Contents

1	Pre-mid					
2		4				
	2.1	Sampl	ling Theorem	4		
3	Wee	Week 8				
	3.1	Wavel	ets and multiresolution analysis	5		
		3.1.1	Introduction	5		
4	Wee	Week 9				
	4.1	Intro	cont'd	6		
		4.1.1	Nesting relation	6		
		4.1.2	Nesting relation $V_0 \subset V_1$	6		
	4.2	2 wavalets				
		4.2.1	Summary of major recent results	7		
		4.2.2	Attention! Important summary	8		
		4.2.3	Higher-order nestings $V_j \subset V_{j+1} \ldots \ldots \ldots \ldots \ldots$	8		
		4.2.4	Connection to the (continuous) wavelet transform introduced earlier .	8		
		4.2.5	Special case: Haar wavelet expansions of functions on a finite interval	9		
		4.2.6	Analysis and synthesis alg for wavelet expansions	9		

5	Wee	Week 10				
	5.1	5.1 Analysis and synthesis alg for wavelet expansions cont'd				
		5.1.1	General Resolutions	11		
	5.2	Multi-re analysis: A general treatment				
		5.2.1	Wavelet spaces	12		
6	Week 11					
	6.1	MRA:	general (cont'd)	14		
		6.1.1	Wavelet spaces (cont'd)	14		
		6.1.2	Synthesis and Analysis Alg for MRAs	14		
		6.1.3	Wavelets with compact support	15		
		6.1.4	Relating the support of $\phi(x)$ to nonzero h_k coeff	18		
7	Wee	ek 12		20		
	7.1	7.1 MRA: general treatment (cont'd)		20		
		7.1.1	$\psi(x)$ its support, and vanishing moments	20		
		7.1.2	Vanishing moments and the approximation of functions	22		
	7.2	MRA	and Fourier transform	22		
		7.2.1	Fourier transforms and vanishing moments of wavelets	22		

• Pre-mid

Review the proofs for fourier relations...

Week 7

2.1 Sampling Theorem

 Ω is the angular velocity.

A function f(t) is said to be bandlimited, or Ω -bandlimited, if there exists an $\Omega > 0$ such that

$$F(\omega) = 0$$
 for $|\omega| > \Omega$

Nyquist freq: $\nu = \frac{\Omega}{2\pi}$

The Whittaker-Shannon Sampling Theorem : f(t) Ω -bandlimited. Then $f = \mathcal{F}^{-1}F$ is completely determined at any $t \in \mathbb{R}$ by its values at $t_k = \frac{k\pi}{\Omega}$, $k = 0, \pm 1, \pm 2, \ldots$, as follows

$$f(t) = \sum_{k=-\infty}^{\infty} f\left(\frac{k\pi}{\Omega}\right) \frac{\sin(\Omega t - k\pi)}{\Omega t - k\pi} = \sum_{k=-\infty}^{\infty} f\left(\frac{k\pi}{\Omega}\right) \operatorname{sinc}\left(\frac{\Omega t}{\pi} - k\right)$$

The sampling freq is twice the bandwidth freq Ω

effects of undersampling

• Week 8

one consequence of uncertainty principle: A function and its Fourier transform cannot both have finite support.

windowed FT, local freq of a signal

3.1 Wavelets and multiresolution analysis

3.1.1 Introduction

Detail or wavelet function

$$\psi(t) = \begin{cases} 1 & 0 \le t < 1/2 \\ -1 & 1/2 \le t < 1 \end{cases}$$

Let us introduce the following space of functions:

$$V_0 = \{ f \in L^2(\mathbb{R}) : f(t) \text{ is constant over the interval } [k, k+1), \quad \forall k \in Z \}$$

and $\phi_{0k}(t) = I_{[k,k+1)}(t)$ spans V_0 .

$$\phi_{0k}(t) = \phi(t - k)$$

We notice that the ϕ_{1k} are translated copies of ϕ_{10} . But what is more important is that they also are **dilated and translated** copies of the scaling function $\phi(t)$:

$$\phi_{1k} = \sqrt{2}\phi(2t - k)$$

they span V_1 .

• Week 9

4.1 Intro cont'd

Go backwards:

$$V_{-1} = \dots \text{ constant over } [2k, 2k+1) = \operatorname{span} \left\{ \frac{1}{\sqrt{2}} \phi \left(\frac{t}{2} - k \right), \forall k \in \mathbb{Z} \right\} \cap L^2(\mathbb{R})$$

In general, for $J \in \mathbb{Z}$.

$$V_J = \{ ... \text{ over } \left[\frac{k}{2^J}, \frac{k+1}{2^J} \right), \forall k \in \mathbb{Z} \}$$

and it is spanned by $2^{J/2}\phi(2^Jt-k)$.

4.1.1 Nesting relation

$$\cdots \subset V_{j-1} \subset V_j \subset V_{j+1} \subset \cdots$$

4.1.2 Nesting relation $V_0 \subset V_1$

$$\phi(t) = \phi(2t) + \phi(2t - 1), \qquad t \in [0, 1]$$

More mathematical:

$$\phi(t) \sum_{k \in \mathbb{Z}} h_k \phi_{1k}(t) = \sum_{k \in \mathbb{Z}} h_k \sqrt{2} \phi(2t - k)$$

latter one is called multiresolution analysis or refinement equation that is satisfied by a scaling function. It is sometimes simply called scaling equation. The nonzero coeff h_k are known as scaling coeff. For Haar system:

$$h_k = \begin{cases} \frac{1}{\sqrt{2}} & k = 0, 1\\ 0 & \text{otherwise} \end{cases}$$

4.2 wavalets

Using $V_0 \subset V_1$, we define $W_0 = V_0^{\perp}$.

So
$$V_1 = V_0 \oplus W_0$$
.

The function $\phi(t)$ is known at the **mother wavelet** of the Haar wavelet system, or simply the **Haar mother wavelet**.

4.2.1 Summary of major recent results

1. multiresolution analysis:

$$\phi(t) = \sum_{k \in \mathbb{Z}} h_k \sqrt{2}\phi(2t - k)$$

non-zero coeffs characterize a particular multiresolution analysis.

2. For each $j \in \mathbb{Z}$, the infinite set of functions

$$\phi_{jk}(t) = 2^{j/2}\phi(2^jt - k), \qquad k \in \mathbb{Z}$$

orthonormal basis for V_j .

- 3. nested
- $4. \ V_1 = V_0 \oplus W_0$
- 5. Haar wavelet function $\psi(t)$ is a function in V_1 that is orthogonal to $\phi(t)$

$$\psi(t) = \phi(2t) - \phi(2t - 1)$$

More generally,

$$\psi(t) = \sum_{k \in \mathbb{Z}} g_k \sqrt{2}\phi(2t - k)$$

6. The integer translates of $\psi(t)$ form an orthonormal basis of W_0 . A consequence $V_1 = V_0 \oplus W_0$, we need two sets of functions: ϕ_{0k} and ψ_{0k} :

$$u(t) = \sum_{k \in \mathbb{Z}} a_k \phi_{0k}(t) + \sum_{k \in \mathbb{Z}} b_k \psi_{0k}(t)$$

4.2.2 Attention! Important summary

The function $f_1 \in V_1$ which is the best approximation of f in the space V_1 will admit the following expansion

$$f_1(t) = \sum_{k \in \mathbb{Z}} a_k \phi_{0k}(t) + \sum_{k \in \mathbb{Z}} b_k \psi_{0k}(t)$$

where

$$a_k = \langle f_1, \phi_{0k} \rangle, \quad b_k = \langle f_1, \psi_{0k} \rangle, \qquad k \in \mathbb{Z}$$

Also $f_1 \in V_1$:

$$f_1(t) = \sum_{k \in \mathbb{Z}} c_k \phi_{1k}(t)$$

where

$$c_k = \langle f_1, \phi_{1k} \rangle$$

4.2.3 Higher-order nestings $V_j \subset V_{j+1}$

$$V_{j+1} = V_j \oplus W_j$$

Then

$$\lim_{J\to\infty} V_J = L^2(\mathbb{R})$$

This means that

$$L^2(\mathbb{R}) = V_0 \oplus \left[\bigoplus_{j=0}^{\infty} W_j \right]$$

If we decompose V_0 more, then

$$L^2(\mathbb{R}) = \bigoplus_{j=0}^{\infty} W_j$$

Consequently, any function $f \in L^2(\mathbb{R})$ admits a unique expansion of the form

$$f(t) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} b_{jk} \psi_{jk}(t)$$

4.2.4 Connection to the (continuous) wavelet transform introduced earlier

?

?

- ?
- ?
- ?
- ?

4.2.5 Special case: Haar wavelet expansions of functions on a finite interval

$$f(t) = f_0(t) + \sum_{j=1}^{\infty} w_j(t)$$

where $f_0(t) = a_{00}\phi_{00}(t)$. Detail functions, $w_j \in W_j$ are defined:

$$w_j(t) = \sum_{k=0}^{2^j - 1} b_{jk} \psi_{jk}(t), \qquad j = 0, 1, 2, \dots$$

In **practical** situations, we deal with finite-dimensional.

$$f_j(t) = f_0(t) + \sum_{i=0}^{j-1} w_i(t) = a_{00}\phi_{00}(t) + \sum_{i=0}^{j-1} \sum_{k=0}^{2^i - 1} b_{ik}\psi_{ik}(t)$$

Summary 1 a_{00} represents constant approx. $f_0 \in V_0$ to f. Using a_{00} and b_{00} produces f_1 . Then adding b_{10} and b_{11} produces $f_2 \in V_2$.

4.2.6 Analysis and synthesis alg for wavelet expansions

Analysis/decomposition alg

$$f_1(t) = \sum_{k \in \mathbb{Z}} a_{1k} \sqrt{2}\phi(2t - k)$$

¹last paragraph of page 318

and

$$f_1(t) = \sum_{k \in \mathbb{Z}} a_{0k} \phi(t-k) + \sum_{k \in \mathbb{Z}} b_{0k} \psi(t-k)$$

Now introduce $A_{jk} = 2^{j/2}a_{jk}$, $B_{jk} = 2^{j/2}b_{jk}$

Then two eqs above become:

$$f_1(t) = \sum_{k \in \mathbb{Z}} A_{1k} \phi(2t - k)$$

and

$$f_1(t) = \sum_{k \in \mathbb{Z}} A_{0k} \phi(t - k) + \sum_{k \in \mathbb{Z}} A_{0k} \psi(t - k)$$

After some calculations, we get

$$A_{0k} = \frac{1}{2} [A_{1,2k} + A_{1,2k+1}]$$

$$B_{0k} = \frac{1}{2} [A_{1,2k} - A_{1,2k+1}]$$

Given coeff for f_1 , we compute coeff of $V_0 \oplus W_0$ decomposition of V_1 .

Week 10

5.1 Analysis and synthesis alg for wavelet expansions cont'd

5.1.1 General Resolutions

$$V_j = V_{j-1} \oplus W_{j-1}$$

$$A_{j-1,k} = \frac{1}{2} [A_{j,2k} + A_{j,2k+1}]$$

$$B_{j-1,k} = \frac{1}{2} [A_{j,2k} - A_{j,2k+1}]$$

Reconstruction/synthesis

Step j Take $a_{j-1,k}$ coeff, along with b_{jk} . compute a_{jk} , $0 \le k \le 2^j - 1$.

5.2 Multi-re analysis: A general treatment

The collection $\{V_j\}$ is called a multi-re analysis with scaling function ϕ if the following conditions hold:

1. nesting

2. density:
$$\overline{\bigcup_{j\in\mathbb{Z}}V_j}=L^2(\mathbb{R})$$

This essentially states, in proper set-theoretic language, that $\lim_{j\to\infty} V_j = L^2(\mathbb{R})$

3. separation:
$$\bigcap_{j\in\mathbb{Z}} V_j = \{0\}$$

4. scaling: $f(x) \in V_i \iff f(2x) \in V_{i+1}$

$$f(x) \in V_j \iff f(2^{-j}x) \in V_0$$

Subspaces V_i satisfying 1-4 are known as approximation spaces

5. orthonormal basis

Theorem If the support of the scaling function $\phi(x)$ is finite, then only a finite number of the coeff h_k can be nonzero.

Proof Suppose $\phi(x) = 0$ outside the interval [-a, a], where a > 0 is finite. Also let $k_1 < k_2 < \dots$ be an infinite seq of ints for which $h_{k_i} \neq 0$. Now suppose that $\phi(p) \neq 0$ for some $p \in [-a, a]$. Then from the scaling eqs,

$$\phi(x) = \sum_{k \in \mathbb{Z}} h_k \sqrt{2}\phi(2x - k)$$

it follows that there will be nonzero contributions to RHS at the points $x_i \in \mathbb{R}$ defined by $2x_i - k_i = p$, $i = 1, 2, \ldots$, implying that the values $\phi(x_i)$ are nonzero. But a rearrangement yields $x_i = \frac{1}{2}(p+k_i)$, implying that $x_i \to \infty$ as $i \to \infty$. This contradicts the assumption that $\phi(x)$ is zero outside the interval [-a, a].

5.2.1 Wavelet spaces

$$W_0 = V_0^{\perp}$$

$$\psi(x) = \sum_{k \in \mathbb{Z}} g_k \phi_{1k} = \sum_{k \in \mathbb{Z}} g_k \sqrt{2} \phi(2x - k)$$

and

$$\phi(x) = \sum_{k \in \mathbb{Z}} h_k \phi_{1k} = \sum_{k \in \mathbb{Z}} \sqrt{2}\phi(2x - k)$$

Inner product = 0

$$\langle \psi, \phi \rangle = \sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} g_k \bar{h}_l \langle \phi_{1k}, \phi_{1l} \rangle = \sum_{k \in \mathbb{Z}} g_k \bar{h}_k$$

It must = 0 by orthogonality.

cheap trick: Set $g_k = (-1)^k \bar{h}_{1-k}$

Then

$$\sum_{k \in \mathbb{Z}} g_k \bar{h}_k = \dots + g_{-1} \bar{h}_{-1} + g_0 \bar{h}_0 + g_1 \bar{h}_1 + g_2 \bar{h}_2 + \dots$$

$$= \dots - \bar{h}_2 \bar{h}_{-1} + \bar{h}_1 \bar{h}_0 - \bar{h}_0 \bar{h}_1 + \bar{h}_2 \bar{h}_{-1} + \dots$$

$$= 0$$

Theorem For any $j \in \mathbb{Z}$, the set of functions $\{\psi_{jk} = 2^{j/2}\psi(2^jx - k)\}$ where

$$\psi(x) = \sum_{k \in \mathbb{Z}} (-1)^k \bar{h}_{1-k} \phi(2x - k)$$

forms an orthonormal basis of W_j .

♠ | Week 11

6.1 MRA: general (cont'd)

6.1.1 Wavelet spaces (cont'd)

From density property for MRA, we may write loosely: $\lim_{j\to\infty} V_j = L^2(\mathbb{R})$, so that the equation becomes

$$L^2(\mathbb{R}) = V_0 \oplus W_0 \oplus \dots$$

Then...

$$L^2(\mathbb{R}) = \bigoplus_{j=-\infty}^{\infty} W_j$$

The **doubly indexed** set of functions $\{\psi_{jk} = 2^{j/2}\psi(2^j - k)\}, \quad j, k \in \mathbb{Z}$ forms an orthonormal basis in $L^2(\mathbb{R})$.

6.1.2 Synthesis and Analysis Alg for MRAs

Analysis

General decomposition:

$$V_i = V_{i-1} \oplus W_{i-1}$$

finer scale = coarser scale + detail.

In scaling function, replace x with $2^{j-1}x - l$, and m = 2l + k, we have

$$\phi(2^{j-1}x - l) = \sum_{m \in \mathbb{Z}} h_{m-2l} \sqrt{2}\phi(2^{j}x - m)$$

Analysis Express the coarser coeff $a_{j-1,k}, b_{j-1,k}$ in terms of finer coeff $a_{j,k}$.

Then calculate directly using inner product

$$a_{j-1,l} = \langle f, \phi_{j-1,l} \rangle$$

Synthesis express the finer coeff $a_{j,k}$ in terms of coarser coeff $a_{j-1,k}, b_{j-1,k}$.

6.1.3 Wavelets with compact support

very important!

Two ways:

$$\phi(x) = \sum_{k \in \mathbb{Z}} h_k \phi_{1k}, \quad h_k = \langle \phi, \phi_{1k} \rangle$$

and

$$\phi(x) = \sum_{k \in \mathbb{Z}} h_k \sqrt{2}\phi(2x - k)$$

Aforementioned theorem: finite support of ϕ implies finite number of nonzero coeff h_k . some conditions that must be satisfied by the scaling coeff h_k for $\phi(x)$ to have compact support.

1. Finite energy (squared L^2 norm)

$$\langle \phi, \phi \rangle = \sum_{k} |h_k|^2 = 1$$

2. Finite L^1 norm.

$$\phi(x) = \sum_{k \in \mathbb{Z}} h_k \sqrt{2}\phi(2x - k)^{-1}$$

Since in $L^2[a,b]$, then $L^1[a,b]$

$$\left| \int_{\mathbb{R}} \phi(x) \ dx \right| \le \int_{\mathbb{R}} |\phi(x)| dx < \infty$$

implying that the integral on the left exists. Now integrate both sides of scaling equation:

¹An important eq which I will use later

$$\int_{\mathbb{R}} \phi(x) \ dx = \sum_{k} h_k \sqrt{2} \int_{\mathbb{R}} \phi(2x - k) \ dx$$

For each k, we have this by let s = 2x - k,

$$\int_{\mathbb{R}} \phi(2x - k) \ dx = \frac{1}{2} \int_{\mathbb{R}} \phi(s) \ ds$$

Then sub into prev eq,

$$\int_{\mathbb{R}} \phi(x) dx = \sum_{k} h_{k} \frac{1}{\sqrt{2}} \int_{\mathbb{R}} \phi(x) dx$$

Since non-zero integral, then we have

$$\sum_{k} h_k = \sqrt{2}$$

3. Generalized orthogonality

$$\langle \phi(x), \phi(x-p) \rangle = 2 \sum_{k} \sum_{l} h_k h_l \langle \phi(2x-k), \phi(2x-2p-l) \rangle = \delta_{0p}$$

Setting k=2p+l, we make the inner product inside to be $\frac{1}{2}$ since $\langle \phi(2x-k), \phi(2x-2p-l) \rangle = \frac{1}{2}\delta_{k,2p+l}$.

So we have final result:

$$\sum_{k} h_k \ h_{k-2p} = \delta_{0p}$$

Important sequence the length of the seq of nonzero h_k must be even.

4. \sum even-indexed = \sum odd-indexed

$$\sum_{k} h_{2k} = \sum_{k} h_{2k+1} = \frac{1}{\sqrt{2}}$$

Proof Define

$$K_0 = \sum_{k} h_{2k}, \qquad K_1 = \sum_{k} h_{2k+1}$$

use orthogonality:

$$\sum_{k} h_k h_{k+2n} = \delta_{0n}$$

Sum both sides over n:

$$\sum_{n} \sum_{k} h_k h_{k+2n} = \sum_{n} \delta_{0n} = 1$$

Then split the sum:

$$\sum_{n} \sum_{k} h_{k} h_{k+2n} = \sum_{n} \left[\sum_{k} h_{2k} h_{2k+2n} + \sum_{k} h_{2k+1} h_{2k+1+2n} \right]$$

$$= \sum_{k} \left[\sum_{k} h_{2k+2n} \right] h_{2k} + \sum_{k} \left[\sum_{k} h_{2k+2n+1} \right] h_{2k+1}$$

$$= \sum_{k} \left[\sum_{k} h_{2k+2n} \right] h_{2k} + \sum_{k} \left[\sum_{k} h_{2k+2n+1} \right] h_{2k+1}$$

$$= K_{0} \sum_{k} h_{2k} + K_{1} \sum_{k} h_{2k+1}$$

$$= K_{0}^{2} + K_{1}^{2}$$

$$= 1$$

and
$$K_0 + K_1 = \sqrt{2}$$
, then $K_0 = K_1 = \frac{1}{\sqrt{2}}$

6.1.4 Relating the support of $\phi(x)$ to nonzero h_k coeff

Theorem If $\phi(x)$ finite support on $[N_1, N_2]$, both \mathbb{Z} , then $h_k = 0$ for both $k > N_2$ and $k < N_1$.

In this case, h_k are said to have compact support in $[N_1, N_2]$.

- ?
- ?
- ! Is proof required?
- 7
- ?
- ?

Proof the support of the function $\phi(2x-k)$ must lie inside the interval determined by the ineq:

$$N_1 \le 2x - k \le N_2 \implies \frac{1}{2}(N_1 + k) \le x \le \frac{1}{2}(N_2 + k)$$

Also, interval must lie inside $[N_1, N_2]$:

$$\left[\frac{1}{2}(N_1+k), \frac{1}{2}(N_2+k)\right] \subseteq [N_1, N_2] \implies N_1 \le k \le N_2$$

Theorem If $\phi(x)$ finite $[N_1, N_2]$, then $\psi(x)$ compact on $\left[\frac{1}{2}(N_1 - N_2 + 1), \frac{1}{2}(N_2 - N_1 + 1)\right]$.

?

?

?

Is proof required?

?

?

• Week 12

7.1 MRA: general treatment (cont'd)

7.1.1 $\psi(x)$ its support, and vanishing moments

$$\int_{\mathbb{R}} \psi(x)dx = \sum_{k} g_{k}\sqrt{2} \int_{\mathbb{R}} \phi(2x - k)dx$$
$$= \sum_{k} (-1)^{k} h_{1-k}\sqrt{2} \int_{\mathbb{R}} \phi(2x - k)dx$$

for any $k \in \mathbb{Z}$:

$$\int_{\mathbb{R}} \phi(2x - k) dx = \frac{1}{2} \int_{\mathbb{R}} \phi(x) dx \quad (s = 2x - k, ds = 2dx, \text{ etc. })$$
$$= \frac{1}{2} M$$

Therefore

$$\int_{\mathbb{R}} \psi(x) dx = \frac{1}{\sqrt{2}} M \sum_{k} (-1)^{k} h_{1-k}$$

$$= -\frac{1}{\sqrt{2}} M \sum_{l} (-1)^{l} h_{l} \quad (l = 1 - k \Rightarrow k = 1 - l, \text{ etc. })$$

$$= -\frac{1}{\sqrt{2}} M \left[\sum_{k} h_{2k} - \sum_{k} h_{2k+1} \right]$$

$$= 0$$

Let us now assume that f(x) is a polynomial:

$$f(x) = \sum_{k=0}^{n} c_k x^k$$

over interval I which contains the domain of support of D of a wavelet ψ .

$$b_{00} = \int_{I} f(x)\psi(x)dx$$

$$= \int_{D} \sum_{k=0}^{n} c_{k}x^{k}\psi(x)dx$$

$$= \sum_{k=0}^{n} c_{k} \int_{D} x^{k}\psi(x)dx$$

$$= \sum_{k=0}^{n} c_{k}m_{k}$$

where

$$m_k = \int_{\mathbb{R}} x^k \psi(x) \ dx \qquad k \ge 0$$

is know as kth moment of the wavelet function. If $m_k = 0$ for $0 \le k \le n$ then $b_{00} = 0$.

Defn ψ has M vanishing moments:

$$m_k = \int_{\mathbb{R}} x^k \psi(x) dx = 0, \quad k = 0, 1, 2, \dots, M - 1$$

Implications: M-1 vanishing moment, we have an upper bound to b_{jk}

- ?
- ?
- ? How much should we know about this?
- ?
- 7
- ?

7.1.2 Vanishing moments and the approximation of functions

Theorem V_j with scaling function ϕ . ψ has M vanishing moments. Best approx in V_j in L^2 sense:

$$f_j = \sum_{k \in \mathbb{Z}} \langle f, \phi_{jk} \rangle \, \phi_{jk}$$

Then L^2 error has an bound

$$||f - f_j||_2 \le C2^{-jM}$$

7.2 MRA and Fourier transform

Two theorems here (not responsible)

7.2.1 Fourier transforms and vanishing moments of wavelets

$$F^{(n)}(\omega) = \frac{d^n}{d\omega^n} \left[\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i\omega x} dx \right]$$
$$= (-i)^n \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^n f(x) e^{-i\omega x} dx$$

From this result,

$$\Psi^{(k)}(0) = 0$$
 implies that $m_k = 0$

Therefore, if

$$\Psi^{(k)} = 0, \quad 0 < k < M - 1$$

then $\psi(x)$ has M vanishing moments.