
}
Data Structures and Data Management

CS 240}
Éric Schost

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CS 240 during Spring 2019 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

This set of notes is quite incomplete. I recompiled the old tex code using the new template. I will most
likely make a new set of notes sooner or later. Stay tuned!

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

1

https://notes.sibeliusp.com/contact
https://notes.sibeliusp.com/

Contents

Preface 1

1 May 7 3
1.1 Order Notation . 3

2 May 9 4

3 May 14 6
3.1 Algorithm Analysis . 6

3.2 two strategies . 7

4 May 16 8

5 May 21 9
5.1 Binary heaps . 9

6 May 23 11

7 Jun 18 12
7.1 Proof for slide 2 mod 6 . 12

2

1
May 7

Problem count positive integers in an array.

An Instance [-5, 10, -5, 20]

The Solution 2

Size of the input length of the array

Count(A) // A is an array of length n

res = 0

for i = 0 ... n-1

if A[i] > 0

res++

return res

1.1 Order Notation

Example f (n) = 2n2 + 3n + 11 g(n) = n2

Proof For n ≥ 1,

2n2 ≤ 2n2

3n ≤ 3n2

11 ≤ 11n2

=⇒ f (n) ≤ 16n2

Taking c = 16, n0 = 1 this proves that f (n) ∈ O(n2)

3

2
May 9

f (n) = 75n + 500, g(n) = 5n2?

Proof

1. For n ≥ 20, 100n ≤ 5n2

2. For n ≥ 20, 500 ≤ 25n

So if n ≥ 20, f (n) = 500 + 75n ≤ 25n + 75n ≤ 5n2 = g(n). Since also f (n) ≥ 0 for all n, taking n0 = 20
and c = 1, this proves f (n) ∈ O(g(n))

Another Proof for n ≥ 1, 75n ≤ 75n2, 500 ≤ 500n2

f (n) ≤ 575n2 = 115g(n)
So taking n0 = 1, c = 115, this proves f (n) ∈ O(g(n))

Prove that f (n) = 2n2 + 3n + 11 ∈ Ω
(
n2) from first principles.

Proof

2n2 ≥ 2n2

3n ≥ 0

11 ≥ 0

f (n) ≥ 2n2 = 2g(n). Taking n0 = 1, c = 2, this completes the proof. (n0 = 1, c = 1 work as well)

Prove that 1
2 n2 − 5n ∈ Ω

(
n2) from first principles.

Proof For n ≥ 20, n2 ≥ 20n, then −5n ≥ −1
4 n2

add 1
2 n2, 1

2 n2 − 5n ≥ 1
2 n2 − 1

4 n2 = 1
4 g(n)

f (n) ≥ 1
4 g(n)

So taking n0 = 20, c = 1
4 , this completes the proof.

Prove that logb(n) ∈ Θ(log n) for all b > 1 from first principles.

4

CHAPTER 2. MAY 9 5

Proof

f (n) =
log n
log b

=
g(n)
log b

g(n)
log b

≤ f (n) ≤ g(n)
log b

Taking n0 = 1, c1 = c2 = 1
log b , this completes the proof.

Example f (n) = 2000n2, g(n) = nn.
Given c > 0, we have to find n0, (depend on c), such that for n ≥ n0, | f (n)| < |cg(n)| ⇐⇒ 2000n2 <

cnn (∗)

(∗) is equivalent to 2000 < cnn−2

1. For n ≥ 3, n− 2 ≥ 1, so n1 ≤ nn−2

2. For n ≥ 3 and n ≥ 2000
c + 1

2000
c

<
2000

c
+ 1 ≤ n ≤ nn−2

So taking n0 = max
(
3, 2000

c + 1
)
, this proves f (n) ∈ o(g(n))

Example Let f (n) be a polynomial of degree d ≥ 0,

f (n) = cdnd + cd−1nd−1 + · · ·+ c1n + c0

for some cd > 0, prove f (n) ∈ Θ(nd)

Proof Then
f (n)
g(n)

=
cdnd + cd−1nd−1 + · · ·+ c1n + c0

nd = cd + cd−1
1
n
+ . . . +

c0

nd

Then limn→∞
f (n)
g(n) exists, and is equal to

cd + 0 + . . . + 0 = cd > 0

By the limit test, f (n) ∈ Θ(g(n))

Example Prove that n(2 + sin nπ/2) is Θ(n). Note that limn→∞(2 + sin nπ/2) does not exist.

Proof for n ≥ 1,−1 ≤ sin nπ/2 ≤ 1 . . . n ≤ f (n) ≤ 3n. So taking n0 = 1, c1 = 1, c2 = 3, this
completes the proof.
On the other hand,

f (n)
g(n)

= 2 + sin nπ/2 has no limit at n = ∞

the limit test does not apply

3
May 14

Example 3 f (n) = log(n) = ln n
ln 2 → f ′(n) = 1

ln 2·n g(n) = n→ g′(n) = 1

So

lim
n→∞

f ′

g′
= 0 =⇒ lim

n→∞

f
g
= 0 =⇒ f (n) ∈ o(g(n))

f (n) = log n→ f ′(n) = 1
ln n ·

1
n

g(n) = na

=⇒ f ′

f ′
=

1
ln 2

1
a

1
na

As before, limit f’/g’ = 0 =⇒ limit f/g = 0. Therefore f (n) ∈ o(g(n))

f (n) = (log n)c, g(n) = nd

f
g
=

(
log n
nd/c

)c

Taking a = d
c , we saw that limn→∞

log n
nd/c = 0, so lim f/g = 0. So f (n) ∈ o(f (n))

3.1 Algorithm Analysis

Test1(n)

1. sum <- 0

2. for i <- 1 to n do

3. for j <- i to n do

4. sum <- sum + (i-j)^2

5. return sum

Let T1(n) be the runtime of Test1(n). Then T1(n) ∈ Θ(S1(n)) where S1(n) is the number of time we
enter Step4.

S1(n) =
n

∑
i=1

n

∑
j=1

1

1. ∑n
j=1 1 = n− i + 1

6

CHAPTER 3. MAY 14 7

2. So

Sn =
n

∑
i=1

(n− i + 1) =
n

∑
i=1

n−
n

∑
i=1

i +
n

∑
i=1

1 = n2 − n(n + 1)
2

+ 2 =
1
2

n2 +
1
2

n ∈ Θ(n2)

So T1(n) ∈ Θ(n2)

3.2 two strategies

Test2(A, n)

1. max <- 0

2. for i <- 1 to n do

3. for j <- i to n do

4. sum <- 0

5. for k <- i to j do

6. sum <- sum + A[k]

7. max <- max (max, sum)

8. return max

Insertion sort: sorting A in a descending order.

Worst case A sorted in increasing order.
Then for all i, A[i] goes to order o in i steps -> worst case runtime Θ(∑n

i=1 i) = Θ(n2).

Best Case A sorted in decreasing order.
Then for all i, we exit the while loop immediately -> best case runtime Θ(∑n

i=1 1) = Θ(n)

4
May 16

T(n) = 2T
(n

2
)
+ cn, n > 1 (∗)

T(1) = c

n = 2k → T(2k) = 2T(2k−1) + c2k = 2(2T(2k−2) + c2k−1) + c2k by (∗)
= 22T(2k−2) + 2c2k

= 22(2T(2k−3) + c2k−2) + 2c2k by (∗)
= 23T(2k−3) + 3c2k

= 24T(2k−4) + 4c2k

= . . . = 2kT(2k−k) + kc2k

= 2kT(1) + kc2k = c2k(k + 1)

Since n = 2k, log n = k
T(2k) = c2k(k + 1)

T(n) = cn(log n + 1)

8

5
May 21

Insert(A, k)

• if A is full, double its size

• copy k into A

cost of insert, if length(A)=n

{
1 copy if A not full

1 + n new key + doubling. otherwise

Suppose we start with length(A)=1. Total cost of n inserts (n a power of 2) is

1 + 1 + . . . 1︸ ︷︷ ︸
n (new key)

+ 1 + 2 + 4 + 8 + . . . + n︸ ︷︷ ︸
doubling

= n + 2n− 1 = 3n− 1

5.1 Binary heaps

height of binary tree is length of the longest path from the root to a node.

height(•)=0

height




= 2

height (∅) = -1

9

CHAPTER 5. MAY 21 10

number of nodes in a heap of height 3

at least 8 nodes at most 15 nodes

true for any binary tree

8 ≤ n ≤ 15 if h = 3
2h ≤ n ≤ 2h+1 − 1 any h true for any binary trees
h ≤ log n and h ≥ log n + 1

Number of nodes in a heap of height h is

• at least
1 + 2 + 4 + . . . + 2h−1 + 1 = 2h

• is at most 1 + . . . + 2h = 2h+1 − 1

6
May 23

recursive_heapify(T, n)

1. if n = 1, return

2. recursive_heapify (left child of T, # elements in left child)

3. recursive_heapify (right child, # in right)

4. fix down the root

11

7
Jun 18

7.1 Proof for slide 2 mod 6

Lower bound for search in a dictionary of size n, with keys k1, . . . , kn, values v1, . . . , vn. We count,
comparisons between input key k and ki’s. (comparisons can be <,> or =).

The decision tree associated to a given search algorithm in size n has n + 1 leaves.

{
(v1, . . . , vn)

“not found"

n + 1 = # leaves ≤ # nodes ≤ 2h+1 − 1

=⇒ h ≥ log(n + 1)− 1

(and the height h is the most case # comparisons for this algorithm)

Suppose A[0] and A[n− 1] are fixed A[1]...A[n− 2] chosen uniformly at random in {A[0]...A[n− 1]}

Can prove to interpolation search in an array of length n with probability ≥ 1/4, we do a recursive
call in length ≤

√
n

=⇒ Tavg(n) ≤ c +
1
4

Tavg(
√

n) +
3
4

Tavg(n)

12

	Preface
	May 7
	Order Notation

	May 9
	May 14
	Algorithm Analysis
	two strategies

	May 16
	May 21
	Binary heaps

	May 23
	Jun 18
	Proof for slide 2 mod 6

