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Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of AMATH 271 during Fall 2019 as well as other
related resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

These notes are my learning notes from the textbook: Classical Mechanics, by J. R.
Taylor, University Science Books, 2005, along with the course outline of AMATH
271.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Olbelius Fomg
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Newton’s Laws of Motion

1.1 Classical Mechanics

Mechanics is the study of how things move: how a skier moves down the slope. or
how an electron moves around the nucleus of an atom.

Relativistic mechanics to describe very high speed motions and quantum mechanics
to describe the motion of microscopic particles.

1.2 Space and Time

space, time, mass and force.

Space
r =X+ yy + 22 (1.1)

It is sometimes convenient to be able to abbr (1.1) by writing simply

r=(x,y,2) (1.2)

Vector Operations

Differentiation of Vectors

dr . Ar

3 = Am (1.3)

1



2 CHAPTER 1. NEWTON’S LAWS OF MOTION
where

Ar = r(t + At) — r(t) (1.4)
If f(t) is a scalar:

%(fr) = % + %r (1.5)

Time

Reference Frames

Reference Frame

Almost every problem in classical mechanics involves a choice (explicit or
implicit) of a reference frame, that is, a choice of spatial origin and axes to
label positions and a choice of temporal origin to measure times.

In certain special frames, called inertial frames, the basic laws hold true in their
standard, simple form. If a second frame is accelerating or rotating relative to an
inertial frame, then this second frame is noninertial, and the basic laws in particular,
Newton’s laws - do not hold in their standard form in this second frame.

Inertial Frames

An inertial frame is any reference frame in which Newton’s first law holds,
that is, a nonaccelerating, nonrotating frame.

1.3 Mass and Force

The mass of an object characterizes the object’s inertia - its resistance to being
accelerated.

1.4 Newton’s First and Second Laws; Inertial Frames

In this chapter, he is going to discuss Newton’s laws as they apply to a point mass.

Newton’s First Law (the Law of Inertia)

In the absence of forces, a particle moves with constant velocity v.

and



1.5. THE THIRD LAW AND CONSERVATION OF MOMENTUM 3

Newton’s Second Law

For any particle of mass m, the net force F on the particle is always equal to
the mass m times the particle’s acceleration:

F =ma

Momentum is defined as
p=mv

In classical mechanics, we take for granted that the mass m of a particle never
changes, so that
p=mv =ma

Thus the second law can be rephrased to say that
F=p
Differential Equations

Consider Newton’s second law for a particle confined to move along the z axis and
subject to a constant force F,,

Inertial Frames

S denotes a reference frame.

Validity of the First Two Laws

1.5 The Third Law and Conservation of Momen-
tum

Newton’s Third Law

If object 1 exerts a force Fa; on object 2, then object 2 always exerts a reaction
force F15 on object 1 given by

F12 = _F21




4 CHAPTER 1. NEWTON’S LAWS OF MOTION

In absence of external forces, the total momentum of our two-particle system is
constant - a result called the principle of conservation of momentum.

Multiparticle Systems

(net force on particle o) = F, = Z F.s + F>
BF#o

Principle of Conservation of Momentum

If the net external force F** on an N-particle system is zero, the system’s
total momentum P is constant.

Validity of Newton’s Third Law

Therefore, the third law cannot be valid once relativity becomes important.

1.6 Newton’s Second Law in Cartesian Coordi-
nates

Of Newton’s three laws, the one we actually use the most is the second, which is
often described as the equation of motion.

F, =mx
F=mr < {F,=mj

F,=mz

1.7 Two-Dimensional Polar Coordinates

. r
r=—
r|

Since the two unit vectors # and g& are perpendicular in our 2d space, any vector
can be expanded in terms of them.

F = F#+ Fyé

Tedious calculations... (See page 29 of the textbook for details)



1.7. TWO-DIMENSIONAL POLAR COORDINATES 5

Having calculated the acceleration, we can finally write down Newton’s second law
in terms of polar coordinates:

E, = m(i —r¢?)

F=ma «~— . )
{F¢ = m(r¢ + 2r¢)

.. and Newton’s Second Law in Cylindrical Polar:

Eo=m(p - pQAQ).
Fy =m(p + 2p¢)
F,=m:z
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Projectiles and Charged Particles

2.1 Air Resistance

Let us begin by survey some of basic properties of the resistance force, or drag, f
of the air, or other medium, through which an object is moving.

Yous should, however, be aware that there are situations where it' is not certainly
true: The force of the air on an airplane wing has a large sideways component, called
the lift, without which no airplanes could fly.

f=—f(v)o

At lower speeds it is often a good approximation to write
f(w) =bv+cv? = fiin + fouad
where they stand for the linear and quadratic terms respectively,
frin = bv and fouad = v

e The linear term, arises from the viscous drag of the medium and is generally
proportional to the viscosity of the medium and the linear size of the projectile.

e The quadratic term, arises from the projectile’s having to accelerate the mass
of air with which it is continually colliding; it is proportional to the density of
the medium and the cross-sectional area of the projectile.

Reynolds number

is an important parameter that features prominently in more advanced treatments
of motion in fluids. Thus one can relate the ratio fuaq/fun to the fundamental

IThe direction of the force due to motion through the air is opposite to the velocity v

7



8 CHAPTER 2. PROJECTILES AND CHARGED PARTICLES

parameters 7, the viscosity, and p, the density of the fluid. The result is that the ratio
is roughly the same order of magnitude as the dimensionless number R = Duvp/n,
called the Reynolds number. Thus a compact and general way to summarize the
foregoing discussion is to say that the quadratic drag is dominant when R is large,
whereas the linear drag dominates when R is small.

2.2 Linear Air Resistance

mr=mg-—v

Since neither of the forces depends on r, then

mv = mg — bv

Two separate equations on = and y direction respectively (one for v, one for v,).

But if the drag force is quadratic, we then have two coupled DEs are much harder
to solve than the uncoupled equations of the linear case since each equation involves
both of the variables v, and v,.

Horizontal Motion with Linear Drag

Uy = —kv,
Then
Ve (t) = Ae™ = e = e /T
where
T=1/k=m/b
So
z(t) = zoo(1 — e7¥7)

where

Too = UgoT

Vertical Motion with Linear Drag
mv, = mg — b,

Terminal speed:

Vter = b

Then solve the DE above, we get

0y (1) = Vyot T 4 vy (1 — e747)



2.3. TRAJECTORY AND RANGE IN A LINEAR MEDIUM

Then integrate it over ¢t we get y(t)

Y(t) = Vrert + (Vg0 — Vper)T(1 — €7/7)

2.3 Trajectory and Range in a Linear Medium

Combine the results, then we get

z(t)=..., ylt)=...

You can eliminate ¢, then we get

Vyo + Uter X
y= 20+ v,rIn(1—
U$O /UCEOT

2.4 Quadratic Air Resistance

f=—cv*®

Horizontal

use separation of variables

Vertical
. 2
muy = mg — cv
then
mg
Vter = -
c
then
t
V = Ugep tanh( g )
Vter
and

2 t
yzﬁln(cosh(g ))
g Vter



10 CHAPTER 2. PROJECTILES AND CHARGED PARTICLES

Both

mr = mg — cuv

resolves into horizontal and vertical components: ...

which can’t be solved analytically. The only way is numerically.

2.5 Motion of a Charge in a Uniform Magnetic

Field
F=qvxB
then
mu, = qBv,
mv, = —qBu,
muv, = 0
Cyclotron frequency:
qB
Ww=—
m
Then
Uy = Wy
Uy = —W;y

Let’s define a complex number
1 = Uy + 10y
Then
1= —iwn
then
n= Ae !

2.6 Complex Exponentials

Euler’s formula:
0

e’ = cosf +isind

2.7 Solution for the Charge in a B Field

2(t) = 2o + Vsot

and the motion of x and y is most easily found by introducing another complex
number
E=x+y



2.7. SOLUTION FOR THE CHARGE IN A B FIELD 11

In the cyclotron, a device for accelerating charged particles to high energies, the
particles are trapped in circular orbits in this way. They are slowly accelerated by
the judiciously timed application of an electric field. The angular frequency of the
orbit is, of course, w = ¢B/m. The radius of the orbit is

mu P

v
== — = —
w qB ¢B
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Momentum and Angular Momentum

3.1 Conservation of Momentum

Principle of Conservation of Momentum

If the net external force F¢*' on an N-particle system is zero, the system’s
total mechanical momentum P = > m,v, is constant.

3.2 Rockets

A beautiful example of the use of momentum conservation is the analysis of rocket
propulsion.

Equation of Motion for a Rocket
mo = —1Mue, + F&

where —m is the rate at which the rocket’s engine is ejecting mass.

3.3 The Center of Mass

center of mass

Let us consider a group of N particles, « = 1,..., N with masses m, and
positions r, measured relative to an origin O. The center of mass (or CM) of

13



14 CHAPTER 3. MOMENTUM AND ANGULAR MOMENTUM

this system is defined to be the position (relative to the same origin O)

N
R = M;mara

We can now write the total momentum P of any N-particle system in terms of the
system’s CM as follows:

P:Zpa:Zmar'a:MR

One important point to bear in mind is that when the mass in a body is distributed
continuously, the sum goes over to an integral:

1 1

3.4 Angular Momentum for a Single Particle

angular momentum

The angular momentum £ of a single particle is defined as the vector

L=rXxp

.‘/'%2”/////7/’.'"/
| Strictly speaking, refer £ as the angular momentum relative to O.

The time rate of change of £ is easily found:

d

€=~ (rxp)=(fxp)+(r=p)

~{,%);//// 74 //

The first term on the right, p can be replaced by mr, and it’s zero since two
vectors are parallel, In the second term, replace p by the net force F on the
particle, then we get:

b=rxF=T

Here IT" denotes the net torque about O on the particle.



3.5. ANGULAR MOMENTUM FOR SEVERAL PARTICLES 15

Kepler’s Second Law

As each planet moves around the sun, a line drawn from the planet to the sun
sweeps out equal areas in equal times.

The area of the triangle is
1
dA = §|I' XV dt|
Replacing v by p/m and dividing both sides by dt, we find that

dA 1 « pl 1 ’

— = ——|T —_

dt  2m P 2m
where ¢ denotes the magnitude of the angular momentum £ = r x p. Thus dA/dt
is constant. O

3.5 Angular Momentum for Several Particles

total angular momentum

N N
L= Z a — oy X Pa
a=1 a=1
By differentiating w.r.t ¢, we get '
L — Iwe:pt

In particular, if the net external torque is zero, we have the

Principle of Conservation of Angular Momentum

If the net external torque on an N-particle system is zero, the system’s total
angular momentum L is constant.

The Moment of Inertia

Specifically, if we take the axis of rotation to be the z axis, then L., the z component
of angular momentum, is just L, = [w, where I is the moment of inertia of the
body for the given axis, and w is the angular velocity of rotation.
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Energy

4.1 Kinetic Energy and Work

kinetic energy

or KE .
T=§mv2
dar 1 d 1. : :
E—ima(v-v)—ém(v-v—irv-v)—mv-v—F-v
— dI'=F -dr
e\/}//‘;%?)/fl // /

The expression on the right is defined to be the work done by the force F in
the displacement dr. Thus we have proved the work-KE theorem:

Theorem 4.1: Work-KE theorem

The change in the particle’s kinetic energy between two neighbouring points
on its path is equal to the work done by the net force as it moves between the
two points.

4.2 Potential Energy and Conservative Forces

The gravitational force of the sun on a planet (position r relative to the sum):

Fr) = -2




18 CHAPTER 4. ENERGY

Conditions for a Force to be Conservative

A force F acting on a particle is conservative if and only if it satisfies two
conditions:

1. F depends only on the particle’s position r (and not on the velocity v,
or the time ¢, or any other variable); that is F = F(r).

2. For any two points 1 and 2, the work W (1 — 2) done by F is the same
for all paths between 1 and 2.

) 4
-,%//zr/k,/

The reason for the name “conservative” and for the importance of the concept is
this: If all forces on an object are conservative, we can define a quantity called
the potential energy (or just PE), denoted U(r), a function only of position, with
the property that the total mechanical energy

E=KE+PE=T+U(r)

is constant; that is £ is conserved.

potential energy

at an arbitrary point r, to be

Ulr)=-W((r,—>r)= /rF(r') -dr’

Several Forces

The change in the mass’s kinetic energy is

AT = Wgrafu + Wspr = _<AUg7’aU + AUSPT)

Nonconservative Forces

AT =W = Wcons + Wnc
AE = AT+ U) = Wy

4.3 Force as the Gradient of Potential Energy

We have seen the PE U(r) corresponding to a force F can be expressed as an integral
of F. This suggests that we should be able to write F as some kind of derivative of



4.4. THE SECOND CONDITION THAT F BE CONSERVATIVE 19

Ul(r).

e ,7//3/////?/

The important relation gives us the force F in terms of derivatives of U. When
a force F' can be expressed in the form above, we say that F is derivable from
a potential energy.

veil 152 422
- T ox yay 0z
df =V f-dr

4.4 The Second Condition that F be Conservative

There is a simple test, which can be quickly applied to any force that is given in
analytic form. This test involves another of the basic concepts of vector calculus,
this time the so-called curl of a vector.

It can be shown via Stokes’s theorem that a force F has the desired property, that
the work it does is independent of path, if and only if

VxF=0

everywhere.

4.5 Time-Dependent Potential Energy

We sometimes have occasion to study a force F(r,t) that satisfies the second con-
dition to be conservative (V x F = 0), but, because it is time-dependent, does not
satisfy the first condition.

4.6 Energy for Linear One-Dimensional Systems

The remarkable feature of one-dimensional systems is that the first condition already
guarantees the second, so the latter is superfluous.

A second useful feature of one-dimensional systems is that with one independent
variable (z) we can plot the potential energy U(x), and, as we shall see, this makes
it easy to visualize the behavior of the system.

1
U = 5]61’2



20 CHAPTER 4. ENERGY

for any spring obeying Hooke’s Law.

A third remarkable feature of one-dimensional conservative systems is that we can
— at least in principle — use the conservation of energy to obtain a complete solution
of the motion, that is , to find the position z as a function of ¢.

We can solve for T'= imi? = E — U(x) and hence for the velocity @ as a function

of x: ?
i(x) = i\/g\/E —U(x)

4.7 Curvilinear One-Dimensional Systems

There are other systems that can equally be said to be one-dimensional, inasmuch
as their position is specified by a single number.

4.8 Central Forces

If we take the force center to be the origin, a central force has the form

where f(r) gives the magnitude of the force.

The Coulomb force has two additional properties not shared by all central forces:
1. conservative
2. spherically symmetric or rotationally invariant.

A compact way to express the second property is f(r) = f(r).

A remarkable feature of central forces is that the two properties just mentioned
always go together. The most direct proofs involve the use of spherical polar coor-
dinates.

4.9 Energy of Interaction of Two Particles

The force Fis:
Gmlmg

Fio = — -
2 r — r2’3<r1 r2)

Any isolated system must be translationally invariant.



4.10. THE ENERGY OF A MULTIPARTICLE SYSTEM

4.10 The Energy of a Multiparticle System

kinetic energy T
I'=T1+To+1T3+1T,

We can prove in general

—V U = (net force on particle «)

21
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Oscillations

5.1 Hooke’s Law

Exponential Solutions

x(t) = O™ + C — 2"
superposition principle
Sine and Cosine Solutions

x(t) = By cos(wt) + By sin(wt)

where

Bl = Ol + Cg and B2 = Z(Cl - Cz)

23



24 CHAPTER 5. OSCILLATIONS

The Phase-Shifted Cosine Slution

A=,/B} + B}

z(t) = Acos(wt — 0)

SO

Solution as the Real Part of a Complex Exponential

z(t) = Re Ce™! = Re Ae'@t%)

Energy Considerations
1 2 1 2 2
U= élm = §kA cos”(wt — 0)

1 1 1
T = §m:1'72 = EmuJQA2 sin?(wt — 0) = ikAQ sin?(wt — )
Thus

E:T+U:%kA2

5.3 Two-Dimensional Oscillators

In two or three dimensions, the possibilities for oscillations are considerably richer
than in one dimension. The simplest possibility is the so-called isotropic harmonic
oscillator, for which the restoring force is proportional to the displacement from
equilibrium, with the same constant of proportionality in all directions:

F=—kr

In the anisotrophic oscillator, the components of the restoring force are proportional
to the components of the displacement, but with different constants of proportion-
ality.

5.4 Damped Oscillations

mI +bx+kx=0



5.5. DRIVEN DAMPED OSCILLATIONS 25
wo: natural freq

i+ 281 +wizr =0
For further discussions, please consult the book or AMATH 251 notes.

5.5 Driven Damped Oscillations

mi + bt + kx = F(t)

wo: natural freq
i+ 287 +wir = f(t)

For further discussions, please consult the book or AMATH 251 notes.

A2 — fg
(W3 — w?)? + 45%w?

5.6 Resonance

wo = v/ k/m = natural frequency of undamped oscillator

wy = \/w? — %2 = frequency of damped oscillator
w = frequency of driving force

wy = \/wg — 22 = value of w at which response is maximum.

In any case, the maximum amplitude of the driven oscillations is found by putting
wWp ~ w to give
o

Amaa: ~
2fwo

Width of The Resonance; the () factor

We can define the width (or full width at half maximum or FWHM) as the interval
between two points where A2 is equal to half its maximum height.

FWHM = 283

For many purposes, we want a very sharp resonances, so it is common practice to
define a quality factor () as the reciprocal of this ratio:

Wo
T
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Calculus of Variations

6.1 Two Examples

The calculus of variations involves finding the minimum or maximum of a quantity
that is expressible as an integral. Two examples: The shortest path between two
points and Fermat’s Principle.

Since our concern is how infinitesimal variations of a path change an integral, the
subject is called the calculus of variations. For the same reason, the methods we
shall develop are called variational methods.

6.2 The Euler-Lagrange Equation

We have an integral of the form
S= [ ey @), i
1

where y(z) is an as-yet unknown curve joining two points (z1,y1) and (z2, yo), which
1s

y(x1) =1 and  y(x2) = yo

e ///3 77202 //

To be definite, we shall suppose that we wish to find a minimum.

Notice that the function f is a function of three variables f = f(y,vy,z), but
because the integral follows the path y = y(z) the integrand f[y(x),y'(x),x] is
actually a function of just the one variable z.

Let us denote the correct solution to our problem by y = y(x). It is convenient to

27



28 CHAPTER 6. CALCULUS OF VARIATIONS

.

write the “wrong” curve Y (z) as

Y(x) = y(x) +n(z)

where 7(z) is just the difference between the wrong Y (z) and the right y(x). Since
Y (z) must pass the endpoints 1 and 2, n(z) must satisfy

n(z1) =n(x2) =0
There are infinitely many choices for n(z).

The integral S taken along the wrong curve Y (z) must be larger than that along the
right curve y(x), no matter how close the former is close to the latter. To express
this requirement, I shall introduce a parameter « and redefine Y (z) to be

Y(x) = y(z) + an(x)

Denote the integral by S(a). Minimum is achieved at o = 0. To ensure this, we
must just check that the derivative is zero when a = 0.

S(a)= [ fYY, z)dz

= fly+an,y +an, x)dx

x1

Now we differentiate it with respect to . First, evaluate g_f

Ofly+oany' +on,x) f+n of
Oa 8y oy’

and for dS/da (which has to be zero)
ds 20f of  ,of
— = ——dx = — d
do /gc1 90"’ /m1 <77 dy K 83/ ) v=0

Use IBP, the second term:

v 0 0
IRCE- o

Then

=oom o d () oo d (0
-/ ”@)%(a—i)“:‘/ 77@)%(8_;)%

This condition must be satisfied by any choice of the function n(z). Therefore, the
factor in parentheses must be zero:
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FEuler-Lagrange Equation

for all z (in the relevant interval [z, z2)).

6.3 Applications of E-L equation

gjmw%% Shortest Path between Two Points

... Then 3y’ = constant. Thus y(z) = mxz+b, and we have proved that the shortest
path between two points is a straight line.

(g)fw/%% The Brachistochrone

A famous problem in the calculus of variations is this: Given two points 1 and
2, with 1 higher above the ground, in what shape should we build a frictionless
roller coaster track so that a car released from point 1 will reach point 2 in the
shortest possible time? This problem is called the brachistochrone problem, from
the Greek words brachistos meaning “shortest” and chronos meaning “time.”

Maximum and Minimum vs. Stationary

The E-L equation guarantees only to give a path for which the original integral is
stationary.

some discussion...

However, it should be clear that, in general, deciding what sort of stationary path
the E-L equation has given us can be tricky.

Fortunately for us, these questions are irrelevant for our purposes. We shall find
that for the applications in mechanics all that matters is that we have a path which
makes a certain integral stationary. It simply doesn’t matter whether it gives a
maximum, minimum, or neither.

6.4 More than Two Variables

If there are n dependent variables in the original integral, there are n E-L equations.
For instance, an integral of the form

5 - /  F ), (), o (), ¥ (), ] du
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with two dependent variables [z(u) and y(u)] is stationary w.r.t variations of x(u)
and y(u) iff these two functions satisfy the two equations

of _dof 4 9 _d09f
or  dudx dy  dudy

The indep. var in Lagrangian mechanics is the time ¢. The dep vars are the coordi-
nates that specify the position of a system, and are usually denoted by ¢, ¢o, . . ., ¢n-
Because the coordinates ¢, ...,q, can take on so many guises, they are often re-
ferred to as generalized coordinates. It is often useful to think of the n generalized
coordinates as defining a point in an n-dimensional configuration space, each of
whose points labels a unique position of the system.

The ultimate goal in most problems in Lagrangian mechanics is to find how coordi-
nates vary with time.



Lagrange’s Equations

The Lagrange’s formulation has two important advantages over the earlier Newto-
nian formulation. First, Lagrange’s equations, unlike Newton’s, take the same form
in any coordinate system. Second, in treating constrained systems, such as a bead
sliding on a wire, the Lagrangian approach eliminates the forces of constraint.

7.1 Lagrange’s Equations for Unconstrained Mo-
tion

Consider a particle moving unconstrained in 3-d, subject to a conservative net force
F(r). Kinetic energy:

1
T = imvz = —mi? = 5m(;'n? + 97 + 2%
and PE:

U=U(r)=Ul(x,y,2)

The Lagrangian function, or just Lagrangian, is defined as

==

%3/// /7‘//.[

Notice first the Lagrangian is the KE minus the PE, not the same as the total
energy. Notice also that I am using a script £ for the Lagrangian and that £
depends on the particle’s position and its velocity; that is £ = L(x, vy, 2, , 9, 2).
Consider two derivatives
oL ou
—_— = —— = Fx
Ox Ox

31
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and
08 _ ot
o 0%

=M = p,

Diff second eq w.r.t time, together with Newton’s second law, F, = p,, then

oL d ol

Then same for y and z. Thus we have shown Newton’s second law implies the three
Lagrange equations (in Cartesian coordinates so for):

oL _doL ot _dor ot do
ox dtoi’ Oy dt oy’ 0z  dt 03

Hamilton’s Principle

The actual path which a particle follows between two points 1 and 2 in a given
time interval, ¢; to o, is such that the action integral

t2
S:/ L dt
t1

is stationary when taken along the actual path.

So far, we have proved for a single particle that the following three statements are
exactly equivalent:

1. A particle’s path is determined by Newton’s second law F = ma.

2. The path is determined by the three Lagrange equations, at least in Cartesian
coordinates.

3. The path is determined by Hamilton’s principle.
"i%/////?/."

There is one point about our derivation of Lagrange’s equations that is worth
keeping at the back of your mind. A crucial step in our proof was the observation
that (7.1) was equivalent to Newton’s second law, which in turn is true only if
the original frame in which we wrote down £ =T — U is inertial.

gm/% One Particle in Two Dimensions; Cartesian Coordinates

The Lagrangian for a single particle in 2d is

1
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The two Lagrange equations can be rewritten as follows:
0L  d oL e P i
or  dt 0i n e
< F =ma

oL d oL — .
_— = —— = m

By di 9y y =Y

When we use generalized coordinates ¢, ..., ¢,, we shall find that 25, although

9g;’
not necessarily a force component, plays a role similar to a force. Similarly, g—é,
although not necessarily a momentum component, acts very like a momentum. For
this reason we shall call these derivatives the generalized force and generalized
momentum respectively; that is

0L
S (ith component of generalized force )
4
and
0L . .
2 = (1th component of generalized momentum)
4
With each notations, each of the Lagrange equations
0L  d oL
dg;  dt O

takes the form

(generalized force) = (rate of change of generalized momentum)

%@m%é One Particle in Two Dimensions; Polar Coordinates

The Lagrangian

The r Equation

oc_doc
or  dt or
o oU  d
2 OV _ @ _
mrao 5 pm (mr) = mf

and _%_[7{ is just F;., then

The ¢ Equation

is (by substitution)
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Similarly ...

_1oU
°T oo}
... Therefore, the ¢ equation states that

dL

r=-—-
dt

where I is the torque, L is the angular momentum.

. 7//3 /////?/.'

The last equation illustrates a wonderful feature of Lagrange’s equations, that
when we choose an appropriate set of generalized coordinates the corresponding
Lagrange equations automatically appear in a corresponding natural form.

This example illustrates another feature of Lagrange’s equations (in general): The

ith component of the generalized force is g—;. If this happens to be zero, then the
Lagrange equation

0L  d oL

dg;  dt 0

says simply that the ith component g—; of the generalized momentum is constant,
or conserved.

7.2 Constrained Systems; an Example

Two familiar examples: bead threaded on a wire and rigid body, whose individual
atoms can only move in such a way that the distance between any two atoms is
fixed.

Consider the simple pendulum shown in Figure 7.1. massless rod, pivoted at O and
free to swing without friction in xy plane.

We can express all quantities of interest in terms of ¢. Then the Lagrangian is

1 .
L=T-U= éml2¢2 —mgl(1 — cos ¢)

If we choose the angle ¢ as our generalized coordinate, the Lagrange’s equation reads

oL  d oL
oo dt 9¢
d . .
—mglsin g = — <m12¢> = ml%¢
dt
Referring to Figure 7.1, LHS is just the torque I" exerted by gravity on the pendulum,
while the term ml? is the pendulum’s moment of inertia /. Since ¢ is the angular

acceleration «, we see that Lagrange’s equation for the simple pendulum simply
reproduces the familiar result I' = Ia.
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Figure 7.1: A simple pendulum.

The bob of mas m is constrained by the rod to remain distance ! from O.

7.3 Constrained Systems in General

Generalized Coordinates

An arbitrary system of N particles, « = 1,..., N with positions r,. q1,...,q,, and
possibly with time ¢,

ro =To(q,- -, qn,t) [a=1,...,N] (7.2)

and conversely
qi:qi<r17"'7r]\77t> [121,,71]

In addition, we require that the number of the generalized coordinates (n) is the
smallest number that allows the system to be parameterized in this way.

The double pendulum shown in Figure 7.2 has two bobs, both confined to a plane.

b1
l

Figure 7.2: Double Pendulum
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These four Cartesian coordinates can be expressed in terms of the two generalized
coordinates ¢ and ¢,.

r = (ll sin ¢1, ll CcOSs ¢1) =TI (¢1)

and
ro = (I sin ¢y + Iy sin ¢y, 1 oS Py + lg cOs ¢2) = 12 (¢1, P2)

We shall some times describe a set of coordinates ¢, . . ., ¢, as natural if the relation
(7.2) between the Cartesian coordinates r,, and the generalized coordinates does not
involve time ¢t. Fortunately, as the name implies, there are many problems for which
the most convenient choice of coordinates is also natural®.

Degrees of Freedom
When the number of degrees of freedom of an N-particle system in 3 dimensions is

less than 3N, we say that the system is constrained.

In all of the examples so far, the number of freedom was equal to the number of
generalized coordinates needed to describe the system’s configuration. A system
with this natural-seeming property is said to be holonomic?.

holonomic

A holonomic system has n degrees of freedom and can be described by n
generalized coordinates, ¢, ..., qx.

Holonomic systems are easier to treat than nonholonomic.

For any holonomic system with generalized coordinates ¢y, ..., g, and potential en-
ergy U(qi, ..., qn,t), the evolution in time is determined by the n Lagrange equations
oL d oL ,
= —— [i=1,...,n]

7.4 Proof of Lagrange’s Equations with Constraints

We must recognize there are two kinds of forces on the particle:

1. the forces of constraint. In general, these forces are not necessarily conserva-
tive, but this doesn’t matter.

2. All the other “nonconstraint” forces on the particle, such as gravity.

INatural are sometimes called scleronomous, and those are not natural, rheonomous.
2Many different defns can be found, not all of which are exactly equivalent
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7.5 Examples of Lagrange’s Equations

The Lagrangian method is so important that it certainly deserves more than just
five examples. However, the crucial thing is that you work through several examples
yourself; therefore the author has given plenty of problems at the end of the chapter.
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g%n%% Atwood’s Machine

my

mo

?5@@% A Particle Confined to Move on a Cylinder

A

These two examples illustrate the steps:

1. Write down £ =T — U using any convenient inertial reference frame.

2. Choose a convenient set of n generalized coordinates ¢y, . . ., ¢, and find expres-
sions for the original coordinates of step 1 in terms of your chosen generalized
coordinates.

3. Rewrite £ in terms of qq,...,q, and q1, ..., ¢n-

4. Write down the n Lagrange equations.
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7.6 Generalized Momenta and Ignorable Coordi-
nates

As previously mentioned, generalized forces and generalized momenta. Then the
Lagrange equation can be rewritten as

d
F=2p,
a?

When the Lagrangian is independent of a coordinate g;, that coordinate is sometimes
said to be ignorable or cyclic.

The result: “L is independent of a coordinate ¢;” is equivalent to saying “L is
unchanged, or invariant, when ¢; varies (with all the other ¢; held fixed).” This
connection between invariance of £ and certain conservation laws is the first of
several similar results relating invariance under transformations to conservation laws.
These results are known collectively as Noether’s theorem. The author shall
return to this theorem in Section 7.8.

7.7 Conclusion

Two great advantages:

e Unlike the Newtonian version, it works equally well in all coordinate systems
and

e it can handle constrained system easily, avoiding any need to discuss the forces
of generalized coordinates.

7.8 More about Conservation Laws*

*Advanced section. This is needed for Section 11.5 and Chapter 13.

Conservation of Total Momentum

One of the most prominent features of an isolated system is that it is translationally
invariant; that is if we transport all N particles bodily through the same displace-
ment €, nothing physically significant about the system should change.

We reach the conclusion that, provided the Lagrangian is unchanged by the trans-
lation r; — r; + €, the total momentum of the N-particle system is conserved. The
connection between transnational invariance of £ and conservation of total momen-
tum is another example of Noether’s Theorem.
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Conservation of Energy

Detailed discussion in page 270 of the textbook.

H= Zpi% - L
i=1

With this terminology, we can state the following important conclusion:

If the Lagrangian £ does not dependent explicitly on time (that is, 25 = 0),

) Dt
then the Hamiltonian H is conserved.

As we shall see in Chapter 13, the Hamiltonian H is the basis of the Hamiltonian
formulation of mechanics, in just the same way that £ is the basis of Lagrangian
mechanics.

For the moment, the chief importance of our newly discovered Hamiltonian is that
in many situations it is in fact just the total energy of the system. Specifically,
we shall prove that, provided the relation between the generalized coordinates and
Cartesians is time-independent,

oy = ra(qla cee 7Qn)7
the Hamiltonian J is just the total energy,
H=T+U.

I See Page 271 of textbook. O
e‘{%/l?/{?/}’/ﬁ
e Thus we now see that time independence of the Lagrangian implies conser-

vation of energy.

e Thus the result we have just proved is that invariance £ under time transla-
tions is related to energy conservation, in much the same way that invariance
of £ under translations of space (r — r + €) is related to conservation of
momentum.

Both results are manifestations of Noether’s famous theorem.

7.9 Lagrange’s Equations for Magnetic Forces™

*This section requires a knowledge of the scalar and vector potentials of electromag-
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netism. Although the ideas described here play an important role in the quantum-
mechanical treatment of magnetic fields, they will not be used again in this book.

Defn and Nonuniqueness of Lagrangian

Lagrangian — a General Defn

For a given mechanical system with generalized coordinates ¢ = (q1,. .., qn),
a Lagrangian £ is a function £(q1,...,qn,q1, .- ., dn,t) of the coordinates and
velocities, such that the correct equations of motion for the system are the
Lagrange equations

9L d oL
dg;  dt O

[i=1,...,n]

%2////7//

In other words, a Lagrangian is any function £ for which Lagrange’s equations
are true for the system under consideration.

Old defn fits this new defn, but the new defn is much more general. In particular,
new defn does not define a unique £.

The crucial point is that ant function £ which gives the right equation of motion
has all of the features that we require of a Lagrangian and so is just as acceptable
as any other such function £.

Lagrangian for a Charge in a Magnetic Field

Note that this part won’t be tested on the AMATH 271 exam according to the offering
in Fall 2018.

A particle, mass m charge ¢, electric and magnetic fields E and B. Then Lorentz
force, with Newton’s second law

mi = q(E 47 x B)

p=mv+qA

Generalized momentum = mechanical momentum + magnetic momentum
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Two-Body Central-Force Problems

8.1 The Problem

Two point particles, m; and my. Positions r; and ry/ The only forces Fio and Foy
of their mutual interaction, conservative and central. Thus potential energy

Gmim
U(I‘l,rg): 177

_|I'1—1“2|

For the electron and proton in hydrogen atom, the potential energy is the Coulomb
PE of the two charges (e for the proton and —e for the electron),

ke?

_\Tl—r2|

U(I’l, I'Q) =

In both examples, U only depends on magnitude |[r; — ry|, and we can write

U(ry,rg) = U(|ry — 1)

To take advantage of the equation above, we introduce a new variable

r=r; — Ty
The U depends only on the magnitude r of relative position r,

U=U(r)

Problem We want to find the possible motions of two bodies, whose Lagrangian
is

1 1

43
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my

@)

Figure 8.1: The center of mass of the two bodies
8.2 CM and Relative Coordinates; Reduced Mass

center of mass (CM)

mir; +mere  MTy + Mol

R = —
my + Mo M

In Section 3.3, total momentum of the two bodies is the same as the total mass
M = my + mo were concentrated at CM and were following the CM as it moves:

P = MR

It’s extremely obvious in Figure 8.1 that

r1:R+%r and r2:R—Mr

Thus the kinetic energy is

1
1 . m 2 . m 2
=g ([ ] e )
1 . 1Mo
_ = MR2 felta 2)
2 ( Tt

The result simplifies further if we introduce the parameter
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reduced mass

mims mims
n = =
M mq + Mo

which has the dimensions of mass and is called the reduced mass. If m; < mo,
then p is very close to m;.

1 .. 1
T = -MR*+ — 1
2 T

%2////7//

This remarkable result shows that the kinetic energy is the same as that of two
“fictitious” particles, one of mass M moving with the speed of the CM, and the
other mass p (reduced mass) moving with the speed of the relative position r.
Even more significant is the corresponding result for the Lagrangian:

1 1
L=T-U= 5MR2 + <§uf2 - U(r)) = Lem + Ly

8.3 The Equations of Motion

Because £ is independent of R, the R equation is especially simple,
MR =0 or R = const

We can explain this result in several ways: First, it is a direct consequence of
conservation of total momentum. Alternatively, we can view it as reflecting that £
is independent of R.

The Lagrange eqn for r is a little less simple but equally beautiful:

pt = —=VU(r)

The CM Reference Frame

Because R =const, we can choose an inertial reference frame, the so-called CM
frame, in which the CM is at rest and the total momentum is zero. In this frame
R =0 and £, = 0. Thus in the CM frame

1
L=Ly= g,ﬁ —U(r) (8.1)

and the problem really is reduced to a one-body problem.
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Conservation of Angular Momentum

In any frame,
L=r; Xp1+r: Xp2
= Mmyry X I"l + Mmalry X I"Q
In CM frame, set R = 0:

mo my

r, = Mr andry, = —Mr
Then e . .
L= e (mar X 4 myr X 1)
=r X ur

The most remarkable thing about this result is that the total angular momentum
in the CM frame is exactly the same as the angular momentum of a single particle
with mass p and position r.

The Two Equations of Motion

The obvious choice is to use r and ¢, then Lagrangian (8.1) is

1 .
L= sp(* +r°¢%) = U(r)
Since the Lagrangian is independent of ¢, the coordinate ¢ is ignorable, and the
Lagrange equation corresponding to ¢ is just
oL doL . oL .

—=_—" — 0= —(w?p) = = = r’*p = const =/ equation
96~ dt 0 77 (1 9) 05 " ¢ [¢ eq ]
Since ,urzgz.ﬁ is the angular momentum ¢, the ¢ equation is just a statement of con-

servation of angular momentum.

The Lagrange equation corresponding to r (often called the radial equation) is

oc _doc
or  dt or
or

. dU .
pr == +  urg?
T N~
v Centrifugal
Gravity

8.4 The Equivalent One-Dimensional Problem

Our main use for the ¢ equation is to solve it for ¢,
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which will let us eliminate ¢ from the radial equation in favor of the constant £.
Then the radial eqn can be rewritten as

. du ., dU
= — = —— F
wr o +MT’¢ ar + cf

where Fi; is the centrifugal force. This equation has the form of Newton second law
for a particle in one dimension, subject to the actual force —% plus the centrifugal
force.

L, 0
FC e = —
f=Hro 3

Even better, we can now express the centrifugal force in terms of a centrifugal
potential energy,

e d [ 2 _ dUy
T ar 2ur?)  dr

Now we can rewrite the radial equation in terms of U.; as

i = = 1U() + Ueg(r)] = = Usg (1)

where the effective potential energy U.;(r) is the sum of the actual potential
energy U(r) and the centrifugal U.s(r).

(Gfmﬁ%é Effective Potential Energy for a Comet

Since planetary motion was first described mathematically by the German as-
tronomer Johannes Kepler, 1571-1630, this problem of the motion of a planet or
comet around the sun (or any two bodies interacting via an inverse-square force)
is often called the Kepler problem.

The actual gravitational potential energy of the comet is given by the well-known
formula

Gmim
Ulr) = ————2
r
The total effective potential energy is
Gmimes 2

Ueff(r) - - r 2MT2
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Energy

Conservation of Energy

To find the details of the orbit, we must look more closely at the radial equation. If
we multiply both sides by 7,

d (1 . d 1 .
P (5#7“2) = —EUeff(T) = 5/“”2 + Ueps(r) = const.

In fact, this result is just conservation of energy. If we replace U.ss and ¢, we see

that

1 1 1 .
5”7;2 + Uer(1) = §,u7'"2 + §,u7”2gz52 +U(r)

=k

(8.2)

(gjiazﬁ%/&f Energy Considerations for a Comet or Planet

Examine again the previous example and by considering its total energy FE, find
the equation determines the max/min dist of the comet from the sun.

In the energy equation (8.2) the term %WQ on the left is always greater than or
equal to zero. Therefore, the comet’s motion is confined to those regions where

E > Uess. Two cases:
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Energy

8.5

1. E > 0. A comet with this energy can move anywhere above the curve of

Uess(r), but nowhere that the line is below the curve.

Uesf(Tmin) = E

If the comet is initially moving toward the sun, then it will continue until
it reaches ryin, where » = 0 instantaneously. It then moves outward, and
since there are no other points at which 7 can vanish, it eventually moves
off to infinity, and the orbit is unbounded.

. E < 0. Trapped between these two values of r. bounded orbit.

E = min U,ss(r), the two turning points coalesce, and the comet is trapped
at a fixed radius and moves in a circular orbit.

The Equation of the Orbit

The radial equation determines r as a function of ¢, but for many purposes we would
like to know r as a function of ¢.

First write the radial eqn in terms of forces:

£2

i p ®
pit = F(r) + s

where F(r) is the actual central force, F' = —dU/dr, and the second term is the
centrifugal force.
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Two tricks:
1. rewrite the equation in terms of ¢ and make the substitution u = %
2. rewrite the diff operator d/dt in terms of d/d¢ using the chain rule.

d_dpd _d _ L d _tud
dt  dtde  Tde  prideé  p do

Sub back into the radial eqn we find

2u? d*u R0TE:

——— =F+
p do? I

or

8.6 The Kepler Orbits

Let us now return to the Kepler problem, the problem of finding the possible orbits
of a comet or any other object to an inverse-square force. To include both cases
(gravitational force, Coulomb force),

where v is the “force constant”.
Inserting it into (8.3), we find u(¢) must satisfy

u'(9) = —u(9) +

The general solution for u(¢)

u(p) = %—}—Acosgb: f;—g(l—i—ecosgb)

I shall introduce new length

c=—
TH

in terms of which our solution becomes
(o)

B c
" 1+ecoso
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The Bounded Orbits

A glance at 8.4 shows this behavior is very different according as e < 1 or € > 1.

C

With € < 1, r(¢) oscillates between ryin = 15 and Tmax = 1%

1+€

7 = rmin: perihelion T H &, when ¢ = 0 and 7 = rp.: aphelion & H &, when

¢ =m.

Rewrite (8.4) in Cartesian coordinates:

where

Observe that

is the defn of eccentricity of the ellipse. That is, € is the eccentricity.

Thus the position of the sun is one of the ellipse’s two focuses. and we have now
proved Kepler’s first law, that the planets follow orbits that are ellipses with the
sun at one focus.

The Orbital Period; Kepler’s Third Law

Together with Kepler’s second law,
dA  /

%—ZM

We find that )
g Am a3

GMsun
This is Kepler’s third law:for all bodies orbiting the sun, the square of period is
proportional to the cube of the semimajor axis.

(8.5)

T

Relation between Energy and Eccentricity

E = Uesy(Tmin) 2
_ T2
Tmin:L :>E—2€2( 1)
1+e€

which is equally valid for bounded and unbounded orbits.
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8.7 The Unbounded Kepler Orbits

Unbounded: € > 1 and £ > 0.

Te-L R hyperbola (e > 1)
T =~ \\/
\\\\ \\
S~ N
~ o \
\\ N\
parabola (e = 1) SN
\\ N
\\\

ellipse (0 < e < 1)

circle (e = 0) -

Figure 8.2: Four different Kepler orbits

eccentricity energy orbit
0 <0 circle
(0,1) <0 ellipse

1 0 parabola

> 1 > (0  hyperbola

8.8 Changes of Orbit

In this final section, I shall discuss how a satellite can change from one orbit to
another.

perigee and apogee

C1 o Co
1 +ecos(po—01) 14 ercos(po — 02)

r1(¢0) = 1r2(¢0) =



8.8. CHANGES OF ORBIT
A Tangential Thrust at Perigee

vy = Avy, where X is the thrust factor. Unlikely, it will be negative.

by =N, — 02:)\201 — 62:)\2€1+()\2—1)

93
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Mechanics in Noninertial Frames

Not studied in AMATH 271.
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Rotational Motion of Rigid Bodies

Not studied in AMATH 271.

o7
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Coupled Oscillators and Normal Modes

Not studied in AMATH 271.

29



This page intentionally left blank



12

Nonlinear Mechanics and Chaos

Not studied in AMATH 271.
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Hamiltonian Mechanics

13.1 The Basic Variables

L :L(Qh"'7qn7q‘17"'7q.n7t) =T-U

The n coordinates (g1, - . ., ¢,) define a point in an n-dimensional configuration space.
The 2n coordinates (qi, - . ., qn, ¢1, - - - , §») define a point in state space, and specify a
set of ICs that determine a unique soln of the n 2nd order DEs of motions, Lagrange’s
eqns.

Recall we also define generalized momentum
0L
94

and it’s also called the canonical momentum or the momentum conjugate to g;.

Di

Hamiltonian function or just Hamiltonian 3 is defined as
H=) piti— L
i=1

In Section 7.8, we proved that , provided generalized coordinates are “natural”
(that is, the relation between the ¢’s and the underlying Cartesian coordinates is
time independent), H is just the total energy of the system and is, therefore, familiar
and easy to visualize.

Second important difference between Lagrangian and Hamiltonian. In Hamiltonian.
we shall use

(QI7“'JQH7p17"'7pn)

which is usually called phase space.

Like Lagrange’s approach, Hamilton’s is best suited to systems that are subject to
no frictional forces.
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13.2 Hamilton’s Equations for 1d Systems

L=L(q,q) =T(q,4) —Ulq)

General result in Section 7.8 that the Lagrangian for a conservative system with
“natural” coordinates (1d here) has the general form:

) 1 )
L=2L(g,d)=T—-U=5A@)q" = Ulq) (13.1)
Then Hamiltonian reduces to
H=pjg—L (13.2)

Given the form (13.1) of £, we can calculate the generalized momentum p as

= 9% _ A (13.3)

p*a—q*

so that pg = A(q)¢*> = 2T. Sub into (13.2), we find that
H=pj—L=T+U

JH for the “natural” system considered here is precisely the total energy.

The next step is to set up the Hamiltonian formalism. We can solve (13.3) for ¢ in
terms of ¢ and p:

q= m = Q<Q7p>

In all its horrible detail, (13.2) becomes
H(q.p) = pg(q,p) — £(g. (g, p)) (13.4)

Our final step is to get Hamilton’s equation of motion (recognize 2% = p)

aq
o} _ 04 _|0L  0LOg
a¢ Yaq | aq " a4 aq

and
O _ |, 01| _0Loq _ .
ap [T Pap| " agap ¢

Then we have Hamilton’s eqns for one-dimensional system:
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Hamilton’s Equations

_ox oH
= op dq

Here we have two first-order eqns.

[«

Conmpte: Atwood’s Machine

Our first task is always to write down the H.

L=T-U
where
T = —(my +mg)i and U=—(my —my)gz
then ...
OH D and OH ( )
r=——= n =————=(m;—m
dp my + mo P Ox ! 2)9
Then
. My — Mg
N my + mo

65

(13.5)

Once this is done, one can just turn the handle and crank out Hamilton’s eqns.

13.3 Hamilton’s Eqns in Several Dimensions

Here we shall use the abbreviation introduced in Section 11.5:

q:<q177Qn) q:(q1aaqn) p:(pla

. Dn)

With necessary assumptions to guarantee the standard Lagrangian formalism ap-
plies, let’s derive from it the Hamiltonian one. Thus Lagrangian

L=L(q,q,t)=T—-U

Hamilton’s equations

0% ox
4 = p; =

dH <= [0H oK oK dH
E_Z{ ] ot t

a_q,-% + 0_pipi

=1

+ = = — =
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. 7//{'/////)/."

Note the difference between two derivatives. d-one (sometimes called the total
derivative), is the actual rate of change of J as the motion proceeds, with all
the coordinates ¢, ..., qn, p1,...,Pn changing as t advances. 0-one is the rate of
change of H if we vary its last argument ¢ holding all the other argument fixed.
In particular, if H does not depend explicitly on ¢, this partial derivative will be
Zero.

This simple result indicates that H varies with time only to the extent that it
is explicitly time dependent. In particular, if H{ does not depend explicitly on ¢,
then H is conserved.

6 steps to Find Hamiltonian
1. Find the generalized coordinates g;

2. Write T and U in terms of ¢’s and ¢’s

3. Find generalized momentum p; = g—;
4. Write ¢; in terms of p; and ¢;
5. Find H =3""  pigi — L (H =T + U = E for natural coordinates)

6. Solve Hamilton’s equations and find the equation of motion.

13.4 Ignorable Coordinates

If £ happens to be independent of a coordinate ¢;, then the corresponding generalized
momentum p; is constant. When this happens, we say that the coordinate ¢; is
ignorable.

13.5 Lagrange’s Equations vs Hamilton’s Equa-
tions

First we can rewrite the first n of Equations (13.5) as

A
qi = o fi(a,p)
Combine these n eqns
q =f(q,p) (13.6)

Similarly,
P =g(q,p) (13.7)
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Finally, we can introduce a 2n-dimensional vector

7z = (qap) = (Qla--'7Qn7p17"'7pn)

phase-space vector or phase point z. Each value of z labels a unique point in phase
space and identifies a unique set of initial conditions for our systems. Combine
(13.6) and (13.7)

z = h(z)

We can consider changes of coordinates of the form

Q=Q(q,p) and P =P(q,p)

that is, coordinate changes in which both the ¢’s and the p’s are intermingled.
If the eqns above satisfy certain conditions, this change of coordinates is called a
canonical transformation, and it turns out that Hamilton’s eqns are invariant
under these canonical transformations. Further discussion is out of scope, but note
that there is no corresponding transformation in Lagrangian mechanics.

13.6 Phase-Space Orbits

Any point z, defines a possible initial condition (at any chosen time t;), and Hamil-
ton’s equations define a unique phase-space orbit or trajectory which starts from zg
at to and which the system follows as time progresses.

Important Property: No two different phase-space orbits can pass through the
same point in phase space; that is, no two phases-space orbits can cross another. One
can imagine two orbits passing through the same point zo in phase space. However,
Hamilton’s equations guarantee that for any given point zg , there is a unique orbit
passing through z, so the two orbits must in fact be the same.

It has important consequences in, for example, the analysis of chaotic motion of
Hamiltonian systems.

13.7 Liouville’s Theorem

Theorem 13.1: Liuville’s Theorem

If we imagine a large number of identical systems launched at the same time
with slightly different initial conditions, the phase-space points that represent
the systems can be seen as forming a fluid. Liouville’s theorem states that
the density of this fluid is constant in time (or, equivalently, that the volume
occupied by any group of points is constant.
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Collision Theory
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Not studied in AMATH 271.
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Special Relativity

15.1 Relativity

The theory of relativity is the study of the consequences of the relativity of mea-
surements. Einstein’s relativity is really two theories.

e Special relativity is “special” in that it focuses primarily on unaccelerated
frames of reference.

e General relativity is “general” in that it includes accelerated reference frames.

15.2 (salilean Relativity

In classical physics, Newton’s laws are invariant as we transfer our attention from one
inertial frame to another. The classical transformation from one frame to a second,
moving at constant velocity to the first, is called the Galilean transformation.

Vr

Figure 15,1 The frame § is fixed to the ground, while 8’ is fixed in a railroad
car traveling with constant velocity V in the x direction. The two origins
coincide, O = O’, attime ¢ = 1’ = 0. The star indicates an event, such as a
small explosion.

Figure 15.1: excerpt from book
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Galilean transformation

Consider two frames 8§ and 8’ that are oriented the same way. Suppose further that
the velocity V of 8 relative to 8 is along the z axis. The configuration is illustrated
in Figure 15.1.

By the classical assumption concerning time, ' = t, so the required relations are

¥=x—-Vt

,7

Y (15.1)
Zz =z

=t

These four equations are called the Galilean transformation. They are the math-
ematical expression of the classical ideas about space and time.

(15.1) relates the coordinates measured in two frames arranged with corresponding
axes parallel and with relative velocity along the = axis, as shown in Figure 15.1 —
an arrangement we can call the standard configuration. This is not general. For
example, if relative velocity V is in an arbitrary direction, (15.1) can be rewritten
compactly as

r'=r—Vt and =t (15.2)
This is still not the most general since we could rotate the axes. However, (15.2) is
enough for our present purposes. If we differentiate (15.2)

vV=v-V

This is the classical velocity-addition formula.

Galilean Invariance of Newton’s Laws

Prove 3 laws hold.

Galilean Relativity and the Speed of Light

While Newton’s laws are invariant under the Galilean transformation, the same is not
true of the laws of electromagnetism. Whether we write them in their compact form
as Maxwell’s four equations, or in their original form (as Coulomb’s law, Faraday’s
law, and so on), they can be true in one inertial frame, but if they are, and if the
Galilean transformation were the correct relation between different inertial frames,
then they could not be true in any other inertial frame.

If the Galilean transformation were the correct transformation between inertial
frames, then although Newton’s laws would hold in all inertial frames, there could
only be one frame in which Maxwell’s equations hold. This supposed unique frame,
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in which light would travel at the same speed in all directions, is sometimes called
the ether frame."

The Michelson-Morley Experiment

interferometer.

With hindsight, it is easy to draw the right conclusion: Contrary to all expectations,
the speed of light is the same in all directions relative to an earth-based frame, even
though the earth has different velocities at different times of year. In other words,
it is not true that there is only one frame in which light has the same speed in all
directions.

None of these alternative theories was able to explain all of the observed facts (at
least, not in a reasonable and economical way), and today almost all physicists
accept that there is no unique ether frame and that the speed of light is a universal
constant, with the same value in all directions in all inertial frames.

15.3 The Postulates of Special Relativity

The special theory of relativity is based on the acceptance of the universality of the
speed of light, as suggested by the Michelson-Morley experiment.

Definition of an Inertial Frame

An inertial frame is any reference frame (that is, a system of coordinates z, y, 2
and time t) in which all the laws of physics hold in their usual form.

Notice “all the laws of physics” have not been specified. Following Einstein, we shall
use the postulates of relativity to help us decide what the laws of physics could be.
(As always, the ultimate test will be whether they agree with experiment.) The big
difference between the inertial frames of relativity and those of classical mechanics
is the mathematical relation between different frames. In relativity, we shall find
that the classical Galilean transformation must be replaced by the so-called Lorentz
transformation.

First Postulate of Relativity

If 8 is an inertial frame and if a second frame 8 moves with constant velocity
relative to 8, then 8’ is also an inertial frame.

IThe origin of the name is this: It was assumed that light must propagate through a medium,
in much the same way that sound travels through the air. Since no one had ever detected this
medium and since light could travel through seemingly empty space, the medium clearly had most
unusual properties, and was named “ether” after the Greek for the stuff of the heavens. The “ether
frame” was the frame in which the supposed ether was at rest.
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.‘/%{/// @ /

Another popular statement of the first postulate is that “there is no such thing
as absolute motion.”

Yet another statement of the first postulate is that among all the inertial frames,
there is no preferred frame. The laws of physics single out no one frame as being
in any way more special than any other.

Second Postulate of Relativity

The speed of light (in vacuum) has the same value ¢ in every direction in all
inertial frames.

. /:7/{2’/// v /
I This is, of course, the Michelson-Morley result.

15.4 The Relativity of Time; Time Dilation

Measurement of Time in a Single Frame

In what follows, I shall assume that any inertial frame 8§ comes with a set of rectan-
gular axes Oxyz and a team of helpers stationed at rest throughout 8 and equipped
with synchronized clocks. This allows us to assign a position (z,y, z) and a time ¢
to any event, as observed in the frame 8.

Time Dilation

Let us now compare measurements of time made by observers in two different inertial
frames. 8§ anchored to the ground and &' traveling with a train in the z direction
at speed V relative to 8. We now examine a thought experiment” in which an
observer on the train sets off a flashbulb on the floor of the train. The light travels
to the roof, where it is reflected back and returns to its starting point, where it
strikes a photocell and causes an audible “beep.” We wish to compare the times, At
and At’, as measured in the two frames, between the flash as the light leaves the
floor and the beep as it returns. See Figure 15.2.

2
At = %L (15.3)

and
(cAt/2)? = h* + (VAt/2)?

2or gedanken experiment, from the German



15.4. THE RELATIVITY OF TIME; TIME DILATION 75

AS AS S AS
Vert— ——=V B

ﬂas/ \b;eP *A

(a) (b)

Figu-re—1-5$§?"(a) The thought experiment as seen in frame 8'. The light travels
straight up and down again, and the flash and beep occur at the same place. (b) As
seenin 8, the flash and beep are separated by a distance V At. Notice thatin 8 two
observers are needed to time the two events, since they occur in different places.

Figure 15.2: another excerpt from textbook

which gives us

2 2 1
N (15.4)

VE—V2 ¢ 1P

where I have introduced the useful abbreviation

which is just the speed V' measured in units of c.

Combining (15.3) and (15.4),

At

Vi

At =

7//3///////
For 0 <V <e¢, At > At

If V= ¢, then denominator = 0. If V' > ¢, then imaginary value for At’. These
results suggest that V' must always be less than ¢, and this gives us one of the
most profound results of relativity:

The relative speed of two inertial frames can never equal or exceed c.

Usually we have this notation

1

iy

At = yAt' > At
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To emphasize this asymmetry, the time At’ is often renamed At, then

At is often called the proper time. The effect is called time dilation.

Evidence for Time Dilation

B. Rossi and D. B. Hall, half-life.

15.5 Length Contraction

I =VAt
I'=VAt
Then
' =~l
or
!/
[ = I <
g
Also, it is common to rewrite it as
l
=2 <
v

where [y denotes the length of an object measured in the object’s rest frame, while
[ is the length in any frame. [y, proper length. and length contraction.

Lengths Perpendicular to the Relative Velocity

We conclude that lengths perpendicular to the relative motion are unchanged. The
length-contraction formula applies only to lengths parallel to the relative velocity.

15.6 The Lorentz Transformation

Since lengths perpendicular to relative velocity are the same in both frames, then
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exactly as with the Galilean transformation. and by the length contraction formula
(proper length )

~

x—Vt:x—
~

or

' =~y(x = Vi)

and with a simple trick

The Lorentz Transformation

\.

/]/3////7//
These four equations are called the Lorentz transformation or the Lorentz—Einstein
transformation.

and inverse Lorentz transformation

' =ylx+Vt)
v =y

2=z
t'=yt+Va/c?)

éima%% A Relativistic Snake
Details on page 613-615 of the textbook.

The resolution of this paradox, and many similar paradoxes, is that two events
that are simultaneous in one frame are not necessarily simultaneous in a different
frame — an effect sometimes called the relativity of simultaneity. As soon as
we recognize that the two cleavers fall at different times in the snake’s frame,
there is no longer any problem understanding how they can both contrive to miss
the snake.
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15.7 The Relativistic Velocity-Addition Formula

Consider a particle moving with position r(¢) or r'(¢'), as seen in 8 or 8. The defn
of the velocity v is the derivative

_dr
o dt

Now we can write down the Lorentz transformation and take the differences, we find

A%

dr' = (de — Vdt), dy =dy, dz'=dz, dt' =~ (dt—Vdzx/c*)

Then ...

relativistic velocity-addition formulas

15.8 Four-Dimensional Space - Time; Four-Vectors

Rotations of Ordinary Three-Dimensional Space

3
q= Z qi€;
i=1

where
4% =€ -q

To conform this notation, I shall from now on, rename the position vector r =
(Jf,y,Z) as X = (1/'1,1'2,.1'3)-

Now consider a new set of unit vectors €/, €}, €;. The components ¢; are easily found

3

3
g=ca=e ) gej=) (¢f-e)q
j=1

j=1

We can express the eqn above more compactly. Let R be a 3 x 3 matrix with

elements

! /
R,'j—ei-ej
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and q, ¢’ denote the coordinates

q1 q
q= | and qd=|d¢
qs qé

With these notations, we have
4 =Rq

R is a 3 x 3 rotation matrix.

Lorentz Transformation as “Rotations” of Space-Time

Introduce a fourth coordinate
T4 =ct

where ¢ guarantees that x4 has the same dimensions as 1, x5 and z3. Recall 5 = V/e,
then we can rewrite the Lorentz transformation as

r) = yr1 — By
xh = —yBr +yx
4 YOT1L T YTy

Four-Vectors

The four numbers z1,z9, 23 and x4, = ct constitute a vector in four-dimensional
space-time. Such vectors are called four-vectors. We will be using ordinary italic
letters for four vectors:

q=(q1,q, g3, q1) = ( q , A )
~— ~—

spatial component time component

With this notation, the Lorentz transformation can be written in matrix form as

¥ = Az
where A is the 4 x 4 matrix
v 00 —p
A= 8 (1) (1) 8 [standard boost]
=8 00 v

This is not the most general Lorentz transformation. For many purposes, this stan-
dard transformation is the only one we need to consider.
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Any Lorentz transformation which leaves corresponding axes parallel is called a
pure boost or just boost, since all it does is “boost” us from one frame to another
traveling at constant velocity relative to the first, without any rotation. The general
one involves some rotation as well. If the transformation is a pure rotation (no
relative motion, just a change of orientation)m then ¢’ = t. Thus pure rotation:

A=Ag = R

—o O O

where R is the 3 x 3 matrix of the given rotation.

Four-Vector

In each inertial frame 8, a four-vector is specified by a set of four numbers
q = (q1, 42,43, qs) such that the values in two frames 8§ and 8 are related by
the equation ¢’ = Ag, where A is the Lorentz transformation connecting 8 and
8.

. "////)/”/// Z //

The great merit of the notion of four-vectors is that it often allows one to check
with almost no effort whether a proposed physical law is relativistically invariant.

Any single quantity that is invariant under rotations is called a rotational scalar
or a three-scalar; for example, the mass m of an object is a three-scalar, and so
is the time ¢. In the same way, any single quantity that is invariant under Lorentz
transformations is called a Lorentz scalar or four-scalar.

15.9 The Invariant Scalar Product

s =af +a + a2 —

_ A2 _ 2 2 2 A2 2
=77 (x1 — Bra)” + 25 + 25 — 7 (—Bx1 + 24)
=7 (1= et +ai+a5 - (1 - %)
=35

Note that we have v*(1 — %) = 1.

So we define an invariant scalar product in four-space. For any two four-vectors
x,y, we define

TY = T1Y1 + Toy2 + T3Y3 — T4y

Therefore we can say that for any Lorentz transformation A,

vy = (Az)(Ay)
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15.10 The Light Cone

xy=ct
absolute future

forward
light cone

clsewhere

backward
light cone

absolute past

Figure 15.8 The light cone is defined by the condition x +x = r? — ¢%? =0
and divides space—time into five distinct parts: the forward and backward light
cones, with ¢ > 0 and r < O respectively; the interiors of the forward and
backward light cones, called the absolute future and the absolute past; and
the outside of the cone, labeled “elsewhere.”

Figure 15.3: Figure 15.8 in textbook

To help visualize this, it is convenient to ignore one of the spatial dimensions (3
say), so we can plot the remaining two spatial dimensions horizontally and x4 = ct
vertically up, as in Figure 15.3.

Interior of the Light Cone; Future and Past

Consider a space-time point P, with coordinates z = (x,ct), that lies inside the
forward light cone. t > 0 and r? < ¢*t? or

x4 > 0, and

p+ari+ai<ai (orzi <0)

-://///ﬁ/////'//{
These two conditions have a remarkable consequence.

e any event occurs at P is later than any event at O, in the frame § in which
our coordinates x are measured.

e both conditions hold in all frames if they hold in one frame. In other word,
P lies inside the forward light cone is a Lorentz-invariant statement. For
this reason, it is often called absolute future.

Similarly, we can have a light cone with its vertex at (). Any point P on this cone
must satisfy

(JTP — $Q)2 = O
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Exterior of the Light Cone; Space-Like Vectors

The situation is entirely different for a point P that lies outside the light cone.
Condition:

(xp —x0)* > (tp — tg)?

or, equivalently

(.’L‘p —IQ)Q >0

This condition is symmetric between P and Q.

Proposition 15.1

Let P be any given space-time point outside the light cone of a second given
point ). Then

1. there exist frame § in which tp > tg
but

2. there also exist frames 8 in which % = tj,
and

3. there also exist frames §” in which ¢}, < t’é

e‘%)/'/)//// 7/;

This startling proposition implies that the time ordering of any two given events,
each outside the other’s light cone, can be different in different frames: Where
one observer says that event A occurred before event B, a second observer can
find them the other way around (and a third can find them to be simultaneous).
This has profound implications related to the notion of causality: If one event
A (an explosion, for instance) is the cause of another event B (the collapse of a
distant building), then A must obviously occur first in time, since causes always
precede their effects. ... Therefore, nothing that happens at ) can be the cause
of anything that happens at P, nor the other way around.

No causal influence can travel faster than the speed of light. Because the region
outside the light cone of () is completely immune to anything that happens at @),
this region is sometimes called the “elsewhere” of ().

A four-vector whose fourth component is zero can be described as a pure-space
vector, and one which can be brought into this form by a Lorentz transformation is
called space-like.

With this terminology, we can say that the outside of the light cone is made up all
space-like vectors.
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Time-Like Vectors

Similarly, if a four-vector ¢ lies inside the light cone (¢ - ¢ < 0), then there exists a
frame 8 in which it has the pure-time form ¢ = (0,0,0,¢};). Naturally, therefore,
we describe vectors inside the light-cone as being time-like.

Equivalently (as we shall see), it is any particle for which, at any given time, there
exists a rest frame; that is, a frame in which the particle is at rest, with v = 0.

!';//;V/i/////’//."
I Final Exam Content Ends Here

15.11 The Quotient Rule and Doppler Effect

The Quotient Rule

Suppose that x is known to be a four-vector and that, in every inertial frame,
k = (ki, ko, ks, k4) is a set of four numbers, and suppose further that for every
value of x the quantity ¢ = k- x = kyx1 + keoxo + ksxs — kg4 is found to have
the same value in all frames, then k is a four-vector.

Doppler Effect

Any sinusoidal plane wave has the form
¢ =Acos(k-x—wt—o0)
where k is called the wave vector, and |k| = 27/\. Here we let x = (x, ct), then
k-z—-—wt=Fk- -z
and k denotes the wave four-vector

k= (k,w/c)

relativistic Doppler formular for light
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15.12 Mass, Four-Velocity, and Four-Momentum

Mass in Relativity

invariant mass and variable mass.

Invariant Mass

The mass, m, of an object, whatever its speed, is defined to be its rest mass.

. ,ﬂ//zrx //

I It is a Lorentz scalar.

The Proper Time of a Body

The three-dimensional position x(t) of a body at time ¢ defines a point x =
(x(t), ct) in space—time, and, as time advances, this point traces a path, called
the body’s world line.

There is a frame (the body’s rest frame) where the separation is pure time-like, with
dx, = (0,0,0c dt,). The subscript “o” indicates the rest frame.

dt
dto = dt\/ 1 —7)2/62 = ﬁ
Y \v

The Four-Velocity

We may as well consider the four-vector

dz dx dt
U = — = —_— . C——
dt, dt,’ dt,
Since this four-velocity is the quotient of a four-vector and a four-scalar, it clearly
is a four-vector. Then we replace dt, by dt/v, we find that

B dx dt (v, 0)
U= dt’cdt =7V, C

.‘/Q/\/{)/”)/z// 7/

The most prominent feature of this result is that the three-velocity v is not the
spatial part of the four-velocity w (which is why I called the latter u rather than
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o).

Relativistic Momentum

Instead of using the three-velocity v, suppose we used the four-velocity u to define
the four-momentum of any object of mass m as

p = mu = (ymv, yme)
three-momentum p, as the spatial part of it

p = mu = ymv

prm = me (15.5)

e '7//3/////?/

Since the four-momentum p is a four-vector, the same is true of both sides of
(15.5). Therefore, if (15.5) is true in one frame 8, it is automatically true in all
frames; that is, our proposed law of conservation of four momentum is compatible
with the postulates of relativity.

Variable Mass

Some physicists like to rewrite the definition of the relativistic three momentum by
introducing a variable mass
Myar = Y(V)M

with this defn the three-momentum becomes

P = MyarV

. %i/////?/:

Pros make the relativistic momentum look like its nonrelativistic counterpart

Cons First, it is not necessarily a good idea to make a new definition look like
its older counterpart when there are, in fact, important differences. Second, the
introduction of the variable mass fails to achieve a complete parallel with classical
mechanics. Third, unlike the invariant mass, the variable is not a Lorentz scalar.
For all of these reasons, I shall not use the variable mass here.

15.13 Energy, the Fourth Component of Momen-
tum
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Relativistic Energy

The energy E of a freely moving object with four-momentum p = (p, py) is

E = pyc = ymc?

With this defn,
p=(p,E/c)

which explains why the four-momentum p is also called the momentum-energy four-
vector.

With v < ¢,
1
y=1[1- (71/0)2]_1/2 =1+ 5(@/0)2 + ...

so the energy

1
E ~md + §mv2

Mass Energy

let us look again at the relativistic definition of the energy of an object, E = ymc?
. Even if the object is at rest, with v = 1, the object still has some energy, given
by E = mc?® (perhaps the most famous equation in all of physics). This energy is
naturally called the rest energy of the object or, since it is associated with the
mass m, the mass energy.

Three Useful Relations

15.14 Collisions

Skipped

Threshold Energies

A quantity of great concern to any experimenter hoping to observe this kind of
reaction is the threshold energy.
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15.15 Force in Relativity

Like most introductory texts, I shall avoid the complication of such “heat-like forces”
by confining attention to forces that do not change the rest masses of the objects
on which they act.

Of the several conceivable definitions of force in relativity, the single most useful is
probably the three-force defined as

_dp

F= >
dt

e %2’/// 74 //

e not the same as the nonrelativistic force

e with this defn, the force on a charge ¢in an electromagnetic filed is given
by the Lorentz equation

F =¢(E+vxB)

e we can prove the analog of the work-KE theorem

dI'=F -dx

by differentiating E? = (pc)? + (mc?)2.

Potential Energy

It can happen that, at least in one frame 8, the force F on an object is the gradient
of a function U(x).

The Four-Force

We can define the four-force

. ////);///r/)/
There is no widely accepted notation for the four-force, buy K is one of the several
notations used.

K =(K,K) =~(F,v-F/c)

The main disadvantage of the four-force is that it gives the time derivative of mo-
mentum with respect to the proper time, where the three-force gives the derivative
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| with respect to the time of any one inertial frame.

15.16 Massless Particles; the Photon

Let’s look at the two relations

E? = (m02)2 + (pc)?  and v_Ee

If m = 0, then we have
E = |p|c and v=c

The photon is the particle that carries the energy and momentum of electromagnetic
waves; and experiment shows that, for a photon, E and p do satisfy eqs above and
that photons do always travel (no surprise!) at the speed of light.

With m = 0, the four-momentum of a photon satisfies

P’ =0

We have seen that the four-momentum of a material particle (that is, a particle with
m > 0) is always forward time-like. By contrast, that of any massless particle lies
on the forward light cone and is forward light-like.

In fact there is a second way to find the energy and momentum of the photon.
One of the first discoveries (due to Max Planck and Einstein) in the unfolding of
quantum mechanics was that the energy of a photon is related to the frequency of
its associated electromagnetic wave by the famous relation

E = hw

where h is Planck’s constant (h = h/27) and omega is the angular freq of the wave.
Similarly
p = hk (15.6)

where k is the wave vector of the wave. Since p = (p, £//c) and the wave four-vector
is k = (k,w/c), the two relations imply that

p = hk
The relation (15.6) is often rewritten in terms of the wavelength A. Since k| = 27/A,

h
= hlk| = ~
[p| = hlk| = 3

which is often called the de Broglie relation, #2/f % B AH . I'll rewrite a
photon’s four-momentum as follows:
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The Compton Effect

15.17 Tensors

Skipped.

15.18 Electrodynamics and Relativity

Skipped.
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Continuum Mechanics

Not studied in AMATH 271.
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