Data Structures and Data Management

CS 240

Eric Schost

BTEXed by Silbelivs %nﬁ

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CS 240 during Spring 2019 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

This set of notes is quite incomplete. I recompiled the old tex code using the new template. I will most
likely make a new set of notes sooner or later. Stay tuned!

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Slbliss Fong

https://notes.sibeliusp.com/contact
https://notes.sibeliusp.com/

Contents

Preface 1
1 May 7 3
1.1 Order Notation e e 3
2 Mayg 4
3 May 14 6
3.1 Algorithm Analysis L 6
3.2 twostrategies 7
4 May 16 8
5 May 21 9
51 Binaryheaps. 9
6 May 23 11
7 Jun 18 12
7.1 Proof forslide2amod 6 12

May 7

Problem count positive integers in an array.
An Instance [-5, 10, -5, 20]
The Solution 2

Size of the input length of the array

Count(A) // A is an array of length n
res = 0

for i =0 ... n-1

if A[i] > ©

res++

return res

1.1 Order Notation
Example f(n) =2n%+3n+ 11 g(n) =n?

Proof Forn >1,

212 < 212
3n < 3n?> = f(n) < 16n>
11 < 1112

Taking ¢ = 16,19 = 1 this proves that f(n) € O(n?)

May 9

f(n) =751+ 500,¢(n) = 5n2?

Proof

1. For n >20,100n < 5n°

2. For n > 20,500 < 25n
Soif n > 20, f(n) = 500 + 751 < 25n + 75n < 5n? = g(n). Since also f(n) > 0 for all n, taking ny = 20
and ¢ = 1, this proves f(n) € O(g(n))

Another Proof forn > 1,751 < 75n2,500 < 50012
f(n) < 575n% = 115g(n)
So taking ny = 1, ¢ = 115, this proves f(n) € O(g(n))

Prove that f(n) = 2n*> +3n+ 11 € Q (n?) from first principles.

Proof

f(n) > 2n? = 2¢(n). Taking ng = 1,c = 2, this completes the proof. (19 = 1,c = 1 work as well)

Prove that %nz —5ne) (nz) from first principles.

Proof For n > 20,12 > 20n, then —5n > _Tlnz
add %nz, %nz —5n > % 2_ }Inz = %g(n)

f(n) = 38(n)

So taking 1y = 20,c = }1, this completes the proof.

Prove that log, (1) € ©(logn) for all b > 1 from first principles.

CHAPTER 2. MAY 9 5

Proof | (n)
_ogn _ gn

flm) = logh logb

g(n) g(n)

log b < f(n) < logb

Taking nop =1,c1 = ¢ = @, this completes the proof.

Example f(n) = 2000n?, g(n) = n".
Given ¢ > 0, we have to find ng, (depend on c), such that for n > ng, |f(n)| < |cg(n)| <= 2000n? <
cn™ (%)

(x) is equivalent to 2000 < cn” 2
1. Forn >3,n—2>1,s0on! < n"2

2. Forn23andn2%00+1

2000 _ 2000
T<T+1§n§n"*2

So taking ng = max (3, 2% + 1), this proves f(n) € o(g(n))
Example Let f(n) be a polynomial of degree d > 0,
f(n) =can® + g™+ +en+ o
for some c; > 0, prove f(n) € @(n?)

Proof Then ; i
fn) egn® +cgn* 4 +cn+co 1 o
= = Cjg_1—+...+—

g(n) Tld d+ d 11’1

f(n

() exists, and is equal to

=

Then limy;,

og

cg+0+...+0=¢;>0
By the limit test, f(n) € ©(g(n))
Example Prove that n(2 + sinnsm/2) is ©(n). Note that lim,_,.(2 + sinn7t/2) does not exist.
Proof forn>1,—-1<sinnm/2<1 n < f(n) < 3n. So taking nop = 1,¢1 = 1, ¢ = 3, this

completes the proof.
On the other hand,

=2+sinnmn/2 has no limit at n = oo

the limit test does not apply

May 14

Example 3 f(n) =log(n) = {5 = f'(n) = 3y gn) =n—g'(n) =1
So ,
nh_r};o? =0 = lim g =0 = f(n) €o(g(n))

L f_ 111

f’ - In2an?
As before, limit f'/g’ = 0 = limit f/g = o. Therefore f(n) € o(g(n))

f(n) = (logn)’, g(n) =n"

f (logn*
§_ nd/c

Taking a = £, we saw that lim, e lod/f 0,solim f/g=0.So f(n) € o(f(n))

3.1 Algorithm Analysis

Testl(n)

1. sum <- 0

2. for i <- 1 to n do
3. for j <- i to n do
4, sum <- sum + (i-j)A2
5. return sum

Let T1(n) be the runtime of Test1(n). Then T;(n) € ©(S1(n)) where S1(n) is the number of time we
enter Step4.

E

i=1j=1

jm1l=n—i+1

CHAPTER 3. MAY 14

3.2 two strategies

Test2(A, n)

1. max <- 0

2. for i <- 1 ton do

3. for j <- i to n do

4. sum <- 0

5. for k <- i to j do

6. sum <- sum + A[k]

7. max <- max (max, sum)
8. return max

Insertion sort: sorting A in a descending order.

Worst case A sorted in increasing order.

Then for all i, A[i] goes to order o in i steps -> worst case runtime @(Y_"_; i) = @(n?).

Best Case A sorted in decreasing order.

Then for all i, we exit the while loop immediately -> best case runtime @(}¥_!_; 1)

©(n)

May 16

T(n) =2T (5) +cn, n>1(%)
c

n =2k T(2k) = 2T(2k=1) 4 2k = 2(2T(2k2) + 2k—1) + c2k
= 22T (2F=2) 4 2c2F

= 22(2T(2F73) 4 c2F=2) + 22k

= 23T (2k=3) 4 32k

= 24T (2F4) 4 42k

= ... =2kT(2kF) 4 kc2k

= 2KT(1) + ke2k = 2K (k +1)

Since n = 2, logn = k
T(2%) = 2F(k+1)

T(n) = cn(logn +1)

May 21

Insert(A, k)
e if A is full, double its size
e copy kinto A

i i 1 copy if A not full
cost of insert, if length(A)=n
1+n new key + doubling. otherwise

Suppose we start with length(A)=1. Total cost of n inserts (n a power of 2) is

1+14...1+14+24+44+8+...+n=n+2n—-1=3n-1
n (new key) doubling

5.1 Binary heaps
height of binary tree is length of the longest path from the root to a node.

height(e)=0

height =2

height (@) = -1

CHAPTER 5. MAY 21

number of nodes in a heap of height 3

true for any binary tree

at least 8 nodes at most 15 nodes

8<n<15ifh=3
2h<p <2l _Tanyh true for any binary trees
h <lognand h > logn+1

Number of nodes in a heap of height h is

® atleast
14244+ 421 41=2"

e isatmost1+4...+28 =201 _1

10

May 23

recursive_heapify(T, n)
1. if n = 1, return
2. recursive_heapify (left child of T, # elements in left child)
3. recursive_heapify (right child, # in right)

4. fix down the root

11

Jun 18

7.1 Proof for slide 2 mod 6

Lower bound for search in a dictionary of size n, with keys k1, ..., ky,, values vy,...,v,. We count,
comparisons between input key k and k;’s. (comparisons can be <, > or =).

(v1,--.,0n)

The decision tree associated to a given search algorithm in size 7 has n + 1 leaves.
“not found"

n+1=+#leaves < # nodes < 2"1 —1
— h>log(n+1)—1
(and the height & is the most case # comparisons for this algorithm)
Suppose A[0] and A[n — 1] are fixed A[1]...A[n — 2] chosen uniformly at random in {A[0]...A[n — 1]}

Can prove to interpolation search in an array of length n with probability > 1/4, we do a recursive

call in length < /n

— TS(n) <t JTVS(V) + ST (n)

12

	Preface
	May 7
	Order Notation

	May 9
	May 14
	Algorithm Analysis
	two strategies

	May 16
	May 21
	Binary heaps

	May 23
	Jun 18
	Proof for slide 2 mod 6

