Contents

1 Pre-mid 3
2 Week 7 4
2.1 Sampling Theorem 4
3 Week 8 5
3.1 Wavelets and multiresolution analysis 5
3.1.1 Introduction 5
4 Week 9 6
4.1 Intro cont'd 6
4.1.1 Nesting relation 6
4.1.2 Nesting relation $V_{0} \subset V_{1}$ 6
4.2 wavalets 7
4.2.1 \quad Summary of major recent results 7
4.2.2 Attention! Important summary 8
4.2.3 Higher-order nestings $V_{j} \subset V_{j+1}$ 8
4.2.4 Connection to the (continuous) wavelet transform introduced earlier 8
4.2.5 Special case: Haar wavelet expansions of functions on a finite interval 9
4.2.6 Analysis and synthesis alg for wavelet expansions 9
5 Week 10 11
5.1 Analysis and synthesis alg for wavelet expansions cont'd 11
5.1.1 General Resolutions. 11
5.2 Multi-re analysis: A general treatment 11
5.2.1 Wavelet spaces 12
6 Week 11 14
6.1 MRA: general (cont'd) 14
6.1.1 Wavelet spaces (cont'd). 14
6.1.2 Synthesis and Analysis Alg for MRAs 14
6.1.3 Wavelets with compact support 15
6.1.4 Relating the support of $\phi(x)$ to nonzero h_{k} coeff 18
7 Week 12 20
7.1 MRA: general treatment (cont'd) 20
7.1.1 $\quad \psi(x)$ its support, and vanishing moments 20
7.1.2 Vanishing moments and the approximation of functions 22
7.2 MRA and Fourier transform 22
7.2.1 Fourier transforms and vanishing moments of wavelets 22

© Pre-mid

Review the proofs for fourier relations...

- \quad Week 7

2.1 Sampling Theorem

Ω is the angular velocity.
A function $f(t)$ is said to be bandlimited, or Ω-bandlimited, if there exists an $\Omega>0$ such that

$$
F(\omega)=0 \quad \text { for }|\omega|>\Omega
$$

Nyquist freq: $\nu=\frac{\Omega}{2 \pi}$

The Whittaker-Shannon Sampling Theorem : $f(t) \Omega$-bandlimited. Then $f=\mathcal{F}^{-1} F$ is completely determined at any $t \in \mathbb{R}$ by its values at $t_{k}=\frac{k \pi}{\Omega}, k=0, \pm 1, \pm 2, \ldots$, as follows

$$
f(t)=\sum_{k=-\infty}^{\infty} f\left(\frac{k \pi}{\Omega}\right) \frac{\sin (\Omega t-k \pi)}{\Omega t-k \pi}=\sum_{k=-\infty}^{\infty} f\left(\frac{k \pi}{\Omega}\right) \operatorname{sinc}\left(\frac{\Omega t}{\pi}-k\right)
$$

The sampling freq is twice the bandwidth freq Ω
effects of undersampling

ค Week 8

one consequence of uncertainty principle: A function and its Fourier transform cannot both have finite support.
windowed FT, local freq of a signal

3.1 Wavelets and multiresolution analysis

3.1.1 Introduction

Detail or wavelet function

$$
\psi(t)= \begin{cases}1 & 0 \leq t<1 / 2 \\ -1 & 1 / 2 \leq t<1\end{cases}
$$

Let us introduce the following space of functions:

$$
V_{0}=\left\{f \in L^{2}(\mathbb{R}): f(t) \text { is constant over the interval }[k, k+1), \quad \forall k \in Z\right\}
$$

and $\phi_{0 k}(t)=I_{[k, k+1)}(t)$ spans V_{0}.

$$
\phi_{0 k}(t)=\phi(t-k)
$$

We notice that the $\phi_{1 k}$ are translated copies of ϕ_{10}. But what is more important is that they also are dilated and translated copies of the scaling function $\phi(t)$:

$$
\phi_{1 k}=\sqrt{2} \phi(2 t-k)
$$

they span V_{1}.

© \quad Week 9

4.1 Intro cont'd

Go backwards:

$$
V_{-1}=\ldots \text { constant over }[2 k, 2 k+1)=\operatorname{span}\left\{\frac{1}{\sqrt{2}} \phi\left(\frac{t}{2}-k\right), \forall k \in \mathbb{Z}\right\} \cap L^{2}(\mathbb{R})
$$

In general, for $J \in \mathbb{Z}$.

$$
V_{J}=\left\{\ldots \text { over }\left[\frac{k}{2^{J}}, \frac{k+1}{2^{J}}\right), \forall k \in \mathbb{Z}\right\}
$$

and it is spanned by $2^{J / 2} \phi\left(2^{J} t-k\right)$.

4.1.1 Nesting relation

$$
\cdots \subset V_{j-1} \subset V_{j} \subset V_{j+1} \subset \cdots
$$

4.1.2 Nesting relation $V_{0} \subset V_{1}$

$$
\phi(t)=\phi(2 t)+\phi(2 t-1), \quad t \in[0,1]
$$

More mathematical:

$$
\phi(t) \sum_{k \in \mathbb{Z}} h_{k} \phi_{1 k}(t)=\sum_{k \in \mathbb{Z}} h_{k} \sqrt{2} \phi(2 t-k)
$$

latter one is called multiresolution analysis or refinement equation that is satisfied by a scaling function. It is sometimes simply called scaling equation. The nonzero coeff h_{k} are known as scaling coeff. For Haar system:

$$
h_{k}= \begin{cases}\frac{1}{\sqrt{2}} & k=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

4.2 wavalets

Using $V_{0} \subset V_{1}$, we define $W_{0}=V_{0}^{\perp}$.
So $V_{1}=V_{0} \oplus W_{0}$.
The function $\phi(t)$ is known at the mother wavelet of the Haar wavelet system, or simply the Haar mother wavelet.

4.2.1 Summary of major recent results

1. multiresolution analysis:

$$
\phi(t)=\sum_{k \in \mathbb{Z}} h_{k} \sqrt{2} \phi(2 t-k)
$$

non-zero coeffs characterize a particular multiresolution analysis.
2. For each $j \in \mathbb{Z}$, the infinite set of functions

$$
\phi_{j k}(t)=2^{j / 2} \phi\left(2^{j} t-k\right), \quad k \in \mathbb{Z}
$$

orthonormal basis for V_{j}.
3. nested
4. $V_{1}=V_{0} \oplus W_{0}$
5. Haar wavelet function $\psi(t)$ is a function in V_{1} that is orthogonal to $\phi(t)$

$$
\psi(t)=\phi(2 t)-\phi(2 t-1)
$$

More generally,

$$
\psi(t)=\sum_{k \in \mathbb{Z}} g_{k} \sqrt{2} \phi(2 t-k)
$$

6. The integer translates of $\psi(t)$ form an orthonormal basis of W_{0}.

A consequence $V_{1}=V_{0} \oplus W_{0}$, we need two sets of functions: $\phi_{0 k}$ and $\psi_{0 k}$:

$$
u(t)=\sum_{k \in \mathbb{Z}} a_{k} \phi_{0 k}(t)+\sum_{k \in \mathbb{Z}} b_{k} \psi_{0 k}(t)
$$

4.2.2 Attention! Important summary

The function $f_{1} \in V_{1}$ which is the best approximation of f in the space V_{1} will admit the following expansion

$$
f_{1}(t)=\sum_{k \in \mathbb{Z}} a_{k} \phi_{0 k}(t)+\sum_{k \in \mathbb{Z}} b_{k} \psi_{0 k}(t)
$$

where

$$
a_{k}=\left\langle f_{1}, \phi_{0 k}\right\rangle, \quad b_{k}=\left\langle f_{1}, \psi_{0 k}\right\rangle, \quad k \in \mathbb{Z}
$$

Also $f_{1} \in V_{1}$:

$$
f_{1}(t)=\sum_{k \in \mathbb{Z}} c_{k} \phi_{1 k}(t)
$$

where

$$
c_{k}=\left\langle f_{1}, \phi_{1 k}\right\rangle
$$

4.2.3 Higher-order nestings $V_{j} \subset V_{j+1}$

$$
V_{j+1}=V_{j} \oplus W_{j}
$$

Then

$$
\lim _{J \rightarrow \infty} V_{J}=L^{2}(\mathbb{R})
$$

This means that

$$
L^{2}(\mathbb{R})=V_{0} \oplus\left[\bigoplus_{j=0}^{\infty} W_{j}\right]
$$

If we decompose V_{0} more, then

$$
L^{2}(\mathbb{R})=\bigoplus_{j=0}^{\infty} W_{j}
$$

Consequently, any function $f \in L^{2}(\mathbb{R})$ admits a unique expansion of the form

$$
f(t)=\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} b_{j k} \psi_{j k}(t)
$$

4.2.4 Connection to the (continuous) wavelet transform introduced earlier

$?$
?

?

?
?
?

4.2.5 Special case: Haar wavelet expansions of functions on a finite

 interval$$
f(t)=f_{0}(t)+\sum_{j=1}^{\infty} w_{j}(t)
$$

where $f_{0}(t)=a_{00} \phi_{00}(t)$. Detail functions, $w_{j} \in W_{j}$ are defined:

$$
w_{j}(t)=\sum_{k=0}^{2^{j}-1} b_{j k} \psi_{j k}(t), \quad j=0,1,2, \ldots
$$

In practical situations, we deal with finite-dimensional.

$$
f_{j}(t)=f_{0}(t)+\sum_{i=0}^{j-1} w_{i}(t)=a_{00} \phi_{00}(t)+\sum_{i=0}^{j-1} \sum_{k=0}^{2^{i}-1} b_{i k} \psi_{i k}(t)
$$

Summary ${ }^{1} a_{00}$ represents constant approx. $f_{0} \in V_{0}$ to f. Using a_{00} and b_{00} produces f_{1}. Then adding b_{10} and b_{11} produces $f_{2} \in V_{2}$.

4.2.6 Analysis and synthesis alg for wavelet expansions

Analysis/decomposition alg

$$
f_{1}(t)=\sum_{k \in \mathbb{Z}} a_{1 k} \sqrt{2} \phi(2 t-k)
$$

[^0]and
$$
f_{1}(t)=\sum_{k \in \mathbb{Z}} a_{0 k} \phi(t-k)+\sum_{k \in \mathbb{Z}} b_{0 k} \psi(t-k)
$$

Now introduce $A_{j k}=2^{j / 2} a_{j k}, \quad B_{j k}=2^{j / 2} b_{j k}$
Then two eqs above become:

$$
f_{1}(t)=\sum_{k \in \mathbb{Z}} A_{1 k} \phi(2 t-k)
$$

and

$$
f_{1}(t)=\sum_{k \in \mathbb{Z}} A_{0 k} \phi(t-k)+\sum_{k \in \mathbb{Z}} A_{0 k} \psi(t-k)
$$

After some calculations, we get

$$
\begin{aligned}
A_{0 k} & =\frac{1}{2}\left[A_{1,2 k}+A_{1,2 k+1}\right] \\
B_{0 k} & =\frac{1}{2}\left[A_{1,2 k}-A_{1,2 k+1}\right]
\end{aligned}
$$

Given coeff for f_{1}, we compute coeff of $V_{0} \oplus W_{0}$ decomposition of V_{1}.

A Week 10

5.1 Analysis and synthesis alg for wavelet expansions cont'd

5.1.1 General Resolutions

$V_{j}=V_{j-1} \oplus W_{j-1}$

$$
\begin{aligned}
A_{j-1, k} & =\frac{1}{2}\left[A_{j, 2 k}+A_{j, 2 k+1}\right] \\
B_{j-1, k} & =\frac{1}{2}\left[A_{j, 2 k}-A_{j, 2 k+1}\right]
\end{aligned}
$$

Reconstruction/synthesis

Step j Take $a_{j-1, k}$ coeff, along with $b_{j k}$. compute $a_{j k}, 0 \leq k \leq 2^{j}-1$.

5.2 Multi-re analysis: A general treatment

The collection $\left\{V_{j}\right\}$ is called a multi-re analysis with scaling function ϕ if the following conditions hold:

1. nesting
2. density: $\bigcup_{j \in \mathbb{Z}} V_{j}=L^{2}(\mathbb{R})$

This essentially states, in proper set-theoretic language, that $\lim _{j \rightarrow \infty} V_{j}=L^{2}(\mathbb{R})$
3. separation: $\bigcap_{j \in \mathbb{Z}} V_{j}=\{0\}$
4. scaling: $f(x) \in V_{j} \Longleftrightarrow f(2 x) \in V_{j+1}$

$$
f(x) \in V_{j} \Longleftrightarrow f\left(2^{-j} x\right) \in V_{0}
$$

Subspaces V_{j} satisfying 1-4 are known as approximation spaces
5. orthonormal basis

Theorem If the support of the scaling function $\phi(x)$ is finite, then only a finite number of the coeff h_{k} can be nonzero.

Proof Suppose $\phi(x)=0$ outside the interval $[-a, a]$, where $a>0$ is finite. Also let $k_{1}<k_{2}<\ldots$ be an infinite seq of ints for which $h_{k_{i}} \neq 0$. Now suppose that $\phi(p) \neq 0$ for some $p \in[-a, a]$. Then from the scaling eqs,

$$
\phi(x)=\sum_{k \in \mathbb{Z}} h_{k} \sqrt{2} \phi(2 x-k)
$$

it follows that there will be nonzero contributions to RHS at the points $x_{i} \in \mathbb{R}$ defined by $2 x_{i}-k_{i}=p, i=1,2, \ldots$, implying that the values $\phi\left(x_{i}\right)$ are nonzero. But a rearrangement yields $x_{i}=\frac{1}{2}\left(p+k_{i}\right)$, implying that $x_{i} \rightarrow \infty$ as $i \rightarrow \infty$. This contradicts the assumption that $\phi(x)$ is zero outside the interval $[-a, a]$.

5.2.1 Wavelet spaces

$$
\begin{gathered}
W_{0}=V_{0}^{\perp} \\
\psi(x)=\sum_{k \in \mathbb{Z}} g_{k} \phi_{1 k}=\sum_{k \in \mathbb{Z}} g_{k} \sqrt{2} \phi(2 x-k)
\end{gathered}
$$

and

$$
\phi(x)=\sum_{k \in \mathbb{Z}} h_{k} \phi_{1 k}=\sum_{k \in \mathbb{Z}} \sqrt{2} \phi(2 x-k)
$$

Inner product $=0$

$$
\langle\psi, \phi\rangle=\sum_{k \in \mathbb{Z}} \sum_{l \in \mathbb{Z}} g_{k} \bar{h}_{l}\left\langle\phi_{1 k}, \phi_{1 l}\right\rangle=\sum_{k \in \mathbb{Z}} g_{k} \bar{h}_{k}
$$

It must $=0$ by orthogonality.
cheap trick: Set $g_{k}=(-1)^{k} \bar{h}_{1-k}$

Then

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} g_{k} \bar{h}_{k} & =\ldots+g_{-1} \bar{h}_{-1}+g_{0} \bar{h}_{0}+g_{1} \bar{h}_{1}+g_{2} \bar{h}_{2}+\ldots \\
& =\ldots-\bar{h}_{2} \bar{h}_{-1}+\bar{h}_{1} \bar{h}_{0}-\bar{h}_{0} \bar{h}_{1}+\bar{h}_{2} \bar{h}_{-1}+\ldots \\
& =0
\end{aligned}
$$

Theorem For any $j \in \mathbb{Z}$, the set of functions $\left\{\psi_{j k}=2^{j / 2} \psi\left(2^{j} x-k\right)\right\}$ where

$$
\psi(x)=\sum_{k \in \mathbb{Z}}(-1)^{k} \bar{h}_{1-k} \phi(2 x-k)
$$

forms an orthonormal basis of W_{j}.

A Week 11

6.1 MRA: general (cont'd)

6.1.1 Wavelet spaces (cont'd)

From density property for MRA, we may write loosely: $\lim _{j \rightarrow \infty} V_{j}=L^{2}(\mathbb{R})$, so that the equation becomes

$$
L^{2}(\mathbb{R})=V_{0} \oplus W_{0} \oplus \ldots
$$

Then...

$$
L^{2}(\mathbb{R})=\bigoplus_{j=-\infty}^{\infty} W_{j}
$$

The doubly indexed set of functions $\left\{\psi_{j k}=2^{j / 2} \psi\left(2^{j}-k\right)\right\}, \quad j, k \in \mathbb{Z}$ forms an orthonormal basis in $L^{2}(\mathbb{R})$.

6.1.2 Synthesis and Analysis Alg for MRAs

Analysis

General decomposition:

$$
V_{j}=V_{j-1} \oplus W_{j-1}
$$

finer scale $=$ coarser scale + detail.
In scaling function, replace x with $2^{j-1} x-l$, and $m=2 l+k$, we have

$$
\phi\left(2^{j-1} x-l\right)=\sum_{m \in \mathbb{Z}} h_{m-2 l} \sqrt{2} \phi\left(2^{j} x-m\right)
$$

Analysis Express the coarser coeff $a_{j-1, k}, b_{j-1, k}$ in terms of finer coeff $a_{j, k}$.

Then calculate directly using inner product

$$
a_{j-1, l}=\left\langle f, \phi_{j-1, l}\right\rangle
$$

Synthesis express the finer coeff $a_{j, k}$ in terms of coarser coeff $a_{j-1, k}, b_{j-1, k}$.

6.1.3 Wavelets with compact support

very important!

Two ways:

$$
\phi(x)=\sum_{k \in \mathbb{Z}} h_{k} \phi_{1 k}, \quad h_{k}=\left\langle\phi, \phi_{1 k}\right\rangle
$$

and

$$
\phi(x)=\sum_{k \in \mathbb{Z}} h_{k} \sqrt{2} \phi(2 x-k)
$$

Aforementioned theorem: finite support of ϕ implies finite number of nonzero coeff h_{k}.
some conditions that must be satisfied by the scaling coeff h_{k} for $\phi(x)$ to have compact support.

1. Finite energy (squared L^{2} norm)

$$
\langle\phi, \phi\rangle=\sum_{k}\left|h_{k}\right|^{2}=1
$$

2. Finite L^{1} norm.

$$
\phi(x)=\sum_{k \in \mathbb{Z}} h_{k} \sqrt{2} \phi(2 x-k) \square^{1}
$$

Since in $L^{2}[a, b]$, then $L^{1}[a, b]$

$$
\left|\int_{\mathbb{R}} \phi(x) d x\right| \leq \int_{\mathbb{R}}|\phi(x)| d x<\infty
$$

implying that the integral on the left exists. Now integrate both sides of scaling equation:

[^1]$$
\int_{\mathbb{R}} \phi(x) d x=\sum_{k} h_{k} \sqrt{2} \int_{\mathbb{R}} \phi(2 x-k) d x
$$

For each k, we have this by let $s=2 x-k$,

$$
\int_{\mathbb{R}} \phi(2 x-k) d x=\frac{1}{2} \int_{\mathbb{R}} \phi(s) d s
$$

Then sub into prev eq,

$$
\int_{\mathbb{R}} \phi(x) d x=\sum_{k} h_{k} \frac{1}{\sqrt{2}} \int_{\mathbb{R}} \phi(x) d x
$$

Since non-zero integral, then we have

$$
\sum_{k} h_{k}=\sqrt{2}
$$

3. Generalized orthogonality

$$
\langle\phi(x), \phi(x-p)\rangle=2 \sum_{k} \sum_{l} h_{k} h_{l}\langle\phi(2 x-k), \phi(2 x-2 p-l)\rangle=\delta_{0 p}
$$

Setting $k=2 p+l$, we make the inner product inside to be $\frac{1}{2}$ since $\langle\phi(2 x-k), \phi(2 x-2 p-l)\rangle=$ $\frac{1}{2} \delta_{k, 2 p+l}$.
So we have final result:

$$
\sum_{k} h_{k} h_{k-2 p}=\delta_{0 p}
$$

Important sequence the length of the seq of nonzero h_{k} must be even.
4. \sum even-indexed $=\sum$ odd-indexed

$$
\sum_{k} h_{2 k}=\sum_{k} h_{2 k+1}=\frac{1}{\sqrt{2}}
$$

Proof Define

$$
K_{0}=\sum_{k} h_{2 k}, \quad K_{1}=\sum_{k} h_{2 k+1}
$$

use orthogonality:

$$
\sum_{k} h_{k} h_{k+2 n}=\delta_{0 n}
$$

Sum both sides over n :

$$
\sum_{n} \sum_{k} h_{k} h_{k+2 n}=\sum_{n} \delta_{0 n}=1
$$

Then split the sum:

$$
\begin{aligned}
\sum_{n} \sum_{k} h_{k} h_{k+2 n} & =\sum_{n}\left[\sum_{k} h_{2 k} h_{2 k+2 n}+\sum_{k} h_{2 k+1} h_{2 k+1+2 n}\right] \\
& =\sum_{k}\left[\sum_{n} h_{2 k+2 n}\right] h_{2 k}+\sum_{k}\left[\sum_{n} h_{2 k+2 n+1}\right] h_{2 k+1} \\
& =\sum_{k}\left[\sum_{n} h_{2(k+n)}\right] h_{2 k}+\sum_{k}\left[\sum_{n} h_{2(k+n)+1}\right] h_{2 k+1} \\
& =K_{0} \sum_{k} h_{2 k}+K_{1} \sum_{k} h_{2 k+1} \\
& =K_{0}^{2}+K_{1}^{2} \\
& =1
\end{aligned}
$$

and $K_{0}+K_{1}=\sqrt{2}$, then $K_{0}=K_{1}=\frac{1}{\sqrt{2}}$

6.1.4 Relating the support of $\phi(x)$ to nonzero h_{k} coeff

Theorem If $\phi(x)$ finite support on $\left[N_{1}, N_{2}\right]$, both \mathbb{Z}, then $h_{k}=0$ for both $k>N_{2}$ and $k<N_{1}$.

In this case, h_{k} are said to have compact support in $\left[N_{1}, N_{2}\right]$.
?
?
? Is proof required?
?
?
?

Proof the support of the function $\phi(2 x-k)$ must lie inside the interval determined by the ineq:

$$
N_{1} \leq 2 x-k \leq N_{2} \Longrightarrow \frac{1}{2}\left(N_{1}+k\right) \leq x \leq \frac{1}{2}\left(N_{2}+k\right)
$$

Also, interval must lie inside $\left[N_{1}, N_{2}\right]$:

$$
\left[\frac{1}{2}\left(N_{1}+k\right), \frac{1}{2}\left(N_{2}+k\right)\right] \subseteq\left[N_{1}, N_{2}\right] \Longrightarrow N_{1} \leq k \leq N_{2}
$$

Theorem If $\phi(x)$ finite $\left[N_{1}, N_{2}\right]$, then $\psi(x)$ compact on $\left[\frac{1}{2}\left(N_{1}-N_{2}+1\right), \frac{1}{2}\left(N_{2}-\right.\right.$ $\left.\left.N_{1}+1\right)\right]$.
?
?
?
Is proof required?
?
?
?

A Week 12

7.1 MRA: general treatment (cont'd)

7.1.1 $\psi(x)$ its support, and vanishing moments

$$
\begin{aligned}
\int_{\mathbb{R}} \psi(x) d x & =\sum_{k} g_{k} \sqrt{2} \int_{\mathbb{R}} \phi(2 x-k) d x \\
& =\sum_{k}(-1)^{k} h_{1-k} \sqrt{2} \int_{\mathbb{R}} \phi(2 x-k) d x
\end{aligned}
$$

for any $k \in \mathbb{Z}$:

$$
\begin{aligned}
\int_{\mathbb{R}} \phi(2 x-k) d x & =\frac{1}{2} \int_{\mathbb{R}} \phi(x) d x \quad(s=2 x-k, d s=2 d x, \text { etc. }) \\
& =\frac{1}{2} M
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\int_{\mathbb{R}} \psi(x) d x & =\frac{1}{\sqrt{2}} M \sum_{k}(-1)^{k} h_{1-k} \\
& =-\frac{1}{\sqrt{2}} M \sum_{l}(-1)^{l} h_{l} \quad(l=1-k \Rightarrow k=1-l, \text { etc. }) \\
& =-\frac{1}{\sqrt{2}} M\left[\sum_{k} h_{2 k}-\sum_{k} h_{2 k+1}\right] \\
& =0
\end{aligned}
$$

Let us now assume that $f(x)$ is a polynomial:

$$
f(x)=\sum_{k=0}^{n} c_{k} x^{k}
$$

over interval I which contains the domain of support of D of a wavelet ψ.

$$
\begin{aligned}
b_{00} & =\int_{I} f(x) \psi(x) d x \\
& =\int_{D} \sum_{k=0}^{n} c_{k} x^{k} \psi(x) d x \\
& =\sum_{k=0}^{n} c_{k} \int_{D} x^{k} \psi(x) d x \\
& =\sum_{k=0}^{n} c_{k} m_{k}
\end{aligned}
$$

where

$$
m_{k}=\int_{\mathbb{R}} x^{k} \psi(x) d x \quad k \geq 0
$$

is know as k th moment of the wavelet function. If $m_{k}=0$ for $0 \leq k \leq n$ then $b_{00}=0$.
Defn ψ has M vanishing moments:

$$
m_{k}=\int_{\mathbb{R}} x^{k} \psi(x) d x=0, \quad k=0,1,2, \cdots, M-1
$$

Implications: $M-1$ vanishing moment, we have an upper bound to $b_{j k}$
? How much should we know about this?
?
?
?

7.1.2 Vanishing moments and the approximation of functions

Theorem V_{j} with scaling function $\phi . \psi$ has M vanishing moments. Best approx in V_{j} in L^{2} sense:

$$
f_{j}=\sum_{k \in \mathbb{Z}}\left\langle f, \phi_{j k}\right\rangle \phi_{j k}
$$

Then L^{2} error has an bound

$$
\left\|f-f_{j}\right\|_{2} \leq C 2^{-j M}
$$

7.2 MRA and Fourier transform

Two theorems here (not responsible)

7.2.1 Fourier transforms and vanishing moments of wavelets

$$
\begin{aligned}
F^{(n)}(\omega) & =\frac{d^{n}}{d \omega^{n}}\left[\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i \omega x} d x\right] \\
& =(-i)^{n} \frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} x^{n} f(x) e^{-i \omega x} d x
\end{aligned}
$$

From this result,

$$
\Psi^{(k)}(0)=0 \quad \text { implies that } m_{k}=0
$$

Therefore, if

$$
\Psi^{(k)}=0, \quad 0 \leq k \leq M-1
$$

then $\psi(x)$ has M vanishing moments.

[^0]: ${ }^{1}$ last paragraph of page 318

[^1]: ${ }^{1}$ An important eq which I will use later

