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Review the proofs for fourier relations...
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2.1 Sampling Theorem

() is the angular velocity.

A function f(t) is said to be bandlimited, or Q-bandlimited, if there exists an £ > 0 such
that
F(w)=0 for |w| > Q

Q
Nyquist freq: v = —
2T

The Whittaker-Shannon Sampling Theorem : f(t) Q-bandlimited. Then f = F~'F
is completely determined at any ¢t € R by its values at ¢, = %”, k=0,£1,£2,..., as follows

k=—o00

The sampling freq is twice the bandwidth freq (2

effects of undersampling



0 3 Week 8

one consequence of uncertainty principle: A function and its Fourier transform cannot both
have finite support.

windowed FT, local freq of a signal

3.1 Wayvelets and multiresolution analysis

3.1.1 Introduction

Detail or wavelet function

ﬂ)(t):{l 0<t<1/2

~1 1/2<t<1

Let us introduce the following space of functions:

Vo={f € L*(R) : f(t) is constant over the interval [k, k + 1), Vk € Z}
and ¢o(t) = I k41)(t) spans V.

Pok(t) = ot — k)

We notice that the ¢y, are translated copies of ¢1y. But what is more important is that they
also are dilated and translated copies of the scaling function ¢(t):

b1 = V2¢(2t — k)

they span V.
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4.1 Intro cont’d

Go backwards:

1 t
V_y = ... constant over [2k,2k + 1) = span {Eqﬁ (5 - k‘) ,VEk € Z} N L*(R)

In general, for J € Z.

Ek+1
Vy = {...OVGI‘ |:2_J7 2—J) ,Vk € Z}

and it is spanned by 27/2¢(27t — k).

4.1.1 Nesting relation

---CVj_lchCVjHC---

4.1.2 Nesting relation Vj C V}

o(t) = o(2t) + p(2t — 1), t € [0,1]

More mathematical:

o(t) Z hio1i(t) = Z hiV2¢(2t — k)

keZ keZ

latter one is called multiresolution analysis or refinement equation that is satisfied by a
scaling function. It is sometimes simply called scaling equation. The nonzero coeff h; are
known as scaling coeff. For Haar system:
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=3

L k=01
h, =
otherwise
4.2 wavalets

Using Vy C Vi, we define Wy = V.
So Vi = ‘/0 D Wo.

The function ¢(t) is known at the mother wavelet of the Haar wavelet system, or simply
the Haar mother wavelet.

4.2.1 Summary of major recent results

1. multiresolution analysis:

B(t) =D hiV2¢(2t — k)

kEZ

non-zero coeffs characterize a particular multiresolution analysis.

2. For each j € Z, the infinite set of functions
Gi(t) =222t — k), keZ
orthonormal basis for V.
3. nested
4. Vi=Vo® W

5. Haar wavelet function v (t) is a function in V; that is orthogonal to ¢(t)

P(t) = o(2t) — p(2t — 1)

More generally,

Y(t) =Y geV20(2t — k)

keZ

6. The integer translates of ¢(¢) form an orthonormal basis of Wj.

A consequence V; = Vi & Wy, we need two sets of functions: ¢g and g:

u(t) = ardor(t) + Y brtbou(t)

k€EZ keZ
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4.2.2 Attention! Important summary

The function f; € V; which is the best approximation of f in the space V; will admit the
following expansion

ft) = ardo(t) + > brtoo(t)

keZ keZ
where

ar = (f1, o), br = (f1,Yor) , keZ
Also f1 € Vi:

fi(t) = Z cxdrr(t)
kEZ
where
Cr = <f17 <Z51k>

4.2.3 Higher-order nestings V; C V4

Vin=V,eW;

Then
lim V; = LQ(R)

J—o0

This means that

L*R) =V, ®

i

If we decompose V more, then

Consequently, any function f € L*(R) admits a unique expansion of the form

FE) =D bithr(t)

JEZ kEZ

4.2.4 Connection to the (continuous) wavelet transform introduced
earlier
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~ o~ Y oV

4.2.5 Special case: Haar wavelet expansions of functions on a finite
interval

£ = fo) + Y- i)

where fo(t) = aoopoo(t). Detail functions, w; € W; are defined:

27 -1

wi(t) = > buh(t),  j=0,1,2,...
k=0

In practical situations, we deal with finite-dimensional.

i

—_
\)
—

Jj—1 J—

Fi() = fo(t) + > wilt) = agodoo(t) + bihin (t)

1=0 7 k=0

Il
o

Summary Elaoo represents constant approx. fo € Vo to f. Using agy and byg produces fi.
Then adding b9 and by; produces fy € V5.

4.2.6 Analysis and synthesis alg for wavelet expansions

Analysis/decomposition alg

f) =" anv26(2t — k)

keZ

ast paragraph of page 318
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and
f1<t) = Z a0k¢(t - k) + Z bOkw(t — ]{I)
kezZ keZ
Now introduce Aj, = 2//%a, Bjx = 20/2by,

Then two eqs above become:

f) =) Aot — k)

kEZ

and

fl(t) = Z A0k¢<t - k) + Z Aokiﬂ(t — ]f)

keZ kEZ

After some calculations, we get

1
Ao = 5[141,219 + A1 2k41]

1

By, = 5[141,% - A1,2k+1]

Given coeff for f;, we compute coeff of Vy & Wy decomposition of V.

10
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5.1 Analysis and synthesis alg for wavelet expansions cont’d

5.1.1 General Resolutions
Vi=Via ®@Wja )
Ajiip = E[Aj,% + Ajok+1]

1
Bi_ 1= §[Aj,2k — Ajopy1]

Reconstruction/synthesis

Step j Take a; 1 coeff, along with ;. compute a;, 0 <k <27 —1.

5.2 Multi-re analysis: A general treatment

The collection {V;} is called a multi-re analysis with scaling function ¢ if the following
conditions hold:

1. nesting
2. density: | JV; = L*(R)
JEZ

This essentially states, in proper set-theoretic language, that lim V; = L*(R)

j—00

3. separation: ﬂ V; = {0}

JEZ

11
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4. scaling: f(z) € V; <= f(2z) € Vj
flx) eV, < f(2772) eV
Subspaces V; satisfying 1-4 are known as approximation spaces

5. orthonormal basis

Theorem If the support of the scaling function ¢(z) is finite, then only a finite
number of the coeff h; can be nonzero.

Proof Suppose ¢(z) = 0 outside the interval [—a, a], where a > 0 is finite. Also let
k1 < ko < ... be an infinite seq of ints for which hy, # 0. Now suppose that ¢(p) # 0
for some p € [—a,a]. Then from the scaling eqs,

¢(x) = > hiv26(2z — k)

kEZ

it follows that there will be nonzero contributions to RHS at the points x; € R defined

by 2x; — k; = p, i = 1,2,..., implying that the values ¢(x;) are nonzero. But a
rearrangement yields z; = 3(p+F;), implying that z; — co as ¢ — co. This contradicts
the assumption that ¢(z) is zero outside the interval [—a, al. O

5.2.1 Wayvelet spaces

Wy = Vg-

Y(z) = ng¢1k = ng\/igb(Zx — k)

k€EZ keZ
and
S(x) =D hipir =Y V20(2x — k)
kez kez

Inner product = 0

<?/J; ¢> = Z ngﬁz <¢1k7 ¢1l> = ngl_lk

keZ I€Z keZ

It must = 0 by orthogonality.

cheap trick: Set g, = (—1)k7Ll_k

12
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Then - - - - -
nghk = ... +g_1h_1 + goho + glhl + 92h2 —+ ...

:...—Bglibfl+B1ILU—BOB1—|—B2B,1+...
=0

Theorem For any j € Z, the set of functions {1, = 2//%¢)(27x — k)} where

P(a) = (—1)Fhi_ (22 — k)

kEZ

forms an orthonormal basis of W;.

13
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6.1 MRA: general (cont’d)

6.1.1 Wavelet spaces (cont’d)

From density property for MRA, we may write loosely: lim; ., V; = L*(R), so that the
equation becomes
PR =V, oW, ...

Then... -
L*R)= P W,

j=—o00

The doubly indexed set of functions {¢;;, = 29/2¢)(2/—k)},  j, k € Z forms an orthonormal
basis in L*(R).

6.1.2 Synthesis and Analysis Alg for MRAs

Analysis

General decomposition:
Vi=Via ® Wi

finer scale = coarser scale 4 detail.

In scaling function, replace x with 212 — [, and m = 2l + k, we have
2w —1) = Iy V20(2x — m)

mEZ

Analysis Express the coarser coeff a;_;x,b;_1 in terms of finer coeft a; .

14
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Then calculate directly using inner product

Aj—1,1 = <f, ¢j71,l>

Synthesis express the finer coeff a; in terms of coarser coeff a;_; ,b;_1 .

6.1.3 Wavelets with compact support

very important!

Two ways:

(b(l") = Z hior, hie = <¢> ¢1k>

keZ

and

dla) =Y hiv26(2z — k)

kEZ

Aforementioned theorem: finite support of ¢ implies finite number of nonzero coeff hy.

some conditions that must be satisfied by the scaling coeff hy for ¢(x) to have compact
support.

1. Finite energy (squared L? norm)
(6, 0) = Il =1
k

2. Finite L' norm.

o) =3 hiv/20(2x — k)

kEZ

Since in L*[a,b], then L'[a,b]

/R<b(:c) dx

implying that the integral on the left exists. Now integrate both sides of scaling
equation:

< [ polaide < oc

LAn important eq which I will use later

15
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/Rqﬁ(x) de =) hk\/§/R¢(2:E — k) dz

For each k, we have this by let s = 2z — k,

/Rgzﬁ(2x—k) dmz%/ﬂ{qb(s) ds

Then sub into prev eq,

/Rgzﬁ(x)dx: ghk%/Rqﬁ(x)dx

Since non-zero integral, then we have

> =2

k

3. Generalized orthogonality

(@(x),p(x —p)) =2 > hi hy (¢(22 — k), (2 — 2p — 1)) = o

?etting k = 2p+1, we make the inner product inside to be 1 since (¢(2z — k), ¢(2z — 2p — 1)) =
20k2p-+1-
2 ) p+

So we have final result:

Z hk: hk72p = 50p
k

Important sequence the length of the seq of nonzero h; must be even.

4. Y even-indexed = ) odd-indexed
S b= Y o = =
k k V2

Proof Define

Ko=) ho, Ki=) hyp
k k

use orthogonality:
Z hkhk—l—Qn - 5On
k

Sum both sides over n:

Z Z hihigon = Z&m =1
n k n

16
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Then split the sum:

SN hihiion
n k

2.

- M -

K+ K?
1

and Ko+ K; = V2, then Ky = K; =

17

E h2k+2n
L n

Z ha(kqm)
K, Z hoy, + K3 Z hog41
k k

L

S

> harhorian + Y horsa h2k+1+2n]
k k

hoe + )
k

h2k+z
k

Z h2k+2n+1] h2k+1
> h2(k+n)+1] hok-+1
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6.1.4 Relating the support of ¢(z) to nonzero hj coeff

Theorem If ¢(z) finite support on [Ny, Na|, both Z, then hy, = 0 for both k > N,
and k£ < N;.

In this case, hy are said to have compact support in [N7, Na].

~ Y

Is proof required?

~ o~

Proof the support of the function ¢(2z — k) must lie inside the interval determined
by the ineq:

1

DN | —

Also, interval must lie inside [Ny, N]:

1 1
[§(N1 + k), §(N2 + k)] € [N1,No] = N1 <k <N,

18
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Theorem If ¢(z) finite [Ny, N], then ¢(z) compact on [1(N; — Ny + 1), 2(Na —
N1+ 1)].

Is proof required?

~ o~

19
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7.1 MRA: general treatment (cont’d)

7.1.1 () its support, and vanishing moments

/Rw(x)dx = ng\/ﬁ/R o2z — k)dx
— Z(_nkhl_k\/i/ o2z — k)da

for any k € Z:

/ o2z — k)dx = 1/ o(z)dr (s =2z —k,ds = 2dx, etc. )
R 2 Jr
1

=M
2

Therefore
1
/Rw(l“)dﬂ? = EM Z(_l)khl—k

k

:_EM;(—l)lhl (l=1-k=k=1-1, etc. )
= —%M [zk: hoy zk:h%ﬂl
=0

Let us now assume that f(z) is a polynomial:

flx) = Z cpa®
k=0

20
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over interval I which contains the domain of support of D of a wavelet .
boo = | f(z)y(x)dz

_ /D zn: cxa b (x)de

k=0

- ch/ 2*(x)da
k=0 D

= Z CrMy
k=0

where
my = / a*y(z) do k>0
R

is know as kth moment of the wavelet function. If m; = 0 for 0 < k < n then byy = 0.

Defn 1 has M vanishing moments:

me/ka(J})d.’IJ:O, k=0,1,2,--- , M —1
R

Implications: M — 1 vanishing moment, we have an upper bound to b

?

'~

How much should we know about this?

~ o~

21
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7.1.2 Vanishing moments and the approximation of functions

Theorem V; with scaling function ¢. 1 has M vanishing moments. Best approx in
V; in L? sense:
fi= Z (f, Dik) Dik

kEZ

Then L? error has an bound

If = fill: < C277%

7.2 MRA and Fourier transform

Two theorems here (not responsible)

7.2.1 Fourier transforms and vanishing moments of wavelets

g fror=e
_ (—i)”\/%_ﬁ /R 2 f(2)e— " dy

TH®(0) =0 implies that m; =0

d’n

FM (W) = y
w

From this result,

Therefore, if
Uk =0, 0<k<M-1

then ¢ (x) has M vanishing moments.

22
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