs

PDEs are very different than ODEs
$\frac{\partial u}{\partial v}=0 \Longleftrightarrow u$ is independent of $x \rightarrow u(x, y)=f(y)$ (most general solution)

Consequences Unlike ODEs, if we specify u at a single point x_{0}, y_{0}, we don't fully determine the solution

Linear unknown and its partial derivative appear alone and to the first power.
homogeneous A LINEAR PDE is called homogeneous if every term contains the unknown or one of its derivatives.

1.2 Modelling

- most of the time, u depends on time (t) evolution of a process

Transport equations some quantity is transported 1D

some element of a physical quantity is present in the cylinder.
Let $Q(t)$ be the amount of this quantity at time t in the section of cylinder with $a \leq x \leq b$. Want to describe $\frac{d Q}{d t}$ (rate of change)

$$
\frac{d Q}{d t}=\text { net rate at which } Q \text { changes }
$$

Assumptions

1. $Q(t)$ can be locally described by a density $\rho(x, y, z, t)$ with ρ continuous note that

$$
[\rho]=\frac{[Q]}{\text { volume }}
$$

2. ρ is constant on cross-sections $\rightarrow \rho=\rho(x, t)$ only.
makes sense if cylinder is insulated
model \neq reality

$$
Q(t)=\int_{a}^{b} \rho(x, t) A d x
$$

where A is the cross-sectional area
ρ is local
Need to describe the rate of change

1.3 Other

- syllabus (next time)
- Tutorials
- Done by me
- no catching up with lectures
- fun interesting different

CHAPTER 2

May 8
total amount $\quad Q(t)=\int_{a}^{b} \rho(x, t) A d x$
$\frac{d Q}{d t}=$? How can $Q(t)$ change?

1. quantity enters or exits from cross-sections $x=a, x=b$
2. quantity created/destroyed by an external source

Assumptions

1. assume that transport is locally described by flux
$\phi(x, t) \rightarrow$ measurs amount of quantity crossing the cross secion at x at time t, per unit time, per unit area.

$$
[\phi]=\frac{[Q]}{\text { area } \cdot \text { time }} \Longrightarrow
$$

net rate of change due to transport: $\quad T(t)=\underbrace{\phi(a, t)}_{\text {amount entering left }} A-\underbrace{\phi(b, t)}_{\text {amount entering right }} A$

Convention $\phi(x, t) \begin{cases}>0 & \text { if moving right } \\ <0 & \text { if moving left }\end{cases}$
2. Assume that quantity creation is locally described by source term $f(x, t, \rho)$ measures quantity created/destroyed per unit volume, per unit time

$$
[f]=\frac{[Q]}{\text { volume } \cdot \text { time }} \rightarrow
$$

net rate of creation/destruction is

$$
S(t)=\int_{a}^{b} f(x, t, \rho(x, t)) A d x
$$

Convention $f(x, t, \rho) \begin{cases}>0 & \text { if creation } \\ <0 & \text { if destruction }\end{cases}$

$$
\begin{gathered}
\frac{d Q}{d t}=T(t)+S(t) \\
\rightarrow \frac{d}{d t} \int_{a}^{b} \rho(x, t) A d x=\phi(a, t) A-\phi(b, t) A+\int_{a}^{b} f(x, t, \rho(x, t)) A d x
\end{gathered}
$$

Global conservation law

Extra Assumptions $\frac{\partial \rho}{\partial t}$ and $\frac{\partial \rho}{\partial x}$ are continuous
fundamental theorem of calculus

$$
\begin{gathered}
\frac{d}{d t} \int_{a}^{b} \rho(x, t) d x=\int_{a}^{b} \frac{\partial \rho}{\partial t} d x \\
\int_{a}^{b} \frac{\partial \phi}{\partial x}(x, t) d x=\phi(b, t)-\phi(a, t) \\
\int_{a}^{b}\left(\frac{\partial \rho}{\partial t}+\frac{\partial \phi}{\partial x}-f\right) d x=0
\end{gathered}
$$

does this mean that $\frac{\partial \rho}{\partial t}+\frac{\partial \phi}{\partial x}=f$?
Note that a, b are arbitrary

CHAPTER 3

$$
\int_{a}^{b}\left(\frac{\partial \rho}{\partial t}+\frac{\partial \phi}{\partial x}-f(x, y, \rho(x, t))\right) d x=0
$$

The equation above is GLOBAL

- a, b are arbitrary
- if we assume integrand continuous

$$
\Longrightarrow \frac{\partial \rho}{\partial t}+\frac{\partial \phi}{\partial x}=f(x, t, \rho)
$$

local conservation law
\# of unknowns?
We assume that f is known, therefore 2 unknowns.
To have any hope of solving, need to relate ρ and $\phi \rightarrow$ constitutive relation

$Q(t)$ total amount of some quantity in V.
Assume

$$
Q(t)=\iiint_{V} \rho(\vec{r}, t) d V
$$

where $\vec{r}=(x, y, z)$

$$
\frac{d Q}{d t}=\underbrace{T(t)}_{\text {net rate of change due to transport }}+\underbrace{S(t)}_{\text {net rate of change due to sources }}
$$

1. $T(t)$ locally described by flux $\vec{\phi}(\vec{r}, t)$

- direction of $\vec{\phi}$: in which direction quantity flows
- magnitude of $\vec{\phi}$: how much quantity is transported per unit time, per unit area (crosssection area, \perp to $\vec{\phi}$)

$$
\begin{gathered}
{[\vec{\phi}]=\frac{[Q]}{\text { time } \cdot \text { area }}} \\
T(t)=-\iint_{\partial V} \vec{\phi}(\vec{r}, t) \cdot \vec{n}(\vec{r}) d A \quad \text { surface integral }
\end{gathered}
$$

Net change

- quantity either enters or exists from the boundary $\vec{n}(\vec{r})$ unit outward normal to $\partial \bar{V}$
minus sign $T>0$ if $\vec{\phi}$ goes in

2. sources

$$
S(t)=\iiint_{V} \underbrace{f(\vec{r}, t, \rho(\vec{r}, t))}_{\text {source term }} d V
$$

3.1 Global Conservation Law

$$
\frac{d}{d t} \iiint_{V} \rho d V=-\iint_{\partial V} \vec{\phi} \cdot \vec{n} d A+\iiint_{V} f d V
$$

We assume $\rho, \vec{\phi}$ and f are "nice"

- we can apply theorems to them
$-\frac{d}{d t} \iiint_{V} \rho d V=\iiint_{V} \frac{\partial \rho}{\partial t} d V$
- divergence theorem

$$
\iint_{\partial V} \vec{\phi} \cdot \vec{n} d A=\iiint_{V} \vec{\nabla} \cdot \vec{\phi} d V
$$

Then global conservation law becomes

$$
\iiint_{V}\left(\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\phi}-f\right) d V=0
$$

- V is arbitrary
- if integrand is continuous
local conservation law: $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\phi}=f \quad \rightarrow \quad$ works for all transport
special case if ρ depends only on x, t and $\vec{\phi}$ goes in \vec{x} direction

$$
\frac{\partial \rho}{\partial t}+\frac{\partial \phi}{\partial x}=f
$$

