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Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of AMATH 271 during Fall 2019 as well as other
related resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

These notes are my learning notes from the textbook:Classical Mechanics, by J. R.
Taylor, University Science Books, 2005, along with the course outline of AMATH
271.

For any questions, send me an email viahttps://notes.sibeliusp.com/contact/.

You can �nd my notes for other courses onhttps://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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1
Newton’s Laws of Motion

1.1 Classical Mechanics

Mechanics is the study of how things move: how a skier moves down the slope. or
how an electron moves around the nucleus of an atom.

Relativistic mechanics to describe very high speed motions and quantum mechanics
to describe the motion of microscopic particles.

1.2 Space and Time

space, time, mass and force.

Space

r = xx̂ + yŷ + zẑ (1.1)

It is sometimes convenient to be able to abbr (1.1) by writing simply

r = ( x; y; z) (1.2)

Vector Operations

Di�erentiation of Vectors

dr
dt

= lim
� t→0

� r
� t

(1.3)

1



2 CHAPTER 1. NEWTON’S LAWS OF MOTION

where
� r = r (t + � t) − r (t) (1.4)

If f (t) is a scalar:
d
dt

(f r ) = f
dr
dt

+
df
dt

r (1.5)

Time

Reference Frames

Reference Frame

Almost every problem in classical mechanics involves a choice (explicit or
implicit) of a reference frame, that is, a choice of spatial origin and axes to
label positions and a choice of temporal origin to measure times.

In certain special frames, called inertial frames, the basic laws hold true in their
standard, simple form. If a second frame is accelerating or rotating relative to an
inertial frame, then this second frame is noninertial, and the basic laws in particular,
Newton’s laws - do not hold in their standard form in this second frame.

Inertial Frames

An inertial frame is any reference frame in which Newton’s �rst law holds,
that is, a nonaccelerating, nonrotating frame.

1.3 Mass and Force

The mass of an object characterizes the object’s inertia - its resistance to being
accelerated.

1.4 Newton’s First and Second Laws; Inertial Frames

In this chapter, he is going to discuss Newton’s laws as they apply to apoint mass .
Newton’s First Law (the Law of Inertia)

In the absence of forces, a particle moves with constant velocityv .

and
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Newton’s Second Law
For any particle of massm, the net forceF on the particle is always equal to
the massm times the particle’s acceleration:

F = ma

a =
dv
dt

≡ _v

=
d2r
dt2 ≡ �r

Momentum is de�ned as
p = mv

In classical mechanics, we take for granted that the massm of a particle never
changes, so that

_p = m _v = ma

Thus the second law can be rephrased to say that

F = _p

Di�erential Equations

Consider Newton’s second law for a particle con�ned to move along thex axis and
subject to a constant forceFo,

�x(t) =
Fo

m

Inertial Frames

S denotes a reference frame.

Validity of the First Two Laws

1.5 The Third Law and Conservation of Momen-
tum

Newton’s Third Law
If object 1 exerts a forceF21 on object 2, then object 2 always exerts a reaction
force F12 on object 1 given by

F12 = −F21
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In absence of external forces, the total momentum of our two-particle system is
constant - a result called the principle of conservation of momentum.

Multiparticle Systems

(net force on particle� ) = F � =
X

� 6= �

F �� + Fext
�

Principle of Conservation of Momentum

If the net external force Fext on an N -particle system is zero, the system’s
total momentum P is constant.

Validity of Newton’s Third Law

Therefore, the third law cannot be valid once relativity becomes important.

1.6 Newton’s Second Law in Cartesian Coordi-
nates

Of Newton’s three laws, the one we actually use the most is the second, which is
often described as the equation of motion.

F = m�r ⇐⇒

8
><

>:

Fx = m �x
Fy = m �y
Fz = m �z

1.7 Two-Dimensional Polar Coordinates

r̂ =
r
|r |

Since the two unit vectorsr̂ and �̂ are perpendicular in our 2d space, any vector
can be expanded in terms of them.

F = Fr r̂ + F� �̂

Tedious calculations... (See page 29 of the textbook for details)
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Having calculated the acceleration, we can �nally write down Newton’s second law
in terms of polar coordinates:

F = ma ⇐⇒

(
Fr = m(�r − r �� 2)
F� = m(r �� + 2 _r _� )

... and Newton’s Second Law in Cylindrical Polar:
8
><

>:

Fr = m( �� − � _� 2)
F� = m(� �� + 2 _� _� )
Fz = m �z
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2
Projectiles and Charged Particles

2.1 Air Resistance

Let us begin by survey some of basic properties of the resistance force, ordrag , f
of the air, or other medium, through which an object is moving.

Yous should, however, be aware that there are situations where it1 is not certainly
true: The force of the air on an airplane wing has a large sideways component, called
the lift , without which no airplanes could y.

f = −f (v)v̂

At lower speeds it is often a good approximation to write

f (v) = bv+ cv2 = f lin + f quad

where they stand for the linear and quadratic terms respectively,

f lin = bv and f quad = cv2

• The linear term, arises from the viscous drag of the medium and is generally
proportional to the viscosity of the medium and the linear size of the projectile.

• The quadratic term, arises from the projectile’s having to accelerate the mass
of air with which it is continually colliding; it is proportional to the density of
the medium and the cross-sectional area of the projectile.

Reynolds number

is an important parameter that features prominently in more advanced treatments
of motion in uids. Thus one can relate the ratio f quad=f lin to the fundamental

1The direction of the force due to motion through the air is opposite to the velocity v

7



8 CHAPTER 2. PROJECTILES AND CHARGED PARTICLES

parameters� , the viscosity, and%, the density of the uid. The result is that the ratio
is roughly the same order of magnitude as the dimensionless numberR = Dv%=�,
called theReynolds number . Thus a compact and general way to summarize the
foregoing discussion is to say that the quadratic drag is dominant whenR is large,
whereas the linear drag dominates whenR is small.

2.2 Linear Air Resistance

m�r = mg − v

Since neither of the forces depends onr , then

m _v = mg − bv

Two separate equations onx and y direction respectively (one forvx one forvy).

But if the drag force is quadratic, we then have two coupled DEs are much harder
to solve than the uncoupled equations of the linear case since each equation involves
both of the variablesvx and vy.

Horizontal Motion with Linear Drag

_vx = −kvx

Then
vx (t) = Ae−kt = vxoe−kt = e−t=�

where
� = 1=k = m=b

So
x(t) = x∞(1 − e−t=� )

where
x∞ = vxo �

Vertical Motion with Linear Drag

m _vy = mg− bvy

Terminal speed:
vter =

mg
b

Then solve the DE above, we get

vy(t) = vyoe−t=� + vter (1 − e−t=� )
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Then integrate it over t we gety(t)

y(t) = vter t + ( vyo − vter )� (1 − e−t=� )

2.3 Trajectory and Range in a Linear Medium

Combine the results, then we get

x(t) = : : : ; y(t) = : : :

You can eliminate t, then we get

y =
vyo + vter

vxo
x + vter � ln

�
1− x

vxo �

�

2.4 Quadratic Air Resistance

f = −cv2v̂

Horizontal

m
dv
dt

= −cv2

use separation of variables

Vertical

m _v = mg− cv2

then

vter =
r

mg
c

then

v = vter tanh
�

gt
vter

�

and

y =
v2

ter

g
ln

�
cosh

�
gt

vter

��
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Both

m�r = mg − cvv

resolves into horizontal and vertical components: ...

which can’t be solved analytically. The only way is numerically.

2.5 Motion of a Charge in a Uniform Magnetic
Field

F = qv × B

then 8
><

>:

m _vx = qBvy

m _vy = −qBvx

m _vz = 0

Cyclotron frequency:

! =
qB
m

Then
_vx = !v y

_vy = −!v x

Let’s de�ne a complex number
� = vx + ivy

Then
_� = −i!�

then
� = Ae−i!t

2.6 Complex Exponentials

Euler’s formula:
ei� = cos � + i sin �

2.7 Solution for the Charge in a B Field

z(t) = zo + vzot

and the motion of x and y is most easily found by introducing another complex
number

� = x + iy
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In the cyclotron, a device for accelerating charged particles to high energies, the
particles are trapped in circular orbits in this way. They are slowly accelerated by
the judiciously timed application of an electric �eld. The angular frequency of the
orbit is, of course,! = qB=m. The radius of the orbit is

r =
v
!

=
mv
qB

=
p

qB
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3
Momentum and Angular Momentum

3.1 Conservation of Momentum

Principle of Conservation of Momentum

If the net external force Fext on an N -particle system is zero, the system’s
total mechanical momentumP =

P
m� v � is constant.

3.2 Rockets

A beautiful example of the use of momentum conservation is the analysis of rocket
propulsion.

Equation of Motion for a Rocket

m _v = − _mvex + F ext

where− _m is the rate at which the rocket’s engine is ejecting mass.

3.3 The Center of Mass

center of mass

Let us consider a group ofN particles, � = 1 ; : : : ; N with massesm� and
positions r � measured relative to an originO. The center of mass (or CM) of

13



14 CHAPTER 3. MOMENTUM AND ANGULAR MOMENTUM

this system is de�ned to be the position (relative to the same originO)

R =
1

M

NX

� =1

m� r �

We can now write the total momentumP of any N -particle system in terms of the
system’s CM as follows:

P =
X

�

p � =
X

�

m� _r � = M _R

One important point to bear in mind is that when the mass in a body is distributed
continuously, the sum goes over to an integral:

R =
1

M

Z
r dm =

1
M

Z
%r dV

3.4 Angular Momentum for a Single Particle

angular momentum

The angular momentum‘ of a single particle is de�ned as the vector

‘ = r × p

Remark:
Strictly speaking, refer‘ as the angular momentum relative toO.

The time rate of change of‘ is easily found:

_‘ =
d
dt

(r × p) = ( _r × p) + ( r × _p)

Remark:
The �rst term on the right, p can be replaced bym_r , and it’s zero since two
vectors are parallel, In the second term, replace_p by the net force F on the
particle, then we get:

_‘ = r × F ≡ �

Here � denotes the net torque aboutO on the particle.
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Kepler’s Second Law

Kepler’s Second Law

As each planet moves around the sun, a line drawn from the planet to the sun
sweeps out equal areas in equal times.

Proof:
The area of the triangle is

dA =
1
2
|r × v dt|

Replacingv by p=m and dividing both sides bydt, we �nd that

dA
dt

=
1

2m
|r × p| =

1
2m

‘

where‘ denotes the magnitude of the angular momentum‘ = r ×p. Thus dA=dt
is constant.

3.5 Angular Momentum for Several Particles

total angular momentum

L =
NX

� =1

‘ � =
NX

� =1

r � × p �

By di�erentiating w.r.t t, we get
_L = � ext

In particular, if the net external torque is zero, we have the

Principle of Conservation of Angular Momentum

If the net external torque on anN -particle system is zero, the system’s total
angular momentumL is constant.

The Moment of Inertia

Speci�cally, if we take the axis of rotation to be thez axis, thenL z, the z component
of angular momentum, is justL z = I! , where I is the moment of inertia of the
body for the given axis, and! is the angular velocity of rotation.
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4
Energy

4.1 Kinetic Energy and Work

kinetic energy

or KE
T =

1
2

mv2

dT
dt

=
1
2

m
d
dt

(v · v ) =
1
2

m( _v · v + v · _v ) = m _v · v = F · v

=⇒ dT = F · dr

Remark:
The expression on the right is de�ned to be thework done by the force F in
the displacementdr . Thus we have proved thework-KE theorem :

Theorem 4.1: Work-KE theorem

The change in the particle’s kinetic energy between two neighbouring points
on its path is equal to the work done by the net force as it moves between the
two points.

4.2 Potential Energy and Conservative Forces

The gravitational force of the sun on a planet (positionr relative to the sum):

F(r ) = −GmM
r 2 r̂

17



18 CHAPTER 4. ENERGY

Conditions for a Force to be Conservative

A force F acting on a particle is conservative if and only if it satis�es two
conditions:

1. F depends only on the particle’s positionr (and not on the velocity v ,
or the time t, or any other variable); that is F = F(r ).

2. For any two points 1 and 2, the workW (1 → 2) done byF is the same
for all paths between 1 and 2.

Remark:
The reason for the name \conservative" and for the importance of the concept is
this: If all forces on an object are conservative, we can de�ne a quantity called
the potential energy (or just PE), denotedU(r ), a function only of position, with
the property that the total mechanical energy

E = KE + PE = T + U(r )

is constant; that is E is conserved.

potential energy

at an arbitrary point r , to be

U(r ) = −W (r o → r ) ≡
Z r

r o

F(r ′) · dr ′

Several Forces

The change in the mass’s kinetic energy is

� T = Wgrav + Wspr = −(� Ugrav + � Uspr )

Nonconservative Forces

� T = W = Wcons + Wnc

� E ≡ �( T + U) = Wnc

4.3 Force as the Gradient of Potential Energy

We have seen the PEU(r ) corresponding to a forceF can be expressed as an integral
of F . This suggests that we should be able to writeF as some kind of derivative of
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U(r ).
F = −r U

Remark:
The important relation gives us the forceF in terms of derivatives ofU. When
a forceF can be expressed in the form above, we say thatF is derivable from
a potential energy .

r = x̂
@

@x
+ ŷ

@
@y

+ ẑ
@
@z

df = r f · dr

4.4 The Second Condition that F be Conservative

There is a simple test, which can be quickly applied to any force that is given in
analytic form. This test involves another of the basic concepts of vector calculus,
this time the so-calledcurl of a vector.

It can be shown via Stokes’s theorem that a forceF has the desired property, that
the work it does is independent of path, if and only if

r × F = 0

everywhere.

4.5 Time-Dependent Potential Energy

We sometimes have occasion to study a forceF(r ; t) that satis�es the second con-
dition to be conservative (r × F = 0), but, because it is time-dependent, does not
satisfy the �rst condition.

4.6 Energy for Linear One-Dimensional Systems

The remarkable feature of one-dimensional systems is that the �rst condition already
guarantees the second, so the latter is superuous.

A second useful feature of one-dimensional systems is that with one independent
variable (x) we can plot the potential energyU(x), and, as we shall see, this makes
it easy to visualize the behavior of the system.

U =
1
2

kx2
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for any spring obeying Hooke’s Law.

A third remarkable feature of one-dimensional conservative systems is that we can
{ at least in principle { use the conservation of energy to obtain a complete solution
of the motion, that is , to �nd the position x as a function oft.

We can solve forT = 1
2m _x2 = E − U(x) and hence for the velocity _x as a function

of x:

_x(x) = ±
r

2
m

p
E − U(x)

4.7 Curvilinear One-Dimensional Systems

There are other systems that can equally be said to be one-dimensional, inasmuch
as their position is speci�ed by a single number.

4.8 Central Forces

If we take the force center to be the origin, a central force has the form

F(r ) = f (r )r̂

where f (r ) gives the magnitude of the force.

The Coulomb force has two additional properties not shared by all central forces:

1. conservative

2. spherically symmetric or rotationally invariant.

A compact way to express the second property isf (r ) = f (r ).

A remarkable feature of central forces is that the two properties just mentioned
always go together. The most direct proofs involve the use of spherical polar coor-
dinates.

4.9 Energy of Interaction of Two Particles

The forceF12:

F12 = − Gm1m2

|r 1 − r 2|3
(r 1 − r 2)

Any isolated system must be translationally invariant.
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4.10 The Energy of a Multiparticle System

kinetic energyT
T = T1 + T2 + T3 + T4

We can prove in general

−r � U = (net force on particle � )
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5
Oscillations

5.1 Hooke’s Law

Fx (x) = −kx

U(x) =
1
2

kx2

5.2 Simple Harmonic Motion

�x = − k
m

x = −! 2x

where I have introduced the constant

! =
r

k
m

Exponential Solutions

x(t) = C1ei!t + C − 2e−i!t

superposition principle

Sine and Cosine Solutions

x(t) = B1 cos(!t ) + B2 sin(!t )
where

B1 = C1 + C2 and B2 = i (C1 − C2)

23
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The Phase-Shifted Cosine Slution

A =
q

B 2
1 + B 2

2

so
x(t) = A cos(!t − � )

Solution as the Real Part of a Complex Exponential

x(t) = Re Cei!t = Re Aei (!t −� )

Energy Considerations

U =
1
2

kx2 =
1
2

kA2 cos2(!t − � )

T =
1
2

m _x2 =
1
2

m! 2A2 sin2(!t − � ) =
1
2

kA2 sin2(!t − � )

Thus
E = T + U =

1
2

kA2

5.3 Two-Dimensional Oscillators

In two or three dimensions, the possibilities for oscillations are considerably richer
than in one dimension. The simplest possibility is the so-calledisotropic harmonic
oscillator , for which the restoring force is proportional to the displacement from
equilibrium, with the same constant of proportionality in all directions:

F = −kr

In the anisotrophic oscillator, the components of the restoring force are proportional
to the components of the displacement, but with di�erent constants of proportion-
ality.

5.4 Damped Oscillations

m �x + b_x + kx = 0
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! 0: natural freq
�x + 2 � _x + ! 2

0x = 0

For further discussions, please consult the book or AMATH 251 notes.

5.5 Driven Damped Oscillations

m �x + b_x + kx = F (t)

! 0: natural freq
�x + 2 � _x + ! 2

0x = f (t)

For further discussions, please consult the book or AMATH 251 notes.

A2 =
f 2

0

(! 2
0 − ! 2)2 + 4 � 2! 2

5.6 Resonance

! 0 =
p

k=m = natural frequency of undamped oscillator

! 1 =
p

! 2
o − � 2 = frequency of damped oscillator

! = frequency of driving force

! 2 =
q

! 2
0 − 2� 2 = value of ! at which response is maximum.

In any case, the maximum amplitude of the driven oscillations is found by putting
! 0 ≈ ! to give

Amax ≈ f o

2�! o

Width of The Resonance; the Q factor

We can de�ne the width (or full width at half maximum or FWHM ) as the interval
between two points whereA2 is equal to half its maximum height.

FWHM ≈ 2�

For many purposes, we want a very sharp resonances, so it is common practice to
de�ne a quality factor Q as the reciprocal of this ratio:

Q =
! 0

2�
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6
Calculus of Variations

6.1 Two Examples

The calculus of variations involves �nding the minimum or maximum of a quantity
that is expressible as an integral. Two examples: The shortest path between two
points and Fermat’s Principle.

Since our concern is how in�nitesimal variations of a path change an integral, the
subject is called the calculus of variations. For the same reason, the methods we
shall develop are called variational methods.

6.2 The Euler-Lagrange Equation

We have an integral of the form

S =
Z x2

x1

f [y(x); y′(x); z]dx

wherey(x) is an as-yet unknown curve joining two points (x1; y1) and (x2; y2), which
is

y(x1) = y1 and y(x2) = y2

Remark:
To be de�nite, we shall suppose that we wish to �nd a minimum.

Notice that the function f is a function of three variablesf = f (y; y′; x), but
because the integral follows the pathy = y(x) the integrand f [y(x); y′(x); x] is
actually a function of just the one variablex.

Let us denote the correct solution to our problem byy = y(x). It is convenient to

27
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write the \wrong" curve Y (x) as

Y (x) = y(x) + � (x)

where � (x) is just the di�erence between the wrongY (x) and the right y(x). Since
Y (x) must pass the endpoints 1 and 2,� (x) must satisfy

� (x1) = � (x2) = 0

There are in�nitely many choices for� (x).

The integral S taken along the wrong curveY (x) must be larger than that along the
right curve y(x), no matter how close the former is close to the latter. To express
this requirement, I shall introduce a parameter� and rede�ne Y (x) to be

Y (x) = y(x) + �� (x)

Denote the integral by S(� ). Minimum is achieved at � = 0. To ensure this, we
must just check that the derivative is zero when� = 0.

S(� ) =
Z x2

x1

f (Y; Y′; x)dx

=
Z x2

x1

f (y + ��; y ′ + �� ′; x)dx

Now we di�erentiate it with respect to � . First, evaluate @f
@� :

@f(y + ��; y ′ + �� ′; x)
@�

= �
@f
@y

+ � ′ @f
@y′

and for dS=d� (which has to be zero)

dS
d�

=
Z x2

x1

@f
@�

dx =
Z x2

x1

�
�

@f
@y

+ � ′ @f
@y′

�
dx = 0

Use IBP, the second term:

Z x2

x1

� ′(x)
@f
@y′

dx =
�
� (x)

@f
@y′

� x2

x1

−
Z x2

x1

� (x)
d

dx

�
@f
@y′

�
dx = −

Z x2

x1

� (x)
d

dx

�
@f
@y′

�
dx

Then Z x2

x1

� (x)
�

@f
@y

− d
dx

@f
@y′

�
dx = 0

This condition must be satis�ed by any choice of the function� (x). Therefore, the
factor in parentheses must be zero:
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Euler-Lagrange Equation

@f
@y

− d
dx

@f
@y′

= 0

for all x (in the relevant interval [x1; x2]).

6.3 Applications of E-L equation

Example:Shortest Path between Two Points

... Then y′ = constant. Thus y(x) = mx + b, and we have proved that the shortest
path between two points is a straight line.

Example:The Brachistochrone

A famous problem in the calculus of variations is this: Given two points 1 and
2, with 1 higher above the ground, in what shape should we build a frictionless
roller coaster track so that a car released from point 1 will reach point 2 in the
shortest possible time? This problem is called the brachistochrone problem, from
the Greek words brachistos meaning \shortest" and chronos meaning \time."

Maximum and Minimum vs. Stationary

The E-L equation guarantees only to give a path for which the original integral is
stationary.

some discussion...

However, it should be clear that, in general, deciding what sort of stationary path
the E-L equation has given us can be tricky.

Fortunately for us, these questions are irrelevant for our purposes. We shall �nd
that for the applications in mechanics all that matters is that we have a path which
makes a certain integral stationary. It simply doesn’t matter whether it gives a
maximum, minimum, or neither.

6.4 More than Two Variables

If there aren dependent variables in the original integral, there aren E-L equations.
For instance, an integral of the form

S =
Z u2

u1

f [x(u); y(u); x′(u); y′(u); u] du
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with two dependent variables [x(u) and y(u)] is stationary w.r.t variations of x(u)
and y(u) i� these two functions satisfy the two equations

@f
@x

=
d

du
@f
@x′

and
@f
@y

=
d

du
@f
@y′

The indep. var in Lagrangian mechanics is the timet. The dep vars are the coordi-
nates that specify the position of a system, and are usually denoted byq1; q2; : : : ; qn .
Because the coordinatesq1; : : : ; qn can take on so many guises, they are often re-
ferred to as generalized coordinates. It is often useful to think of then generalized
coordinates as de�ning a point in ann-dimensional con�guration space, each of
whose points labels a unique position of the system.

The ultimate goal in most problems in Lagrangian mechanics is to �nd how coordi-
nates vary with time.



7
Lagrange’s Equations

The Lagrange’s formulation has two important advantages over the earlier Newto-
nian formulation. First, Lagrange’s equations, unlike Newton’s, take the same form
in any coordinate system. Second, in treating constrained systems, such as a bead
sliding on a wire, the Lagrangian approach eliminates the forces of constraint.

7.1 Lagrange’s Equations for Unconstrained Mo-
tion

Consider a particle moving unconstrained in 3-d, subject to a conservative net force
F(r ). Kinetic energy:

T =
1
2

mv2 =
1
2

m_r 2 =
1
2

m( _x2 + _y2 + _z2)

and PE:
U = U(r ) = U(x; y; z)

The Lagrangian function, or just Lagrangian, is de�ned as

Lagrangian

L = T − U

Remark:
Notice �rst the Lagrangian is the KE minus the PE, not the same as the total
energy. Notice also that I am using a scriptL for the Lagrangian and that L
depends on the particle’s position and its velocity; that isL = L(x; y; z; _x; _y; _z).

Consider two derivatives
@L
@x

= −@U
@x

= Fx

31
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and
@L
@_x

=
@T
@_x

= m _x = px

Di� second eq w.r.t time, together with Newton’s second law,Fx = _px , then

@L
@x

=
d
dt

@L
@_x

(7.1)

Then same fory and z. Thus we have shown Newton’s second law implies the three
Lagrange equations (in Cartesian coordinates so for):

@L
@x

=
d
dt

@L
@_x

;
@L
@y

=
d
dt

@L
@_y

; and
@L
@z

=
d
dt

@L
@_z

Hamilton’s Principle

The actual path which a particle follows between two points 1 and 2 in a given
time interval, t1 to t2, is such that the action integral

S =
Z t2

t1

L dt

is stationary when taken along the actual path.

So far, we have proved for a single particle that the following three statements are
exactly equivalent:

1. A particle’s path is determined by Newton’s second lawF = ma.

2. The path is determined by the three Lagrange equations, at least in Cartesian
coordinates.

3. The path is determined by Hamilton’s principle.

Remark:
There is one point about our derivation of Lagrange’s equations that is worth
keeping at the back of your mind. A crucial step in our proof was the observation
that (7.1) was equivalent to Newton’s second law, which in turn is true only if
the original frame in which we wrote downL = T − U is inertial.

Example:One Particle in Two Dimensions; Cartesian Coordinates

The Lagrangian for a single particle in 2d is

L = L(x; y; _x; _y) = T − U =
1
2

m( _x2 + _y2) − U(x; y)
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The two Lagrange equations can be rewritten as follows:

@L
@x

=
d
dt

@L
@_x

⇐⇒ Fx = m �x

@L
@y

=
d
dt

@L
@_y

⇐⇒ Fy = m �y

9
>>>=

>>>;
⇐⇒ F = ma

When we use generalized coordinatesq1; : : : ; qn , we shall �nd that @L
@qi

, although
not necessarily a force component, plays a role similar to a force. Similarly,@L

@_qi
,

although not necessarily a momentum component, acts very like a momentum. For
this reason we shall call these derivatives thegeneralized force and generalized
momentum respectively; that is

@L
@qi

= ( i th component of generalized force )

and
@L
@_qi

= ( i th component of generalized momentum)

With each notations, each of the Lagrange equations

@L
@qi

=
d
dt

@L
@_qi

takes the form

(generalized force) = (rate of change of generalized momentum)

Example:One Particle in Two Dimensions; Polar Coordinates

The Lagrangian

L = L(r; �; _r; _� ) = T − U =
1
2

m
�

_r 2 + r 2 _� 2
�
− U(r; � )

The r Equation

@L
@r

=
d
dt

@L
@_r

or
mr _� 2 − @U

@r
=

d
dt

(m _r ) = m�r

and −@U
@r is just Fr , then

Fr = m(�r − r _� 2)

The � Equation

is (by substitution)

−@U
@�

=
d
dt

(mr 2 _� )
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Similarly ...

F� = −1
r

@U
@�

... Therefore, the� equation states that

� =
dL
dt

where � is the torque, L is the angular momentum.

Remark:
The last equation illustrates a wonderful feature of Lagrange’s equations, that
when we choose an appropriate set of generalized coordinates the corresponding
Lagrange equations automatically appear in a corresponding natural form.

This example illustrates another feature of Lagrange’s equations (in general): The
i th component of the generalized force is@L@qi

. If this happens to be zero, then the
Lagrange equation

@L
@qi

=
d
dt

@L
@_qi

says simply that the i th component @L
@_qi

of the generalized momentum is constant,
or conserved.

7.2 Constrained Systems; an Example

Two familiar examples: bead threaded on a wire and rigid body, whose individual
atoms can only move in such a way that the distance between any two atoms is
�xed.

Consider the simple pendulum shown in Figure 7.1. massless rod, pivoted atO and
free to swing without friction in xy plane.

We can express all quantities of interest in terms of� . Then the Lagrangian is

L = T − U =
1
2

ml 2 _� 2 − mgl(1 − cos� )

If we choose the angle� as our generalized coordinate, the Lagrange’s equation reads

@L
@�

=
d
dt

@L
@_�

−mgl sin � =
d
dt

�
ml 2 _�

�
= ml 2 ��

Referring to Figure 7.1, LHS is just the torque � exerted by gravity on the pendulum,
while the term ml 2 is the pendulum’s moment of inertiaI . Since �� is the angular
acceleration � , we see that Lagrange’s equation for the simple pendulum simply
reproduces the familiar result � = I� .
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x
O

m

l
�

y

Figure 7.1: A simple pendulum.
The bob of mas m is constrained by the rod to remain distance l from O .

7.3 Constrained Systems in General

Generalized Coordinates

An arbitrary system of N particles, � = 1 ; : : : ; N with positions r � . q1; : : : ; qn , and
possibly with time t,

r � = r � (q1; : : : ; qn ; t) [� = 1 ; : : : ; N ] (7.2)

and conversely
qi = qi (r 1; : : : ; r N ; t) [i = 1 ; : : : ; n]

In addition, we require that the number of the generalized coordinates (n) is the
smallest number that allows the system to be parameterized in this way.

The double pendulum shown in Figure 7.2 has two bobs, both con�ned to a plane.

x
O

l1
� 1

y l2� 2

Figure 7.2: Double Pendulum
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These four Cartesian coordinates can be expressed in terms of the two generalized
coordinates� 1 and � 2.

r 1 = ( l1 sin � 1; l1 cos� 1) = r 1 (� 1)

and
r 2 = ( l1 sin � 1 + l2 sin � 2; l1 cos� 1 + l2 cos� 2) = r 2 (� 1; � 2)

We shall some times describe a set of coordinatesq1; : : : ; qn asnatural if the relation
(7.2) between the Cartesian coordinatesr � and the generalized coordinates does not
involve time t. Fortunately, as the name implies, there are many problems for which
the most convenient choice of coordinates is also natural1.

Degrees of Freedom

When the number of degrees of freedom of anN -particle system in 3 dimensions is
less than 3N , we say that the system is constrained.

In all of the examples so far, the number of freedom was equal to the number of
generalized coordinates needed to describe the system’s con�guration. A system
with this natural-seeming property is said to beholonomic 2.

holonomic

A holonomic system hasn degrees of freedom and can be described byn
generalized coordinates,q1; : : : ; qn .

Holonomic systems are easier to treat than nonholonomic.

For any holonomic system with generalized coordinatesq1; : : : ; qn and potential en-
ergyU(q1; : : : ; qn ; t), the evolution in time is determined by then Lagrange equations

@L
@qi

=
d
dt

@L
@_qi

[i = 1 ; : : : ; n]

7.4 Proof of Lagrange’s Equations with Constraints

We must recognize there are two kinds of forces on the particle:

1. the forces of constraint. In general, these forces are not necessarily conserva-
tive, but this doesn’t matter.

2. All the other \nonconstraint" forces on the particle, such as gravity.
1Natural are sometimes called scleronomous, and those are not natural, rheonomous.
2Many di�erent defns can be found, not all of which are exactly equivalent
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7.5 Examples of Lagrange’s Equations

The Lagrangian method is so important that it certainly deserves more than just
�ve examples. However, the crucial thing is that you work through several examples
yourself; therefore the author has given plenty of problems at the end of the chapter.
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Example:Atwood’s Machine

y

x

m2

m1

Example:A Particle Con�ned to Move on a Cylinder

x

y

z

� = R

r

These two examples illustrate the steps:

1. Write down L = T − U using any convenient inertial reference frame.

2. Choose a convenient set ofn generalized coordinatesq1; : : : ; qn and �nd expres-
sions for the original coordinates of step 1 in terms of your chosen generalized
coordinates.

3. Rewrite L in terms of q1; : : : ; qn and _q1; : : : ; _qn .

4. Write down the n Lagrange equations.
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7.6 Generalized Momenta and Ignorable Coordi-
nates

As previously mentioned, generalized forces and generalized momenta. Then the
Lagrange equation can be rewritten as

Fi =
d
dt

pi

When the Lagrangian is independent of a coordinateqi , that coordinate is sometimes
said to be ignorable orcyclic .

The result: \L is independent of a coordinateqi " is equivalent to saying \L is
unchanged, or invariant, whenqi varies (with all the other qj held �xed)." This
connection between invariance ofL and certain conservation laws is the �rst of
several similar results relating invariance under transformations to conservation laws.
These results are known collectively asNoether’s theorem . The author shall
return to this theorem in Section 7.8.

7.7 Conclusion

Two great advantages:

• Unlike the Newtonian version, it works equally well in all coordinate systems
and

• it can handle constrained system easily, avoiding any need to discuss the forces
of generalized coordinates.

7.8 More about Conservation Laws*

*Advanced section. This is needed for Section 11.5 and Chapter 13.

Conservation of Total Momentum

One of the most prominent features of an isolated system is that it is translationally
invariant; that is if we transport all N particles bodily through the same displace-
ment � , nothing physically signi�cant about the system should change.

We reach the conclusion that, provided the Lagrangian is unchanged by the trans-
lation r i → r i + � ; the total momentum of the N -particle system is conserved. The
connection between transnational invariance ofL and conservation of total momen-
tum is another example of Noether’s Theorem.
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Conservation of Energy

Detailed discussion in page 270 of the textbook.

Hamiltonian

H =
nX

i =1

pi _qi − L

With this terminology, we can state the following important conclusion:

If the Lagrangian L does not dependent explicitly on time (that is,@L@t = 0),
then the Hamiltonian H is conserved.

As we shall see in Chapter 13, the HamiltonianH is the basis of the Hamiltonian
formulation of mechanics, in just the same way thatL is the basis of Lagrangian
mechanics.

For the moment, the chief importance of our newly discovered Hamiltonian is that
in many situations it is in fact just the total energy of the system. Speci�cally,
we shall prove that, provided the relation between the generalized coordinates and
Cartesians is time-independent,

r � = r � (q1; : : : ; qn );

the Hamiltonian H is just the total energy,

H = T + U:

Proof:
See Page 271 of textbook.

Remark:
• Thus we now see that time independence of the Lagrangian implies conser-

vation of energy.

• Thus the result we have just proved is that invarianceL under time transla-
tions is related to energy conservation, in much the same way that invariance
of L under translations of space (r → r + � ) is related to conservation of
momentum.

Both results are manifestations of Noether’s famous theorem.

7.9 Lagrange’s Equations for Magnetic Forces*

*This section requires a knowledge of the scalar and vector potentials of electromag-
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netism. Although the ideas described here play an important role in the quantum-
mechanical treatment of magnetic fields, they will not be used again in this book.

Defn and Nonuniqueness of Lagrangian

Lagrangian { a General Defn

For a given mechanical system with generalized coordinatesq = ( q1; : : : ; qn ),
a LagrangianL is a function L(q1; : : : ; qn ; _q1; : : : ; _qn ; t) of the coordinates and
velocities, such that the correct equations of motion for the system are the
Lagrange equations

@L
@qi

=
d
dt

@L
@_qi

[i = 1 ; : : : ; n]

Remark:
In other words, a Lagrangian is any functionL for which Lagrange’s equations
are true for the system under consideration.

Old defn �ts this new defn, but the new defn is much more general. In particular,
new defn does not de�ne a uniqueL.

The crucial point is that ant function L which gives the right equation of motion
has all of the features that we require of a Lagrangian and so is just as acceptable
as any other such functionL.

Lagrangian for a Charge in a Magnetic Field

Note that this part won’t be tested on the AMATH 271 exam according to the offering
in Fall 2018.

A particle, massm chargeq, electric and magnetic �eldsE and B . Then Lorentz
force, with Newton’s second law

m�r = q(E + _r × B )

...

p = mv + qA

Generalized momentum = mechanical momentum + magnetic momentum
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8
Two-Body Central-Force Problems

8.1 The Problem

Two point particles, m1 and m2. Positions r 1 and r 2/ The only forces F12 and F21
of their mutual interaction, conservative and central. Thus potential energy

U(r 1; r 2) = − Gm1m2

|r 1 − r 2|

For the electron and proton in hydrogen atom, the potential energy is the Coulomb
PE of the two charges (e for the proton and −e for the electron),

U(r 1; r 2) = − ke2

|r 1 − r 2|

In both examples,U only depends on magnitude|r 1 − r 2|, and we can write

U(r 1; r 2) = U(|r 1 − r 2|)

To take advantage of the equation above, we introduce a new variable

r = r 1 − r 2

The U depends only on the magnituder of relative position r ,

U = U(r )

Problem We want to �nd the possible motions of two bodies, whose Lagrangian
is

L =
1
2

m1 _r 2
1 +

1
2

m2 _r 2
2 − U(r )

43
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m2

m1

CM

R
r 2

r 1

O

Figure 8.1: The center of mass of the two bodies

8.2 CM and Relative Coordinates; Reduced Mass

center of mass (CM)

R =
m1r 1 + m2r 2

m1 + m2
=

m1r 1 + m2r 2

M

In Section 3.3, total momentum of the two bodies is the same as the total mass
M = m1 + m2 were concentrated at CM and were following the CM as it moves:

P = M _R

It’s extremely obvious in Figure 8.1 that

r 1 = R +
m2

M
r and r 2 = R − m1

M
r

Thus the kinetic energy is

T =
1
2

�
m1 _r 2

1 + m2 _r 2
2
�

=
1
2

�
m1

h
_R +

m2

M
r
i 2

+ m2

h
_R − m1

M
r
i 2

�

=
1
2

�
M _R 2 +

m1m2

M
r 2

�

The result simpli�es further if we introduce the parameter
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reduced mass

� =
m1m2

M
≡ m1m2

m1 + m2

which has the dimensions of mass and is called thereduced mass . If m1 � m2,
then � is very close tom1.

T =
1
2

M _R 2 +
1
2

� _r 2

Remark:
This remarkable result shows that the kinetic energy is the same as that of two
\�ctitious" particles, one of mass M moving with the speed of the CM, and the
other mass� (reduced mass) moving with the speed of the relative positionr .
Even more signi�cant is the corresponding result for the Lagrangian:

L = T − U =
1
2

M _R 2 +
�

1
2

� _r 2 − U(r )
�

= Lcm + Lrel

8.3 The Equations of Motion

BecauseL is independent ofR , the R equation is especially simple,

M �R = 0 or _R = const

We can explain this result in several ways: First, it is a direct consequence of
conservation of total momentum. Alternatively, we can view it as reecting thatL
is independent ofR .

The Lagrange eqn forr is a little less simple but equally beautiful:

� �r = −r U(r )

The CM Reference Frame

Because _R =const, we can choose an inertial reference frame, the so-calledCM
frame , in which the CM is at rest and the total momentum is zero. In this frame
_R = 0 and Lcm = 0. Thus in the CM frame

L = Lrel =
1
2

� _r 2 − U(r ) (8.1)

and the problem really is reduced to a one-body problem.
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Conservation of Angular Momentum

In any frame,
L = r 1 × p1 + r 2 × p2

= m1r 1 × _r 1 + m2r 2 × _r 2

In CM frame, set R = 0:

r 1 =
m2

M
r andr 2 = −m1

M
r

Then
L =

m1m2

M 2 (m2r × _r + m1r × _r )

= r × � _r
The most remarkable thing about this result is that the total angular momentum
in the CM frame is exactly the same as the angular momentum of a single particle
with mass � and position r .

The Two Equations of Motion

The obvious choice is to user and � , then Lagrangian (8.1) is

L =
1
2

� ( _r 2 + r 2 _� 2) − U(r )

Since the Lagrangian is independent of� , the coordinate � is ignorable, and the
Lagrange equation corresponding to� is just

@L
@�

=
d
dt

@L
@_�

=⇒ 0 =
d
dt

(�r 2 _� ) =⇒ @L
@_�

= �r 2 _� = const = ‘ [� equation]

Since �r 2 _� is the angular momentum‘ , the � equation is just a statement of con-
servation of angular momentum.

The Lagrange equation corresponding tor (often called the radial equation) is

@L
@r

=
d
dt

@L
@_r

or
� �r = −dU

dr| {z }
Gravity

+ �r _� 2
| {z }

Centrifugal

8.4 The Equivalent One-Dimensional Problem

Our main use for the� equation is to solve it for _� ,

_� =
‘

�r 2
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which will let us eliminate _� from the radial equation in favor of the constant‘ .
Then the radial eqn can be rewritten as

� �r = −dU
dr

+ �r �� 2 = −dU
dr

+ Fcf

whereFcf is the centrifugal force. This equation has the form of Newton second law
for a particle in one dimension, subject to the actual force−dU

dr plus the centrifugal
force.

Fcf = �r _� 2 =
‘ 2

�r 3

Even better, we can now express the centrifugal force in terms of a centrifugal
potential energy,

Fcf = − d
dr

�
‘ 2

2�r 2

�
= −dUcf

dr

Now we can rewrite the radial equation in terms ofUcf as

� �r = − d
dr

[U(r ) + Uef (r )] = − d
dr

Uef f (r )

where thee�ective potential energy Uef f (r ) is the sum of the actual potential
energyU(r ) and the centrifugal Ucf (r ).

Example:E�ective Potential Energy for a Comet

Since planetary motion was �rst described mathematically by the German as-
tronomer Johannes Kepler, 1571-1630, this problem of the motion of a planet or
comet around the sun (or any two bodies interacting via an inverse-square force)
is often called theKepler problem.

The actual gravitational potential energy of the comet is given by the well-known
formula

U(r ) = −Gm1m2

r

The total e�ective potential energy is

Uef f (r ) = −Gm1m2

r
+

‘ 2

2�r 2
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E
ne

rg
y

Ucf

Uef f = U + Ucf

U

Conservation of Energy

To �nd the details of the orbit, we must look more closely at the radial equation. If
we multiply both sides by _r ,

d
dt

�
1
2

� _r 2
�

= − d
dt

Uef f (r ) =⇒ 1
2

� _r 2 + Uef f (r ) = const:

In fact, this result is just conservation of energy. If we replaceUef f and ‘ , we see
that

1
2

� _r 2 + Ue� (r ) =
1
2

� _r 2 +
1
2

�r 2 _� 2 + U(r )

= E
(8.2)

Example:Energy Considerations for a Comet or Planet

Examine again the previous example and by considering its total energyE , �nd
the equation determines the max/min dist of the comet from the sun.

In the energy equation (8.2) the term1
2 � _r 2 on the left is always greater than or

equal to zero. Therefore, the comet’s motion is con�ned to those regions where
E ≥ Uef f . Two cases:



8.5. THE EQUATION OF THE ORBIT 49

E
ne

rg
y

E > 0

E < 0

r

rmin

rmin
rmax

1. E > 0. A comet with this energy can move anywhere above the curve of
Uef f (r ), but nowhere that the line is below the curve.

Uef f (rmin ) = E

If the comet is initially moving toward the sun, then it will continue until
it reachesrmin , where _r = 0 instantaneously. It then moves outward, and
since there are no other points at which _r can vanish, it eventually moves
o� to in�nity, and the orbit is unbounded .

2. E < 0. Trapped between these two values ofr . bounded orbit .

3. E = min Uef f (r ), the two turning points coalesce, and the comet is trapped
at a �xed radius and moves in a circular orbit.

8.5 The Equation of the Orbit

The radial equation determinesr as a function oft, but for many purposes we would
like to know r as a function of� .

First write the radial eqn in terms of forces:

� �r = F (r ) +
‘ 2

�r 3

where F (r ) is the actual central force,F = −dU=dr, and the second term is the
centrifugal force.
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Two tricks:

1. rewrite the equation in terms of� and make the substitutionu = 1
r .

2. rewrite the di� operator d=dt in terms of d=d� using the chain rule.

d
dt

=
d�
dt

d
d�

= _�
d

d�
=

‘
�r 2

d
d�

=
‘u 2

�
d

d�

Sub back into the radial eqn we �nd

− ‘ 2u2

�
d2u
d� 2 = F +

‘ 2u3

�

or

u′′(� ) = −u(� ) − �
‘ 2u(� )2 F (8.3)

8.6 The Kepler Orbits

Let us now return to the Kepler problem, the problem of �nding the possible orbits
of a comet or any other object to an inverse-square force. To include both cases
(gravitational force, Coulomb force),

F (r ) = − 
r 2 = −u 2

where  is the \force constant".

Inserting it into (8.3), we �nd u(� ) must satisfy

u′′(� ) = −u(� ) +
�
‘ 2

...

The general solution foru(� )

u(� ) =
�
‘ 2 + A cos� =

�
‘ 2 (1 + � cos� )

I shall introduce new length

c =
‘ 2

�
in terms of which our solution becomes

r (� ) =
c

1 + � cos�
(8.4)
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The Bounded Orbits

A glance at 8.4 shows this behavior is very di�erent according as� < 1 or � ≥ 1.

With � < 1, r (� ) oscillates betweenrmin = c
1+ � and rmax = c

1−� .

r = rmin : perihelion近日点, when � = 0 and r = rmax : aphelion远日点, when
� = � .

Rewrite (8.4) in Cartesian coordinates:

(x + d)2

a2 +
y2

b2 = 1

where
a =

c
1− � 2 ; b=

c√
1− � 2

; and d = a�

Observe that
b
a

=
√

1− � 2

is the defn of eccentricity of the ellipse. That is,� is the eccentricity.

Thus the position of the sun is one of the ellipse’s two focuses. and we have now
proved Kepler’s �rst law , that the planets follow orbits that are ellipses with the
sun at one focus.

The Orbital Period; Kepler’s Third Law

Together with Kepler’s second law,

dA
dt

=
‘

2�

...

We �nd that
� 2 =

4� 2

GM sun
a3 (8.5)

This is Kepler’s third law :for all bodies orbiting the sun, the square of period is
proportional to the cube of the semimajor axis.

Relation between Energy and Eccentricity

E = Uef f (rmin )

rmin =
c

1 + �

9
=

;
=⇒ E =

 2�
2‘ 2 (� 2 − 1)

which is equally valid for bounded and unbounded orbits.
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8.7 The Unbounded Kepler Orbits

Unbounded: � ≥ 1 and E ≥ 0.

hyperbola (� > 1)

parabola (� = 1)

ellipse (0< � < 1)

circle (� = 0)

Figure 8.2: Four di�erent Kepler orbits

eccentricity energy orbit
0 < 0 circle

(0; 1) < 0 ellipse
1 0 parabola

> 1 > 0 hyperbola

8.8 Changes of Orbit

In this �nal section, I shall discuss how a satellite can change from one orbit to
another.

perigee and apogee

r1(� 0) = r2(� 0) =⇒ c1

1 + � 1 cos (� o − � 1)
=

c2

1 + � 2 cos (� o − � 2)
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A Tangential Thrust at Perigee

v2 = �v 1, where � is the thrust factor . Unlikely, it will be negative.

‘ 2 = �‘ 1 =⇒ c2 = � 2c1 =⇒ � 2 = � 2� 1 + ( � 2 − 1)
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9
Mechanics in Noninertial Frames

Not studied in AMATH 271.
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10
Rotational Motion of Rigid Bodies

Not studied in AMATH 271.
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11
Coupled Oscillators and Normal Modes

Not studied in AMATH 271.
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12
Nonlinear Mechanics and Chaos

Not studied in AMATH 271.
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13
Hamiltonian Mechanics

13.1 The Basic Variables

L = L(q1; : : : ; qn ; _q1; : : : ; _qn ; t) = T − U

The n coordinates (q1; : : : ; qn ) de�ne a point in an n-dimensional con�guration space.
The 2n coordinates (q1; : : : ; qn ; _q1; : : : ; _qn ) de�ne a point in state space, and specify a
set of ICs that determine a unique soln of then 2nd order DEs of motions, Lagrange’s
eqns.

Recall we also de�ne generalized momentum

pi =
@L
@_qi

and it’s also called the canonical momentum or the momentum conjugate toqi .

Hamiltonian function or just Hamiltonian H is de�ned as

H =
nX

i =1

pi _qi − L

In Section 7.8, we proved that , provided generalized coordinates are \natural"
(that is, the relation between theq’s and the underlying Cartesian coordinates is
time independent),H is just the total energy of the system and is, therefore, familiar
and easy to visualize.

Second important di�erence between Lagrangian and Hamiltonian. In Hamiltonian.
we shall use

(q1; : : : ; qn ; p1; : : : ; pn )

which is usually called phase space.

Like Lagrange’s approach, Hamilton’s is best suited to systems that are subject to
no frictional forces.
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13.2 Hamilton’s Equations for 1d Systems

L = L(q; _q) = T(q; _q) − U(q)

General result in Section 7.8 that the Lagrangian for a conservative system with
\natural" coordinates (1d here) has the general form:

L = L(q; _q) = T − U =
1
2

A(q) _q2 − U(q) (13.1)

Then Hamiltonian reduces to
H = p_q− L (13.2)

Given the form (13.1) ofL, we can calculate the generalized momentump as

p =
@L
@_q

= A(q) _q (13.3)

so that p_q = A(q) _q2 = 2T . Sub into (13.2), we �nd that

H = p_q− L = T + U

H for the \natural" system considered here is precisely the total energy.

The next step is to set up the Hamiltonian formalism. We can solve (13.3) for _q in
terms of q and p:

_q =
p

A(q)
= _q(q; p)

In all its horrible detail, (13.2) becomes

H(q; p) = p_q(q; p) − L(q; _q(q; p)) (13.4)

Our �nal step is to get Hamilton’s equation of motion (recognize@L
@_q = p)

@H
@q

= p
@_q
@q

−
�

@L
@q

+
@L
@_q

@_q
@q

�

= −@L
@q

= − d
dt

@L
@_q

= − d
dt

p

= − _p

and
@H
@p

=
�

_q+ p
@_q
@p

�
− @L

@_q
@_q
@p

= _q

Then we have Hamilton’s eqns for one-dimensional system:
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Hamilton’s Equations

_q =
@H
@p

and _p = −@H
@q

(13.5)

Here we have two �rst-order eqns.

Example:Atwood’s Machine

L = T − U

where
T =

1
2

(m1 + m2) _x2 and U = −(m1 − m2)gx

then ...

_x =
@H
@p

=
p

m1 + m2
and _p = −@H

@x
= ( m1 − m2)g

Then
�x =

m1 − m2

m1 + m2
g

Our �rst task is always to write down the H.

Once this is done, one can just turn the handle and crank out Hamilton’s eqns.

13.3 Hamilton’s Eqns in Several Dimensions

Here we shall use the abbreviation introduced in Section 11.5:

q = ( q1; : : : ; qn ) _q = ( _q1; : : : ; _qn ) p = ( p1; : : : ; pn )

With necessary assumptions to guarantee the standard Lagrangian formalism ap-
plies, let’s derive from it the Hamiltonian one. Thus Lagrangian

L = L(q; _q; t) = T − U

...

Hamilton’s equations

_qi =
@H
@pi

and _pi = −@H
@qi

[i = 1 ; : : : ; n]

dH
dt

=
nX

i =1

�
@H
@qi

_qi +
@H
@pi

_pi

�
+

@H
@t

=⇒ dH
t

=
@H
@t
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Remark:
Note the di�erence between two derivatives.d-one (sometimes called the total
derivative), is the actual rate of change ofH as the motion proceeds, with all
the coordinatesq1; : : : ; qn ; p1; : : : ; pn changing ast advances.@-one is the rate of
change ofH if we vary its last argument t holding all the other argument �xed.
In particular, if H does not depend explicitly ont, this partial derivative will be
zero.

This simple result indicates thatH varies with time only to the extent that it
is explicitly time dependent. In particular, if H does not depend explicitly ont,
then H is conserved.

6 steps to Find Hamiltonian

1. Find the generalized coordinatesqi

2. Write T and U in terms of q’s and _q’s

3. Find generalized momentumpi = @L
@_qi

4. Write _qi in terms of pi and qi

5. Find H =
P n

i =1 pi _qi − L (H = T + U = E for natural coordinates)

6. Solve Hamilton’s equations and �nd the equation of motion.

13.4 Ignorable Coordinates

If L happens to be independent of a coordinateqi , then the corresponding generalized
momentum pi is constant. When this happens, we say that the coordinateqi is
ignorable .

13.5 Lagrange’s Equations vs Hamilton’s Equa-
tions

First we can rewrite the �rst n of Equations (13.5) as

_qi =
@H
@pi

= f i (q; p)

Combine thesen eqns
_q = f (q; p) (13.6)

Similarly,
_p = g(q; p) (13.7)
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Finally, we can introduce a 2n-dimensional vector

z = ( q; p) = ( q1; : : : ; qn ; p1; : : : ; pn )

phase-space vector or phase pointz. Each value ofz labels a unique point in phase
space and identi�es a unique set of initial conditions for our systems. Combine
(13.6) and (13.7)

_z = h(z)

We can consider changes of coordinates of the form

Q = Q(q; p) and P = P (q; p)

that is, coordinate changes in which both theq’s and the p’s are intermingled.
If the eqns above satisfy certain conditions, this change of coordinates is called a
canonical transformation , and it turns out that Hamilton’s eqns are invariant
under these canonical transformations. Further discussion is out of scope, but note
that there is no corresponding transformation in Lagrangian mechanics.

13.6 Phase-Space Orbits

Any point zo de�nes a possible initial condition (at any chosen timet0), and Hamil-
ton’s equations de�ne a unique phase-space orbit or trajectory which starts fromz0
at t0 and which the system follows as time progresses.

Important Property: No two di�erent phase-space orbits can pass through the
same point in phase space; that is, no two phases-space orbits can cross another. One
can imagine two orbits passing through the same point zo in phase space. However,
Hamilton’s equations guarantee that for any given pointz0 , there is a unique orbit
passing throughz0, so the two orbits must in fact be the same.

It has important consequences in, for example, the analysis of chaotic motion of
Hamiltonian systems.

13.7 Liouville’s Theorem

Theorem 13.1: Liuville’s Theorem

If we imagine a large number of identical systems launched at the same time
with slightly di�erent initial conditions, the phase-space points that represent
the systems can be seen as forming a uid. Liouville’s theorem states that
the density of this uid is constant in time (or, equivalently, that the volume
occupied by any group of points is constant.
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14
Collision Theory

Not studied in AMATH 271.
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15
Special Relativity

15.1 Relativity

The theory of relativity is the study of the consequences of the relativity of mea-
surements. Einstein’s relativity is really two theories.

• Special relativity is \special" in that it focuses primarily on unaccelerated
frames of reference.

• General relativity is \general" in that it includes accelerated reference frames.

15.2 Galilean Relativity

In classical physics, Newton’s laws are invariant as we transfer our attention from one
inertial frame to another. The classical transformation from one frame to a second,
moving at constant velocity to the �rst, is called the Galilean transformation .

Figure 15.1: excerpt from book
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Galilean transformation

Consider two framesS and S′ that are oriented the same way. Suppose further that
the velocity V of S′ relative to S is along thex axis. The con�guration is illustrated
in Figure 15.1.

By the classical assumption concerning time,t ′ = t, so the required relations are

x′ = x − V t
y′ = y
z′ = z
t ′ = t

9
>>>=

>>>;
(15.1)

These four equations are called theGalilean transformation . They are the math-
ematical expression of the classical ideas about space and time.

(15.1) relates the coordinates measured in two frames arranged with corresponding
axes parallel and with relative velocity along thex axis, as shown in Figure 15.1 {
an arrangement we can call thestandard con�guration . This is not general. For
example, if relative velocityV is in an arbitrary direction, (15.1) can be rewritten
compactly as

r ′ = r − V t and t ′ = t (15.2)

This is still not the most general since we could rotate the axes. However, (15.2) is
enough for our present purposes. If we di�erentiate (15.2)

v ′ = v − V

This is the classical velocity-addition formula .

Galilean Invariance of Newton’s Laws

Prove 3 laws hold.

Galilean Relativity and the Speed of Light

While Newton’s laws are invariant under the Galilean transformation, the same is not
true of the laws of electromagnetism. Whether we write them in their compact form
as Maxwell’s four equations, or in their original form (as Coulomb’s law, Faraday’s
law, and so on), they can be true in one inertial frame, but if they are, andif the
Galilean transformation were the correct relation between different inertial frames,
then they could not be true in any other inertial frame.

If the Galilean transformation were the correct transformation between inertial
frames, then although Newton’s laws would hold in all inertial frames, there could
only be one frame in which Maxwell’s equations hold. This supposed unique frame,
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in which light would travel at the same speed in all directions, is sometimes called
the ether frame.1

The Michelson-Morley Experiment

interferometer.

With hindsight, it is easy to draw the right conclusion: Contrary to all expectations,
the speed of light is the same in all directions relative to an earth-based frame, even
though the earth has di�erent velocities at di�erent times of year. In other words,
it is not true that there is only one frame in which light has the same speed in all
directions.

None of these alternative theories was able to explain all of the observed facts (at
least, not in a reasonable and economical way), and today almost all physicists
accept that there is no unique ether frame and that the speed of light is a universal
constant, with the same value in all directions in all inertial frames.

15.3 The Postulates of Special Relativity

The special theory of relativity is based on the acceptance of the universality of the
speed of light, as suggested by the Michelson-Morley experiment.

De�nition of an Inertial Frame

An inertial frame is any reference frame (that is, a system of coordinatesx; y; z
and time t) in which all the laws of physics hold in their usual form.

Notice \all the laws of physics" have not been speci�ed. Following Einstein, we shall
use the postulates of relativity to help us decide what the laws of physics could be.
(As always, the ultimate test will be whether they agree with experiment.) The big
di�erence between the inertial frames of relativity and those of classical mechanics
is the mathematical relation between di�erent frames. In relativity, we shall �nd
that the classical Galilean transformation must be replaced by the so-called Lorentz
transformation.

First Postulate of Relativity

If S is an inertial frame and if a second frameS′ moves with constant velocity
relative to S, then S′ is also an inertial frame.

1The origin of the name is this: It was assumed that light must propagate through a medium,
in much the same way that sound travels through the air. Since no one had ever detected this
medium and since light could travel through seemingly empty space, the medium clearly had most
unusual properties, and was named \ether" after the Greek for the stu� of the heavens. The \ether
frame" was the frame in which the supposed ether was at rest.
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Remark:
Another popular statement of the �rst postulate is that \there is no such thing
as absolute motion."

Yet another statement of the �rst postulate is that among all the inertial frames,
there is no preferred frame. The laws of physics single out no one frame as being
in any way more special than any other.

Second Postulate of Relativity

The speed of light (in vacuum) has the same valuec in every direction in all
inertial frames.

Remark:
This is, of course, the Michelson-Morley result.

15.4 The Relativity of Time; Time Dilation

Measurement of Time in a Single Frame

In what follows, I shall assume that any inertial frameS comes with a set of rectan-
gular axesOxyz and a team of helpers stationed at rest throughoutS and equipped
with synchronized clocks. This allows us to assign a position (x; y; z) and a time t
to any event, as observed in the frameS.

Time Dilation

Let us now compare measurements of time made by observers in two di�erent inertial
frames. S anchored to the ground andS′ traveling with a train in the x direction
at speedV relative to S. We now examine athought experiment 2 in which an
observer on the train sets o� a ashbulb on the oor of the train. The light travels
to the roof, where it is reected back and returns to its starting point, where it
strikes a photocell and causes an audible \beep." We wish to compare the times, �t
and � t ′, as measured in the two frames, between the ash as the light leaves the
oor and the beep as it returns. See Figure 15.2.

� t ′ =
2h
c

(15.3)

and
(c� t=2)2 = h2 + ( V � t=2)2

2or gedanken experiment, from the German
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Figure 15.2: another excerpt from textbook

which gives us

� t =
2h√

c2 − V 2
=

2h
c

1
p

1− � 2
(15.4)

where I have introduced the useful abbreviation

� =
V
c

which is just the speedV measured in units ofc.

Combining (15.3) and (15.4),

� t =
� t ′

p
1− � 2

Remark:
For 0 ≤ V < c, � t ≥ � t ′

If V = c, then denominator = 0. If V > c, then imaginary value for � t ′. These
results suggest thatV must always be less thanc, and this gives us one of the
most profound results of relativity:

The relative speed of two inertial frames can never equal or exceedc.

Usually we have this notation

 =
1

p
1− � 2

� t =  � t ′ ≥ � t ′
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To emphasize this asymmetry, the time �t ′ is often renamed � t0, then

� t =  � t0 ≥ � t0

� t0 is often called the proper time. The e�ect is called time dilation.

Evidence for Time Dilation

B. Rossi and D. B. Hall, half-life.

15.5 Length Contraction

l = V � t

l ′ = V � t ′

Then
l ′ = l

or

l =
l ′


≤ l ′

Also, it is common to rewrite it as

l =
l0


≤ l0

wherel0 denotes the length of an object measured in the object’srest frame , while
l is the length in any frame. l0, proper length. andlength contraction .

Lengths Perpendicular to the Relative Velocity

We conclude that lengths perpendicular to the relative motion are unchanged. The
length-contraction formula applies only to lengths parallel to the relative velocity.

15.6 The Lorentz Transformation

Since lengths perpendicular to relative velocity are the same in both frames, then

y′ = y and z′ = z
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exactly as with the Galilean transformation. and by the length contraction formula
(proper length x′)

x − V t =
x′



or

x′ =  (x − V t)

and with a simple trick

t ′ = 
�

t − V x
c2

�

Collecting all equations we have

The Lorentz Transformation

x′ = y(x − V t)
y′ = y
z′ = z
t ′ = y (t − V x=c2)

9
>>=

>>;

Remark:
These four equations are called the Lorentz transformation or the Lorentz|Einstein
transformation.

and inverse Lorentz transformation

x′ = y(x + V t)
y′ = y
z′ = z
t ′ = y (t + V x=c2)

9
>>=

>>;

Example:A Relativistic Snake

Details on page 613-615 of the textbook.

The resolution of this paradox, and many similar paradoxes, is that two events
that are simultaneous in one frame are not necessarily simultaneous in a di�erent
frame { an e�ect sometimes called therelativity of simultaneity . As soon as
we recognize that the two cleavers fall at di�erent times in the snake’s frame,
there is no longer any problem understanding how they can both contrive to miss
the snake.
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15.7 The Relativistic Velocity-Addition Formula

Consider a particle moving with positionr (t) or r ′(t ′), as seen inS or S′. The defn
of the velocity v is the derivative

v =
dr
dt

Now we can write down the Lorentz transformation and take the di�erences, we �nd

dx′ =  (dx − V dt); dy′ = dy; dz′ = dz; dt′ = 
�
dt − V dx=c2

�

Then ...

relativistic velocity-addition formulas
8
>>>>>>>>><

>>>>>>>>>:

v′
x =

vx − V
1− vxV=c2

v′
y =

vy

1− vyV=c2

v′
z =

vz

1− vzV=c2

15.8 Four-Dimensional Space - Time; Four-Vectors

Rotations of Ordinary Three-Dimensional Space

q =
3X

i =1

qi ei

where
qi = ei · q

To conform this notation, I shall from now on, rename the position vectorr =
(x; y; z) as x = ( x1; x2; x3).

Now consider a new set of unit vectorse′
1; e′

2; e′
3. The componentsq′i are easily found

q′i = e′
i · q = e′

i ·
3X

j =1

qj ej =
3X

j =1

(e′
i · ej ) qj

We can express the eqn above more compactly. LetR be a 3× 3 matrix with
elements

Rij = e′i · e′j
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and q; q′ denote the coordinates

q =

2

4
q1
q2
q3

3

5 and q′ =

2

4
q′1
q′2
q′3

3

5

With these notations, we have
q′ = Rq

R is a 3× 3 rotation matrix.

Lorentz Transformation as \Rotations" of Space-Time

Introduce a fourth coordinate
x4 = ct

wherec guarantees thatx4 has the same dimensions asx1; x2 andx3. Recall� = V=c,
then we can rewrite the Lorentz transformation as

x′
1 = x 1 − �x 4

x′
2 = x2

x′
3 = x3

x′
4 = −�x 1 + x 4

9
>>=

>>;

Four-Vectors

The four numbers x1; x2; x3 and x4 = ct constitute a vector in four-dimensional
space-time. Such vectors are calledfour-vectors . We will be using ordinary italic
letters for four vectors:

q = ( q1; q2; q3; q4) = ( q|{z}
spatial component

; q4|{z}
time component

)

With this notation, the Lorentz transformation can be written in matrix form as

x′ = � x

where � is the 4 × 4 matrix

� =

2

664

 0 0 −�
0 1 0 0
0 0 1 0

−� 0 0 

3

775 [standard boost]

This is not the most general Lorentz transformation. For many purposes, thisstan-
dard transformation is the only one we need to consider.
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Any Lorentz transformation which leaves corresponding axes parallel is called a
pure boost or just boost, since all it does is \boost" us from one frame to another
traveling at constant velocity relative to the �rst, without any rotation. The general
one involves some rotation as well. If the transformation is apure rotation (no
relative motion, just a change of orientation)m thent ′ = t. Thus pure rotation:

� = � R =

2

664

0
R 0

0
0 0 0 1

3

775

whereR is the 3× 3 matrix of the given rotation.

Four-Vector

In each inertial frameS, a four-vector is speci�ed by a set of four numbers
q = ( q1; q2; q3; q4) such that the values in two framesS and S′ are related by
the equationq′ = � q, where � is the Lorentz transformation connectingS and
S′.

Remark:
The great merit of the notion of four-vectors is that it often allows one to check
with almost no e�ort whether a proposed physical law is relativistically invariant.

Any single quantity that is invariant under rotations is called arotational scalar
or a three-scalar ; for example, the massm of an object is a three-scalar, and so
is the time t. In the same way, any single quantity that is invariant under Lorentz
transformations is called aLorentz scalar or four-scalar .

15.9 The Invariant Scalar Product

s′ = x′2
1 + x′2

2 + x′2
3 − x′2

4
=  2 (x1 − �x 4)2 + x2

2 + x2
3 −  2 (−�x 1 + x4)2

=  2 (1 − � 2) x2
1 + x2

2 + x2
3 −  2 (1 − � 2) x2

4
= s

Note that we have 2(1 − � 2) = 1.

So we de�ne aninvariant scalar product in four-space. For any two four-vectors
x; y, we de�ne

x _y = x1y1 + x2y2 + x3y3 − x4y4

Therefore we can say that for any Lorentz transformation �,

x _y = (� x)_(� y)
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15.10 The Light Cone

Figure 15.3: Figure 15.8 in textbook

To help visualize this, it is convenient to ignore one of the spatial dimensions (x3
say), so we can plot the remaining two spatial dimensions horizontally andx4 = ct
vertically up, as in Figure 15.3.

Interior of the Light Cone; Future and Past

Consider a space-time pointP , with coordinates x = ( x ; ct), that lies inside the
forward light cone. t > 0 and r 2 < c2t2 or

(
x4 > 0; and
x2

1 + x2
2 + x2

3 < x 2
4 (or x _x < 0)

Remark:
These two conditions have a remarkable consequence.

• any event occurs atP is later than any event atO, in the frame S in which
our coordinatesx are measured.

• both conditions hold in all frames if they hold in one frame. In other word,
P lies inside the forward light cone is a Lorentz-invariant statement. For
this reason, it is often calledabsolute future .

Similarly, we can have a light cone with its vertex atQ. Any point P on this cone
must satisfy

(xP − xQ)2 = 0
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Exterior of the Light Cone; Space-Like Vectors

The situation is entirely di�erent for a point P that lies outside the light cone.
Condition:

(xP − xQ)2 > c2(tP − tQ)2

or, equivalently

(xP − xQ)2 > 0

This condition is symmetric betweenP and Q.

Proposition 15.1

Let P be any given space-time point outside the light cone of a second given
point Q. Then

1. there exist frameS in which tP > t Q
but

2. there also exist framesS′ in which t ′P = t ′Q
and

3. there also exist framesS′′ in which t ′′P < t ′′
Q

Remark:
This startling proposition implies that the time ordering of any two given events,
each outside the other’s light cone, can be di�erent in di�erent frames: Where
one observer says that eventA occurred before eventB , a second observer can
�nd them the other way around (and a third can �nd them to be simultaneous).
This has profound implications related to the notion ofcausality : If one event
A (an explosion, for instance) is the cause of another eventB (the collapse of a
distant building), then A must obviously occur �rst in time, since causes always
precede their e�ects. ... Therefore, nothing that happens atQ can be the cause
of anything that happens atP , nor the other way around.

No causal inuence can travel faster than the speed of light. Because the region
outside the light cone ofQ is completely immune to anything that happens atQ,
this region is sometimes called the \elsewhere" ofQ.

A four-vector whose fourth component is zero can be described as a pure-space
vector, and one which can be brought into this form by a Lorentz transformation is
called space-like.

With this terminology, we can say that the outside of the light cone is made up all
space-like vectors.
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Time-Like Vectors

Similarly, if a four-vector q lies inside the light cone (q · q < 0), then there exists a
frame S′ in which it has the pure-time form q′ = (0 ; 0; 0; q′4). Naturally, therefore,
we describe vectors inside the light-cone as beingtime-like .

Equivalently (as we shall see), it is any particle for which, at any given time, there
exists a rest frame; that is, a frame in which the particle is at rest, withv = 0.

Remark:
Final Exam Content Ends Here

15.11 The Quotient Rule and Doppler E�ect

The Quotient Rule

Suppose thatx is known to be a four-vector and that, in every inertial frame,
k = ( k1; k2; k3; k4) is a set of four numbers, and suppose further that for every
value ofx the quantity � = k · x = k1x1 + k2x2 + k3x3 − k4x4 is found to have
the same value in all frames, thenk is a four-vector.

Doppler E�ect

Any sinusoidal plane wave has the form

� = A cos(k · x − !t − � )

wherek is called the wave vector, and|k | = 2 �=� . Here we letx = ( x ; ct), then

k · x − !t = k · x

and k denotes the wave four-vector

k = ( k ; !=c )

...

relativistic Doppler formular for light

! =
! 0

 (1 − � cos� )
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15.12 Mass, Four-Velocity, and Four-Momentum

Mass in Relativity

invariant mass and variable mass.

Invariant Mass

The mass,m, of an object, whatever its speed, is de�ned to be its rest mass.

Remark:
It is a Lorentz scalar.

The Proper Time of a Body

world line

The three-dimensional positionx(t) of a body at time t de�nes a point x =
(x(t); ct) in space|time, and, as time advances, this point traces a path, called
the body’s world line.

There is a frame (the body’s rest frame) where the separation is pure time-like, with
dxo = (0 ; 0; 0c dto). The subscript \o" indicates the rest frame.

dto = dt
p

1− v2=c2 =
dt

 (v)

The Four-Velocity

We may as well consider the four-vector

u =
dx
dto

=
�

dx
dto

; c
dt
dto

�

Since this four-velocity is the quotient of a four-vector and a four-scalar, it clearly
is a four-vector. Then we replacedto by dt= , we �nd that

u = 
�

dx
dt

; c
dt
dt

�
=  (v ; c)

Remark:
The most prominent feature of this result is that the three-velocityv is not the
spatial part of the four-velocity u (which is why I called the latter u rather than
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v).

Relativistic Momentum

Instead of using the three-velocityv , suppose we used the four-velocityu to de�ne
the four-momentum of any object of massm as

p = mu = ( m v ; mc )

three-momentump, as the spatial part of it

p = mu = m v

X
pf in =

X
pin (15.5)

Remark:
Since the four-momentump is a four-vector, the same is true of both sides of
(15.5). Therefore, if (15.5) is true in one frameS, it is automatically true in all
frames; that is, our proposed law of conservation of four momentum is compatible
with the postulates of relativity.

Variable Mass

Some physicists like to rewrite the de�nition of the relativistic three momentum by
introducing a variable mass

mvar =  (v)m

with this defn the three-momentum becomes

p = mvar v

Remark:

Pros make the relativistic momentum look like its nonrelativistic counterpart

Cons First, it is not necessarily a good idea to make a new de�nition look like
its older counterpart when there are, in fact, important di�erences. Second, the
introduction of the variable mass fails to achieve a complete parallel with classical
mechanics. Third, unlike the invariant mass, the variable is not a Lorentz scalar.
For all of these reasons, I shall not use the variable mass here.

15.13 Energy, the Fourth Component of Momen-
tum
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Relativistic Energy

The energyE of a freely moving object with four-momentump = ( p; p4) is

E = p4c = mc 2

With this defn,
p = ( p; E=c)

which explains why the four-momentump is also called the momentum-energy four-
vector.

With v � c,

 = [1 − (v=c)2]−1=2 = 1 +
1
2

(v=c)2 + : : :

so the energy

E ≈ mc2 +
1
2

mv2

Mass Energy

let us look again at the relativistic de�nition of the energy of an object,E = mc 2

. Even if the object is at rest, with  = 1, the object still has some energy, given
by E = mc2 (perhaps the most famous equation in all of physics). This energy is
naturally called the rest energy of the object or, since it is associated with the
massm, the mass energy .

Three Useful Relations

� ≡ v
c

=
pc
E

p · p = −(mc)2

E 2 = ( mc2)2 + ( pc)2

15.14 Collisions

Skipped

Threshold Energies

A quantity of great concern to any experimenter hoping to observe this kind of
reaction is the threshold energy.
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15.15 Force in Relativity

Like most introductory texts, I shall avoid the complication of such \heat-like forces"
by con�ning attention to forces that do not change the rest masses of the objects
on which they act.

Of the several conceivable de�nitions of force in relativity, the single most useful is
probably the three-force de�ned as

F =
dp
dt

Remark:
• not the same as the nonrelativistic force

• with this defn, the force on a chargeqin an electromagnetic �led is given
by the Lorentz equation

F = q(E + v × B )

• we can prove the analog of the work-KE theorem

dT = F · dx

by di�erentiating E 2 = ( pc)2 + ( mc2)2.

Potential Energy

It can happen that, at least in one frameS, the forceF on an object is the gradient
of a function U(x).

The Four-Force

We can de�ne the four-force
K =

dp
dto

Remark:
There is no widely accepted notation for the four-force, buyK is one of the several
notations used.

K = ( K ; K 4) =  (F ; v · F=c)

The main disadvantage of the four-force is that it gives the time derivative of mo-
mentum with respect to the proper time, where the three-force gives the derivative
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with respect to the time of any one inertial frame.

15.16 Massless Particles; the Photon

Let's look at the two relations

E 2 =
�
mc2

� 2
+ ( pc)2 and

v
c

=
pc
E

If m = 0, then we have
E = jpjc and v = c

The photon is the particle that carries the energy and momentum of electromagnetic
waves; and experiment shows that, for a photon, E and p do satisfy eqs above and
that photons do always travel (no surprise!) at the speed of light.

With m = 0, the four-momentum of a photon satis�es

p2 = 0

We have seen that the four-momentum of a material particle (that is, a particle with
m > 0) is always forward time-like. By contrast, that of any massless particle lies
on the forward light cone and isforward light-like .

In fact there is a second way to �nd the energy and momentum of the photon.
One of the �rst discoveries (due to Max Planck and Einstein) in the unfolding of
quantum mechanics was that the energy of a photon is related to the frequency of
its associated electromagnetic wave by the famous relation

E = ~!

where~ is Planck's constant (~ = h=2� ) and omega is the angular freq of the wave.
Similarly

p = ~k (15.6)

wherek is the wave vector of the wave. Sincep = ( p; E=c) and the wave four-vector
is k = ( k; !=c ), the two relations imply that

p = ~k

The relation (15.6) is often rewritten in terms of the wavelength� . Sincejkj = 2�=� ,

jpj = ~jkj =
h
�

which is often called thede Broglie relation, ··· ��� WWW ��� ¹¹¹ ��� . I'll rewrite a
photon's four-momentum as follows:

p = ~k = ~
�

k;
!
c

�
=

~!
c

(k̂ ; 1)
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