CS 241

Sibelius Peng

Contents

1 May 7

1.1 2s Complement L
2 May 9

2.1 OVErview e e
3 Jun 18

3.1 Bottom-Up Parsing
4 Jun 20

4.1 Using Automaton e
5 June 27

5.1 Build Symbol Table e

5.2 Implementing Symbol Table
6 July 4

6.1 Code Generation e
7 July 9

7.1 Problem e

7.2 More complicated

7.3 Print e
8 july 11

8.1 Ifstatements e

8.2 While e
9 Pointers

9.1 Assignment through pointer deref

9.2 mew and delete e e

10 Compiling Procedures
10.1 Big picture e
10.2 Saving and restore Tegs oL e e e
10.2.1 Two approaches to saving registers L L oL
10.3 Parameters L e

11 Optimization
11.1 comstant propagation L L e

11.2 common subexpression slimination
11.3 Dead code elimination
11.4 Register Allocation

11.5 Strength Reduction o

11.6 Procedure-specific optimization
11.6.1 Inlining
11.6.2 Tail Recursion

12 Memory Management & Heap

12.0.1 new/delete (malloc/free)

12.1 Implicit

12.1.1 GC techniques

Memory Management: Garbage Collection

13 Linker & Loader

13.1 Loaders
13.2 Linker

31
31
32
32
32
32
33
33
33

35
36
36
36

Sequential Programs: nothing fancy, no parallel, concurrency, multi-threading

Start point: bare hardware
for 241, simulated MIPS machine. Only interprets 0’s and 1’s.
.. at end: get C-like programs to run on MIPS

Binary & Hexadecimal

bit: a single 0 or 1

byte: 8 bits 28 = 256 different patterns
nibble: 4 bits

word - 241 architecture: 32-bits

common place in the real world: 64-bits

1010 what does this mean?
e 10 - unsigned binary
e -2 - “sign-magnitude” binary
e -6 - 2’s complement

newline - ASCII

e gray - grayscale (0000 black, 1111 white)

The meaning is in the eye of the beholder (which eye?)

Files
e header

e file extensions

Programming: type declarations - interpret the bits a certain way.

can you change how bits are interpreted? - casting - be careful

May 7

Decimal (base 10) 12349 = 1 x 10* +2 x 10% + 3 x 10 +4 x 10* +9 x 10° (digits 0...9)

Binary (base 2) (digits 0..1) 11001001 = 1 x 27 +1 x 26 + 1 x 23 + 1 x 20 = 201,
201 convert to binary:

201 — 128 =173 1
73-64=9 1

932 0
9—16 0
9-8=1 1

How do we represent negative numbers?

e use first bit: 1 negative, 0 positive = “sign-magnitude” binary
e addition and subtraction are difficult
e two zeros: positive and negative —> wasteful

11001001 = —(64+8+1) = —73

1.1 2’s Complement

1. Interpret the n-bit number as an unsigned integer
2. If the first bit is zero, done

3. Else subtract 2"

eg n=32"=8

000 001 010 o011 100 101 110 111
0 1 2 3 4—-8=—-4 5-8=-3 -2 -1
So n bits represent —2"~1 to 2771 — 1

e only 1 zero
o left bit gives sign

e addition is clean - just arithmetic mod 2™

Alternative:
e positive numbers are simply binary magnitude
e negative

1. start with magnitude of number
2. flip bits: 1 - 0,0 —» 1
3. add 1

eg -73 to 8-bit binary

magnitude: 01001001 (73 in binary)

flip bits: 10110110

add 1: 10110111 (2’s complement representation of -73)

eg What does 11001001 represent in 2’s complement?
e reverse process?

— subtract 1
— flip bits

e do process again

Exercise: show these two are equivalent
soln 11001001 - negative

flip bits: 00110110

add 1: 0010111 (magnitude) = 55

result: -55

Given a byte 11001001, how do we tell if this is unsigned binary (201), sign-magnitude (-73), 2’s comple-
ment (-55)7 We don’t.

A character ASCII (we will use), others
An Instruction certain 23-bit patterns represent MIPS machine code instructions

Garbage

2.1 Overview

High level Program
C/Cpp program

compiler

Assembly Language Program
Low level English-like instructions

\1/ Assembler A3/4

Machine Language
1’s and 0’s version executable
CPU understands this!

l Run executable

Memeory (RAM)

CPU

May 9

E—-E+T|T
T—Tx«F|F
F — alblc|(E)

e left associative
e precedence (ops)

Is this LL(1)? No
TOS' and next input symbol - is there a choice of rule?
Let’s say E to a
F =T = F = a

F — F+T — T+T — F+T — a+T

Why? Left recursion £ - E+T E —T.
Two derivations, same first symbol.
* Left recursion, always not LL(1)

E—-T+E|T
T — F«T|F
F — alblc|(E)

right recursive
TOS: E, input: a..., still not LL(1)

Need to factor
E—->TE

E' =€ +FE
T — FT’
T — ¢l «xT
F — alble

This is LL(1) but is at odds with left recursion. Left assoc.
See next parsing alg.

Ltop of stack

Jun 18

Ambiguous
S — alb|c|SOS|(S)

O—+| =[x/

E—-FEOT|T

T — alb|c|(E)

0=+ —|x/
unambiguous, left associative

E — EAT|T
T — TMF|F
F — alblc|(E)

A— +|—
M — x|/
operator precedence

3.1 Bottom-Up Parsing

e go from w to S.
Stack store partially reduced information read so far.
W= qp <= Qqp_1 <— ... <= S

Invariant: stack + entire unread input = «a; (or w or S)

Choices at each step:

1. Shift character from input onto stack

2. Reduce TOS in the RHS of a grammar rule: replace with LHS

Accept if stack contains only S’ when input is €. Equivalent: F S - on empty input - accept when machine
pushing -

How do we know whether to shift or reduce?

Use next char of input to help. Problem is still hard.

Theorem (Donald Knuth, 1965)
The set {wa|3z, S = *wax}

w is stack, a is next input char is Regular Language.
= can be described by a DFA.

Use a DFA to make shift/Reduce Decisions
Results in LR parsing

o left-to-right through input

e Rightmost Derivation

Defn An item is a production with a dot, e, somewhere on the RHS (indicate partially completed rules)

missed sth due to cineplex interview....

Jun 20

Notes
e label transitions with the symbol follows the dot advance the dot in the next state.

e If the dot precedes a non-terminal A, add all productions with A on the LHS to the state (dot in
leftmost position)

4.1 Using Automaton

continued from slide 10
Backtracking in the DFA - must remember the path we followed - also push states onto the stack as
well

LR(0) * if not in a reduce state, simply shift e follow transition for that symbol. If no transition —
ERROR. Reduce: only 1 rule

If any item Aae occurs in a state in which it is not alone, then there is a shift-reduce or reduce-reduce
conflict and the grammar is not LR(0)

https://cs.uwaterloo.ca/~cbruni/CS241Resources/lectures/2019_Winter/CS241L14_bottom_up_parsing_pt_2_post.pdf#page=10

5.1 Build Symbol Table

e Traverse the parse tree to collect variable declarations

— for each node corresponding to the rule: dcl -> TYPE ID
— extract ID’s name and type (int, int*) and add it to the symbol table
— if name already exists in table = error

— multiple declarations checked
e Traverse parse tree

— check for factor -> ID and lvalue -> ID
— if ID’s name is not in the symbol table, ERROR

— undeclared variables checked

You must do these all in one pass

5.2 Implementing Symbol Table

e map

e global variable

map <string, string> symbolTable;

BUT e doesn’t account for scope, e ot procedures

Issues

int £O {
int x = 0;
int y = 0;
return Xx;

}

int wain(int a, int b) {

10

June 27

int x = 0;

return x;

}
Permit duplicate declarations in different procedures
Forbid duplicate declarations in same procedures
Also

int £O {...}

int £O {...}

—> need a separate symbol table for each procedure
Have a “top-level” symbol table that stores all procedure names

map <string, map<string, string> > topSymbolTable;

When traversing the parse tree

e Find node corresponding to rule:
procedure -> INT ID LPAREN ...
main -> INT WAIN ...

=—> mnew procedure

— make sure its name not already in symbol table

— if not, create new entry

Implementation: may want a global variable to store “current procedure”

— update each time find procedure -> or main ->
For variables, store: declared type & name in Symbol Table

Do procedures have a type? Yes - signatures

e return type for WLP4 is only INT e parameter types
= So signature is only param list types

Store this in the top-level symbol table

map<string , pair<vector<string>
> > > topSymbolTable;

Tp compute the signature:

e paramlist -> dcl

e paramlist -> dcl COMMA paramlist
e (if param ->, then signature is empty)

All of this analysis, can be done in a single pass (traverse of tree)

11

, map<string, string>

Types Why do programming languages have types?

Recall: from only bits - don’t know what they represent. Type tells us how to interpret
the bits.

A good type system prevent us from re-interpreting the bits as sth else

int *p = NULL;
P=7;

casting

WLP4, 2 types, int, int*

To check type correctness, need to
e determine the type associated with each variable/expression

e ensure that all operators are applied to operands of the correct type.

Ex d=a+ (b + c);

How do we determine type? Declarations
e dcl -> TYPE ID

e add a field in the symbol table

Catching type ERRORS
e determine the type of every expression by applying type rules given by language spec

e if no rule applicable, or if an expression type does not match its context = ERROR

string typeof (Tree &t) {
for each ¢ : t.children
compute typeof (c)
use t.rule to decide what type rule is relevant
combine types of children
determine the type of t
if not possible: ERROR
¥

string typeof (Tree &t) {
if t.rule == "ID name"
return symboltable.lookup(name) ;

12

July 4

Loperand op Roperand Resulting type

nt + int nt
int* + int int*
int + int* int*

More on here

Procedures
e body must be well-typed

e must return int
wain 1st dcl can be int or int*, 2nd dcl must be int, body must be well-typed, return type must be int

Lvalues
e LHS and RHS of an assignment statement x = y are treated differently
e RHS denotes a value

e LHS denotes storage destination.
must name a memory location.

Expressions that denotes storage locations are lvalues. eg x,y. etc
e variable names

e dereferenced pointers

e any lvalue surrounded by ()

these formats are enforced by the WLP4 grammar (syntax)

6.1 Code Generation

13

https://www.student.cs.uwaterloo.ca/~cs241/wlp4/typerules.pdf

parse tree parse tree/symbol table
parsing -—-————————- > semantic -——-—————————- > code gen ——---> assembly
analysis

How many (equivalent) Assembly programs are there for a given WLP4 program? infinite
Properties of code generated

e correctness
e casy
e efficient - compiler runtime - program runtime (how fast it runs)

e for 241 optimization: fastest = fewest instructions

Ex Input:

int wain(int a, int b){return a;}

conventions

e parameters of wain are held in $1 and $2
loaders are mipstwoints and mipsarray

e output will be passed in $3

add $3, $1, $0
jr $31

Symbol table
Name Type Location
a int $1
b int $2
should add field to sym tab where each symbol is stored
Where should local variables/parameters be stored?

e choice: registers (faster, not many registers, may run out) or Memory (RAM) (stack) general scheme
is to store all of these on stack. including $1 and $2 from wain

14

July 9

for simplicity, store all local var/param on stack
e including params of wain
e symbol table store name, type, offsets

* you are not evaluating/executing the input code, you are only translating it into equivalent Assembly.

int wain(int a, int b) {return a;}

sw $1, -4($30)

sw $2, -8($30)

lis $4

.word 4

sub $30, $30, $4

sub $30, $30, $4

lw $3, 4 ($30) ; lookup in symbol table ; return a
add $30, $30, $4

add $30, $30, $4

jr $31

symbol table
name type offset
a int 4
b int 0

7.1 Problem

int wain(int a, int b) { int c=0; return a;}

can’t know offsets until all declarations are processed, because $30 changes with each new declaration.

15

Two new conventions
e $4 always contains 4
e $29 points to the bottom of the stack frame.

o If offsets are calculated w.r.t $29, then they will be constant.

lis $4

.word 4

sub $29, $30, $4
sw $1, -4($30) ; push a
sub $30, $30, $4
sw $2, -4($30)
sub $30, $30, $4
sw $0, -4($30)
sub $30, $30, $4
1w $3, 0 ($29)
add $30, $30, $4
add $30, $30, $4
add $30, $30, $4
jr $31

name offset (from $29)

a 0
b -4
C -8
< new $ 30
c: 0
b: $2
51 +— $29
$30 » L

7.2 More complicated

int wain(int a, int b) {return a + b;}

In general, for each grammar rule A — «. build code for A, code(A) from code(«)

Convention

e use $3 for “output” of all expressions

ex a+b:

$3 « eval(a)
$3 <« eval(b)
$3 < $3 + $3

Need a place to store pending computations.

16

e use a register?

code (a)
add $5, $3, $0
code (b)
add $3, $5, $3

need 1 extra reg for temp values
What about a+(b+c)

code(a)
add $5, $3, $0
code(b)
add $6, $3, $0
code(c)
add $3, $6, $3
add $3, $5, $3

need 2 extra reg for temp values

ex a+ (b+ (¢+d)) How many extra regs? 3
May run out of registers = use the stack instead. e general solution!

code(a)
push($3)

code (b)
push($3)
code(c)
push($3)
code(d)

pop ($5)

add $3, $5, $3
pop($5)

add $3, $5, $3
pop ($5)

add $3, $5, $3

only need 1 extra
In general: expr; — exprs + term

code(expr_1) =
code (expr_2)
+ push($3)
+ code(term)
+ pop($5)
+ "add;;$3,.$5,.$3"

17

singleton rules usually easy
S — BOF procedures EOF
code(S) = code(procedures)
expr — term

code(expr) = code(term)

7.3 Print

println(expr); Prints value of expr and a newline

Implementation: A2 p6, 7a
Runtime environment: set of procedures supplied by compiler (or OS) to assist programs in their execu-
tion: e.g. msvcert.dll libe.so

Make print part of Runtime Env - you need to link it in

wlpdgen < source.wlp4i > source.asm
cs241.linkasm < source.asm > source.merl
linker source.merl print.merl > source.mips
mips {twoints, array} source.mips

Notes
e $1 is input to print

— if $1 holds sth else - save $1 and restore later

— calling print: clobbers $31 - save and restore $31

code (println(expr));

18

code(println(expr)); = code (expr)
add $1, $3, $0
sw $31, -4 ($30)
sub $30, $30, $4
lis $5
.word print
jalr $5
add $30, $30, $4
1w $31, -4 ($30)
lw $1, 0 ($29)

Assignment statement (stmt)

e statememt — exprl BECOMES expr2 SEMI
For now, only int = only ID

code(stmt) = code(expr2)
sw $3, ___ ($29)

e if and while - need boolean testing
e suggested convention

— store 1 in $11

— also store print in $10
Code so far

.import print
lis $4
.word 4
lis $11
.word 1
lis $10

19

july 11

.word print
sub $29, $30, $4

add $30, $29, $4 ; Epilogue
jr $31

Boolean tests test — expr; < exprs

code(test) = code(expr_1)
add $5, $3, $0
code (expr_2)
slt $3, $5, $3

test — expry > expra implement expr2 j exprl
test — expry # exprs

code (test) = code(exprl)
add $5, $3, $0
code (expr2)
slt $6, $3, $5
slt $7, $5, $3
add $3, $6, $7

test — expry == expra treat as NOT (exprl != expr2)
add sub $3, $31, $3 to above $3 «+ 1 - $3

8.1 If statements
stmt — IF test stms; ELSE stmsy

code (stmt) = code(test)
+ beq $3, $0, else
+ code (stmsl)
+ beq $0, $0, endif
+ else: + code (stms2)
+ endif:

Issue
e need to generate unique label names
e keep counter X for it stms
e use labels: else X, endif X, true X

e increment X for each new if stmt

20

Alternative

code (stmt) = code(test)
+ bne $3, $0, true
+ code (stms2)
+ beq $0, $0, endif
+ true: + code (stmsi)
+ endif:

8.2 Wihile

stmt — WHILE (test) {stms}
use counter Y to generate fresh labels

code(stmt) = loopY:
code (test)
beq, $3, $0, doneY
code (stms)
beq $0, $0, loopY
doneY:

21

Pointers

Need to support
e NULL
o deference
e address of
e comparisons
e pointer arith
e alloc/dealloc
e assignments through pointers
5 to go

int *p = NULL;
if (p)
if (xp)

NULL
e could use 0
e 20 to 0x0 and get value does not crash
e should use a number that is not divisible by 4, say 1

factor - NULL code(factor) = add $3, $11, $0

deref factor — xexpr - valid address

code(factor) = code(expr)
1w $3, 0 ($3)

22

Comparisons same as int comparisons
e 10 negative pointers = use sltu instead of slt
e How do we know type of expr?

— rerun typeof in A8 to check if int* or int

— Better: save type in a field for each node of tree

Pointer arithmetic expry — expre + term
meaning is dependent on types involved

Type
expr2 + term
1. int int = as before
2. int* int = expr2 + (4 * term)
3. int int* = (4%expr2)+term
for 2
code (exprl) = code(expr2)
push($3)
code(term)
mult $3, $4
mflo $3
pop ($5)

add $3, $5, $3

expr2 - term
1. int int = as before
2. int* int = expr2 - (4 * term)
3. int int* not valid
4. int* int* = (expr2-term)/4

9.1 Assignment through pointer deref

LHS = address at which we store the value
RHS = the value

stmt — 1D BECOMES expr2 SEMI
=~

lvalue

stmt — STAR exprl BECOMES expr2 SEMI
—_———

lvalue

e calc value of exprl

e use as address to store value of expr2

code(stmt) = code(expr2)
push($3)
code (exprl)

23

pop ($5)
sw $5, 0 ($3)

Address-of: 2 cases: 1D, STAR expr
factor — AMP

&a if expr = ID

code (factor) =
lis $3
.word __
add $3, $29, $3

&*a if expr = STAR expr2

code(factor) = code (expr2)

Delete - part of runtime environment
we procide allocation module : alloc.merl

e link same as print
e link last
Add to prologue

.import init
.import new
.import delete

Function init sets up the initial data structure
e Must be called exactly once at the beginning of your Assignment file

— call init in the prologue
— takes parameter in $2

— if calling with mips.array : $2 = length of array
else $2 =0

9.2 new and delete

new
e $1 = number of words requested
e return ptr to memory in $3

e returns 0 if alloc not possible

24

code(new int[expr]) =
code (expr)
add $1, $3, $0
call (new)
bne $3, $0, 1
add $3, $11, $0

delete $1 = ptr to be dealloc

code(delete[] expr) =
code (expr)
beq $3, $11, skipDelete
add $1, $3, $0
call(delete)
skipDelete:

small note: the reason why NULL = 0x1, here

25

https://cs.uwaterloo.ca/~cbruni/CS241Resources/lectures/2019_Winter/CS241L19_code_generation_pt4_post.pdf#page=6

10.1 Big picture

int £O {...

}
int gO {...}
)

int wain(,

{...%

// prologue for main (wain)

// main function (wain)

// epilogue for main

f:

. // prologue-specific prologue/epilogue

jr $31

g:

jr $31

Main Prologue/epilogue

save $1, $2 on stack

import print, int, new, delete
set $4, $11, ete

set $29

call init $2 <- 0 7

Compiling Procedures

reset stack to bottom

jr $31

26

Procedure-specific prologues
e don’t need imports, set constants, etc
e set $29

e save registers that the proc will overwrite

restore regs, reset stack to end

jr $31

10.2 Saving and restore regs

e Procedures should save and restore all regs that it modifies
e How do we know which registers to save?

— if not sure, save & restore all of them! except $3

— Our code gen uses: $1 - 7, $10, $11, $29-31
if your code gen uses others, - okay, but need to keep track of regs used

— don’t forget to save reg $29

10.2.1 Two approaches to saving registers
caller-save vs callee-save
Suppose f calls g
e caller-save: f saves all the registers containing critical data, then calls g
e callee-save: g saves all registers that it modifies
Our approach has been:
e caller-save for $31
e callee-save for everything else

Different approaches also work

Q who saves $297 caller or callee?

Suppose callee, g, saves $29

g: sub $29, $30, $4
saves g’s regs

2 tasks in g’s prologue: point $29 to g’s frame; save regs
Which one do we do first
1. save regs and then set $29
$29 for will be based on $30 and # regs saved

2. set $29 first, then save regs
$30 hasn’t changed yet
easy to set $29 to $30 - 4, then save regs
easy to implement

27

Q How do you save $297
need to save old $29 (f) before we overwrite/update to new $29 (g)?
o
g:
push($29)

add $29, $30, $0
push other regs

OR let caller, f, save $29 before procedure call

f:
push($29)
push($31)
call(g)
pop($31)
pop($29)

next issue: labels - what if my WLP4 prog is:

int init() {...}
int print() {...}

e procedure names match the names in the runtime environment
e duplicate labels
e won’t compile

More generally, what if a function has the same name as one of labels we generate?

Fix make sure if never happens
e use a naming scheme that prevents duplication

e for functions f, g, h, etc. use the labels Ff, Fg, Fh, etc.
i.e. reserve labels starting with F as denoting user defined functions
Then make sure your compiler does not generate other labels starting with F

10.3 Parameters

registers (may run out.) or stack? stack.

Registers fast, don’t have lw, sw, limited #

28

stack lots of space, this is what we will do
factor -> ID(expr-1, ..., expr.n)
fcalls g

code(factor) =
push($29)
push($31)
code (expr_1)
push($3)

code (expr_n)
push($3)

lis $3

.word Ffunction_name
jalr $5

pop all args
pop($31)

pop($29)

procedure -> INT ID (params) {dcls stms RETURN expr;}

code (procedure) =
sub $29, $30, $4
push regs
code (dcls)
code(stms)
code (expr)

pop regs
add $30 $29, $4
jr $31

Listing 10.1: first idea captionpos

Problem

e ¢’s params below $29

e ¢’s local variables above $29

* save regs between params and local vars
Fix

e saved regs between

e swap order: do dcls first, then save regs

fix offset
e offset below $29: +ve
o offset above $29: -ve

add 4 x # args to all offset in symbol table. See Fig. 10.1

29

Figure 10.1: fcalls g

Alternative

Suppose we had:
each call to g saves and restores the registers it will modify - callee-save

£O {
g0
g0

g0
g

Listing 10.2: caller-save

Does this save on number lines generated in code gen?

30

Optimization

e very large problem-complicated
e in general; minimize runtime
e in cs241: # lines code

—> computationally unsolvable: but we can use heristics

Ex code 1+2

lis $3

.word 1

sw $3, -4($30)
sub $30, $30, $4
lis $3

.word 2

1w $5, 0($30)
add $30, $30, $4
add $3, $5, $3

Listing 11.1: 9 words

lis $3
.word 3

e have the compiler:
recognize 1,2 are constants = is also constant

e instead of gen code to compute at runtime compiler can do the evaluation at compile time

called constant folding

11.1 constant propagation

int x = 2;
return x + Xx;

31

lis $3

.word 2

sw $3, -4($20)
sub $30, $30, $4
1w $3,__(%29)
push($3)

1w $3,__(%29)
pop ($3)

add $3, $5, $3

Listing 11.2: 11 words

11.2 common subexpression slimination

even if x’s value is unknown, could recognize $3 already contains x

1w $3,__($29)
add $3, $3, $3

(a+b)x(a+d)
e use a reg to hold a + b.

e mult by itself instead of generating the code to evaluate a + b twice

11.3 Dead code elimination

if you are certain that some branch of a program will never be reached, don’t generate that code

11.4 Register Allocation

e cheaper to use regs instead of stack - save sw, lw

ex $14 - $28 unused by our code gen

— most used var
— problem: &, address-of, if saved in a reg, what is &? - needs a RAM address

Problem Cont. & (address of) if a var is stored in a reg, it doesn’t have a RAM address, so what does
& return? If you need the address, you need the address should store in RAM

11.5 Strength Reduction

add usually runs faster than mult (in real world)
for c¢s241: mult by 2:

lis $5
.word 2
mult $3, $5
mflo $3

32

Real world: bit shift

11.6 Procedure-specific optimization
11.6.1 Inlining

int f(int x) {
return x + X;

}

int wain(int a, int b) {
return f(a);

3

1

int wain(int a, int b) {
return a + a;

}

e replace the function call with its body, right in caller

e saves overhead of calling the function

Do we need to generate code for function f?7 Ff: ...
Don’t if it is inlined in all calls to f.

Downside if f is called many times, body of f is copied to many places

e inlining saves on overhead of calling functions

e if inlined in all places function is called = do not need to generate code for f.

Compare with cost of copying the body in place of function calls.

11.6.2 Tail Recursion
int f(int n) {

return f(n-1);

}

wain f(n) f(n-1) £(1)
- | - | T

calls f(n) |____jalr_| |______ | [__1 |

33

can reuse the stack frame
recursive calls have same number of params, local vars
for successive calls use jr instead of jalr

don’t need to save $31

34

12

Memory Management & Heap

e If you want data to out live its scope (“persists”)
copy it to another scope, i.e. to a stack-allocated variable in an outer scope

e OR don’t use the stack-use heap

Ex
c*xf(O) {

C *d = new C;
return d;

e stack contains a pointer to heap memory
e heap objects live on after the stack frame, they have been allocated in, is popped

e To release heap data, must call free/delete

35

12.0.1 new/delete (malloc/free)
e variety of implementations
e List of free blocks e maintain a linked list of pointers to free areas of the heap
e Initially - entire heap is free, so linked list has 1 entry.

Suppose heap is 1k
picl
Request 16 bytes
e actually allocate 20 bytes: 16 bytes + 1 int (4 bytes)

e return a pointer to 2nd word

12.1 Implicit Memory Management: Garbage Collection

Java, Racket - reclaim memory when it is no longer accessible

Data structures to manage new/delete

e linked list of free blocks

e there are other ds’s

int £0 {
MyClass ob = new MyClass();

X
int £0O {
if (x ==y) {
MyClass obl = new MyClass();
ob2 = obl;
}
+

12.1.1 GC techniques
1. Mark and Sweep

e scan entire stack, look at pointers
e for each pointer found, mark the heap block it pointing to

e if heap block contains pointers, follow then as well, mark, etc.
Then scan heap, reclaim any blocks not marked and clear all marks.
2. References Counting

e for each heap block, keep track of the number of pointers that point to it

e Must watch every ptr, and update ref count
each time a pointer is reassigned: decrement old, increment new

e If count reaches 0, reclaim it

36

Problem circular references: both have ref count 1 but are collectively inaccessible
3. Copying Garbage Collector

e Heap is divided into two halves “from” and “to”
e allocate only from “from”
e When “from” fills up, all reachable data is copied from “from” to “to” and roles are reversed

e Built in compaction - guaranteed that after each swap, all reachable data will occupy contiguous
memory, so no fragmentation

e Downside: heap is only half sized

memory management is not free

37

Linker & Loader

13.1 Loaders

e load (copy it into RAM) your program into RAM to start executing it

e may load program P into a memory address «
where o« may not be 0x0

—> labels may be resolved to the wrong memory addresses
loader will need to fix it.

miss some
start of july 30
a pic
The output of most Assemblers is not pure machine code

e it’s object code, MERL for cs241

e object file contains binary code + auxiliary info. needed by the loader (and later linker)
relocation entries

mips.twoints/array

e optimal 2nd argument = address at which load mips file. Typically the relocation is done by the
loader.

Still possible to write programs that only work if loaded to 0x0

top:
lis $5
.word top
beq $0, $5,

lis $5
.word 12
jr $5
jr $31

38

If you want to relocatable code, always use labels to specify jump targets

lis $5

.word jump
jr $5

jump: jr $31

13.2 Linker

e convenient to store code in multiple files

e code should be relocatable = MERL format
pic
e a linker needs to intelligently merge MERL files

e you should not expect programmers to use unique labels in different files

Merl - external symbol reference (ESR)
e format code 0x11

e location (address) in the code/MERL file

e name of symbol

39

	May 7
	2's Complement

	May 9
	Overview

	Jun 18
	Bottom-Up Parsing

	Jun 20
	Using Automaton

	June 27
	Build Symbol Table
	Implementing Symbol Table

	July 4
	Code Generation

	July 9
	Problem
	More complicated
	Print

	july 11
	If statements
	While

	Pointers
	Assignment through pointer deref
	new and delete

	Compiling Procedures
	Big picture
	Saving and restore regs
	Two approaches to saving registers

	Parameters

	Optimization
	constant propagation
	common subexpression slimination
	Dead code elimination
	Register Allocation
	Strength Reduction
	Procedure-specific optimization
	Inlining
	Tail Recursion

	Memory Management & Heap
	new/delete (malloc/free)
	Implicit Memory Management: Garbage Collection
	GC techniques

	Linker & Loader
	Loaders
	Linker

