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Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of AMATH 331 during Winter 2020 as well as other
related resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

I gave up using de�nition blocks gradually since the professor uses a subsection to
give all de�nition...

Also, I am not following the numbering convention in professor’s lecture notes:
Instead of setting the counter within the section (Theorem 13.1.1), I am using the
counter within the chapter/lecture (Theorem 13.1).

I have left out some examples from chapter 25 which is the last lecture before the
suspension.

For any questions, send me an email viahttps://notes.sibeliusp.com/contact/.

You can �nd my notes for other courses onhttps://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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1
Real Numbers

Refs 1 for review. 2.1-2.2, 2.9

1.1 Decimal expansions and the real number line

�nite decimal expansion

A �nite decimal expansion has the form

x = a0� a1a2a3 : : : aN

where a0 is an integer (positive, negative or zero) for 1� n � N an 2
f 0; 1; : : : ;9g

Example:
1� 45

� 38� 298743

You can think of this as

x = a0 + a1

�
1
10

�
+ : : : + aN

�
1

10N

�

Warning This looks like the usual decimal representation but it is not the same
for negative numbers.

Any �nite decimal expansion can be replaced on the real number line.

6



LECTURE 1. REAL NUMBERS 7

Example:
Where is 1� 45?

0 1 2 3

1� 2�

0 1 2 3 4 5 6 7 8 9

1� : : :

1� 4 : : :

1� 4 1� 5

0 1 2 3 4 5 6 7 8 9

1� 45

We can similarly de�ne in�nite decimal expansions

in�nite decimal expansions

x = a0� a1a2 : : :

Example:
1� 450000000: : :

� = 3 � 1415926535: : :

Assuming the real number line has no gaps, every in�nite decimal expansionx
corresponds to a point on the line.

Given any positive integerk, let y = a0� a1a2 : : : ak be the �nite decimal expansion
of x to the k-th decimal space. Then,x lies in the interval from y to (y + 10� k).
So, y approximatesx to an accuracy of 1=10k . As we increasek, we improve the
accuracy; in fact, the error can be made arbitrarily small.

The converse direction: given a point on the real number line, can we �nd its decimal
expansion?

Yes!

It is possible for two decimal expansions to represent the same point. This happens
precisely when one ends in an in�nite string of 0’s.
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Example:
1:000: : : and 0:999: : :

25:300: : : and 25:2999: : :
We de�ne the real numbersR as the set of all in�nite decimal expansions.

1.2 Ordering of real numbers

Suppose
x = x0� x1x2x3 : : : ; y = y0� y1y2y3 : : :

We say that x and y are equal and writex = y if in�nite decimal expansions are
identical or equivalent, as discussed previously.

If x and y are not equal, then we say thatx are not equal, thenx is less thany and
write x < y if there exists integerk � 0 such that xk < y k and x i = yi for i < k . x
is greater thany (x > y ) if ...

For any two real numbersx; y, exactly one of the following holds:

x = y x < y x > y



2
Bounds and Limits

2.1 Bounded sets of real numbers

upper bound

A set S � R is bounded aboveif there exists M 2 R such that s � M for all
s 2 S. M is an upper boundof S.

lower bound

A set S � R is bounded belowif there exists m 2 R such that s � m for all
s 2 S. m is an lower boundof S.

bounded

A set is boundedif it is both bounded above and bounded below.

supremum

The supremumor least upper boundof a nonempty setS that is bounded above
is the upper boundL satis�es L � M for all upper boundsM of S is written
as supS.

in�mum

The in�mum or greatest lower boundof a nonempty setS is the lower bound
‘ satisfying ‘ � m for all lower boundsm of S. The in�mum is denoted inf S.

9



LECTURE 2. BOUNDS AND LIMITS 10

max

If there exists M 2 S such that s � M for all s 2 S, then M is called the
maximum of S, maxS.

min

Analogous defn for minS.

2.2 Examples

0. S0 = ∅. Bounded above and below. No supremum or in�mum.

1. S1 = f n 2 Z+ g = f 1; 2; 3; : : :g not bounded above, bounded below.

1 is in�mum and minimum

2. S2 = f� 3; � 2; 0:5; 1:423g. Bounded above and below. Bounded. Has max,
min.

3. S3 =
�

1 � 1
n : n 2 Z+

	
= f 0; 1

2 ; 2
3 ; : : :g

Bounded above by 1. Bounded below by 0.

Supremum is 1, but there is no max.

2.3 Least Upper Bound Principle

Theorem 2.1: Least Upper Bound Principle

Every nonempty setS of R that is bounded above has a supremum. Every
nonempty set that is bounded below has an in�mum.

Sketch of proof for \in�mum". There are only �nitely many integers from m0 to
s0 + 2. Choose the greatest integer lower bound! call it a0.

a0 + 1 is not a lower bound. Divide [a0; a0 + 1] into 10, �nd a1 such that a0� a1 is
lower bound ofS, but a0� a1 +1=10 is not. Repeat in�nitely many times to construct
L = a0� a1a2a3 : : :.

Now, show that L is in�mum. 1

1See details in textbook.



3
Limits of Sequences

3.1 Sequences

An in�nite sequence of realnumbers is an in�nite, enumerated list of real numbers,
denoted by

(an )1
n=1 = ( a1; a2; : : :)

Each an 2 R is an elementof the sequence.

We will just refer to them as sequences, and often write (an ). Formally, a sequence
is a function that maps positive integers toR.

We say that a sequence is [bounded above/bounded below/bounded] if the setA =
f ang is respectively [bounded above/bounded below/bounded].

3.2 Examples

1. (an )1
n=1 , wherean = ( � 1)n for n � 1.

2. an = 1
n , for n � 1.

3. (an ) = (1 ; 1; 2; 1
2 ; 3; 1

3 ; : : :)

11



LECTURE 3. LIMITS OF SEQUENCES 12

3.3 Limits of Sequences

limit

Let (an )1
n=1 be a sequence. We callL 2 R the limit of the sequence if for all

� > 0, there exists an integerN such that

jan � L j < �

for all n � N .

If such L exists, then we say that (an ) is convergent, and converges toL and we
write lim n !1 an = L; or an ! L .

If a sequence does not have such a limit, then we say itdiverges, or is divergent.

A sequence (an ) diverges to1 if for all M > 0, there existsN such that an > M
for all n � N . We write limn !1 an = 1 .

A sequence (an ) diverges to�1 if for all M < 0, there existsN such that an < M
for all n � N . We write limn !1 an = �1 .

Note
limn !1 an = �1 does not mean limit exists.

3.4 Examples

1. an = 1=n; limn !1 an = 0

For any � > 0, we need to show that there existsN such that jan � 0j < � for
all n � N .

ChooseN to be any integer greater than 1=�. (N > 1
� )

For any n � N , an = 1=n � 1
N < � . We also havean � 0

=) j an j < �

for all n � N as required.
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3.5 Some basic properties of limits

Theorem 3.1: Squeeze Theorem

Let (an ); (bn ); (cn ) be sequences.

If an � bn � cn for all n � 1 and

lim
n !1

an = lim
n !1

cn = L

then
lim

n !1
bn = 1

Proof:
We want to show that for all � > 0, there existsN such that jbn � L j < � for all
n � N .

Let � > 0. Sincean ! L , we can �nd N1 such that jan � L j < � for all n � N1.

Similarly, there existsN2 s.t. jcn � L j < � for all n � N2.

De�ne N := max f N1; N2g. Then, for n � N , jan � L j < � and jcn � L j < � .

Equivalently,
L � � < a n < L + � L � � < c n < L + �

Sincean � bn � cn . L � � < b n < L + � , or

jbn � L j < �

as required.

Proposition 3.2

If a sequence converges to a limitL , then this limit is unique.

Proof:
See PDF.

Proposition 3.3

If a sequence (an ) converges, then the setA := f an : n � 1g is bounded.

Proof:
Exercises.
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Theorem 3.4

Let (an ) and (bn ) be two convergent sequences. If limn !1 an = L and limn !1 bn =
M , then

1. limn !1 (an + bn ) = L + M

2. for any � 2 R, limn !1 (�a n ) = �L

3. limn !1 (anbn ) = LM , and

4. limn !1
an
bn

= L
M if M 6= 0 and bn 6= 0 for all n.



4
Monotone Sequence and Applica-
tions

4.1 Monotone Sequences

Let (an )1
n=1 be a sequence of real numbers. it is

1. monotone increasing ifan+1 � an for all n � 1.

2. strictly monotone increasing ifan+1 > a n for all n � 1.

3. monotone decreasing ifan+1 � an

4. strictly monotone decreasing ifan+1 < a n

monotone

A sequence is monotone ismonotone if it is either (monotone) increasing or
(monotone) decreasing.

Theorem 4.1: Monotone Convergence Theorem

Monotone Convergence Theorem:

(i) Every monotone increasing sequence that is bounded above converges

(ii) Every monotone decreasing sequence that is bounded below converges

Proof:
We will �rst show that (i) = ) (ii).

Let (an ) be a monotone decreasing sequence that is bounded below bym.

15



LECTURE 4. MONOTONE SEQUENCE AND APPLICATIONS 16

The sequence (� an )1
n=1 is monotone increasing and is bounded above by� m. By

part (i), ( � an ) must converge. Call the limit L = lim n !1 (� an ).

By Theorem 3.4 Part 2,

lim
n !1

= lim
n !1

[(� 1)(� an )] = ( � 1) lim
n !1

(� an ) = � L

To prove Part(i) of this theorem, suppose (an ) is monotone increasing and bounded
above.

The set A = f an jn 2 Z+ g is bounded above, and nonempty.

By LUBP(Theorem 2.1), A has a supremum, which we callL = sup A. We show
that L is the limit of ( an ).

Given � > 0, we know that L � � cannot be an upper bound ofA.

So there existsN such that an > L � � .

Since (an ) is increasing,an > L � � for all n � N . SinceL is an upper bound of
A, an � L for all n � N .

=) L � � < a n � L < L + �

That is jan � L j � � for all n � N .

4.2 Applications: Calculate Square Roots

The square root of a real numbera > 0 can be obtained as the limit of the sequence
de�ned recursively by

xn =
1
2

�
xn � 1 +

a
xn � 1

�
; for n � 1

where the starting point x0 is any positive number.

Moreover, for anyn � 1, the error in approximating
p

a by xn satis�es the bound

0 � xn �
p

a < x n �
a
xn

Proof:
Strategy:

1. Prove that (xn ) is bounded below.

2. Prove that (xn ) is monotone decreasing.

3. Prove that (xn ) is monotone decreasing.

4. Use MCT to prove that (xn ) converges.
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5. Use properties of limits to determine that
p

a is the limit.

6. Look for upper and lower bounds for error.

See PDF for full proof.

4.3 Warning about computing limits that don’t
exist

Example:
a1 = 2, an+1 = 1

2(a2
n + 1) for n � 1.

If we assume (an ) has a limit L , then we can get nonsense.

an+1 =
1
2

(a2
n + 1)

lim
n !1

an+1 = lim
n !1

1
2

(a2
n + 1)

=) L =
1
2

�
lim

n !1
an

� 2
+

1
2

=
1
2

L2 +
1
2

L2 � 2L + 1 = 0 = ) L = 1 is a solution

However, it can be shown that (an ) is monotone increasing. Sincea1 = 2, ( an )
cannot possibly converge to 1.

(In fact, it does not converge.)



5
Subsequences

5.1 De�nitions of subsequences

Let (an )1
n=1 be a sequence. The sequence (bk)1

k=1 is a subsequenceof (an ) of there
exist integersnk with 1 � n1 < n 2 < n 3 < : : : such that bk = ank for eachk � 1.

Example:

(a1; a2; a3; a4; a5; : : : )

(b1; b2; b3; b4; b5; : : : )

cannot do the following:

(a1; a2; a3; a4; a5; : : : )

(b1; b2; b3; b4; b5; : : : )

not allowed to change order

Example:

(an )1
n=1 =

�
(� 1)n

n

� 1

n=1
=

�
� 1;

1
2

; �
1
3

; : : :
�

The sequence (bk) with bk = ak for all k � 1 is a subsequence of (an ).

The sequence
�
� 1; � 1

3; � 1
5; : : :

�
is a subsequence.

The sequence
� 1

2; 1
4 ; : : :

�
is another subsequence.

18
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5.2 Some properties of Subsequences

Lemma 5.1

Let nk be integers satisfyingn1 � 1 and nk < n k+1 for all k � 1. Then nk � k
for all k � 1.

Theorem 5.2

Suppose the sequence (an )1
n=1 converges to the limit L . Then every subse-

quence of (an ) also converges toL .

Proof:
By de�nition of limit, for every � > 0, there existsN such that jan � L j < � for
all n � N .

Let (bk)1
k=1 be any subsequence of (an ), where bk = ank for eachk � 1.

From Lemma 5.1, we know thatnk � k for eachk. Given � > 0, choseN as in
de�nition of lim

n !1
an = L . For every k � N ,

nk � k � N =) j bk � L j = jank � L j < �

Example:

1. From 5.1, the theorem holds just as it is.

2. Converse is not true. If a subsequence converges, we cannot conclude that
the original sequence converges.

5.3 Bolzano-Weierstrass

If for every integern � 1, we have a nonempty, closed intervalI n = [ an ; bn ] such that
I n+1 � I n , then we say that (I n ) is a nested sequence of closed, bounded intervals.

Lemma 5.3: Nested Intervals Lemma

If ( I n ) is a nested sequence of closed bounded intervals, then

1\

n=1

I n 6= ∅:

Proof:
Exercise.
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Theorem 5.4: Bolzano-Weierstrass Theorem

Every bounded sequence of real numbers has a convergent subsequence.

Proof:
Outline.

1. Given a bounded sequence (an ), construct a nested sequence of closed,
bounded intervalsI n with lengths decreasing to zero, and such that eachI n
contains in�nitely many elements of the sequence (an ).

2. Construct a subsequence (bk) such that bk 2 I k for eachk � 1.

3. Show that (bk) converges.

Proof:

Step 1: Suppose (an )1
n=1 is a bounded sequence of real numbers. Letm1 be a

lower bound andM 1 be an upper-bound forA = f an : n � 1g.

De�ne an interval I 1 = [ m1; M1]. De�ne the point c1 = 1
2(m1 + M 1).

Choose one smaller interval either [m1; c1] or [c1; M1] that contains an
in�nite member of elements of (an ) ! call this interval I 2 = [ m2; M2].

We repeat this process for allk � 2. This gives a sequence of intervals
(I k)1

k=1 such that I n+1 � I n for all n � 1, and lengths ofI n converges
to zero. Also eachI k contains an in�nite number of elements of (an ).

Step 2: Let n1 = 2 so b1 = a1. Suppose we have our subsequence (bj ) up to
elementk. Then we haveni � 1 for all i = 1 ; 2; : : : ; k and ni < n i +1 for
all i = 1 ; 2; : : : ; k � 1.

Since there are an in�nite number of elements of (an ) contained in
I k+1 , we can choosenk+1 such that nk+1 > n k and ank +1 2 I k+1 , i.e.
bk+1 2 I k+1 . In this way, we inductively de�ne (bj ) as a subsequence of
(an ).

Step 3: By Nested Intervals Lemma (Lemma 5.3),
1\

k=1

I k 6= ∅, so there must

exist a point L 2 \ 1
k=1 I k . The length of interval I j is

(M 1 � m1)
2j � 1 . For

any k � 1, we haveL 2 I k and bk 2 I k . Hencejbk � L j �
(M 1 � m1)

2k � 1 .

Consider sequence (jbk � L j)1
k=1 . We can use Squeeze Theorem to show

that lim n !1 jbk � L j = 0 since

0 � j bk � L j �
(M 1 � m1)

2k � 1 :

Hence lim
k!1

bk = L .
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6
Cauchy Sequences

6.1 De�nition

A sequence (an ) is Cauchy if for any � > 0, there exists an integerN such that

jan � am j < �

for all n; m � N .

Example:
(an )1

n=1 = (3 ; 3:1; 3:14; 3:141; : : :)

More generally, ifx is any real number with in�nite decimal expressionx0� x1x2x3 : : :,
then the sequence of �nite truncations, i.e.,ak is the truncation of x to k decimal
places, is Cauchy.

ak = x0� x1 : : : xk000: : :

Given � > 0, we can �nd N such that 10� N < � .

For any n � 1, we have
an � x � an + 10� n

In particular,
aN � x � aN + 10� N

Note that (an ) is monotone increasing, soaN � an ; am � x � aN + 10� N for any
n; m � N .

So
jan � am j � length of interval = 10� N < �

=) (an )1
n=1 is Cauchy.

22



7
Cauchy and Completeness

7.1 Properties of Cauchy Sequences

Proposition 7.1

If a Cauchy sequence (an ) has a convergent subsequence, then (an ) converges.
The limit is the same as the limit of the subsequence.

Proof:
Let � > 0. By de�nition of limit of ( bk) = ( ank ) being L , i.e., limk!1 bnk = L ,
there existsK such that

jbk � L j = jank � L j <
�
2

for all k � K .

By Cauchy property of (an ), there existsN such that

jan � am j <
�
2

for all n; m � N .

By Lemma 5.1,nk � k for all k � 1, so

jan � ank j <
�
2

for all n; k � N . Choose anyk � maxf K; N g. Then, for all n � N ,

jan � L j = jan � ank + ank � L j � j an � ank j + jank � L j <
�
2

+
�
2

= �

23
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Proposition 7.2

If a sequence (an ) is Cauchy, then the setf an : n � 1g is bounded.

Proof:
Exercise, or see PDF.

7.2 Example of not quite Cauchy

Consider the sequence (an )1
n=1 , with an = log n.

The di�erence between successive terms is

jan+1 � an j = j log(n + 1) � log(n)j =
���� log

�
n + 1

n

� ����

limn !1
n+1

n = 1, so lim jan+1 � an j = 0.

(an ) is not bounded, since log(n) ! 1 , hence by Proposition 7.2, (an ) is not Cauchy.

7.3 Cauchy, Convergent and Complete

Proposition 7.3

Every convergent sequence is Cauchy.

Proof:
(Sketch)

N; K and use�=2.

complete

We say that a subsetX of R is completeif every Cauchy sequence inX has a
limit in X .

Theorem 7.4: Completeness Theorem for Real Numbers

R is complete.

In other words, every Cauchy sequence of real numbers converges.

Proof:
Suppose (an ) is any Cauchy sequence of real numbers. By Proposition 7.2,f an :
n � 1g is bounded. By Theorem 5.4, there must exist a convergent subsequence.
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By Proposition 7.1, (an ) must also converge.

Remark:
The sequence of truncated decimal expansions ofx (from Lecture 6) was shown
to be Cauchy. Now we know, it must converge. It can be shown that the limit is
x.
Note
Q is not a complete subset ofR. Using sequence of �nite decimal expansions, we
see that sequences of rational numbers can converge to an irrational limit.

7.4 Equivalent Statements of Completeness

We showed that construction ofR as set of in�nite decimal expansions leads to Least
Upper Bound Principle.

=) Monotone Convergence Theorem

=) Nested Intervals Lemma

=) Bolzano-Weierstrass Theorem

=) Completeness Theorem

It is possible to show that Completeness =) LUBP. So all of these properties
describe the same \behaviour" ofR.

7.5 Application: Proving convergence by Cauchy
property

Sometimes it’s easier to show that a sequence is Cauchy than convergent.

Example:

Consider a sequencean = 1 � 1
2 + 1

3 � 1
4 + : : :+ ( � 1)n +1

n . We can show that (an )1
n=1

is Cauchy. Form > n ,

jam � an j =
����
(� 1)n+2

n + 1
+

� 1n+3

n + 2
+ : : : +

(� 1)m

m � 1
+

(� 1)m+1

m

����

= : : :

Supposem � n is even

jam � an j =
����

1
n + 1

�
1

n + 2
+

1
n + 3

� : : : +
1

m � 1
�

1
m

����
a

aSth wrong here... corrected in the lecture notes.



8
Series

8.1 De�nitions for series

If ( an )1
n=1 is a sequence of real numbers, we de�ne itssequence of partial sums

(Sn )1
n=1 by Sn =

P n
k=1 ak .

The (in�nite) series associated with (an ) is
P 1

n=1 an . If the sequence of partial sums
converges to a limitL 2 R, then we say the series

P 1
n=1 converges. In this case, we

say the sum or value of the series isL .

The series
P 1

n=1 an is called absolutely convergent if
P 1

n=1 jan j converges.

If a series does not converge, then it diverges.

A series that converges but is not absolutely convergent, then we say it is condition-
ally convergent.

Example:

1. (an )1
n=1 = (1 ; 1; 1; 1; 1; : : :). This sequence converges to 1.

Sequence of partial sums is (Sn ) = (1 ; 2; 3; 4; 5; : : :) does not converge (it
diverges to1 ) so the series

P 1
n=1 an diverges.

2. The harmonic series
P 1

n=1
1
n diverges.

Note
Sn = 1 + 1

2 + : : : + 1
n forms a sequence such that

Sn+1 � Sn =
1

n + 1
! 0

but (Sn ) is not convergent, which means (Sn ) is not Cauchy.

3. an = 1
n(n+2) .

26
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We will show that
P 1

n=1 an converges.

Note
We can write

2
n(n + 2)

=
1
n

�
1

n + 2
Then the sequence of partial sums is

Sn =
1
2

nX

k=1

2
k(k + 2)

=
1
2

�
1
k

�
1

k + 2

�
=

1
2

��
1 +

1
2

�
�

�
1

n + 1
+

1
n + 2

��

lim
n !1

Sn =
3
4

Hence,
1X

n=1

1
n(n + 2)

=
3
4

4. A geometric series
P 1

n=0 an is one where the elements are of the forman =
a0r n for somea0 2 R; r 2 R, for eachn � 0.

If jr j < 1, then the series converges

1X

n=0

an =
a0

1 � r

If jr j � 1 and a0 6= 0, then the series diverges.

5. The alternating harmonic series

1X

n=1

(� 1)n+1

n
= 1 �

1
2

+
1
3

�
1
4

+ : : :

converges. It is not absolutely convergent. (See Example 2), so it is condi-
tionally convergent.

Proposition 8.1

Every absolute convergent series is convergent.

Proof:
Trivial.
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8.2 Convergence Tests

Theorem 8.2: Cauchy criterion for series

Given a series
P 1

n=1 an , the following are equivalent:

1. The series converges.

2. Given � > 0, there exists an integerN such that
�����

mX

k= n+1

ak

�����
< �

for all m > n � N .

Note
If ( Sn ) is sequence of partial sums. Supposem > n ,

jSm � Sn j =

�����

mX

k=1

ak �
nX

k=1

ak

�����
=

�����

mX

k= n+1

ak

�����

Theorem 8.3: Comparison Test for Series

Suppose (an ); (bn ) are two sequences andjan j � bn for all n � 1.

1. If
P 1

n=1 bn converges, then
P 1

n=1 an converges, and
�����

1X

n=1

an

�����
�

1X

n=1

bn

2. If
P n

n=1 an diverges, then
P 1

n=1 bn diverges.

Proof:
Note that 2 follows from 1.

So, we just need to prove 1.

First, we show that

1X

n=1

bn converges =)
1X

n=1

an converges

Let � > 0. By Cauchy criterion, there existsN such that
�����

mX

k= n+1

bk

�����
< � for all m > n � N



LECTURE 8. SERIES 29

Sincebk � 0 for all k, we can ignore absolute value sign.

� >
mX

k= n+1

bk �
mX

k= n+1

jak j �

�����

mX

k= n+1

ak

�����

This is the Cauchy criterion for
P

an , so
P

an converges.

The rest of proof is left as an exercise: Show remaining inequality.



9
Rearrangements of Series

9.1 De�nition

A rearrangement is a series considering of the same terms as another series but in
a di�erent order. Suppose� : Z+ ! Z+ is a permutation of the positive integers.
Then, the series

P 1
n=1 a� (n) is a rearrangement of

P 1
n=1 an .

1X

n=1

an = a1 + a2 + a3 + a4 + a5 + : : :

1X

n=1

a� (n) = a3 + a4 + a2 + a1 + a6 + : : :

9.2 Rearrangements of absolutely convergent se-
ries

Proposition 9.1

If an absolutely convergent series
P 1

n=1 an converges toL , then every rear-
rangement of

P 1
n=1 an also converges toL .

Proof:
Let

P
n=1 a� (n) be a rearrangement. Fix� > 0. By absolute convergence of

30
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P 1
n=1 an , there exist N such that

�����

NX

n=1

jan j �
1X

n=1

jan j

�����
=

1X

n= N +1

jan j <
�
2

Since every term of the series
P 1

n=1 an must appear in the rearrangement, there
must exist M � N such that

P M
n=1 a� (n) includes all terms

a1; a2; a3; : : : ; aN

For any m � M ,
�����

mX

n=1

a� (n) � L

�����
=

�����

mX

n=1

a� (n) �
NX

n=1

a� (n) +
NX

n=1

a� (n) � L

�����

�

�����

mX

n=1

a� (n) �
NX

n=1

a� (n)

�����
+

�����

NX

n=1

a� (n) � L

�����

�
1X

n= N +1

jan j +
1X

n= N +1

jan j

<
�
2

+
�
2

< �

So
P 1

n=1 a� (n) = L .

9.3 Rearrangements of conditionally convergent
series

Lemma 9.2

Let
P 1

n=1 an be a conditionally convergent series. Then there is an in�nite
number of non-negative terms and an in�nite number of negative terms in the
series.

Proof:
Use contrapositive.

Suppose there is a �nite number of negative terms.

Remark:
Case with �nite number of non-negative terms can be proved in the same way.

There must exist integerN such that N is the largest number for whichaN < 0.
i.e. an � 0 for all n > N .

Case (i)
P 1

n=1 an diverges. Trivially, not conditionally convergent.
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Case (ii)
P 1

n=1 an converges.

1X

n= N +1

jan j =
1X

n= N +1

an =
1X

n=1

an �
NX

n=1

aN

=)
1X

n=1

jan j =
NX

n=1

jan j +
1X

n= N +1

jan j

=
NX

n=1

jan j

| {z }
�nite sum

=) real number

+
1X

n=1

an

| {z }
converges

�
NX

n=1

an

| {z }
�nite sum

=) real number

By properties of limits,
P 1

n=1 jan j converges.

=)
P 1

n=1 an is absolutely convergent.

=)
P 1

n=1 an not conditionally convergent.

Lemma 9.3

Let
P 1

n=1 an be conditionally convergent. For eachn � 1, de�ne bn to be the
n-th non-negative andcn is the n-th negative term in the series. Then,

1. limn !1 bn = 0 and limn !1 cn = 0, and

2.
P 1

n=1 bn = 1 and
P 1

n=1 cn = �1 .

Proof:
Exercise.

Theorem 9.4

Let
P 1

n=1 an be conditionally convergent series. Then, for anyL 2 R, there
exists a rearrangement of

P 1
n=1 an that convergent to L .

Proof:
Exercise.



10
Euclidean Space

10.1 Rn Euclidean inner product and norm

We de�ne the spaceRn to be the set of alln-vectors x = ( x1; x2; x3; : : : ; xn ) where
x i 2 R for eachi = 1 ; 2; 3; : : : ; n.1

Rn , equipped with vector addition and scalar multiplication, is avector space.

We also de�ne the Euclideaninner product of two vectorsx and y is

hx; yi =
nX

i =1

x i yi

Also called dot product or scalar product.

The Euclidean normof a vectorx 2 Rn is

kxk = hx; x i 1=2 =

 
nX

i =1

jx i j2
! 1=2

Bt Euclidean space, we meanRn with the structure imposed by the Euclidean inner
product and norm.

1I will use x ; ~x or just x (from optimization courses) to represent vector. Readers should be
clear when it is vector.

33
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y

x

kvk =
p

x2 + y2 =

 
2X

i =1

jvi j2
! 1=2

v = ( x; y)

Figure 10.1: Example ofn = 2

10.2 Properties of Euclidean inner product and
norm

Proposition 10.1

Let x; y; zRn and �; � 2 R. The Euclidean inner product satis�es

1. hx; x i � 0 with equality i� x = 0. (positive de�nite)

2. hx; yi = hy; xi . (symmetry)

3. h�x + �y; z i = � hx; zi + � hy; zi . (Bilinearty)

Proposition 10.2

Let x; y 2 Rn and � 2 R. The Euclidean norm satis�es:

1. kxk � 0 with equality i� x = 0. (positive de�nite)

2. k�x k = j� j kxk. (homogeneous)

3. kx + yk � k xk + kyk. (4 ineq)

Proof:
1,2 ! Exercise.

3 ! See Theorem 10.4.
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10.3 Inequalities

Theorem 10.3: Cauchy-Shwarz Inequality

For any x; y 2 Rn ,
j hx; yi j � k xk � kyk

Equality holds i� x and y are linearly dependent (i.e., there exists� 1; � 2 2 R
such that � 1x + � 2y = 0 and it is not true that � 1 = � 2 = 0).

Proof:
First, note that the result is trivial if x = 0 or y = 0.

Supposex 6= 0 and y 6= 0. We de�ne the unit vectors

u = ( u1; : : : ; un ) =
x

jjxjj

and
v = ( v1; : : : ; vn ) =

y
jjyjj

For each i = 1 ; 2; : : : ; n,

0 � (ui � vi )2 = u2
i � 2ui vi + v2

i

ui vi �
1
2

(u2
i + v2

i )

Adding together inequalities for alli :

nX

i =1

ui vi �
1
2

nX

i =1

(u2
i + v2

i ) =) h u; vi �
1
2

(jjujj 2 + jjvjj 2) = 1

We can do the same manipulation as above starting form

0 � (ui + vi )2 = ui + 2ui vi + v2
i =) h u; vi � � 1

Hencejhu; vij � 1.

Exercise: Complete this proof.

Theorem 10.4: Triangle Inequality

For any two vectors,x; y 2 Rn

kx + yk � k xk + kyk

Equality holds i� x = 0 or y = �x for some� � 0.
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Proof:
kx + yk2 = hx + y; x + yi

= hx; x i + hx; yi + hy; xi + hy; yi by bilinearity
� h x; x i + jhx; yij + jhx; yij + hy; yi by properties of abs values
� k xk2 + 2kxkkyk + kyk2

= ( kxk + kyk)2

Take square roots:
kx + yk � k xk + kyk

Now prove \equality" statement.

=) ) If equality holds, then

hx; yi = jhx; yij = kxk � kyk

The �rst \=": compare �rst introduction of inequality in proof.

The second \=": second inequality.

So we need C.S equality condition and we needhx; yi � 0.

Case 1 � 2 6= 0, then y = �x where � = � � 1
� 2

.

Case 2 � 2 = 0. Exercise.
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Convergence and Completeness in
Rn

11.1 De�nitions of sequences and convergence in
Rn

An (in�nite) sequence of vectors or points inRn is an in�nite enumerated list
(xk)1

k=1 = ( x1; x2; : : :) where eachxk 2 Rn for k � 1.

A sequence (xk)1
k=1 converges to a pointa 2 Rn if

Given � > 0, there existsN such that kxk � ak < � for all k � N .

If this holds, then a is called the limit of the sequence, and we write

lim
k!1

xk = a

Lemma 11.1

Let (xk)1
k=1 be a sequence inRn . Then,

lim
k!1

xk = a () lim
k!1

kxk � ak = 0

Each xk = ( xk;1
2R

; : : : ; xk;n ) 2 Rn .

Lemma 11.2

Let xk be a sequence inRn . Then lim
k!1

xk = a = ( a1; a2; : : : ; an ) if and only if

lim
k!1

xk;j = aj for 1 � j � n

37
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Proof:
=) ) Suppose limk!1 xk = a. We must show that for eachj 2 f 1; 2; : : : ; ng and

for all � > 0, we can �nd N j such that

jxk;j � aj j < � for all k � N j

Fix (arbitrary) j 2 f 1; : : : ; ng and let � > 0. By de�nition of lim k!1 x = a,
there existsN such that kxk � ak < � for all k � N . By de�nition or norm,

kxk � ak2 =
nX

i =1

jxk;i � ai j2 � j xk;j � aj j2

Hence, forN j := N , we have

jxk;j � aj j < � for all k � N

as required.

( = ) Let � > 0. By convergence of components for eachj 2 f 1; : : : ; ng, there
exists N j such that

jxk;j � aj j < � :=
�

p
n

for all k � N j

De�ne N = max f N j g. Then for all k � N

jxk;j � aj j < � for all j 2 f 1; : : : ; ng

Then

kxk � ak2 =
nX

j =1

jxk;j � aj j2 < n � 2 = � 2

Sokxk � ak < � for all k � N , as required.

11.2 Cauchy sequences

A sequence (xk)1
k=1 is Cauchy if ...

Lemma 11.3

Let (xk) be a sequence of points inRn . Then (xk) is Cauchy if and only if
(xk;j )1

k=1 is Cauchy for all j 2 f 1; 2; : : : ; ng.
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11.3 Completeness

A subsetS of Rn is complete if every Cauchy sequence inS converges to a limit in
S.

Proposition 11.4

Every convergent sequence inRn is Cauchy.

Theorem 11.5: Completeness Theorem for Rn

Rn is complete.

Proof:
(xk)1

k=1 is Cauchy~w� Lemma 11.3
(xk;j )1

k=1 is Cauchy for all j 2 f 1; : : : ; ng~w� Theorem 11.5
(xk;j )1

k=1 is convergent for eachj~w� Lemma 11.2
(xk)1

k=1 is convergent

Actually, we have shown i�.

11.4 Closed subsets of Rn

Let X � Rn . We de�ne a limit point of X as a point a 2 Rn for which there exists
a sequence inX converging toa.

Example:
(0; 2] = X

1, 2 is a limit point of X . 3 is not a limit point. 0 is a limit point, but not in X .

If X contains all of its limit points, we say it isclosed.

So (0; 2] is not closed.

Given any subsetX � Rn , we de�ne the closure ofX , denotedX , as the set of all
limit points of X .

Example:

1. ∅ is closed since it contains all limit points.

2. Rn is closed.
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3. The open interval (0; 1) � R. It is not closed.

4. The closure of (0; 1) is [0; 1] which is closed.

5.

X =
�

(x; y) 2 R2 :
x2

4
+ y2 < 1

�

X is not closed. Consider

xk =
��

0; 1 �
1
k

�� 1

k=1
! (0; 1) 62X

Proposition 11.6

A subsetS 2 Rn is closed if and only if it is complete.

Remark:
Not always equivalent - relies on completeness ofRn .
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Closed Subsets in Rn

12.1 Properties of closed sets

Proposition 12.1

For any subsetX � Rn , the closure ofX is closed, and is in fact, the smallest
closed set that containsX .

Proof:
Exercise.

Proposition 12.2

If A and B are closed subsets ofRn , then A [ B is closed.

Proof:
First note that A [ B is trivially closed if A = B = ∅. Now, supposeA and B
are closed, and not both empty.

Let x be a limit point of A [ B . We must show that x 2 A [ B .

By de�nition, there must be a sequence (xk)1
k=1 in A [ B converging tox. Either

A or B (or both) must contain in�nitely many terms of the sequence.

Suppose WLOG that A contains in�nitely many terms in the sequence. Then,
we can make a subsequence (xk j )1

j =1 in A.

Since this is a subsequence of a convergent sequence, it must converge, and its
limit is x.

By closeness ofA, x 2 A =) x 2 A [ B =) A [ B is closed.

41
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Remark:

By induction,
N[

i =1

X i is closed for any integerN if X i is closed for 1� i � N . But

this does not extent to in�nite unions.

SupposeX i =
�
0; 1 � 1

i +1

�
; i = 1 ; 2; : : :

Proposition 12.3

If A i � Rn is closed for eachi in an arbitrary (possibly in�nite) indexing set
I , then

\

i 2 I

A i is closed.

Proof:
Let X =

\

i 2 I

A i . If X = ∅, then it is closed. Now, supposeX 6= ∅. Let x be a

limit point of X . Then, there is a sequence (xk)1
k=1 in X converges tox.

By de�nition of X , xk 2 A j for all k � 1, and for all j 2 I . Hencex 2 A j for all
j 2 I (by closed property ofA j ) =) x 2 X =

\

j 2 I

A j .

12.2 Closedness and Boundaries

We de�ne the open ball of radiusr > 0 about a point a 2 Rn as the set

B r (a) = f x 2 Rn : kx � ak < r g

The complement of a setX � Rn is

X 0 = Rn n X = f x 2 Rn : x 62X g

This can also be denoted byX C .

A point a 2 Rn is a boundary point of S � Rn if for every r > 0, the open ball
B r (a) contains a point in S and a point in S0.

a

B

Figure 12.1: An example of open ball
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X

X 0

Figure 12.2: An example of boundary point

The boundary of a setS � Rn is the set of all boundary points ofS, where we
denote it by @S.

Example:

1. Let’s take a look at (0; 1) and [0; 1). 0 and 1 are the (only) BPs for both
cases. BPs may or may not inS.

2. [0; 0:5) \ (0:5; 1]. 0.5 is also a boundary point.

Note
boundary point can be \in the middle" of a set.

3. X is a �nite set.

� � � � � � � � �

X is the boundary of itself, i.e.,@X= X

4. X = f s 2 Q : jsj < 1g. 0,1, still BPs. Every number in [0; 1] is BP.

Proposition 12.4

A set S � Rn is closed if and only if it contains all of its boundary points.

Proof:
Exercise.



13
Open and Compact Subsets of Rn

13.1 Open subsets in Rn

As de�ned in the last lecture, the open ball of readiusr about a point a in Rn is the
set

B r (a) = f x 2 Rn : kx � ak < r g

A subset U � Rn is open if for all a 2 U, there exists somer > 0 such that
B r (a) � U.

If U is an open set containing a pointa, then we say thatU is an open neighbourhood
of a.

An interior point of a set X � Rn is a point x 2 X such that B r (x) � X for some
r > 0.

The interior of a set X � Rn is the set of all interior points ofX . It is denoted by
int( X ). If int( X ) is empty, then we sayX has empty interior. Otherwise, it has
nonempty interior.

Example:

1. X = f 1; 2; 3g

� � �( )
~a

B r (a) = ( a � r; a + r ) � X ? No =) X not open.

2. ∅ is open

3. Rn is open

Note
The only subsets inRn that are closed an open isRn and ∅.

44



LECTURE 13. OPEN AND COMPACT SUBSETS OF RN 45

4. The open interval (a; b) is open

5. The close interval [a; b] is not open.

int([ a; b]) = ( a; b)

6. (a; b]; [a; b) is not open and not closed.

7. Br (a) is open for anyr > 0 a 2 Rn

8. X = f s 2 Q; jsj < 1g. For any r > 0, B r (0) = ( � r; r ) contains irrational
points. So it is not contained inX . In fact, it has empty interior.

In fact, int( X ) = ∅.

Note
\interior" doesn’t always coincide with what you think of as the \inside"
of a set.

9. X = ( � 1; 1) n f 0g. 0 is not an interior point.

13.2 Properties of open subsets

Proposition 13.1

If U and V are open subsets ofRn , then U \ V is open.

Proof:
Exercise.

Proposition 13.2

If Ui is an open subset ofRn for each i in an arbitrary (possible in�nite)
indexing set I , then X =

\

i 2 I

is open.

Proof:
Exercise.
Note
Cannot take intersection of in�nitely many open set and expect it to be open.

Example:
1\

n=1

�
�

1
n

;
1
n

�
= f 0g

Theorem 13.3

A set X � Rn is open if and only if its complement is closed.
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Proof:
=) ) Let X be an open subset ofRn and suppose thata is a limit point of X 0.

Suppose for contradiction thata 2 X . Since X is open, there exists an
open ballB r (a) � X . Then there is no pointy in X 0 with ky � ak < r . No
sequence inX 0 can converge toa, contradicting the assumption thata is a
limit point of X 0. Therefore, all limit points of X 0 must be in X 0, i.e., X 0

is closed.

( = ) Suppose that X is not open. Then there must be a pointx 2 X such that
for every r > 0, the open ballB r (x) contains a point in X 0. Construct a
sequence (ak)1

k=1 in X 0 such that ak 2 B r =1 =k(x) for each k � 1. Then,
lim

k!1
ak = x 2 X , which means that there is a limit point ofX 0 that is not

in X 0. This proves that X 0 is not closed.

Proposition 13.4

A set X � Rn is open if and only if it contains none of its boundary points.

Proof:
Exercise.

13.3 Bounded sequences and subsets in Rn

We say that a sequence (xk)1
k=1 in Rn is bounded if there exists a real numberR

such that kxkk < R for all k.

We say a setX � Rn is bounded if there exists a real numberR such that kxk < R
for all x 2 X .

Theorem 13.5: Bolzano-Weierstrass in Rn

Every bounded sequence (xk)1
k=1 in Rn has a convergent subsequence (xk l )1

l=1 .

Proof:
Immediate.

Corollary 13.6

If S is a closed and bounded subset ofRn , then every sequence of points inS
has a subsequence that converges inS.

Proof:
Trivial.
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13.4 Compact sets

Let K be a subset ofRn . We say that K is compact if every sequence of points in
K has a convergent subsequence with a limit inK .

Theorem 13.7: The Heine{Borel Theorem

A subset ofRn is compact if and only if it closed and bounded.

Proof:
The \if" part is Corollary 13.6. We now show that K is compact only if it is
closed and bounded. LetK be a compact subset ofRn .

To show that K is closed, supposex is a limit point of K . Then there is a sequence
of points in K such that lim

k!1
xk = x. SinceK is compact, there is a subsequence

of this sequence that converges to a point inK . But every subsequence of a
convergent sequence must converge to limit of the sequence. Hencex 2 K .

We show that K is bounded by contradiction. Suppose thatK is not bounded.
Then, we can construct a sequence (xk)1

k=1 such that kxkk > k for eachk � 1. If
K is compact, then there must be a subsequence (xk j )1

j =1 that converges; denote
the limit x = lim

j !1
xk j .

Choose� = 1 in the de�nition of convergence. There exists an integerN such
that

 xk j � x
 < � = 1 for all j � N . By the Reverse4 Ineq,

��  xk j

 � k xk
�� �

 xk j � x
 < 1 8j � N

=)
 xk j

 < kxk + 1 8j � N

But for any point x 2 Rn , there exists an integerM > kxk + 1. For su�ciently
large j , we will havekj > M and by construction,

 xk j

 > k + j > M > kxk + 1.
This contradicts the statement above, proving thatK must be bounded.

Proposition 13.8

If K is a compact subset ofRn and C is a closed subset ofK , then C is
compact.

Proof:
If C � K and K is bounded, thenC must be bounded. By assumption,C is
closed. Hence, by Theorem 13.5,C is compact.

13.4.1 Examples and nonexamples

1. ∅ is compact

2. Rn is not compact (not bounded)
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3. (0; 1] not compact

4. Intervals [a; b] are compact fora; b2 R

5. [a; b]n is compact inRn

Proof:
Sketch inR2.

SupposeX = [ a; b] � [a; b].

Let x k = ( xk ; yk) for k � 1 such that (x k)1
k=1 is in X . Need to �nd

subsequence that converges tox = ( x; y) 2 X .

Consider real sequence (xk)1
k=1 in [a; b]. Bounded, so we can apply Theo-

rem 13.5. ! (xk j )1
j =1 that converges tox. Since [a; b] is closed,x 2 [a; b].

Now (yk j )1
j =1 is a sequence in [a; b].

By Theorem 13.5 and closed property of [a; b], there is a subsequence�
yk j l

� 1

l=1
that converges toy 2 [a; b].

�
x k j l

� 1

l=1
must converge to (x; y)

[convergence of each component to component of limit, + subsequence of
(xk j ) must converge to limit of (xk j )]

Sincex 2 [a; b] and y 2 [a; b]; x 2 X . HenceX is compact.



14
Limits and Continuity of Functions

14.0 Preliminaries

SupposeS � R and f : S ! R. lim
x ! a

f (x) = L?

For all � > 0, there exists � > 0 such that jf (x) � L j < � for all x such that
0 < jx � aj < � .

Where does the notion of limit make sense?

Considerf (x) = 1 for all x 2 S.

� � �( ]
1 2

We want to be able to talk about limit at x = 0.

14.1 The limit of a function

Let S � Rn . We say that a 2 Rn is an accumulation pointof S if it is a limit point
of S n f ag.

The set of all accumulation points ofS is denoted bySa.

A point a 2 S n Sa is called anisolated pointof S.

Let f : S ! Rm be a function. Leta 2 Sa. The vector v 2 Rm is the limit of f at a
if for all � > 0, there exists� > 0 such that kf (x ) � vk < � for all x 2 S satisfying
0 < kx � ak < � .

49
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If this holds, we write lim
x ! a

f (x ) = v .

Example:

1.

f (x) =

(
1; if x = 1
jx � 1j; otherwise

Then lim
x ! 1

f (x) = 0

2. f (x; y) = x3

x2+ y4 on R2 n f 0g

lim
x ! 0

f (x ) = 0

Note that this is equivalent to

lim
x ! 0

jf (x )j = 0

We can do as follows

jf (x )j =
x2

x2 + y4 jxj � j xj

Show de�nition of limit holds (use �; � ).

14.2 In�nite limits

SupposeS � Rn ; f : S ! R, a 2 Sa. The limit of f at a is +1 if for all N � 1,
there exists� > 0 such that f (x ) > N for all x 2 S satisfying 0< kx � ak < � .

14.3 Continuity

Let S � Rn . We say that a function f : S ! Rm is continuous at the point a 2 S
if:

For all � > 0, there exists� > 0 such that kf (x ) � f (a)k < � for all
x 2 S satisfying kx � ak < � .

If f is continuous at everya 2 S then we say that it is continuous (on S). Iff is
not continuous at a 2 S, then we say it is discontinuous ata.

Proposition 14.1

Let S � Rn and f : S ! Rm . For everya 2 S \ Sa, the function is continuous
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at a i�
lim
x ! a

f (x ) = f (a)

Proof:
Exercise.
Example:
Show that f : (0; 1 ) ! R de�ned by f (x) = 1

x is continuous on its domain.

Proof:
First, choose arbitrary a > 0. Let � > 0. We need to �nd � > 0 such that
jf (x) � f (a)j < � for all x 2 (a � �; a + � ).

For any x > 0,

jf (x) � f (a)j =
����
1
x

�
1
a

����

=
����
a � x

ax

���� =
1

ax
jx � aj

Note
We cannot choose� = �ax so that

jx � aj < � =) j f (x) � f (a)j <
1

ax
� �ax = �

� is not allowed to depend onx since it must work for all x.

First, supposejx � aj < a
2 .

j
0

( )j
aa

2
3a
2

Then x >
a
2

=) ax >
a2

2
()

1
ax

<
2
a2 .

So we havejf (x) � f (a)j <
2
a2 jx � aj.

Pick � = min f
�a2

2
;
a
2

g so that

jx � aj < � =) j f (x) � f (a)j <
2
a2 jx � aj <

2
a2 � < �



15
Discontinuous Functions

15.1 Examples

1. f (x) =

(
1 if x = 0
0 otherwise

This is discontinuous atx = 0, continuous everywhere else.

This kind of discontinuity is called a removablediscontinuity because you can
remove it by changing the value of the function atx = 0 to f (0) = 0.

2. Let f : R ! R be de�ned by

f (x) =

(
1

jx j if x 6= 0
0 otherwise

Discontinuous atx = 0, not removable.

3. The Heaviside function

H (x) =

(
0 if x < 0
1 if x > 0

Discontinuity at x = 0, not removable.

15.2 One-sided limits

Let f : S ! R, where S � R. Consider a pointa 2 Sa a that is a limit point of
S \ (a;1 ). We say that the limit of f as x approachesa from the right exists and
is equal toL if given � > 0, there exists� > 0 such that jf (x) � L j < � for all x 2 S
satisfying a < x < a + � .
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If this holds, then we write lim
x ! a+

f (x) = L .

The limit from the left is analogous: lim
x ! a�

f (x) = L .

Example:

1. Heaviside function: lim
x ! 0�

H (x) = 0 and lim x ! 0� H (x) = 1.

2. f (x) = x on (0; 1]

10

15.3 Jump discontinuities and piecewise continu-
ity

We say that a function f has a jump discontinuity at a point a 2 R if the limits of
f as x approachesa from the left and from the right both exist but are not equal.
E.g. Heaviside function atx = 0.

A function on an interval is piecewise continuous if every �nite subinterval contains
a �nite number of jump discontinuity and no other types of discontinuities.

Example: Thomae’s function
f : R ! R

f (x) =

(
0 x =2 Q
1=q if x = p=q in lowest terms, with q > 0

It can be shown that lim
x ! a

f (x) = 0 at any point a 2 R. f is continuous at every
irrational point and has a removable discontinuity at every rational point.



16
Properties of Continuous functions

16.1 Equivalent statements of continuity

We say that a subsetV of a subsetS � Rn is open in S, or relatively open with
respect toS, if there exists an open setU such that V = U \ S. Also, X � S is
closed inS if there exists a closed setC such that X = C \ S.

S V V is open
V = V \ S =) open in S

U is open
V = U \ S =) open in SS

V
U

X
C is open
X = C \ S) closed inS

C

S

54
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Proposition 16.1

A subsetV � S is open inS � Rn if and only if the following holds:

For every x 2 V , there exists� > 0 such that B � (x) \ S � V .

Theorem 16.2

For a function f : S ! Rm whereS � Rn , the following are equivalent:

1. f is continuous onS.

2. For any sequence (xk)1
k=1 in S that converges to a limit a 2 S. then

lim
k!1

f (xk) = f (a)

3. If U is an open subset ofRm , then the preimage setf � 1(U) = f x 2 S :
f (x) 2 Ug is open inS.

Remark:
� Statement 2 is called \sequential continuity".

� Statement 3 is \topological continuity".

� From the proof (below). Statements 1 and 2 can also be applied at each
point a (pointwise) i.e., continuity at a is equivalent to sequential continuity
at a.

Proof:
1 =) 2 Continuity of f at every a 2 S means: �x a 2 S and � > 0. Then,

there exists� > 0 such that kf (x) � f (a)k < � for all x 2 S satisfying
kx � ak < � .

Suppose lim
k!1

xk = a for (xk) is S.

There existsN such that kxk � ak < � for all k � N .

=) k f (xk) � f (a)k < � for all k � N
=) lim

k!1
f (xk) = f (a)

: 1 =) : 2 If f is not continuous ata 2 S, then there exists� > 0 such that for
all � > 0, kx � ak < � and kf (x) � f (a)k � � for somex 2 S.

a

�
f (a)

For each integerk � 1, choose� k = 1
k and choosexk 2 S such that
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kxk � ak < � k and kf (xk) � f (a)k � � .

So, lim
k!1

f (xk) 6= f (a) [It may not exist]

1 =) 3 Supposef is continuous onS. Let U � Rm be an arbitrary open set.

The pre-imagef � 1(U) is either empty or nonempty. If empty, then
open, therefore open inS.

Otherwise, if f � 1(U) is non-empty, then there exists a pointa 2 A :=
f � 1(U).

S

A = f � 1 (U)

a

U

u
�

�

B � (a) \ S

f

De�ne u = f (a) 2 U.

SinceU is open, there exists� > 0 such that B � (u) � U.

By continuity of f , there exists� > 0 such that kf (x) � f (a)k < � for
all x 2 S satisfying kx � ak < � .

Hence,f (B � (a) \ S) � B � (u) � U. That is, B � (a) \ S � f � 1(U) = A.

From Proposition 16.1,A is open inS.

3 =) 1 Let a be an arbitrary point in S and de�ne u = f (a). For arbitrary � >
0, the open ballB � (u) is open inRm so Statement 3 =) f � 1(B � (u))
is open inS.

Note that a 2 f � 1(B � (u)). By Proposition 16.1, there exists� > 0
such that B � (a) \ S = f x 2 S : kx � ak < � g is a subset ofA.

Equivalently, kf (x) � f (a)k < � for all x 2 S satisfying kx � ak < � .

Example:
Find the limit of the sequencean = cos

� 1
n

�
.

The function f (x) = cos(x) is continuous onR. Since
�
xn = 1

n

� 1
n=1 converges to
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0, sequential continuity =)

lim
n !1

an = cos
�

lim
n !1

1
n

�
= cos 0 = 1

Note
We only need continuity of f at x = lim

n !1
xn .

We can also use this theorem to disprove continuity.

Example:

f (x) =

(
sin 1

x if x 6= 0
0 if x = 0

� 0:3 � 0:2 � 0:1 0 0:1 0:2 0:3

� 1

� 0:5

0

0:5

1

16.2 Combining Limits

Theorem 16.3

Let f and g be two functions fromS � Rn to Rm . Let a 2 S and u; v 2 Rm

such that
lim
x ! a

f (x) = u and lim
x ! a

g(x) = v

Then,

1. lim
x ! a

(f + g)(x) = u + v

2. lim
x ! a

�f (x) = �u for any � 2 R.

In addition, if m = 1, we have

3. lim
x ! a

f (x)g(x) = uv, and

4. lim
x ! a

f (x)=g(x) = u=v, provided v 6= 0.
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16.3 Combining continuous functions

Theorem 16.4

Let f and g be two functions fromS � Rn to Rm . If there is a point a 2 S
such that f and g continuous at a, then

1. f + g is continuous ata,

2. �f is continuous ata,

In addition, for m = 1

3. fg is continuous ata, and

4. f=g is continuous ata, provided g(a) 6= 0.

Theorem 16.5

Let S � Rn , T � Rm . Suppose we have functionsf : S ! T andg : T ! R‘ . If
f is continuous ata 2 S and g is continuous atf (a) 2 T , then the composition
g � f is continuous ata.

16.4 Examples

Every polynomial is continuous onR.



17
Extreme and Intermediate Value The-
orem

17.1 Extreme Values

Example:

1. Find the point at which the maximum is attained for the function f :
(0; 2) ! R de�ned by

f (x) = 2 x � 3x2 + x3 = x(x � 1)(x � 2)

We can �nd the value of xmax = 1 � 1=
p

3 � 0:42.

2. Consider the same function on domain [1=2; 1]. Now max is atx = 1
2 .

3. What if domain is (1=2; 1]? Now, there is no max.

4. What if domain is (1=2; 1 )? Unbounded so no max.

Note
If domain is closed an bounded, we can rule out behaviour like 3 and 4.

Theorem 17.1

SupposeC is a compact subset ofRn and f : C ! Rm is continuous onC.
Then, the imagef (C) is compact.

Proof:
We must show that any arbitrary sequence (yk)1

k=1 in f (C) has a subsequence
that converges to a point inf (C).

59
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C
f (C)f

xk yk

c
f (c)

For each k � 1, there existsxk such that f (xk) = yk . So we have a sequence
(xk) in C. By compactness ofC, there is a subsequence (xk j )1

j =1 that converges
to c 2 C.

By (sequential) continuity of f ,
�
f

�
xk j

�� 1
j =1 must converge tof

�
lim

j !1
xk j

�
=

f (c).

Sincec 2 C, f (c) 2 f (C).

Theorem 17.2: Extreme Value Theorem

Let C be a nonempty compact subset ofRn and f : C ! R be a continuous
function on C. Then, f attains its minimum and maximum values onC. That
is there exists pointa; b2 C such that

f (a) � f (x) � f (b); 8x 2 C:

Proof:
If C is compact andf is continuous thenf (C) is compact (Theorem 17.1) and
hence closed and bounded.

Bounded and nonempty (sinceC is nonempty) so there must be a supremum
M = sup f (C).

By de�nition of supremum, we can de�ne a sequence (yk) in f (C) that satis�es

M �
1
k

< y k � M

for eachk. Note lim
k!1

yk = M .

But f (C) is closed, soM 2 f (C). Hence, there existsb2 C such that f (b) = M .

Similarly, we can show that in�mum is attained at somea 2 C.

Remark:
You should be familiar with EVT expressed for continuous real-valued functions
on the closed, bounded interval [x1; x2].

We now generalize to functions of multiple variables, but still need function to
be scalar-valued.
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17.2 Intermediate Values

Theorem 17.3: Intermediate Value Theorem

Let f : [a; b] ! R be continuous. If y 2 R satis�es f (a) < y < f (b) or
f (b) < y < f (a), then there existsc 2 (a; b) such that f (c) < y .

Proof:
(Sketch)

Choosey satisfying hypothesis. De�neA = f x 2 [a; b] : f (x) < y g. a 2 A so A
is non-empty. b is an upper bound ofA.

So there is a supremumc = sup A.

Strategy

1. Show that c < b

2. Show that f (c) = y by contradiction.

Supposef (c) > y . Use continuity of f .

Supposef (c) < y .

Corollary 17.4

Continuous functions map closed intervals to closed intervals. That is, iff :
[a; b] ! R is continuous, then its imagef ([a; b]) is a closed interval.

Proof:
Theorem 17.2 can be applied to show that there existsxmin and xmax in the
interval [a; b] for which m = f (xmin ) � f (x) � f (xmax ) = M for all x 2 [a; b].
This implies that the image setf ([a; b]) � [m; M ].

WLOG supposexmin < x max . Then from Theorem 17.3, we know that any
point y 2 (m; M ) has a pre-image in (xmin ; xmax ). Hence, f ([a; b]) � [m; M ]. In
conclusion,f ([a; b]) = [ m; M ], as required.

Corollary 17.5

Let S � Rn and let f be a continuous function fromS to R. If a and b are two
points in S that a re connected by a path inS, then for any y 2 R between
f (a) and f (b), there exists a pointc on the path satisfying f (c) = y.
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17.3 Applications of the Intermediate Value The-
orem

1. Every polynomial of odd degree has at least one real root.

2. Finding roots of an equationf (x) = 0 (if f is continuous). E.g., the bisection
method.

3. Mashed Potato Theorem: A plate of mashed potato can be evenly divided by
a single straight vertical knife cut.

In position K 1 less than half the potato is at the left of the knife, in position
K 2 more than half is at the left. Hence (by the intermediate value theorem)
there is an intermediate position where exactly half is at one side.

You may care to think of how continuity should be involved in this argument.

4. The mashed potato and beans theorem: A plate of mashed potato and baked
beans can be evenly divided by a single straight vertical knife cut.

Choose one particular angle and the last result shows that you can divide the
potatoes by a cutK � at this angle. Then (say) there will be more than half
the beans on the left of the cut. Now vary the angle continuously by� until
the knife is in the same position as before, but pointing the other way. At
each angle, make sure you bisect the potatoes. Now less than half the beans
are on the left and so you passed through an intermediate position where both
beans and potatoes were divided fairly.

This result even holds true if you pile the beans on top of the potato (or vice
versa).

5. The bowl of fruit theorem:

An apple, a pear and a banana can be equally divided by a single knife-cut.

Remark:
This last result is usually called the Ham Sandwich Theorem (two pieces of
bread and the ham).

By putting the three pieces of fruit far apart, you should see that you do
not have any freedom to deal with a fourth volume. If you move from three
dimensions to four, though ...

Src: http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/
L20.html

http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/L20.html
http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/L20.html
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More than Continuous

18.1 Uniformly continuous functions

We say that a function f from S � Rn to Rm is uniformly continuous if

for all � > 0, there exists� > 0 such that kf (x) � f (y)k < � for every
x and y in S satisfying kx � yk < � .

Remark:
For a function to be continuous at point a (pointwise continuity) we choose�
after �xing the point a and � . For uniform continuity, the same � must work for
all points y. Hence, the \uniform". In particular, note that uniform continuity
implies continuity.

18.2 Examples

1. Prove f (x) = x2 is uniformly continuous on [a; b] � R for some real numbers
a < b.

2. f (x) = x2 is not uniformly continuous onR. Check f 0(x) = x.

3. f (x) = 1 =x on (0; 1] is not uniformly continuous.

4. f (x) = sin(1=x) on (0; 1] is not uniformly continuous.

5. f (x) = x sin(1=x) on (0; 1] is uniformly continuous.
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Di�erence between continuity and uniform continuity

For \regular" continuity, choose y 2 S �rst, then there must be � > 0.

For \uniform" continuity, there must be � > 0 that works for all y 2 S
simultaneously/

Uniform continuity = ) continuity.

�

�

a

��

a + �a � �

f (a) + �

f (a) � �

y = f (x)

forbidden

For uniform continuity, for �:� . I can slide rect anywhere along graph, keeping
it centered in graph. Graph cannot enter regions above or below rect.

18.3 Compactness and uniform continuity

Theorem 18.1

Let K � Rn be compact andf : K ! Rm be a continuous function. Thenf
is uniformly continuous onK .

Proof:
Suppose for contradiction:f not uni cont. This means that 9� > 0 s.t. 8� > 0,
there are pointsx and y in K satisfying kx � yk < � and kf (x) � f (y)k � � .

De�ne a sequence of� values, � k = 1
k and choose pointsxk and yk satisfy the

condition above. By compactness ofK , there must be a subseq (yk j )1
j =1 that

converges to a pointa 2 K .

The rest of the proof is left as an exercise.
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18.4 Lipschitz functions

A function f from S � Rn to Rm is called aLipschitz function if there exists a
constant C such that

kf (x) � f (y)k � C kx � yk for all x; y 2 S:

Any constant C for which this condition is satis�ed is called a Lipschitz constant
for f . The smallestC for which this condition holds is called the (best) Lipschitz
constant.

Loosely, this means that the functionf cannot change too rapidly as you move a
point x away from y.

If a Lipschitz function f : [a; b] ! R is di�erentiable, then its derivative must be
bounded. In fact, it can also be shown that a di�erentiable function with bounded
derivative must be Lipschitz.

Example:
The norm function f (x) = kxk is Lipschitz onRn . By the Reverse triangle Ineq,
j kxk � k yk j � k x � yk. So, 1 is a Lipschitz constant.

Equality holds wheny = �x for some� > 0. So the best Lipschitz constant is 1.

Proposition 18.2

Every Lipschitz function is uniformly continuous.

Proof:
Supposef is a Lipschitz function with Lipschitz constant C. Given � > 0, let
� = �=C . Then

k~x � ~yk < � =) k f (~x) � f (~y)k � Ck~x � ~yk < C� = "

A function T : Rn ! Rm is called a linear map (or linear transformation) if for any
�; � 2 R and for any x; y 2 Rn , the function satis�es T(�x + �y ) = �T (x) + �T (y).

Corollary 18.3

Every linear map fromRn to Rm is uniformly cont.

Proof:
Use Lipschitz.



19
Normed Vector Space

19.1 Normed vector spaces

We now consider vectors that are not necessarily inRn .

We will write x; y, etc for vectors instead of~x; ~y, etc. For the zero vector, we still
write ~0 to distinguish it from the number 0.

Let V be a vector space overR (i.e., a real vector space).

A norm on V is a function k � k : V ! R that satis�es the following properties for
all x; y and for all � 2 R:

1. kxk � 0 with equality i� x = ~0

2. k�x k = j� j kxk

3. kx + yk � k xk + kyk

These are the same properties we discussed for Euclidean norm (Proposition 10.2).

Norms are not unique!

19.2 Examples of norms on Rn

� Euclidean

� p-norm

� p = 1, \Manhattan" or \taxicab" norm or \chess"

� in�nity norm.
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Exercise
Think about the shape of balls of unit radius for di�erent norms.

19.3 Vector spaces of continuous and di�erentiable
functions

Let C[a; b] denote the vector space of continuous, real-valued functions on [a; b].

Exercise
Verify that is a vector space.

Recall a function f : [a; b] ! R is n-times continuously di�erentiable if its deriva-
tives f 0; f 00; : : : ; f (n) are continuous on [a; b].

Let Cn [a; b] denote the vector space ofn-times continuously di�erentiable functions
on [a; b].

We can also generalize notation toC(K ), the space of continuous functions on a
compact setK � Rn .

19.4 Norms on vector spaces of functions

For a function f 2 C[a; b] and any real numberp � 1, we de�ne the Lp norm by

kf kp =
� Z b

a
jf (x)jp dx

� 1=p

For functions f 2 C(K ) with K � Rn compact, we de�ne the uniform norm

kf k1 = sup
x2 K

jf (x)j

Exercise
Check that this is a norm.

For functions f 2 Cn [a; b], we de�ne

kf kCn = max
0� j � n

kf ( j )k1 = max fk f k1 ; kf 0k1 ; : : : ;
 f (n)


1 g

Example:
Find the uniform norm for the function f (x) = x(2 � x) on [0; 2].

It’s 1!.

g(x) = sin( �x ) + 1
2 on [0; 2].

It’s 3=2.
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Normed and Inner Product Spaces

20.1 Topology in normed vector spaces

Many defns and results are exactly as they were de�ned for vectors inRn . Let
(V;k�k) be a normed vector spaces.

Remark:
We will commonly just refer to V instead of (V;k�k) for short.

Convergence, Cauchy seq, open balls, open/closed subsets, bounded subsets and
compact subsets are as before.

Every convergent sequence is a Cauchy sequence.

As in Rn , a subset ofV is open i� its complement is closed.

The Heine-Borel Theorem (a subset is compact if and only if closed and bounded)
is not valid in in�nite-dimensional vector spaces.

20.2 Counterexample to Heine-Borel Theorem

Consider the normed space (C[� 1; 1]; k�k1 )

We’ll �nd a closed and bounded subset ofC[� 1; 1] is not compact (w.r.t. uniform
norm).

Let ( f n )1
n=1 be the seq of funcs inC[� 1; 1] de�ned by

f n (x) =

8
<

:

0; if � 1 � x � 0
nx; if 0 < x < 1=n
1; if 1=n � x � 1

Note that kf nk1 = 1 for all n � 1 so (f n )1
n=1 is a seq inX . If we can show that
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(f n ) has no convergent subseq, then this will imply that it is not compact. We will
prove this by showing that no subsequence can be Cauchy.

Suppose (f n j )1
j =1 is an arbitrary subseq. Given any pos intj , choose anyk s.t.

nk � 2nj . Then 1
2n j

� 1
nk

, then

 f n j � f nk


1 = sup

x2 [� 1;1]

��f n j (x) � f nk (x)
��

�
����f n j

�
1

2nj

�
� f nk

�
1

2nj

� ����

= j1=2 � 1j = 1=2

So, choosing any postive� � 1
2, there does not exists any intN s.t.

 f n j � f nk


1 < �

wheneverj; k � N . Hence, the subseq is not Cauchy.

20.3 Inner products on vector spaces

V : vector space. An inner product onV is a function h�; �i : V � V ! R that
satis�es the following three properties for allx; y; z 2 V and for all �; � 2 R:

IP1: hx; x i � 0 with equality i� x = 0 (pos de�nite)

IP2: hx; yi = hy; xi (symmetry)

IP3: h�x + �y; z i = � hx; zi + � hy; zi (bilinearity)

We call (V;h�; �i ) an inner product space. We also refer toV as the inner product
space (with an implied inner product).

A norm can be induced by any inner product according to the de�nition:kxk =
hx; x i 1=2.

Theorem 20.1: Cauchy-Schwarz Ineq

8x; y 2 V
j hx; yi j � k xk kyk

with equality holding i� x and y are linearly dependent (collinear).

Proof:
Exercise.

Corollary 20.2

Let (V;h�; �i ) be an IPS and letk�k be de�ned askxk = hx; x i 1=2 for any x 2 V .
Then 8x; y 2 V ,

kx + yk � k xk + kyk
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Proof:
Exercise.

As we have just shown, any inner product space has a natural norm so you can think
of V as being both an inner product space and a normed space.

20.4 An inner product for C[a; b]

hf; g i =
Z b

a
f (x)g(x)dx

The norm is L2 norm

kf k2 =
� Z b

a
jf (x)j2dx

� 1=2



21
Convergence of Functions

21.1 Example of a limit in C[a; b]

omitted

21.2 Pointwise convergence of functions

Let S be a subset ofRn and let (f k)1
k=1 be a seq of functionsf k : S ! Rm for all k.

We say that (f k) converges pointwisely to a functionf if

lim
k!1

f k(x) = f (x) 8x 2 S

Properties:

1. Pointwise limit of continuous functions can be discontinuous.

2. Limit of integral may not be integral of limit.

3. Pointwise limit of discontinuous functions can be continuous.f k(x) = f
�

dxk e
k

�

21.3 Uniform convergence of functions

Given � > 0, 9 integer N s.t.

kf k(x) � f (x)k < � 8x 2 S and 8k � N

Note that uniform convergence implies pointwise convergence.
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Remark:
We see that if k�k1 is a valid norm for the functions f k and f , then uniform
convergence of (f k)1

k=1 to f is equivalent to convergence under the uniform norm.

We de�ned uniform convergence of a seq of functions to a functionf . We did not
refer to the norms, i.e.,kf k � f k. RecallC(K ) is a normed space (usually usek�k1 ).

If f k 2 C(K ) for all k � 1, and f 2 C(K ), then uniform convergence of (f k) to f is
the same (by defn) as convergence under the uniform norm.

k�k1 is not well de�ned norm for C(R). E.g. f (x) = x. f not bounded, sojf (x)j
does not have supremum.

Can you think of f k : R ! R s.t. (f k) converges tof (x) = x?

f k(x) = x +
1
k

So uniform convergence can still hold for sequences that are not from a normed
space of functions.

21.4 Uniform convergence and continuity

Theorem 21.1

S � Rn , (f k) a seq of cont functions fromS to Rm . If ( f k) converges uniformly
to f , then f is cont.

Proof:
kf (~x) � f (~a)k � k f (~x) � f N (~x)k + kf N (~x) � f N (~a)k + kf N (~a) � f (~a)k

� "=3 + "=3 + "=3
= "

Remark:
If K � Rn is compact, then vector space can be given the uniform normk�k1 .
This can be extended to the spaceC(K; Rm ) of vector valued, cont. functions
from K to Rm . The uniform is de�ned by

kf k1 = sup
x2 K

kf (x)k2

wherek�k2 is the Euclidean norm for vectors inRm .

Theorem 21.2: Completeness Theorem for C(K; Rm )

Let K � Rn be compact. ThenC(K; Rm ) is complete w.r.t the uniform norm.
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Proof:
We need to show that every Cauchy sequence converges uniformly to a function
in C(K; Rm ).

The rest of proof is left as an exercise to the readers.

Remark:
We only neededK compact to guarantee uniform is well de�ned. We can relax
this restriction slightly, e.g., to the set of all bounded functions.



22
Discrete Dynamical Systems

Now we are more in the \application" side of this course...

22.1 Introduction to dynamical systems

We consider a system whose state at any given time is described by a vectorx 2 X ,
whereX is any normed vector space.

The initial state is x0.

In this course, we considerx to evolve in discrete time steps, so the state at timen
is denotedxn .

The dynamical system is governed by a mapT : X ! X such that

xn+1 = T(xn ) for n � 0

Note
We also writeTx for T(x).

Using this map repeatedly gives

x1 = Tx0

x2 = Tx1 = T2x0

...
xn = T(xn � 1) = : : : = Tn (x0)

Note
Tn (x) = T(T(T : : : T(x)))

not [T(x)]n .
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22.2 Basic de�nitions for discrete dynamical sys-
tems

Let X ve a subset of a normed vector space and letT : X ! X be a continuous
map. We call (X; T ) a discrete dynamical system.

For any point x 2 X , we de�ne the forward orbit of x as the sequence of points
O(x) = ( Tnx)1

n=0 .

The forward orbit tells you that how the system behaves (evolves) over time starting
from the initial point x.

A �xed point of a dynamical system isx � 2 X that satis�es Tx� = x � .

Any �xed point x � has forward orbit O(x � ) = ( x � ; x � ; : : :)

A �xed point x � is called attractive (or a sink) if there exists an open neighbourhood
U of x � such that O(x) converges tox � for any x 2 U \ X .

A �xed point x � is repelling (or a source) if there is an open neighbourhoodU such
that O(x) is not contained in U for any x 2 U \ X n f x � g.

We say that T is aC1 dynamical system onX � R if T is continuously di�erentiable
on X .

X = R

n
0

x0
x1

x � constant orbit from �xed point

Supposex � attractive �xed point
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n
0

x �
U

allowed

\Attractive" does not mean kx � � Tnxk is strictly decreasing.

Supposex � repelling

n
0

x �
U

allowed

\repelling" does not mean distance fromx � is monotone increasing.

22.3 Examples

1. T(x) = x and considerX = R. xn = T(xn � 1) = xn � 1

Every point is a �xed point.

Every point is (not repelling), (not attractive).

Remark:
�xed point does not to be either attractive or repelling.

2. T(x) = x2; X = [0 ; 1 )
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X = [0 ; 1 )
x0x1x2

orb
its

co
nv

erg
es

to
0

y = T(x)

x0 x1 x2

y = x

X = [0 ; 1 )

Start between 0 and 1 =) converges to 0

Start > 1 =) diverges to1

x0 =) �xed point



23
Fixed points and Contractions

y = Tx

y = x

Repelling

y = Tx

y = x

Attractive
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y = Tx

y = x

Attractive

y = Tx

y = x

Repelling

23.1 Stability Theorem for �xed points

Theorem 23.1

Let T be C1 dynamical system onX � R with a �xed point x � .

1. If jT0(x)j > 1, then x � is a repelling �xed point.

2. If jT0(x)j < 1, then x � is an attractive �xed point.

Further more, for any c satisfying jT0(x)j < c < 1, then there exists an interval
U = ( x � � �; x � + � ) with � > 0 such that for anyx0 2 U \ X , the orbit of x0
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satis�es
jxn � x � j � cn jx0 � x � j �

cn

1 � c
jx1 � x0j

Exercise
Check the examples from sec 22.3 to see if they are consistent with this theorem.

23.2 Contractions

Let X be a subset of a normed vector space. A mapT : X ! X is a contraction
on X if there exists a numberc 2 [0; 1) such that kTx � Tyk � ckx � yk for all
x; y 2 X . The number c is called the contraction constant.

Remark:
Contractions are Lipschitz functions with Lipschitz constantc < 1.

Example:
T(x) = x2 on [0; 1=4] is a contraction.

Note that for di�erentiable functions, Lipschitz constant is the supremum of
jT0(x)j.

T0(x) = 2 x

sup
x2 [0;1=4]

jT0(x)j =
1
2

= c < 1 =) Contraction

Note that T(x) = x2 is not a contraction on [0; 1] even thoughjTx � 0j � j x � 0j
for all x 2 [0; 1].

Also be careful,kTx � Tyk < kx � yk for all x; y is not su�cient for contraction.
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Banach Contraction Principle

Theorem 24.1: Banach Contraction Principle

Let X be a closed subset of a complete normed space.

If T : X ! X is a contraction with contraction constantc, then:

1. T has a unique �xed point x � ,

2. the forward orbit of any point x 2 X converges tox � , i.e., limn !1 Tnx =
x � , and

3. kTnx � x � k � cn kx � x � k �
cn

1 � c
kx � Txk

Proof:
We want to show that for any x 2 X , the sequence (xn ) is Cauchy.

Applying 4 Ineq for a number of times:

kxn+ m � xnk = kxn+ m � xn+ m � 1 + xn+ m � 1 � xn+ m � 2 + : : : � xnk

�
m � 1X

i =0

kxn+ i +1 � xn+ i k

Each term of this sum can be bounded by noting that

kxk+1 � xkk = kTxk � Txk � 1k � ckxk � xk � 1k � : : : � ck kx1 � x0k| {z }
D

= ckD

So,

kxn+ m � xnk �
m � 1X

i =0

cn+1 D �
1X

i =0

cn+ i D =
cnD
1 � c

Hence, (xn ) is Cauchy (show this step).
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Initial Value Problems

We will use the Banach Contraction Principle to show that certain initial value
problems have a unique solution.

IVP

An initial value problem is a di�. eq. together with a set of initial value
conditions. We will focus on IVPs of the form

f 0(x) = h(x) = ’ (x; f (x)) ; for x 2 [a; b]
f (x0) = y0

where ’ : [a; b] � R ! R is a continuous function of two vars andx0 2 [a; b] is
the point at which the initial condition is speci�ed.

If f is a solution of the IVP, then by FTC Part 2, f is also a solution of the integral
equation

f (x) = f (x0) +
Z x

x0

f 0(t)dt = y0 +
Z x

x0

’ (t; f (t))dt

Conversely, if a cont functionf satis�es the integral equation

f (x) = y0 +
Z x

x0

’ (t; f (t))dt = y0 +
Z x

x0

h(t)dt

then by FTC part 1, f is di� on [ a; b] and f 0(x) = ’ (x; f (x)). In addition, f (x0) = y0.
Hencef solves the IVP.

De�ne a cont map T : C[a; b] ! C[a; b] by

T f (x) = y0 +
Z x

x0

’ (t; f (t))dt

Fixed points of T are precisely the solutions of the integral equation. If we can
show that T is a contraction for a give IVP, then the Banach Contraction Principle
would guarantee existence and uniqueness of the solution. [Recall, (C[a; b]; k�k1 ) is
a complete normed vector space.]
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Higher Order Differential Equations

Consider an IVP of the form

f (n)(x) = ’
�
x; f (x); f 0(x); : : : ; f (n � 1)(x)

�
; for x 2 [a; b]

f (x0) =  0; f 0(x0) =  1; : : : ; f (n � 1) (x0) =  n � 1
(26.1)

where ’ : [a; b] � Rn ! R is a continuous function of (n + 1) vars and x0 2 [a; b] is
the point at which the initial conditions are speci�ed.

We will convert the real-valued DE ofnth order into a vector-valued, �rst order DE.

Suppose we have a solutionf of (26.1). De�ne the function F : [a; b] ! Rn by

F (x) = ( f (x); f 0(x); : : : ; f (n � 1)(x))

Since eachf ( j ) must be cont for 0 � j � (n � 1), the function F belongs to
C([a; b];Rn ). Di�erentiating the components of this vector-valued function gives

F 0(x) =
�
f 0(x); f 00(x); : : : ; f (n � 1)(x); f (n)(x)

�

=
�
f 0(x); f 00(x); : : : ; f (n � 1)(x); ’

�
x; f (x); f 0(x); : : : ; f (n � 1)(x)

��

= �( x; F (x))

where � : [ a; b] � Rn ! Rn is de�ned by

� ( x; y0; y1; : : : ; yn � 1) = ( y1; y2; : : : ; yn � 1; ’ (x; y0; y1; : : : ; yn � 1))

We can express the initial conditions as

F (x0) = (  0;  1; : : : ;  n � 1) = �

Then F is a solution of the �rst order IVP

F 0(x) = � (x; F (x))
F (x0) = �

(26.2)
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Conversely, if the vector-valued functionF (x) = ( F0(x); F1(x); : : : ; Fn � 1(x)) is a
solution of (26.2), then
�
F 0

0(x); F 0
1(x); : : : ; F 0

n � 1(x)
�

= F 0(x)
= �( x; F (x))
= ( F1(x); F2(x); : : : ; Fn � 1(x); ’ (x; F0(x); F1(x); : : : ; Fn � 1(x)))

Equating coordinates on both sides gives

F 0
0(x) = F1(x)

F (2)
0 (x) = F 0

1(x) = F2(x)
...

F (n � 1)
0 (x) = F 0

n � 2(x) = Fn � 1(x)

F (n)
0 (x) = F 0

n � 1(x) = ’ (x; F0(x); F1(x); : : : ; Fn � 1(x))

Hence, the functionF0 satis�esF (n)
0 (x) = F 0

n � 1(x) = ’ (x; F0(x); F 0
0(x); : : : ; F (n � 1)

0 (x)).
The initial conditions satisfy

F0(x0) =  0

F 0
0(x0) = F1(x0) =  1

...

F (n � 1)
0 (x0) = Fn � 1(x0) =  n � 1

Hence, we have solved the IVP (26.1). We can now proceed with the method
introduced in the last lecture �rst order di� eq.

Integrating di� eq gives the integral eq,

F (x) = � +
Z x

x0

�( t; F (t))dt

Solving the di� eq is equivalent to solving the integral equation. In turn, solutions
of this integral equation are �xed point of the mapT : C([a; b];Rn ) ! C([a; b];Rn )
de�ned by

T F (x) = � +
Z x

x0

�( t; F (t))dt

Recall that the spaceC([a; b];Rn ) is complete with respect to the uniform norm. So
if T is a contraction, then iterating the mapT with any initial function will generate
an orbit that converges to the desired solution.

In practice, the requirement that T be a contraction is often too strict. It may be
possible to converge to a solution even whenT is not a contraction. We will discuss
existence and uniqueness of solutions in the next lecture.



27
Global Solutions of Differential Equa-
tions

Lipschitz in the y variable

A function �( x; y) is said to be Lipschitz in they variable if there is a constant
L such that

k�( x; y) � �( x; z)k � L ky � zk

for any (x; y) and (x; z) in the domain of �. We call L a Lipschitz constant.

Lemma 27.1

Let � : [ a; b] � Rn ! Rn be a continuous function that is Lipschitz in they
variable with Lipschitz constant L . Let � 2 Rn . De�ne the map T by

T F (x) = � +
Z x

a
�( t; F (t))dt

Let F and G two functions from Banach spaceC([a; b];Rn ). If there exist an
integer k � 0 and a real numberM such that

kF (x) � G(x)k �
M (x � a)k

k!
for all x 2 [a; b];

then
kTF (x) � TG(x)k �

LM (x � a)k+1

(k + 1)!
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Proof:

kTF (x) � TG(x)k =
 � +

Z x

a
�( t; F (t))dt � � �

Z x

a
�( t; G(t))dt



=


Z x

a
�( t; F (t)) � �( t; G(t))dt



�
Z x

a
k�( t; F (t)) � �( t; G(t))kdt

�
Z x

a
LkF (t) � G(t)kdt

�
LM
k!

Z x

a
(t � a)kdt

=
LM

(k + 1)!
(x � a)k+1

Corollary 27.2

The map T de�ned in Lemma 27.1 is uniformly continuous.

Proof:
For any x 2 [a; b],

kF (x) � G(x)k � k F � Gk1 = kF � Gk
(x � a)0

0!

which is the condition form Lemma 27.1 withk = 0 and M = kF � Gk1 . Hence,

kTF (x) � TG(x)k � L (x � a)kF � Gk1 � L (b � a)kF � Gk1

Since this holds for anyx 2 [a; b], it also holds for the supremum sokTF � TGk1 �
L (b � a) kF � Gk1 . Hence,T is Lipschitz with Lipschitz constant L (b � a) and
therefore uniformly continuous.

Theorem 27.3: Global Picard Theorem

Let � : [ a; b] � Rn ! Rn be a continuous function that is Lipschitz in they
variable and let � 2 Rn . Then the initial value problem

F 0(x) = �( x; F (x)) ; F (a) = � ;

has a unique solution.

Proof:
De�ne the map T : C([a; b];Rn ) ! C([a; b];Rn ) by

TF (x) = � +
Z x

a
�( t; F (t))dt

and de�ne a sequence of functions (Fk)1
k=1 in C([a; b];Rn ) recursively by

F0(x) = � ; Fk+1 = TFk for k � 0
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Let L denote the Lipschitz constant for � and de�ne M = sup
x2 [a;b]

k�( x; �) k.

kF1(x) � F0(x)k =


Z x

a
�( t; �) dt

 � M (x � a) =
M (x � a)1

1!

By Lemma 27.1, we have

kF2(x) � F1(x)k = kTF1(x) � TF0(x)k �
ML (x � a)2

2!

This also satis�es the condition in the lemma, so we can iterate. We can show
by induction that

kFk+1 (x) � Fk(x)k �
ML k(x � a)k+1

(k + 1)!

for any integer k � 0. Following the method in the proof of Banach Contraction
Principle, for k; l � 0, we �nd that

kFk+ l (x) � Fk(x)k �
k+ l � 1X

j = k

kFj +1 (x) � Fj (x)k

�
k+ l � 1X

j = k

ML j (x � a) j +1

(j + 1)!

�
M
L

1X

j = k+1

[L (b � a)]j

j !

Recall the power series representation ofez is
1X

j =0

zj

j !
so

1X

j =0

[L (b � a)]j

j !
= eL (b� a) .

Since this series converges, we know that given� > 0, there exists an integerN

such that
M
L

1X

k= N

[L (b � a)]j

j !
< � . Therefore,kFp(x) � Fq(x)k � � for all x 2 [a; b]

and hencekFp � Fqk1 � � for all p; q � N , proving (Fk) is Cauchy.

But C([a; b];Rn ) is complete with respect to the uniform norm so the sequence
must converge to some limitF � .

By continuity of T , we have

TF � = T( lim
k!1

Fk) = lim
k!1

TFk = lim
k!1

Fk+1 = F �

sp F � is a �xed point of T , which is a solution of the IVP.

Proving that the �xed point is unique is left as an exercise.



28
Newton’s Method

Newton’s method is an iterative algorithm for

nding a root of a function. We will prove that the algorithm works and

nd an error bound using the Banach Contraction Principle.

Theorem 28.1: Newton’s Method

Let f : R ! R be twice continuously di�erentiable. Suppose there exists
x � 2 R satisfying f (x � ) = 0 and f 0(x � ) 6= 0. Then there exists r > 0 such
that for any x0 2 [x � � r; x � + r ], the sequence (xn )1

n=0 de�ned recursively by
xn+1 = xn � f (xn )=f 0(xn ) for n � 0 converges tox � . Moreover, there exists
M 2 R such that

jxn+1 � x � j < M jxn � x � j2 for all n � 1

Proof:
De�ne the map T : R ! R by

T(x) := x � f (x) � f 0(x)

Note that x � from the hypothesis is a �xed point ofT .

By di�erentiation rules, T0(x) = f (x)f 00(x)
f 0(x)2 .

T0 is continuous andT0(x � ) = 0 so there existsr > 0 such that jT0(x)j � 1=2 for
all x satisfying jx � x � j � r . That is, T is a contraction onX = [ x � � r; x � + r ]
with contraction constant c = 1=2.

By Banach Contraction Principle:

1. T has a unique �xed point in X , which must bex � ,

2. limn !1 Tnx0 = x � for all x0 2 X , and
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3. jTnx0 � x � j � 2� n jx0 � x � j � 21� n jx0 � x1j.

For the last part of the theorem, see text book 11.2.1.

Remark:

1. Newton’s method also works iff is de�ned on an interval rather than all of
R.

2. Newton’s method establishes \quadratic convergence" to the solution. If
you are close to the �xed point, this is faster than the geometric convergence
o�ered by the BCP.

3. The algorithm for calculating square roots in Lecture Notes 4.2 can be
derived by applying Newton’s method.



29
Polynomial Approximations

This lecture is about intuitive, but problematic, ways of constructing polynomials
to approximate a given function.

29.1 Taylor polynomial and series

Taylor polynomial

Let f : [a; b] ! R and let n be a non-negative integer. Iff has n derivatives
at a point c 2 [a; b], then the Taylor polynomial of ordern for the function f
at c is de�ned by

Pn (x) = f (c) + f 0(c)(x � c) +
f 00(c)

2
(x � c)2 + � � � +

f (n)

n!
(x � c)n

=
nX

k=0

f (k)(c)
k!

(x � c)k

Taylor remainder

The Taylor remainder of ordern for f at c is:

Rn (x) := f (x) � Pn (x)

The Taylor remainder can be regarded as the error in approximating a functionf
by its Taylor polynomial.
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Lemma 29.1

Let f 2 Cn [a; b] and c 2 [a; b]. The Taylor polynomial Pn of order n for f at c
is the unique polynomial of degree att mostn for which P (k)(c) = f (k)(c) for
0 � k � n.

Theorem 29.2: Taylor’s Theorem

Supposef 2 Cn [a; b] and that f (n+1) exists and satis�esf (( n+1)) (x) � M for
some constantM 2 R and for all x 2 [a; b]. Then,

jRn (x)j �
M jx � cjn+1

(n + 1)!

If the function f is in�nitely di�erentiable, then we can de�ne the Taylor series of

f about c:
1X

k=0

f (k)(c)
k!

(x � c)k . The Taylor series is a power series and, in general,

converges only on a certain interval aroundc.

Although Taylor polynomials might seem like a natural way to approximate func-
tions by polynomials, we see that is has some problems:

1. We need (n + 1) derivatives of f to construct the Taylor polynomials of order
n and determine an error bound.

2. Error bound may never be small enough.

3. The sequence of Taylor polynomials (equivalently, the Taylor series) may not
converge on the entire domain off .

4. Even if the Taylor series converges, it may not converge tof .

29.2 Polynomial interpolants

Given a (cont., di�.?) function f : [a; b] ! R, we might expect a polynomial
interpolation to reasonably approximatef .

De�ne n + 1 evenly spaced pointsx j = a + j
n (b � a), for j = 0 ; 1; : : : ; n and de�ne

yj = f (x j ) for each j . There is unique polynomialpn of degree at mostn satis�es
pn (x j ) = yj for j = 0 ; 1; : : : ; n.

This does not work for all functions. For example, forf (x) =
1

1 + x2 on the interval
[� 5; 5], not only does the sequencepn not converge uniformly, but limn !1 kf � pnk1 =
1 .

In this example, if you de�ne the n + 1 points x j di�erently, it is possible to have
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uniform convergence ofpn to f . But it has been shown that no matter how you
distribute x j , there will be a continuous functionf for which the sequence of inter-
polating polynomials does not converge uniformly tof .

29.3 Uniform approximations of continuous func-
tions by polynomials

Evidently, Taylor polynomials and polynomial interpolants do not generally provide
good uniform approximations of functions. We will show that it is, in fact, always
possible to uniformly approximate a continuous function on a closed interval by
polynomials:

Theorem 29.3: Weierstrass Approximation Theorem

Every continuous functionf : [a; b] ! R is the uniform limit of a sequence of
polynomials (pn ).

Proof:
See Lecture 31.
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