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CHAPTER 1

May 6

• Definition of PDE, examples, terminology

• 1D conservation law

Defn A partial differential equation is an equation that relates to an unknown function u and its
partial derivatives (u is a function of 2 or more variables)

Example u = u(x, y)↔ u is a function of x, y.

∂u
∂x

= ∂u
∂y

u = ∂u
∂x

+
(
∂u
∂y

)2
∂u
∂x
− ∂u

∂y
= x2 + y2

1.1 Learning Objectives

• Solve PDEs

• Model physical processes using PDEs

PDEs are very different than ODEs

∂u
∂v

= 0 ⇐⇒ u is independent of x→ u(x, y) = f(y) (most general solution)

Consequences Unlike ODEs, if we specify u at a single point x0, y0, we don’t fully determine the
solution

Linear unknown and its partial derivative appear alone and to the first power.
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1.2. MODELLING CHAPTER 1. MAY 6

homogeneous A LINEAR PDE is called homogeneous if every term contains the unknown or
one of its derivatives.

1.2 Modelling

• most of the time, u depends on time (t)
evolution of a process

Transport equations some quantity is transported 1D

some element of a physical quantity is present in the cylinder.
Let Q(t) be the amount of this quantity at time t in the section of cylinder with a ≤ x ≤ b. Want
to describe dQ

dt
(rate of change)

dQ

dt
= net rate at which Q changes

Assumptions

1. Q(t) can be locally described by a density ρ(x, y, z, t) with ρ continuous
note that

[ρ] =
[Q]

volume

2. ρ is constant on cross-sections → ρ = ρ(x, t) only.
makes sense if cylinder is insulated

model 6= reality

Q(t) =

∫ b

a

ρ(x, t)A dx

where A is the cross-sectional area
ρ is local
Need to describe the rate of change
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1.3. OTHER CHAPTER 1. MAY 6

1.3 Other

• syllabus (next time)

• Tutorials

– Done by me

– no catching up with lectures

– fun interesting different
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CHAPTER 2

May 8

total amount Q(t) =
∫ b
a
ρ(x, t)A dx

dQ
dt

=? How can Q(t) change?

1. quantity enters or exits from cross-sections x = a, x = b

2. quantity created/destroyed by an external source

Assumptions

1. assume that transport is locally described by flux

φ(x, t)→ measurs amount of quantity crossing the cross secion at x at time t, per unit time,
per unit area.

[φ] =
[Q]

area · time
=⇒

net rate of change due to transport: T (t) = φ(a, t)︸ ︷︷ ︸
amount entering left

A− φ(b, t)︸ ︷︷ ︸
amount entering right

A

Convention φ(x, t)

{
> 0 if moving right

< 0 if moving left

2. Assume that quantity creation is locally described by source term f(x, t, ρ)

measures quantity created/destroyed per unit volume, per unit time

[f ] =
[Q]

volume · time
→

net rate of creation/destruction is

S(t) =

∫ b

a

f(x, t, ρ(x, t))A dx
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CHAPTER 2. MAY 8

Convention f(x, t, ρ)

{
> 0 if creation

< 0 if destruction

dQ

dt
= T (t) + S(t)

→ d

dt

∫ b

a

ρ(x, t)Adx = φ(a, t)A− φ(b, t)A+

∫ b

a

f(x, t, ρ(x, t))Adx

Global conservation law

Extra Assumptions ∂ρ
∂t

and ∂ρ
∂x

are continuous

fundamental theorem of calculus

d

dt

∫ b

a

ρ(x, t)dx =

∫ b

a

∂ρ

∂t
dx

∫ b

a

∂φ

∂x
(x, t)dx = φ(b, t)− φ(a, t)∫ b

a

(
∂ρ

∂t
+
∂φ

∂x
− f

)
dx = 0

does this mean that ∂ρ
∂t

+ ∂φ
∂x

= f?

Note that a, b are arbitrary
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CHAPTER 3

May 10

∫ b

a

(
∂ρ

∂t
+
∂φ

∂x
− f(x, y, ρ(x, t))

)
dx = 0

The equation above is GLOBAL

• a, b are arbitrary

• if we assume integrand continuous

=⇒ ∂ρ

∂t
+
∂φ

∂x
= f(x, t, ρ)

local conservation law

# of unknowns?
We assume that f is known, therefore 2 unknowns.

To have any hope of solving, need to relate ρ and φ → constitutive relation

V

→ arbitrary “nice” region of space

∂V = boundary of V (surface)

Q(t) total amount of some quantity in V .
Assume

Q(t) =

∫∫∫
V

ρ(~r, t)dV

where ~r = (x, y, z)

dQ

dt
= T (t)︸︷︷︸

net rate of change due to transport

+ S(t)︸︷︷︸
net rate of change due to sources
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3.1. GLOBAL CONSERVATION LAW CHAPTER 3. MAY 10

1. T (t) locally described by flux ~φ(~r, t)

• direction of ~φ: in which direction quantity flows

• magnitude of ~φ: how much quantity is transported per unit time, per unit area (cross-

section area, ⊥ to ~φ)

[~φ] =
[Q]

time · area

T (t) = −
∫∫

∂V

~φ(~r, t) · ~n(~r)dA surface integral

Net change

• quantity either enters or exists from the boundary
~n(~r) unit outward normal to ∂V

minus sign T > 0 if ~φ goes in

2. sources

S(t) =

∫∫∫
V

f(~r, t, ρ(~r, t))︸ ︷︷ ︸
source term

dV

3.1 Global Conservation Law

d

dt

∫∫∫
V

ρ dV = −
∫∫

∂V

~φ · ~n dA+

∫∫∫
V

f dV

We assume ρ, ~φ and f are “nice”

• we can apply theorems to them

–
d

dt

∫∫∫
V

ρ dV =

∫∫∫
V

∂ρ

∂t
dV

– divergence theorem ∫∫
∂V

~φ · ~n dA =

∫∫∫
V

~∇ · ~φ dV

Then global conservation law becomes∫∫∫
V

(
∂ρ

∂t
+ ~∇ · ~φ− f

)
dV = 0

• V is arbitrary

• if integrand is continuous

local conservation law:
∂ρ

∂t
+ ~∇ · ~φ = f → works for all transport
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3.1. GLOBAL CONSERVATION LAW CHAPTER 3. MAY 10

special case if ρ depends only on x, t and ~φ goes in ~x direction

∂ρ

∂t
+
∂φ

∂x
= f
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