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Preface

This review notes consist of two parts: ERV (Winter 2010) and Dr. Giuseppe Sellaroli
(Spring 2019). They focused on different subjects, but main idea is same. For the Spring
2019 part, the content will be more comprehensive. The content might vary from term to
term. Use at your own risk.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem
non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet,
tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi.
Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a
nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus
mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus
luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt
tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante.
Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis,
molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend
at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend
consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna.
Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus.
Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum
pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt
ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea
dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum
wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat
quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl.
Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus
semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam
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pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros
eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi.
Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo
lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis
cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque
egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae,
arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy
vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec
eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis
elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo
pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum
faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula
hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac
habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt.
Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec
pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus
ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus,
vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat
sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque
lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque
eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse
eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique
ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a,
dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo
wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu,
libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros
sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus
aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam
elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a
nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc
eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus
scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo
eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et,
lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper
leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est.
Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel,
egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum
tortor, vel consectetuer odio sem sed wisi.

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur
ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et,
consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris.



Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam
euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cursus id,
nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas,
pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis
magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam
a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum
placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec,
ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris
porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam
elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla
arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in,
placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Etiam ac leo a risus tristique nonummy. Donec dignissim tincidunt nulla. Vestibulum
rhoncus molestie odio. Sed lobortis, justo et pretium lobortis, mauris turpis condimentum
augue, nec ultricies nibh arcu pretium enim. Nunc purus neque, placerat id, imperdiet
sed, pellentesque nec, nisl. Vestibulum imperdiet neque non sem accumsan laoreet. In hac
habitasse platea dictumst. Etiam condimentum facilisis libero. Suspendisse in elit quis nisl
aliquam dapibus. Pellentesque auctor sapien. Sed egestas sapien nec lectus. Pellentesque
vel dui vel neque bibendum viverra. Aliquam porttitor nisl nec pede. Proin mattis libero
vel turpis. Donec rutrum mauris et libero. Proin euismod porta felis. Nam lobortis, metus
quis elementum commodo, nunc lectus elementum mauris, eget vulputate ligula tellus eu
neque. Vivamus eu dolor.

Nulla in ipsum. Praesent eros nulla, congue vitae, euismod ut, commodo a, wisi.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Aenean nonummy magna non leo. Sed felis erat, ullamcorper in, dictum non,
ultricies ut, lectus. Proin vel arcu a odio lobortis euismod. Vestibulum ante ipsum primis
in faucibus orci luctus et ultrices posuere cubilia Curae; Proin ut est. Aliquam odio.
Pellentesque massa turpis, cursus eu, euismod nec, tempor congue, nulla. Duis viverra
gravida mauris. Cras tincidunt. Curabitur eros ligula, varius ut, pulvinar in, cursus
faucibus, augue.

Nulla mattis luctus nulla. Duis commodo velit at leo. Aliquam vulputate magna et
leo. Nam vestibulum ullamcorper leo. Vestibulum condimentum rutrum mauris. Donec
id mauris. Morbi molestie justo et pede. Vivamus eget turpis sed nisl cursus tempor.
Curabitur mollis sapien condimentum nunc. In wisi nisl, malesuada at, dignissim sit
amet, lobortis in, odio. Aenean consequat arcu a ante. Pellentesque porta elit sit amet orci.
Etiam at turpis nec elit ultricies imperdiet. Nulla facilisi. In hac habitasse platea dictumst.
Suspendisse viverra aliquam risus. Nullam pede justo, molestie nonummy, scelerisque eu,
facilisis vel, arcu.
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1. Models

1.1 heat eqn

• Conduction: (传导) the transfer of vibrational energy from one molecule or atom to
another by means of collisions. The molecules/atoms do not move appreciably. This
is the primary mechanism for heat flow in solids.
• Convection: (对流) the molecules/atoms move appreciably from one place to an-

other, taking the thermal energies with them. This will occur in gases and liquids.

1.1.1 Thermal density
• e(x, t): thermal energy density
• ∆h: amount of heat
• A: area

Ideally, we define

e(x, t) = lim
∆x→0

∆h

A∆x

Then

h(a, b; t) =

∫ b

a
e(x, t)A dx

1.1.2 Conservation

rate of change of total thermal energy
=
net heat flow across boundaries per unit time
+
total thermal energy generated inside per unit time

LHS =
dh(a, b; t)

dt
=

d

dt

∫ b

a
e(x, t)Adx =

∫ b

a

∂e(x, t)

∂t
Adx



4 Chapter 1. Models

1.1.3 Heat Flux
φ(x, t): this is the amount of thermal energy per unit time flowing to the right per unit
surface area.
• if > 0, then heat is flowing to the right at x.
• < 0, then ... left ...

1.1.4 Internal heat sources
Q(x, t): thermal energy per unit volume generated per unit time at point x and time t.∫ b

a

∂e(x, t)

∂t
Adx = φ(a, t)A− φ(b, t)A+

∫ b

a
Q(x, t)Adx

∫ b

a

[
∂e

∂t
+
∂φ

∂x
−Q

]
dx = 0

∂e

∂t
+
∂φ

∂x
−Q = 0

Temperature function u(x, t).

Specific heat, c: the heat energy that must be applied to a unit mass of a
substance to raise its temperature by one unit

Then heat energy per unit mass is given by

c(x)[u(x, t)− u0]

mass
∆m = ρ∆V = ρA∆x

total energy
e(x, t)A∆x = c(x) [u(x, t)− u0] ρ(x)A∆x

Divide by A∆x and substitute to the equation above, we have

c(x)ρ(x)
∂u

∂t
= −∂φ

∂x
+Q

Theorem 1.1.1 — Fourier’s law of heat conduction.

φ = −K0
∂u

∂x

where K0 is known as the thermal conductivity
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substitute the result for φ into previous equation

cρ
∂u

∂t
= K0

∂2u

∂x2
+Q

If Q = 0, then PDE becomes

Theorem 1.1.2 — Heat Equation.
∂u

∂t
= k

∂2u

∂x2

where k = K0
cρ is known as thermal diffusivity.

The conservation of mass principle states that the rate of change of chemical in [a, b]
will be equal to the net flow of chemical into the interval

d

dt

∫ b

a
u(x, t)Adx = [φ(a, t)− φ(b, t)]A

then we may conclude that

∂u

∂t
= −∂φ

∂x
, 0 ≤ x ≤ L

Theorem 1.1.3 — Fick’s law of diffusion.

φ(x, t) = −k∂u
∂x

where k > 0 is the coefficient of diffusivity.

If we substitute, then diffusion equation yields to the same form.

1.1.5 higher dimension
e(~x, t): the thermal energy density: (heat per unit volume) at a point ~x ∈ V in the solid.
φ(~x, t): the heat flux vector at a point ~x ∈ V .
Then the total heat energy: ∫∫∫

D
e(~x, t)dV

basic idea:
rate of change
of total heat

energy in time
=

net heat flow
across boundary

per unit time
+

heat energy
generated inside

per unit time

LHS =
d

dt

∫∫∫
D
e(x, t)dV =

∫∫∫
D

∂e

∂t
dV

RHS = −
∫∫

S
Φ · n̂dS +

∫∫∫
D
Q dV

By Divergence Theorem: ∫∫
S

Φ · n̂dS =

∫∫∫
D

~∇ · ΦdV

Then combine all terms, we have the conservation equation

∂e

∂t
= −~∇ · Φ +Q

Q = 0, together with
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Theorem 1.1.4 — Fick’s law of transport.

φ = −k~∇ · u

we have the three dimensional diffusion equation

∂u

∂t
= k∇2u

1.1.6 IC and BC
1. Initial condition: u(x, 0) = g(x), 0 ≤ x ≤ L.
2. Boundary conditions:

u(0, t) = T1, u(L, t) = T2

or time-varying temp:

u(0, t) = fB(t), u(L, t) = gB(t)

1.1.7 equilibrium
u = ueq(x) =⇒ ∂u

∂t = 0



2. Methods of Separation of Variables

2.1 Heat Equation
Recall 1D heat equation without sources

∂u

∂t
= k

∂2u

∂x2

with zero-endpoint BCs
u(0, t) = 0, u(L, t) = 0

and IC
u(x, 0) = f(x), 0 ≤ x ≤ L

We assume a solution of the form

u(x, t) = φ(x)G(t)

We introduce a separating constant µ ∈ R:

G′(t)

kG(t)
=
φ′′(x)

φ(x)
= −λ

Then we discuss in three cases λ = 0, > 0, < 0.

2.2 Laplace
Recall Laplace’s equation for a function u : Rn → R is given by

∆2u = 0

with 4 BCs

2.2.1 Rectangular Region
Just as usual
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2.2.2 Circular
It is more simple to work in planar polar coordinates (r, θ) so that u = u(r, θ). Then
Laplace’s equation becomes

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0

Because of this singularity at t = 0, we’ll also need a condition on solutions there: With
an eye to physical applications, we impose the condition of boundedness

|u(0, θ)| <∞

2.3 Sturm-Liouville Theory
d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0, a < x < b

subject to general homogeneous boundaries of the form

β1φ(a) + β2
φ

dx
(a) = 0

β3φ(b) + β4
φ

dx
(b) = 0

several conditions
1. p(x) piecewise C1, q(x) and σ(x) are piecewise continuous
2. p(x) > 0, σ(x) > 0



3. Fourier Transform Solutions of PDEs

F (ω) =

∫ ∞
−∞

f(x)e−iωxdx, f(x) =
1

2π

∫ ∞
−∞

F (ω)eiωxdω

The Fourier transform of a Gaussian f(x) = e−ax
2

is a Gaussian F (ω) =
1√
4πa

e−
1
4a
ω2

3.1 Solution of Heat Equation via Fourier Transforms and Convolution Theorem

The complete notes can be found here

∂u

∂t
= k

∂2u

∂x2
, −∞ < x <∞

with IC

u(x, 0) = f(x)

has solution

u(x, t) =

∫ ∞
−∞

f(s)ht(x− s)ds, t > 0

where the “heat kernel" function ht(x) is given by

ht(x) =
1√

4πkt
e−x

2/4kt, t > 0

3.2 Parseval’s Identity

skipped

http://links.uwaterloo.ca/amath353docs/set10.pdf
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3.3 Dirac delta function
Recall that delta function δ(x) is not a function in the usual sense. It has following
properties

δ(x) =

{
0, x 6= 0
∞, x = 0

with the additional feature that ∫ ∞
−∞

δ(x) dx = 1

It’s an example of a distribution: distributions are defined in terms of their integration
properties.



4. Quasilinear PDEs

A quasilinear PDEs has the form

∂u

∂t
+ c(u, x, t)

∂u

∂x
= Q(u, x, t)

It is called quasilinear because the partial derivatives do not multiply each other. Note
that the PDE can be nonlinear since the coefficient c could be a function of u. As well, the
function Q could be nonlinear in u. The special form of the quasilinear PDE permits its
reduction to a system of ODEs which can, at least in principle, be solved, as we show here.

4.1 Application
traffic flow

4.2 Shock Waves
here.

http://links.uwaterloo.ca/amath353docs/set11.pdf
http://links.uwaterloo.ca/amath353docs/set12.pdf
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5. Basics & Models

5.1 Basics
Definition 5.1.1 A PDE is an equation that relates an unknown function of two or more
variables to its partial derivatives.

Definition 5.1.2 — order. The order of a PDE is defined to be the order of the highest
order derivative appearing in it.

� Example 5.1
∂u

∂x
+
∂u

∂y
= u

is first order, while
∂2u

∂x∂y
+

(
∂u

∂y

)3

= 3

is second-order. �

Definition 5.1.3 — linear. A PDE is linear if the unknown u and its partial derivatives
appear alone and to the first power; their coefficients are allowed to depend on the
independent variables (x, y, etc)

� Example 5.2

u+
∂u

∂x
+ x

∂u

∂y
= 3x

is linear, while

u2 + sin
(∂u
∂x

)
= 0

is non-linear. �

Definition 5.1.4 — homogeneous. A linear PDE is called homogeneous if every term
contains the unknown u or one of its derivatives.
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� Example 5.3
∂u

∂x
+
∂2u

∂y2
+ u = 0

is homogeneous, while
∂u

∂x
+ y = 0

is non-homogeneous. Note that
∂u

∂x
+ u

∂u

∂y
= 0

is not homogeneous (despite its appearence) since it is not linear. �

5.2 Models
5.2.1 1D conservation law

Idea is same as before. We have
• quantity Q(t)
• density ρ(x, t)
• source term f(x, t, ρ)
• flux φ(x, t)
Then we have local conservation law

∂ρ

∂t
(x, t) +

∂φ

∂x
(x, t) = f(x, t, ρ)

5.2.2 3D conservation law
Global

Q(t) =

∫∫∫
V
ρ(~r, t) dV

The net rate of change of Q due to transport, which we denote by T (t), is given by the net
rate at which quantity enters V through the boundary ∂V . To describe T (t) locally we
introduce the flux ~φ(~r, t), which this time we make into a vector field. Then we can write
T (t) as the surface integral

T (t) = −
∫∫

∂V

~φ(~r, t) · ~n(~r) dA

The net rate of change of Q due to sources, which we denote by S(t) , can be written as

S(t) =

∫∫∫
V
f(~r, t, ρ(~r, t)) dV

Then the global conservation law for this process is given by

dQ

dt
= T (t) + S(t)

Local
or, in terms of the integrals, we have

d

dt

∫∫∫
V
ρ(~r, t) dV = −

∫∫
∂V

~φ(~r, t) · ~n(~r) dA+

∫∫∫
V
f(~r, t, ρ(~r, t)) dV

Then by divergence theorem, finally, we have local conservation law

∂ρ

∂t
(~r, t) +∇ · ~φ(~r, t) = f(~r, t, ρ(~r, t))

Problem 5.1 What is the difference between global and local conservation laws?
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Answer
Global conservation laws describes the change in the quantity of a physical system, and
so the equation used to describe it an ODE evaluating only one variable that describes
the entire system. Local conservation laws on the other hand take different variables that
construct the system into account and so the equation consists of PDEs describing the
change in those variables. For example, In the lecture we are given an example of heat.
We can only consider time as the variable for total system, but if we zoom in for space in
order to get more information, we need to apply divergence th and then we can get the
information about space, i.e. r variable here. And that gives us a pde.

Considering then initial conditions, we have linear combination of separable solutions.
To let the solution make sense, we must have the complete set, otherwise we will have
infinitely many solutions.

5.3 Diffusion equation

we have Fick’s law
~φ = −D∇ρ,

Note that, despite its name, Fick’s law is a model approximating reality, not a rule set in
stone. Putting together Fick’s law and the conservation law, we get the diffusion equation

∂ρ

∂t
= D∇2ρ

where D > 0 is called the diffusion constant.

5.4 Heat equation

we know1 from thermodynamics that

u = ρCT

where u is density of thermal energy, rho is mass density, C is the specific heat of the
object, and T is the temperature at each point and times.

we have Fourier’s law
~φ = −K∇T

where K > 0 is called thermal conductivity. 2 Putting these together we have heat
equation

∂T

∂t
= k∇2T

where k = K/ρC is the thermal diffusivity.

5.5 Advection equation

We call advection (对流) the transport of a quantity due to the motion of a fluid that carries
it. Note that this is different than diffusion, where for example a chemical moves in a static
fluid.

1I don’t :)
2We are going to assume that K is constant for simplicity, but it is an approximation: in reality it depends

on the temperature.
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Given the continuity equation

∂ρ

∂t
+∇ · ~φ = 0

for the quantity being transported, we can model advection by using constitutive relation

~φ = ρ~v

hat is, we say that the flux is directly proportional to both the density of the substance and
the speed of the fluid, and it follows the flow of motion of the fluid. Thus we get the PDE

∂ρ

∂t
+∇ · (ρ~v) = 0

If we further assume that the fluid is incompressible, a result from fluid mechanics (we
are not going to prove this in class, but feel free to ask me about the proof at office hours
or during tutorial) tells us that∇ · ~u = 0, from which it follows that

∇ · (ρ~v) = ~v · ∇ρ+ ρ∇ · ~v = ~v · ∇ρ

so we have advection equation

Definition 5.5.1 — advection equation.

∂ρ

∂t
(~r, t) + ~v(~r, t) · ∇ρ(~r, t) = 0

In the special case in which ρ depends only on x, t and the velocity field is constant and
the velocity field is constant and directly along the x-axis, i.e.

~v = c x̂, c ∈ R,

the advection equation reduces to

∂ρ

∂t
+ c

∂ρ

∂x
= 0.

5.5.1 Nomenclature

• terms proportional to∇2ρ are called diffusion terms
• terms proportional to∇ρ are called advection terms
• source terms are also called reaction terms, as they often represent creation or

destruction by means of chemical reactions
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5.6 Wave equations
5.6.1 String Vibrations

The vertical component of Newton’s second law is approximately

m
∂2u

∂t2
≈ −T sin(θ(x, t)) + T sin(θ(x+ ∆x, t))

mass is approximately

m ≈ ρA
√

(∆x)2 + (∆u)2 = ρA∆x

√
1 +

(
∆u

∆x

)2

Then by some approximations... we have

Definition 5.6.1 — wave equation.

∂2u

∂t2
− c2∂

2u

∂x2
= 0

where

c =

√
T

ρA

has units of speed

5.6.2 Vibrating membrane
we assume:
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• membrane density ρ is constant
• thickness h is constant
• the tension per unit length ~τ of the membrane which is a vector field defined at each

point of the membrane. We assume it has constant magnitude τ .
By Stoke’s Theorem and some approximation we have

Definition 5.6.2 — wave equation.

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
,

where

c =

√
τ

ρh

has units of speed.



6. Classification of 2nd order PDEs

6.1 Generic 2nd order linear PDE in two variables
Definition 6.1.1 — generic form.

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu+G = 0

Note that we assume u is of class C2.

Definition 6.1.2 — Discriminant.

Disc(x, y) = B2 −AC

• if Disc > 0, hyperbolic
• if = 0, parabolic
• if < 0, elliptic

6.2 Canonical form of the wave equation and its solutions

∂2u

∂t2
− c2∂

2u

∂x2
=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
u = 0

assuming u is of class C2 so that the mixed derivatives cancel out.

By changing of variables {
x = 1

2(η + ξ)

t = 1
2c(η − ξ)

Then we have
∂

∂η

(
∂u

∂ξ

)
= 0
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Therefore the general solution is

u(x, t) = α(x− ct) + β(x+ ct)

We say α(x− ct) is a right-travelling wave, since if we plot it as a function of x and let t
increase, the plot shift to the right at constant speed c (assuming c > 0). Likewise β(x+ ct)
os a left-travelling wave.



7. Separation of Variables

1

c2

∂2u

∂t2
=
∂2u

∂x2
, u(0, t) = u(L, t) = 0 ∀t ≥ 0

{
u(x, 0) = f(x)
∂u
∂t (x, 0) = g(x),

x ∈ [0, L], (7.1)

Separate:
u(x, t) = M(x)N(t)

1

c2
N ′′(t)M(x) = M ′′(x)N(t)

M(0) = M(L) = 0

we are going to assume that M(x) and N(t) are both not always zero. Under this assump-
tion, we can write general solution as the following system:{

M ′′(x) = −λM(x)

N ′′(t) = −c2λN(t)

Then we discuss λ = 0,−s2, s2 with s > 0. Then we have our general solution

u(x, t) =
∞∑
k=1

uk(x, t) =
∞∑
k=1

sin

(
kπx

L

)[
Ak cos

(
ckπt

L

)
+Bk sin

(
ckπt

L

)]
We need the function to satisfy the initial conditions (7.1) if and only if

f(x) =

∞∑
k=1

Ak sin

(
kπx

L

)
(7.2)

g(x) =

∞∑
k=1

ckπ

L
Bk sin

(
kπx

L

)
. (7.3)
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Then we can always find unique coeff Ak and Bk by fourier sine series:

Ak =
2

L

∫ L

0
f(x) sin

(
kπx

L

)
dx (7.4)

Bk =
2

ckπ

∫ L

0
g(x) sin

(
kπx

L

)
dx. (7.5)

7.1 IC & BC
7.1.1 Boundary Conditions

1. Dirichlet conditions specify the value of the unknown u on the boundary. u(0, t) = 0
u(L, t) = sin(3t)

2. Neumann conditions specify the value of the spatial derivative of u on the boundary/
3. Robin conditions specify the value of a combination of both u and the spatial deriva-

tive of u on the boundary

7.1.2 Initial conditions
Whenever the unknown function u depends on time, we also need to impose initial
conditions to make sure that we have enough data to find a unique solution.

7.1.3 Well-posed problems
Following the definition given by Hadamard, we say that a BVP/IVP/IBVP is well posed
if:

1. the problem has a solution;
2. the solution is unique;
3. the behaviour of the solution depends continuously on the initial/boundary condi-

tions—in other words, if we change the data a little bit we don’t want a drastically
different solution;

The first requirement is self-explanatory: a model without solutions is not very useful. The
second and third requirements are more subtle: we want unique solutions that depend
continuously on the data since we often need to solve PDEs numerically, and we need to
make sure of two things:
• there is only one solution to pick from, so that numerical errors don’t send us to the

wrong solution;
• numerical errors and approximations in the data don’t radically change the solution

from the real one.

7.2 Sturm–Liouville theory
Definition 7.2.1 A function f : [a, b]→ R is square-integrable on [a, b] with weight w(x)
if ∫ b

a
|f(x)|2w(x) dx <∞, (7.6)

where w(x) > 0 on [a, b].
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Definition 7.2.2 An infinite sequence of functions {ϕn}∞n=1 ⊂ L2([a, b], w) is called a
<em>complete orthonormal set</em> if

〈ϕm, ϕn〉 = δmn (orthonomality) (7.7)

and for any f ∈ L2([a, b], w) we have

f =
∞∑
n=1

〈ϕn, f〉ϕn (completeness). (7.8)

The r.h.s. of (7.8) is called the generalised Fourier series of f , and the equality is to be
understood as “the generalised Fourier series of f converges to f”.

Definition 7.2.3 — Sturm–Liouville problem. Let L be the operator on L2([a, b], w) de-
fined by

(Lf)(x) =
1

w(x)

[
p(x)f ′′(x) + p′(x)f ′(x) + q(x)f(x)

]
(7.9)

for some fixed functions p(x) > 0 and q(x), with p of class C1 (continuously differen-
tiable) and q continuous. More compactly, we can write

L =
1

w(x)

[
p(x)

d2

dx2
+ p′(x)

d

dx
+ q(x)

]
. (7.10)

A (regular) Sturm–Liouville problem consists in finding the eigenfunctions and eigen-
values of L,

Lf = −λf (the minus sign is by convention) (7.11)

subject to the constraints

α1f(a) + α2f
′(a) = 0 α2

1 + α2
2 6= 0 (7.12)

β1f(b) + β2f
′(b) = 0 β2

1 + β2
2 6= 0. (7.13)

In other words, we are trying to find out for which values of λ the ordinary differ-
ential equation

p(x)f ′′(x) + p′(x)f ′(x) + q(x)f(x) = −λw(x)f(x) (7.14)

has a nonzero solution satisfying the constraints (7.12) and (7.13).

There are some properties:
1. eigenvalues are all real, bounded below but not above
2. The eigenspaces are 1-dimensional, i.e., each eigenvalue λn has a unique (up to a

multiplicative factor) eigenfunction ϕn. Moreover the function ϕn has exactly n− 1
zeroes in the open interval (a, b).

3. The eigenfunctions form a complete orthonormal set, assuming they have been
normalised to ensure that

‖ϕn‖ = 1. (7.15)
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Theorem 7.2.1 — non-negative eigenvalues. Consider the Sturm–Liouville problem
Lf = −λf
α1f(a) + α2f

′(a) = 0

β1f(b) + β2f
′(b) = 0

(7.16)

with

L =
1

w(x)

[
p(x)

d2

dx2
+ p′(x)

d

dx
+ q(x)

]
, p(x), w(x) > 0, x ∈ [a, b]. (7.17)

If we have
q(x) ≤ 0

α1α2 ≤ 0 (α1 and α2 have opposite sign)
β1β2 ≥ 0 (β1 and β2 have the same sign)

(7.18)

then λ must be non-negative, i.e., λ ≥ 0.

Proof. omitted �

7.2.1 Counterexample: what can happen when Sturm–Liouville theory doesn’t apply

u(0, t) + u(π, t) = 0 t ≥ 0

the boundary conditions are not of the Sturm–Liouville kind, since one of them mixes a
condition at x = 0 with one at x = π.

7.2.2 When and why is separation of variables justified as a method to find the most
general solution of a PDE?

Sturm–Liouville theory

If the PDE and the boundary conditions are of the Sturm–Liouville form, we are guaranteed
to find the most general solution using the method of separation of variables.

(i.e. whether the normal modes form a COMPLETE orthonormal set when t = 0 to
satisfy any possible initial condition or not, or in other words, can every possible solution
of the PDE be written as a linear combination of the normal modes) One of the properties
of Sturm-Liouville Problems is that its eigenfunctions form a complete orthonormal set, so
given any reasonably nice initial condition, it can be written as a linear combination of the
eigenfunctions and thus the normal modes when t = 0. Otherwise, there will be certain
initial condition that cannot be wriiten by a linear combination of the separable solutions.

It is justified in the case when the sturm-liouville theory can be applied given the
form of equation and boundary conditions. The theory guarantees the solution in the
form of separable functions. t is justified in the case when the sturm-liouville theory can
be applied given the form of equation and boundary conditions. The theory guarantees
the solution in the form of separable functions. The final form of the equation gets into
that of the ratios which is equal to a separation constant; that Tcan be separated into two
eequations. SL theory guarantees the solution of equations in that form.
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7.3 More examples of S o V
Vibrating circular membrane

1

c2

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
x2 + y2 < R2, t > 0 (7.19)

and the boundary conditions

u(x, y, t) = 0 x2 + y2 = R2 (7.20)

Because of the symmetry, we can use polar coordinates:

x = r cos θ, y = r sin θ, 0 < r ≤ R, 0 ≤ θ ≤ 2π. (7.21)

x = r cos θ, y = r sin θ, 0 < r ≤ R, 0 ≤ θ ≤ 2π. (7.22)

In these coordinates the PDE becomes

1

c2

∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
, (7.23)

while the boundary conditions become

u(R, θ, t) = 0 θ ∈ [0, 2π], t ≥ 0. (7.24)

Note that when λ > 0, we will see the Bessel equation. Taking a linear combination of
all the normal modes, we get the candidate general solution

u(r, θ, t) =

∞∑
n=0

∞∑
k=1

[
Ank cos(nθ) +Bnk sin(nθ)

]
Jn

(
jnkr

R

)
sin(ωnkt+ ϕnk), (7.25)





8. Inhomogeneous

8.1 Duhamel’s principle
Robin Boundary conditions:

Bu =

[
α1u(a, t) + α2

∂u
∂x (a, t)

β1u(b, t) + β2
∂u
∂x (b, t)

]
(8.1)

Suppose we want to solve the IBVP
∂u

∂t
= Lu+ F (x, t) a < x < b, t > 0

Bu = ~0 t ≥ 0

u(x, 0) = 0 a ≤ x ≤ b

(8.2)

where L is differential operator only has derivatives w.r.t. x.

Theorem 8.1.1 — Duhamel’s principle, 1st order. The solution to the IBVP (8.2) is given
by

u(x, t) =

∫ t

0
vs(x, t− s) ds, (8.3)

where {vs}s≥0 is a family of functions satisfying the IBVPs
∂vs
∂t

= Lvs a < x < b, t > 0

Bvs = ~0 t ≥ 0

vs(x, 0) = F (x, s) a ≤ x ≤ b.

(8.4)

Note that the principle only works if vs depends continuously on the parameter s.

Proof. omitted �
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∂2u

∂t2
+ α(t)

∂u

∂t
= Lu+ F (x, t) a < x < b, t > 0

Bu = ~0 t ≥ 0

u(x, 0) = 0 a ≤ x ≤ b
∂u

∂t
(x, 0) = 0 a ≤ x ≤ b

(8.5)

Theorem 8.1.2 — Duhamel’s principle, 2nd order. The solution to the IBVP (8.5) is given
by

u(x, t) =

∫ t

0
vs(x, t− s) ds, (8.6)

where each function vs satisfies

∂2vs
∂t2

+ α(t)
∂vs
∂t

= Lvs a < x < b, t > 0

Bvs = ~0 t ≥ 0

vs(x, 0) = 0 a ≤ x ≤ b
∂vs
∂t

(x, 0) = F (x, s) a ≤ x ≤ b.

(8.7)

Note that the principle only works if vs depends continuously on the parameter s.

Proof. omitted �

Definition 8.1.1 — resonance. This phenomenon is known as resonance: if the string
is subject to a forcing term which oscillates at a frequency close to the frequency of
one of the normal modes, there is a positive feedback effect and the string can vibrate
considerably. This is how, for example, a glass can be shattered by making it vibrate at
the right frequency.

8.2 Homogenize non-zero initial conditions
8.2.1 first order

Suppose that we want to solve the equation
∂u

∂t
= Lu+ F (x, t) a < x < b, t > 0

Bu = ~0 t ≥ 0

u(x, 0) = f(x) a ≤ x ≤ b,

(8.8)

where L is a differential operator involving x only and B is the generic boundary operator
we defined a few lectures ago.

We don’t know how to solve this directly, so we are going to introduce a new function
ψ(x, t) which satisfies

ψ(x, 0) = 0 (8.9)

and which is related to u(x, t) in a simple way.
The simplest choice is

ψ(x, t) = u(x, t)− f(x). (8.10)
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8.2.2 second order
Suppose that we want to solve the equation

∂2u

∂t2
+ α(t)

∂u

∂t
= Lu+ F (x, t) a < x < b, t > 0

Bu = ~0 t ≥ 0

u(x, 0) = f(x) a ≤ x ≤ b
∂u

∂t
(x, 0) = g(x) a ≤ x ≤ b.

(8.11)

Just as before, we want to introduce a new function ψ(x, t) which satisfies

ψ(x, 0) = 0 and
∂ψ

∂t
(x, 0) = 0 (8.12)

and is related to u(x, t) in a simple way.
The simplest choice is

ψ(x, t) = u(x, t)− f(x)− g(x)t (8.13)

8.3 Homogenize non-zero boundary conditions
Suppose we want to solve some PDE with unknown u(x, t), with boundary conditions

α1u(a, t) + α2
∂u

∂x
(a, t) = A(t)

β1u(b, t) + β2
∂u

∂x
(b, t) = B(t).

(8.14)

In order to transform the problem into one we know how to solve, we introduce the new
unknown

ψ(x, t) = u(x, t)− u0(x, t), (8.15)

where u0 is any function that satisfies the boundary conditions (8.14), i.e.,
α1u0(a, t) + α2

∂u0

∂x
(a, t) = A(t)

β1u0(b, t) + β2
∂u0

∂x
(b, t) = B(t).

(8.16)

Then we can find (and solve) the PDE for ψ, which has homogeneous boundary conditions
by construction. The process of replacing u with ψ is called “homogenisation of the
boundary conditions”.

Note that the function u0 only needs to satisfy the boundary conditions: it has no PDE
or initial conditions. There are usually (infinitely) many choices for u0, but the goal is to
find a simple one.

We usually let u0(x, t) = α(t) + xβ(t)+x2γ(t)

8.4 Eigenfunction expansion
Duhamel’s principle is a very useful method, but it can’t be used with time-independent
PDEs (such as Laplace’s equation). To overcome this problem, we will introduce a different
method to solve inhomogeneous PDEs on bounded domains, known as “eigenfunction
expansion” or “finite Fourier transform”. It is essentially a generalisation of separation of
variables, that also works for nonhomogeneous equations.
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Steps
• Find a complete orthogonal set {Mk(x)}∞k=1 satisfying{

LMk = −λkMk

BMk = ~0

• The trick is to write also functions that depend on both x and t as linear combinations
of the Mk (that’s the eigenfuction expansion).
• Then solve the IBVP termwisely.

8.5 Duhamel’s principle vs eigenfunction expansion
So what’s the difference between the two methods we have seen? Not much really, it’s
more of a change in the order in which we do things:
• when we use duhamel’s principle, we first deal with the fact that the equation is

non-homogeneous, then use separation of variables (a subcase of eigenfunction
expansion) to reduce the problem to a system of ODEs;
• when we use eigenfunction expansion, we first reduce the problem to a system of

non-homogeneous ODEs and then we deal with the inhomogeneity (often using
duhamel’s principle!).

Eigenfunction expansion has advantages in some cases though:
• it can be used even if there is no time variable (technically speaking Duhamel’s

principle can be used as well, but it’s not as straightforward as usual);
• we can use a variety of techniques to solve the inhomogeneous ODEs, we don’t have

to necessarily use Duhamel’s principle.
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Lebesgue integration, Dirac’s delta

9.1 Fourier Transform

F [f ](k) =
1√
2π

∫
R
f(x) e−ikx dx (9.1)

F−1[f ](x) =
1√
2π

∫
R
f(k) eikx dk (9.2)

shorthand notations:

f̂ = F [f ], f̌ = F−1[f ]. (9.3)

9.2 Convolution Theorem

(f ∗ g)(x) =

∫
R
f(x− s)g(s) ds. (9.4)

Theorem 9.2.1 — convolution theorem.

F [f ∗ g](k) =
√

2πf̂(k) · ĝ(k) (9.5)

F−1[f ∗ g](k) =
√

2πf̌(k) · ǧ(k). (9.6)
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The convolution theorem also works the other way around, that is

F [f · g](k) =
1√
2π

(f̂ ∗ ĝ)(k) (9.7)

F−1[f · g](k) =
1√
2π

(f̌ ∗ ǧ)(k), (9.8)

Theorem 9.2.2 — Fourier transform of derivatives.

F
[
dnf

dxn

]
(k) = (ik)nf̂(k). (9.9)

T , distribution. Recall that distributions are (linear) functions acting on other functions.

� Example 9.1 — heat equation.
∂u

∂t
= D

∂2u

∂x2
x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
(9.10)

where f(x) is the initial temperature at t = 0 and D > 0.
The idea is to take the Fourier transform with respect to x of all function involved in

the IVP.

û(k, t) =
1√
2π

∫
R
u(x, t) e−ikx dx (9.11)

∂̂u

∂t
(k, t) =

1√
2π

∫
R

∂u

∂t
(x, t) e−ikx dx =

1√
2π

∂

∂t

∫
R
u(x, t) e−ikx dx =

∂û

∂t
(k, t)

(9.12)

∂̂2u

∂x2
(k, t) = −k2û(k, t) (9.13)

f̂(k) =
1√
2π

∫
R
f(x) e−ikx dx (9.14)

since Fourier Transform is linear, the BVP becomes
∂û

∂t
= −Dk2û

û(k, 0) = f̂(k)
(9.15)

�



10. Method of characteristics

The idea behind the method of characteristics
a surface S in the xtz-space through equation z = u(x, t)

10.1 general approach
Consider the Cauchy problema(x, t, u)

∂u

∂x
+ b(x, t, u)

∂u

∂t
= c(x, t, u)

u(γ1(r), γ2(r)) = f(r).
(10.1)

Just as before, we want to rewrite the surface

z = u(x, t) (10.2)

as a parametric surface
x = x(r, s)

t = t(r, s)

z = z(r, s)

(10.3)

built up from characteristic curves. This time the characteristic equations are
∂x

∂s
= a(x, t, z)

∂t

∂s
= b(x, t, z)

∂z

∂s
= c(x, t, z)


x(r, 0) = γ1(r)

t(r, 0) = γ2(r)

z(r, 0) = f(r).

(10.4)

‘ Once the parametric surface has been found, we try to find a function F such that

(r, s) = F (x, t), (10.5)
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at least in a neighbourhood of the initial curve Γ. Once this is done, we can write the
solution as

u(x, t) = z(F (x, t)). (10.6)

� Example 10.1 — inviscid Burger’s equation.
∂u

∂t
+ u

∂u

∂x
= 0 x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
(10.7)

which is an non-linear advection equation in which the fluid velocity is proportional to
u(x, t).

The characteristic equations are
ẋ = z

ṫ = 1

ż = 0


x(r, 0) = r

t(r, 0) = 0

z(r, 0) = f(r).

(10.8)

We have

t(r, s) = s, z(r, s) = f(r) (10.9)

so that{
ẋ = f(r)

x(r, 0) = r
⇒ x(r, s) = r + f(r)s. (10.10)

�

10.2 Shock Waves
Non-linear 1st order PDEs can exhibit a phenomenon called shock wave, which mathe-
matically is a discontinuity in the solution, which propagates in time.

there are not so many to distill...
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Method	of	characteristics	(continued)

Shock	waves

Non-linear	1st	order	PDEs	can	exhibit	a	phenomenon	called	shock	wave,	which

mathematically	is	a	discontinuity	in	the	solution,	which	propagates	in	time.

Let's	look	again	at	what	happens	to	Burger's	equation,	with	a	Gaussian	initial

condition:

whose	parametric	surface	is	given	by

Note	that	the	parameter	 	is	identified	with	time,	so	it	has	a	physical

interpretation;	however,	we	cannot	explicitly	invert	(at	least	not	in	terms	of

elementary	functions).	This	is	not	a	huge	problem,	since	we	can	just	graph	

	for	each	fixed	 	as	the	parametric	curve

The	real	problem	is	that	this	curve	cannot	always	be	interpreted	as	the	graph	of	a

function!	Look	at	the	animation	below:	after	a	certain	time	 	the	function

becomes	multi-valued.

⎧
⎨
⎩

+ u = 0 x ∈ R, t > 0

u(x, 0) = e−x2
x ∈ R,

(1)

∂u

∂t

∂u

∂x

⎧⎪
⎨
⎪⎩

x(r, s) = r + e−r2
s

t(r, s) = s

z(r, s) = e−r2
.

(2)

s

u(x, t) t

{(r + e−r2
t, e−r2

) | r ∈ R}. (3)

t∗ ≈ 1.2



We	say	that	at	time	 	the	solution	breaks,	or	that	a	shock	develops.

What	causes	the	shock?

The	shock	is	caused	by	the	fact	that	the	propagation	speed	is	proportional	to	 :

the	tip	of	the	Gaussian	function	in	the	initial	data	( )	propagates	faster	than

the	points	at	 ,	and	eventually	catches	up.

Mathematically,	what	happens	is	that	the	(projected)	characteristics	intersect.

This	means	that,	if	we	look	at	the	characteristic	curves	projected	in	the	 -plane

where	 	labels	the	curve,	they	are	going	to	intersect	(see	image	below).

t∗

u

x = 0
x > 0

xt

{(r + e−r2

t, t) | t ≥ 0}. (4)

r



Recall	that	the	initial	data	(defined	on	the	initial	curve	 )	propagates	along

the	characteristics.	Then	we	can	see	that	at	some	point	in	time	two	different

initial	data	points	are	propagated	to	the	same	point,	and	the	solution	breaks.

Identifying	time	and	position	of	the	initial	shock

Figuring	out	what	happens	to	the	solution	after	the	shock	develops	is	not	easy

(we	may	talk	a	bit	about	it	as	extra	material	in	the	next	lectures).	For	now,	let's

focus	in	finding	the	exact	time	 	and	position	 	at	which	the	shock	develops.

Let's	consider	the	general	case	of	Burger's	equation

t = 0

t∗ x∗

⎧
⎨⎩

+ u = 0 x ∈ R, t > 0

u(x, 0) = f(r) x ∈ R,
(5)

∂u

∂t

∂u

∂x



and	suppose	that	the	characteristics	intersect.	Recall	that

where	we	identified	 	with	 .

Since	the	solution	we	get	using	the	method	of	characteristics	is	smooth,	when	

	(with	 	fixed)	is	multi-valued	it	must	have	vertical	tangent	at	some	points;

the	time	 	is	the	first	 	for	which	a	vertical	tangent	appears.

To	find	out	when	the	slope	 	becomes	infinite	(vertical	tangent)	we	use	the

following	trick:

so	that

Assuming	that	 	is	well-defined	for	all	 ,	the	only	way	the	slope	can	become

infinite	is	if

Then	 	is	the	smallest	positive	value	of	 ,	that	is

If	 	is	the	value	of	 	at	which

{
x(r, t) = r + f(r)t

z(r, t) = f(r),
(6)

s t

u(x, t) t

t∗ t

∂z

∂x

= = f ′(r)

1 = = (1 + f ′(r)t)

(7)

(8)

∂z

∂x

∂z

∂r

∂r

∂x

∂r

∂x
∂x

∂x

∂r

∂x

= . (9)
∂z

∂x

f ′(r)

1 + f ′(r)t

f ′(r) r

t = − . (10)
1

f ′(r)

t∗ − 1
f ′(r)

t∗ = min{−
∣
∣
∣
r ∈ I+} , I+ = {r | f ′(r) < 0}. (11)

1

f ′(r)

r∗ r

t∗ = − (12)
1

f ′(r∗)



the	position	at	which	the	shock	occurs	is

In	the	specific	example	of	 ,	we	have

To	find	the	minimum	of	 	we	look	at	the	critical	points.	We	have

so	that	the	only	critical	point	with	 	is

which	is	a	minimum	since

Therefore

and

x∗ = r∗ + f(r∗) t∗. (13)

f(r) = e−r2

f ′(r) = −2re−r2
, − = , I+ = {r | r > 0}. (14)

1

f ′(r)

er2

2r

g(r) = er2

2r

g′(r) = (15)
(2r2 − 1) er2

2r2

r > 0

r∗ = , (16)
1

√2

g′′(r∗) = = 2√2e > 0. (17)
(2r4

∗ − r2
∗ + 1) er2

∗

r3
∗

t∗ = − = = √ ≈ 1.17 (18)
1

f ′(r∗)

e1/2

2/√2

e

2

x∗ = r∗ + e−r2
∗ t∗ = + √ = √2. (19)

1

√2

1

√e

e

2
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11.1 Physical Interpretation of PDEs
� Example 11.1 Consider IBVP 

∂u
∂t −D

∂2u
∂x2

= 0
u(0, t) = t
∂u
∂x(L, t) = 0
u(x, 0) = 0

• u(0, t) means that the temperature at the left side is proportional to time.
• ∂u

∂x (L, t) = 0 means there is no flux at the right side. Insulated.
• u(x, 0) = 0 means that the temp is zero everywhere at time t = 0.

∂u

∂t
−D∂

2u

∂x2
= 5

The source term tells us that the heat energy is introduced at a constant rate into the rod
by some heat source.

∂u

∂t
−D∂

2u

∂x2
= u2

• u2 should be a source term since it cannot come from the flux term of the conservation
law

(
∂φ
∂t

)
since it has no derivatives w.r.t x.

• The source term tells us that the heat energy is introduced at a rate that is propor-
tional to the temp squared.

�

11.2 Resonances
Physically, what causes resonance is that we move the membrane up and down at a freq
close to one of the natural freqs of the membrane, creating a positive feedback effect.
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11.3 general solution to BVP
The functions Mk(x) form a complete orthogonal set (Fourier series) so any reasonable
condition u(x, 0) = f(x) can be satisfied by the solution from part (c).
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