AMATH 353

Sibelius Peng

May 10, 2019

Contents

1	May 6	2
	1.1 Learning Objectives	2
	1.2 Modelling	3
	1.3 Other	4
2	May 8	5
3	May 10 3.1 Global Conservation Law	7 8

CHAPTER 1

May 6

- Definition of PDE, examples, terminology
- 1D conservation law

Defn A partial differential equation is an equation that relates to an unknown function u and its partial derivatives (u is a function of 2 or more variables)

 $\begin{array}{ll} \textbf{Example} & u = u(x,y) \leftrightarrow u \text{ is a function of } x,y.\\ \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} & u = \frac{\partial u}{\partial x} + \left(\frac{\partial u}{\partial y}\right)^2 & \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = x^2 + y^2 \end{array}$

1.1 Learning Objectives

- Solve PDEs
- Model physical processes using PDEs

PDEs are very different than ODEs

 $\frac{\partial u}{\partial v} = 0 \iff u \text{ is independent of } x \to u(x,y) = f(y) \text{ (most general solution)}$

Consequences Unlike ODEs, if we specify u at a single point x_0, y_0 , we don't fully determine the solution

Linear unknown and its partial derivative appear alone and to the first power.

homogeneous A LINEAR PDE is called homogeneous if every term contains the unknown or one of its derivatives.

1.2 Modelling

• most of the time, u depends on time (t) evolution of a process

Transport equations some quantity is transported 1D

some element of a physical quantity is present in the cylinder.

Let Q(t) be the amount of this quantity at time t in the section of cylinder with $a \le x \le b$. Want to describe $\frac{dQ}{dt}$ (rate of change)

$$\frac{dQ}{dt} =$$
 net rate at which Q changes

Assumptions

1. Q(t) can be locally described by a density $\rho(x, y, z, t)$ with ρ continuous note that

$$[\rho] = \frac{[Q]}{\text{volume}}$$

2. ρ is constant on cross-sections $\rightarrow \rho = \rho(x, t)$ only. makes sense if cylinder is insulated

 $model \neq reality$

$$Q(t) = \int_{a}^{b} \rho(x, t) A \, dx$$

where A is the cross-sectional area ρ is local Need to describe the rate of change

1.3 Other

- syllabus (next time)
- Tutorials
 - Done by me
 - no catching up with lectures
 - fun interesting different

CHAPTER 2

May 8

total amount $Q(t) = \int_a^b \rho(x, t) A \ dx$ $\frac{dQ}{dt} =$? How can Q(t) change?

- 1. quantity enters or exits from cross-sections x = a, x = b
- 2. quantity created/destroyed by an <u>external source</u>

Assumptions

net

1. assume that transport is locally described by $\underline{\text{flux}}$

 $\phi(x,t) \rightarrow$ measure amount of quantity crossing the cross section at x at time t, per unit time, per unit area.

$$[\phi] = \frac{[Q]}{area \cdot time} \Longrightarrow$$
rate of change due to transport: $T(t) = \underbrace{\phi(a,t)}_{amount \ entering \ left} A - \underbrace{\phi(b,t)}_{amount \ entering \ right} A$

Convention $\phi(x,t) \begin{cases} > 0 & \text{if moving right} \\ < 0 & \text{if moving left} \end{cases}$

2. Assume that quantity creation is locally described by source term $f(x, t, \rho)$ measures quantity created/destroyed per unit volume, per unit time

$$[f] = \frac{[Q]}{volume \ \cdot \ time} \rightarrow$$

. . .

net rate of creation/destruction is

$$S(t) = \int_{a}^{b} f(x, t, \rho(x, t)) A \, dx$$

Convention $f(x,t,\rho) \begin{cases} > 0 & \text{if creation} \\ < 0 & \text{if destruction} \end{cases}$

$$\frac{dQ}{dt} = T(t) + S(t)$$

$$\rightarrow \frac{d}{dt} \int_{a}^{b} \rho(x, t) A dx = \phi(a, t) A - \phi(b, t) A + \int_{a}^{b} f(x, t, \rho(x, t)) A dx$$

Global conservation law

Extra Assumptions $\frac{\partial \rho}{\partial t}$ and $\frac{\partial \rho}{\partial x}$ are continuous

fundamental theorem of calculus

$$\frac{d}{dt} \int_{a}^{b} \rho(x,t) dx = \int_{a}^{b} \frac{\partial \rho}{\partial t} dx$$
$$\int_{a}^{b} \frac{\partial \phi}{\partial x}(x,t) dx = \phi(b,t) - \phi(a,t)$$
$$\int_{a}^{b} \left(\frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} - f\right) dx = 0$$

does this mean that $\frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} = f$?

Note that a, b are arbitrary

chapter 3

May 10

$$\int_{a}^{b} \left(\frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} - f(x, y, \rho(x, t)) \right) dx = 0$$

The equation above is GLOBAL

- a, b are arbitrary
- if we assume integrand continuous

$$\implies \frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} = f(x, t, \rho)$$

local conservation law

of unknowns?

We assume that f is known, therefore 2 unknowns.

To have any hope of solving, need to relate ρ and $\phi \rightarrow$ constitutive relation

 \rightarrow arbitrary "nice" region of space

 $\partial V =$ boundary of V (surface)

Q(t) total amount of some quantity in V. Assume

$$Q(t) = \iiint_V \rho(\vec{r}, t) dV$$

where $\vec{r} = (x, y, z)$

$$\frac{dQ}{dt} = \underbrace{T(t)}_{\text{net rate of change due to transport}} + \underbrace{S(t)}_{\text{net rate of change due to sources}}$$

7

- 1. T(t) locally described by flux $\vec{\phi}(\vec{r}, t)$
 - direction of $\vec{\phi}$: in which direction quantity flows
 - magnitude of $\vec{\phi}$: how much quantity is transported per unit time, per unit area (cross-section area, \perp to $\vec{\phi}$)

$$[\vec{\phi}] = \frac{[Q]}{time \cdot area}$$
$$T(t) = -\iint_{\partial V} \vec{\phi}(\vec{r}, t) \cdot \vec{n}(\vec{r}) dA \qquad \text{surface integral}$$

Net change

• quantity either enters or exists from the boundary $\vec{n}(\vec{r})$ unit outward normal to ∂V

minus sign T > 0 if $\vec{\phi}$ goes in

2. sources

$$S(t) = \iiint_V \underbrace{f(\vec{r}, t, \rho(\vec{r}, t))}_{source \ term} dV$$

3.1 Global Conservation Law

$$\frac{d}{dt} \iiint_V \rho \ dV = - \iint_{\partial V} \vec{\phi} \cdot \vec{n} \ dA + \iiint_V f \ dV$$

We assume $\rho, \vec{\phi}$ and f are "nice"

• we can apply theorems to them

$$- \frac{d}{dt} \iiint_V \rho \ dV = \iiint_V \frac{\partial \rho}{\partial t} \ dV$$

divergence theorem

$$\iint_{\partial V} \vec{\phi} \cdot \vec{n} \, dA = \iiint_V \vec{\nabla} \cdot \vec{\phi} \, dV$$

Then global conservation law becomes

$$\iiint_V \left(\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{\phi} - f\right) dV = 0$$

- V is arbitrary
- if integrand is continuous local conservation law: $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{\phi} = f \longrightarrow$ works for all transport

special case if ρ depends only on x, t and $\vec{\phi}$ goes in \vec{x} direction

$$\frac{\partial \rho}{\partial t} + \frac{\partial \phi}{\partial x} = f$$