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Review the proofs for fourier relations...
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♠ | Week 7

2.1 Sampling Theorem

Ω is the angular velocity.

A function f(t) is said to be bandlimited, or Ω-bandlimited, if there exists an Ω > 0 such
that

F (ω) = 0 for |ω| > Ω

Nyquist freq: ν =
Ω

2π

The Whittaker-Shannon Sampling Theorem : f(t) Ω-bandlimited. Then f = F−1F
is completely determined at any t ∈ R by its values at tk = kπ

Ω
, k = 0,±1,±2, . . . , as follows

f(t) =
∞∑

k=−∞

f

(
kπ

Ω

)
sin(Ωt− kπ)

Ωt− kπ
=

∞∑
k=−∞

f

(
kπ

Ω

)
sinc

(
Ωt

π
− k
)

The sampling freq is twice the bandwidth freq Ω

effects of undersampling
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♠ | Week 8

one consequence of uncertainty principle: A function and its Fourier transform cannot both
have finite support.

windowed FT, local freq of a signal

3.1 Wavelets and multiresolution analysis

3.1.1 Introduction

Detail or wavelet function

ψ(t) =

{
1 0 ≤ t < 1/2

−1 1/2 ≤ t < 1

Let us introduce the following space of functions:

V0 = {f ∈ L2(R) : f(t) is constant over the interval [k, k + 1), ∀k ∈ Z}

and φ0k(t) = I[k,k+1)(t) spans V0.

φ0k(t) = φ(t− k)

We notice that the φ1k are translated copies of φ10. But what is more important is that they
also are dilated and translated copies of the scaling function φ(t):

φ1k =
√

2φ(2t− k)

they span V1.
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♠ | Week 9

4.1 Intro cont’d

Go backwards:

V−1 = ... constant over [2k, 2k + 1) = span
{

1√
2
φ

(
t

2
− k
)
,∀k ∈ Z

}
∩ L2(R)

In general, for J ∈ Z.

VJ = {...over
[
k

2J
,
k + 1

2J

)
,∀k ∈ Z}

and it is spanned by 2J/2φ(2Jt− k).

4.1.1 Nesting relation

· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · ·

4.1.2 Nesting relation V0 ⊂ V1

φ(t) = φ(2t) + φ(2t− 1), t ∈ [0, 1]

More mathematical:
φ(t)

∑
k∈Z

hkφ1k(t) =
∑
k∈Z

hk
√

2φ(2t− k)

latter one is called multiresolution analysis or refinement equation that is satisfied by a
scaling function. It is sometimes simply called scaling equation. The nonzero coeff hk are
known as scaling coeff. For Haar system:
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hk =

{
1√
2

k = 0, 1

0 otherwise

4.2 wavalets

Using V0 ⊂ V1, we define W0 = V ⊥0 .

So V1 = V0 ⊕W0.

The function φ(t) is known at the mother wavelet of the Haar wavelet system, or simply
the Haar mother wavelet.

4.2.1 Summary of major recent results

1. multiresolution analysis:
φ(t) =

∑
k∈Z

hk
√

2φ(2t− k)

non-zero coeffs characterize a particular multiresolution analysis.

2. For each j ∈ Z, the infinite set of functions

φjk(t) = 2j/2φ(2jt− k), k ∈ Z

orthonormal basis for Vj.

3. nested

4. V1 = V0 ⊕W0

5. Haar wavelet function ψ(t) is a function in V1 that is orthogonal to φ(t)

ψ(t) = φ(2t)− φ(2t− 1)

More generally,
ψ(t) =

∑
k∈Z

gk
√

2φ(2t− k)

6. The integer translates of ψ(t) form an orthonormal basis of W0.

A consequence V1 = V0 ⊕W0, we need two sets of functions: φ0k and ψ0k:

u(t) =
∑
k∈Z

akφ0k(t) +
∑
k∈Z

bkψ0k(t)
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4.2.2 Attention! Important summary

The function f1 ∈ V1 which is the best approximation of f in the space V1 will admit the
following expansion

f1(t) =
∑
k∈Z

akφ0k(t) +
∑
k∈Z

bkψ0k(t)

where
ak = 〈f1, φ0k〉 , bk = 〈f1, ψ0k〉 , k ∈ Z

Also f1 ∈ V1:
f1(t) =

∑
k∈Z

ckφ1k(t)

where
ck = 〈f1, φ1k〉

4.2.3 Higher-order nestings Vj ⊂ Vj+1

Vj+1 = Vj ⊕Wj

Then
lim
J→∞

VJ = L2(R)

This means that

L2(R) = V0 ⊕

[
∞⊕
j=0

Wj

]
If we decompose V0 more, then

L2(R) =
∞⊕
j=0

Wj

Consequently, any function f ∈ L2(R) admits a unique expansion of the form

f(t) =
∑
j∈Z

∑
k∈Z

bjkψjk(t)

4.2.4 Connection to the (continuous) wavelet transform introduced
earlier

?
?
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?
?
?
?

4.2.5 Special case: Haar wavelet expansions of functions on a finite
interval

f(t) = f0(t) +
∞∑
j=1

wj(t)

where f0(t) = a00φ00(t). Detail functions, wj ∈ Wj are defined:

wj(t) =
2j−1∑
k=0

bjkψjk(t), j = 0, 1, 2, . . .

In practical situations, we deal with finite-dimensional.

fj(t) = f0(t) +

j−1∑
i=0

wi(t) = a00φ00(t) +

j−1∑
i=0

2i−1∑
k=0

bikψik(t)

Summary 1 a00 represents constant approx. f0 ∈ V0 to f . Using a00 and b00 produces f1.
Then adding b10 and b11 produces f2 ∈ V2.

4.2.6 Analysis and synthesis alg for wavelet expansions

Analysis/decomposition alg

f1(t) =
∑
k∈Z

a1k

√
2φ(2t− k)

1last paragraph of page 318
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and
f1(t) =

∑
k∈Z

a0kφ(t− k) +
∑
k∈Z

b0kψ(t− k)

Now introduce Ajk = 2j/2ajk, Bjk = 2j/2bjk

Then two eqs above become:
f1(t) =

∑
k∈Z

A1kφ(2t− k)

and
f1(t) =

∑
k∈Z

A0kφ(t− k) +
∑
k∈Z

A0kψ(t− k)

After some calculations, we get

A0k =
1

2
[A1,2k + A1,2k+1]

B0k =
1

2
[A1,2k − A1,2k+1]

Given coeff for f1, we compute coeff of V0 ⊕W0 decomposition of V1.

10



♠ | Week 10

5.1 Analysis and synthesis alg for wavelet expansions cont’d

5.1.1 General Resolutions

Vj = Vj−1 ⊕Wj−1

Aj−1,k =
1

2
[Aj,2k + Aj,2k+1]

Bj−1,k =
1

2
[Aj,2k − Aj,2k+1]

Reconstruction/synthesis

Step j Take aj−1,k coeff, along with bjk. compute ajk, 0 ≤ k ≤ 2j − 1.

5.2 Multi-re analysis: A general treatment

The collection {Vj} is called a multi-re analysis with scaling function φ if the following
conditions hold:

1. nesting

2. density:
⋃
j∈Z

Vj = L2(R)

This essentially states, in proper set-theoretic language, that lim
j→∞

Vj = L2(R)

3. separation:
⋂
j∈Z

Vj = {0}

11
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4. scaling: f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1

f(x) ∈ Vj ⇐⇒ f(2−jx) ∈ V0

Subspaces Vj satisfying 1-4 are known as approximation spaces

5. orthonormal basis

Theorem If the support of the scaling function φ(x) is finite, then only a finite
number of the coeff hk can be nonzero.

Proof Suppose φ(x) = 0 outside the interval [−a, a], where a > 0 is finite. Also let
k1 < k2 < . . . be an infinite seq of ints for which hki 6= 0. Now suppose that φ(p) 6= 0
for some p ∈ [−a, a]. Then from the scaling eqs,

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k)

it follows that there will be nonzero contributions to RHS at the points xi ∈ R defined
by 2xi − ki = p, i = 1, 2, . . . , implying that the values φ(xi) are nonzero. But a
rearrangement yields xi = 1

2
(p+ki), implying that xi →∞ as i→∞. This contradicts

the assumption that φ(x) is zero outside the interval [−a, a].

5.2.1 Wavelet spaces

W0 = V ⊥0

ψ(x) =
∑
k∈Z

gkφ1k =
∑
k∈Z

gk
√

2φ(2x− k)

and
φ(x) =

∑
k∈Z

hkφ1k =
∑
k∈Z

√
2φ(2x− k)

Inner product = 0
〈ψ, φ〉 =

∑
k∈Z

∑
l∈Z

gkh̄l 〈φ1k, φ1l〉 =
∑
k∈Z

gkh̄k

It must = 0 by orthogonality.

cheap trick : Set gk = (−1)kh̄1−k

12
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Then ∑
k∈Z

gkh̄k = . . .+ g−1h̄−1 + g0h̄0 + g1h̄1 + g2h̄2 + . . .

= . . .− h̄2h̄−1 + h̄1h̄0 − h̄0h̄1 + h̄2h̄−1 + . . .

= 0

Theorem For any j ∈ Z, the set of functions {ψjk = 2j/2ψ(2jx− k)} where

ψ(x) =
∑
k∈Z

(−1)kh̄1−kφ(2x− k)

forms an orthonormal basis of Wj.

13



♠ | Week 11

6.1 MRA: general (cont’d)

6.1.1 Wavelet spaces (cont’d)

From density property for MRA, we may write loosely: limj→∞ Vj = L2(R), so that the
equation becomes

L2(R) = V0 ⊕W0 ⊕ . . .

Then...

L2(R) =
∞⊕

j=−∞

Wj

The doubly indexed set of functions {ψjk = 2j/2ψ(2j−k)}, j, k ∈ Z forms an orthonormal
basis in L2(R).

6.1.2 Synthesis and Analysis Alg for MRAs

Analysis

General decomposition:
Vj = Vj−1 ⊕Wj−1

finer scale = coarser scale + detail.

In scaling function, replace x with 2j−1x− l, and m = 2l + k, we have

φ(2j−1x− l) =
∑
m∈Z

hm−2l

√
2φ(2jx−m)

Analysis Express the coarser coeff aj−1,k, bj−1,k in terms of finer coeff aj,k.

14
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Then calculate directly using inner product

aj−1,l = 〈f, φj−1,l〉

Synthesis express the finer coeff aj,k in terms of coarser coeff aj−1,k, bj−1,k.

6.1.3 Wavelets with compact support

very important!

Two ways:
φ(x) =

∑
k∈Z

hkφ1k, hk = 〈φ, φ1k〉

and

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k)

Aforementioned theorem: finite support of φ implies finite number of nonzero coeff hk.

some conditions that must be satisfied by the scaling coeff hk for φ(x) to have compact
support.

1. Finite energy (squared L2 norm)

〈φ, φ〉 =
∑
k

|hk|2 = 1

2. Finite L1 norm.

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k) 1

Since in L2[a, b], then L1[a, b]∣∣∣∣ˆ
R
φ(x) dx

∣∣∣∣ ≤ ˆ
R
|φ(x)|dx <∞

implying that the integral on the left exists. Now integrate both sides of scaling
equation:

1An important eq which I will use later

15



Sibelius Peng AMATH 391 post-mid review

ˆ
R
φ(x) dx =

∑
k

hk
√

2

ˆ
R
φ(2x− k) dx

For each k, we have this by let s = 2x− k,ˆ
R
φ(2x− k) dx =

1

2

ˆ
R
φ(s) ds

Then sub into prev eq,

ˆ
R
φ(x)dx =

∑
k

hk
1√
2

ˆ
R
φ(x)dx

Since non-zero integral, then we have∑
k

hk =
√

2

3. Generalized orthogonality

〈φ(x), φ(x− p)〉 = 2
∑
k

∑
l

hk hl 〈φ(2x− k), φ(2x− 2p− l)〉 = δ0p

Setting k = 2p+l, we make the inner product inside to be 1
2
since 〈φ(2x− k), φ(2x− 2p− l)〉 =

1
2
δk,2p+l.

So we have final result: ∑
k

hk hk−2p = δ0p

Important sequence the length of the seq of nonzero hk must be even.

4.
∑

even-indexed =
∑

odd-indexed

∑
k

h2k =
∑
k

h2k+1 =
1√
2

Proof Define
K0 =

∑
k

h2k, K1 =
∑
k

h2k+1

use orthogonality: ∑
k

hkhk+2n = δ0n

Sum both sides over n: ∑
n

∑
k

hkhk+2n =
∑
n

δ0n = 1

16
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Then split the sum:

∑
n

∑
k

hkhk+2n =
∑
n

[∑
k

h2kh2k+2n +
∑
k

h2k+1h2k+1+2n

]

=
∑
k

[∑
n

h2k+2n

]
h2k +

∑
k

[∑
n

h2k+2n+1

]
h2k+1

=
∑
k

[∑
n

h2(k+n)

]
h2k +

∑
k

[∑
n

h2(k+n)+1

]
h2k+1

= K0

∑
k

h2k +K1

∑
k

h2k+1

= K2
0 +K2

1

= 1

and K0 +K1 =
√

2, then K0 = K1 = 1√
2

17
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6.1.4 Relating the support of φ(x) to nonzero hk coeff

Theorem If φ(x) finite support on [N1, N2], both Z, then hk = 0 for both k > N2

and k < N1.

In this case, hk are said to have compact support in [N1, N2].

?
?
? Is proof required?

?
?
?

Proof the support of the function φ(2x− k) must lie inside the interval determined
by the ineq:

N1 ≤ 2x− k ≤ N2 =⇒ 1

2
(N1 + k) ≤ x ≤ 1

2
(N2 + k)

Also, interval must lie inside [N1, N2]:

[
1

2
(N1 + k),

1

2
(N2 + k)] ⊆ [N1, N2] =⇒ N1 ≤ k ≤ N2

18
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Theorem If φ(x) finite [N1, N2], then ψ(x) compact on [1
2
(N1 − N2 + 1), 1

2
(N2 −

N1 + 1)].

?
?
? Is proof required?

?
?
?
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7.1 MRA: general treatment (cont’d)

7.1.1 ψ(x) its support, and vanishing moments

ˆ
R
ψ(x)dx =

∑
k

gk
√

2

ˆ
R
φ(2x− k)dx

=
∑
k

(−1)kh1−k
√

2

ˆ
R
φ(2x− k)dx

for any k ∈ Z:
ˆ
R
φ(2x− k)dx =

1

2

ˆ
R
φ(x)dx (s = 2x− k, ds = 2dx, etc. )

=
1

2
M

Therefore ˆ
R
ψ(x)dx =

1√
2
M
∑
k

(−1)kh1−k

= − 1√
2
M
∑
l

(−1)lhl (l = 1− k ⇒ k = 1− l, etc. )

= − 1√
2
M

[∑
k

h2k −
∑
k

h2k+1

]
= 0

Let us now assume that f(x) is a polynomial:

f(x) =
n∑
k=0

ckx
k

20
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over interval I which contains the domain of support of D of a wavelet ψ.

b00 =

ˆ
I

f(x)ψ(x)dx

=

ˆ
D

n∑
k=0

ckx
kψ(x)dx

=
n∑
k=0

ck

ˆ
D

xkψ(x)dx

=
n∑
k=0

ckmk

where
mk =

ˆ
R
xkψ(x) dx k ≥ 0

is know as kth moment of the wavelet function. If mk = 0 for 0 ≤ k ≤ n then b00 = 0.

Defn ψ has M vanishing moments:

mk =

ˆ
R
xkψ(x)dx = 0, k = 0, 1, 2, · · · ,M − 1

Implications: M − 1 vanishing moment, we have an upper bound to bjk

?
?
? How much should we know about this?

?
?
?
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7.1.2 Vanishing moments and the approximation of functions

Theorem Vj with scaling function φ. ψ has M vanishing moments. Best approx in
Vj in L2 sense:

fj =
∑
k∈Z

〈f, φjk〉φjk

Then L2 error has an bound
‖f − fj‖2 ≤ C2−jM

7.2 MRA and Fourier transform

Two theorems here (not responsible)

7.2.1 Fourier transforms and vanishing moments of wavelets

F (n)(ω) =
dn

dωn

[
1√
2π

ˆ
R
f(x)e−iωxdx

]
= (−i)n 1√

2π

ˆ
R
xnf(x)e−iωxdx

From this result,
Ψ(k)(0) = 0 implies that mk = 0

Therefore, if
Ψ(k) = 0, 0 ≤ k ≤M − 1

then ψ(x) has M vanishing moments.

22
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