
}
Applied Real Analysis

AMATH 331}
Park Heng Henry Shum

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g



Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of AMATH 331 during Winter 2020 as well as other
related resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

I gave up using definition blocks gradually since the professor uses a subsection to
give all definition...

Also, I am not following the numbering convention in professor’s lecture notes:
Instead of setting the counter within the section (Theorem 13.1.1), I am using the
counter within the chapter/lecture (Theorem 13.1).

I have left out some examples from chapter 25 which is the last lecture before the
suspension.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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1
Real Numbers

Refs 1 for review. 2.1-2.2, 2.9

1.1 Decimal expansions and the real number line

finite decimal expansion

A finite decimal expansion has the form

x = a0◦a1a2a3 . . . aN

where a0 is an integer (positive, negative or zero) for 1 ≤ n ≤ N an ∈
{0, 1, . . . , 9}

Example:

1◦45

−38◦298743

You can think of this as

x = a0 + a1

(
1

10

)
+ . . .+ aN

(
1

10N

)

Warning This looks like the usual decimal representation but it is not the same
for negative numbers.

Any finite decimal expansion can be replaced on the real number line.

6



LECTURE 1. REAL NUMBERS 7

Example:

Where is 1◦45?

0 1 2 3

1◦ 2◦

0 1 2 3 4 5 6 7 8 9

1◦ . . .

1◦4 . . .

1◦4 1◦5

0 1 2 3 4 5 6 7 8 9

1◦45

We can similarly define infinite decimal expansions

infinite decimal expansions

x = a0◦a1a2 . . .

Example:

1◦450000000 . . .

π = 3◦1415926535 . . .

Assuming the real number line has no gaps, every infinite decimal expansion x
corresponds to a point on the line.

Given any positive integer k, let y = a0◦a1a2 . . . ak be the finite decimal expansion
of x to the k-th decimal space. Then, x lies in the interval from y to (y + 10−k).
So, y approximates x to an accuracy of 1/10k. As we increase k, we improve the
accuracy; in fact, the error can be made arbitrarily small.

The converse direction: given a point on the real number line, can we find its decimal
expansion?

Yes!

It is possible for two decimal expansions to represent the same point. This happens
precisely when one ends in an infinite string of 0’s.
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Example:

1.000 . . . and 0.999 . . .

25.300 . . . and 25.2999 . . .

We define the real numbers R as the set of all infinite decimal expansions.

1.2 Ordering of real numbers

Suppose
x = x0◦x1x2x3 . . . , y = y0◦y1y2y3 . . .

We say that x and y are equal and write x = y if infinite decimal expansions are
identical or equivalent, as discussed previously.

If x and y are not equal, then we say that x are not equal, then x is less than y and
write x < y if there exists integer k ≥ 0 such that xk < yk and xi = yi for i < k. x
is greater than y (x > y) if ...

For any two real numbers x, y, exactly one of the following holds:

x = y x < y x > y



2
Bounds and Limits

2.1 Bounded sets of real numbers

upper bound

A set S ⊆ R is bounded above if there exists M ∈ R such that s ≤ M for all
s ∈ S. M is an upper bound of S.

lower bound

A set S ⊆ R is bounded below if there exists m ∈ R such that s ≥ m for all
s ∈ S. m is an lower bound of S.

bounded

A set is bounded if it is both bounded above and bounded below.

supremum

The supremum or least upper bound of a nonempty set S that is bounded above
is the upper bound L satisfies L ≤ M for all upper bounds M of S is written
as supS.

infimum

The infimum or greatest lower bound of a nonempty set S is the lower bound
` satisfying ` ≥ m for all lower bounds m of S. The infimum is denoted inf S.

9



LECTURE 2. BOUNDS AND LIMITS 10

max

If there exists M ∈ S such that s ≤ M for all s ∈ S, then M is called the
maximum of S, maxS.

min

Analogous defn for minS.

2.2 Examples

0. S0 = ∅. Bounded above and below. No supremum or infimum.

1. S1 = {n ∈ Z+} = {1, 2, 3, . . .} not bounded above, bounded below.

1 is infimum and minimum

2. S2 = {−3,−2, 0.5, 1.423}. Bounded above and below. Bounded. Has max,
min.

3. S3 =
{

1− 1
n

: n ∈ Z+
}

= {0, 1
2
, 2

3
, . . .}

Bounded above by 1. Bounded below by 0.

Supremum is 1, but there is no max.

2.3 Least Upper Bound Principle

Theorem 2.1: Least Upper Bound Principle

Every nonempty set S of R that is bounded above has a supremum. Every
nonempty set that is bounded below has an infimum.

Sketch of proof for “infimum”. There are only finitely many integers from m0 to
s0 + 2. Choose the greatest integer lower bound → call it a0.

a0 + 1 is not a lower bound. Divide [a0, a0 + 1] into 10, find a1 such that a0◦a1 is
lower bound of S, but a0◦a1 +1/10 is not. Repeat infinitely many times to construct
L = a0◦a1a2a3 . . ..

Now, show that L is infimum.1

1See details in textbook.



3
Limits of Sequences

3.1 Sequences

An infinite sequence of real numbers is an infinite, enumerated list of real numbers,
denoted by

(an)∞n=1 = (a1, a2, . . .)

Each an ∈ R is an element of the sequence.

We will just refer to them as sequences, and often write (an). Formally, a sequence
is a function that maps positive integers to R.

We say that a sequence is [bounded above/bounded below/bounded] if the set A =
{an} is respectively [bounded above/bounded below/bounded].

3.2 Examples

1. (an)∞n=1, where an = (−1)n for n ≥ 1.

2. an = 1
n
, for n ≥ 1.

3. (an) = (1, 1, 2, 1
2
, 3, 1

3
, . . .)

11
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3.3 Limits of Sequences

limit

Let (an)∞n=1 be a sequence. We call L ∈ R the limit of the sequence if for all
ε > 0, there exists an integer N such that

|an − L| < ε

for all n ≥ N .

If such L exists, then we say that (an) is convergent, and converges to L and we
write limn→∞ an = L, or an → L.

If a sequence does not have such a limit, then we say it diverges, or is divergent.

A sequence (an) diverges to ∞ if for all M > 0, there exists N such that an > M
for all n ≥ N . We write limn→∞ an =∞.

A sequence (an) diverges to −∞ if for all M < 0, there exists N such that an < M
for all n ≥ N . We write limn→∞ an = −∞.

Note
limn→∞ an = ±∞ does not mean limit exists.

3.4 Examples

1. an = 1/n, limn→∞ an = 0

For any ε > 0, we need to show that there exists N such that |an − 0| < ε for
all n ≥ N .

Choose N to be any integer greater than 1/ε. (N > 1
ε
)

For any n ≥ N , an = 1/n ≤ 1
N
< ε. We also have an ≥ 0

=⇒ |an| < ε

for all n ≥ N as required.
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3.5 Some basic properties of limits

Theorem 3.1: Squeeze Theorem

Let (an), (bn), (cn) be sequences.

If an ≤ bn ≤ cn for all n ≥ 1 and

lim
n→∞

an = lim
n→∞

cn = L

then
lim
n→∞

bn = 1

Proof:
We want to show that for all ε > 0, there exists N such that |bn − L| < ε for all
n ≥ N .

Let ε > 0. Since an → L, we can find N1 such that |an − L| < ε for all n ≥ N1.

Similarly, there exists N2 s.t. |cn − L| < ε for all n ≥ N2.

Define N := max{N1, N2}. Then, for n ≥ N , |an − L| < ε and |cn − L| < ε.

Equivalently,
L− ε < an < L+ ε L− ε < cn < L+ ε

Since an ≤ bn ≤ cn. L− ε < bn < L+ ε, or

|bn − L| < ε

as required.

Proposition 3.2

If a sequence converges to a limit L, then this limit is unique.

Proof:
See PDF.

Proposition 3.3

If a sequence (an) converges, then the set A := {an : n ≥ 1} is bounded.

Proof:
Exercises.
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Theorem 3.4

Let (an) and (bn) be two convergent sequences. If limn→∞ an = L and limn→∞ bn =
M , then

1. limn→∞(an + bn) = L+M

2. for any α ∈ R, limn→∞(αan) = αL

3. limn→∞(anbn) = LM , and

4. limn→∞
an
bn

= L
M

if M 6= 0 and bn 6= 0 for all n.



4
Monotone Sequence and Applica-
tions

4.1 Monotone Sequences

Let (an)∞n=1 be a sequence of real numbers. it is

1. monotone increasing if an+1 ≥ an for all n ≥ 1.

2. strictly monotone increasing if an+1 > an for all n ≥ 1.

3. monotone decreasing if an+1 ≤ an

4. strictly monotone decreasing if an+1 < an

monotone

A sequence is monotone is monotone if it is either (monotone) increasing or
(monotone) decreasing.

Theorem 4.1: Monotone Convergence Theorem

Monotone Convergence Theorem:

(i) Every monotone increasing sequence that is bounded above converges

(ii) Every monotone decreasing sequence that is bounded below converges

Proof:
We will first show that (i) =⇒ (ii).

Let (an) be a monotone decreasing sequence that is bounded below by m.

15



LECTURE 4. MONOTONE SEQUENCE AND APPLICATIONS 16

The sequence (−an)∞n=1 is monotone increasing and is bounded above by −m. By
part (i), (−an) must converge. Call the limit L = limn→∞(−an).

By Theorem 3.4 Part 2,

lim
n→∞

= lim
n→∞

[(−1)(−an)] = (−1) lim
n→∞

(−an) = −L

To prove Part(i) of this theorem, suppose (an) is monotone increasing and bounded
above.

The set A = {an|n ∈ Z+} is bounded above, and nonempty.

By LUBP(Theorem 2.1), A has a supremum, which we call L = supA. We show
that L is the limit of (an).

Given ε > 0, we know that L− ε cannot be an upper bound of A.

So there exists N such that an > L− ε.

Since (an) is increasing, an > L− ε for all n ≥ N . Since L is an upper bound of
A, an ≤ L for all n ≥ N .

=⇒ L− ε < an ≤ L < L+ ε

That is |an − L| ≤ ε for all n ≥ N .

4.2 Applications: Calculate Square Roots

The square root of a real number a > 0 can be obtained as the limit of the sequence
defined recursively by

xn =
1

2

(
xn−1 +

a

xn−1

)
, for n ≥ 1

where the starting point x0 is any positive number.

Moreover, for any n ≥ 1, the error in approximating
√
a by xn satisfies the bound

0 ≤ xn −
√
a < xn −

a

xn

Proof:
Strategy:

1. Prove that (xn) is bounded below.

2. Prove that (xn) is monotone decreasing.

3. Prove that (xn) is monotone decreasing.

4. Use MCT to prove that (xn) converges.
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5. Use properties of limits to determine that
√
a is the limit.

6. Look for upper and lower bounds for error.

See PDF for full proof.

4.3 Warning about computing limits that don’t

exist

Example:

a1 = 2, an+1 = 1
2
(a2
n + 1) for n ≥ 1.

If we assume (an) has a limit L, then we can get nonsense.

an+1 =
1

2
(a2
n + 1)

lim
n→∞

an+1 = lim
n→∞

1

2
(a2
n + 1)

=⇒ L =
1

2

(
lim
n→∞

an

)2

+
1

2
=

1

2
L2 +

1

2

L2 − 2L+ 1 = 0 =⇒ L = 1 is a solution

However, it can be shown that (an) is monotone increasing. Since a1 = 2, (an)
cannot possibly converge to 1.

(In fact, it does not converge.)



5
Subsequences

5.1 Definitions of subsequences

Let (an)∞n=1 be a sequence. The sequence (bk)
∞
k=1 is a subsequence of (an) of there

exist integers nk with 1 ≤ n1 < n2 < n3 < . . . such that bk = ank
for each k ≥ 1.

Example:

(a1, a2, a3, a4, a5, . . . )

(b1, b2, b3, b4, b5, . . . )

cannot do the following:

(a1, a2, a3, a4, a5, . . . )

(b1, b2, b3, b4, b5, . . . )

not allowed to change order

Example:

(an)∞n=1 =

(
(−1)n

n

)∞
n=1

=

(
−1,

1

2
,−1

3
, . . .

)
The sequence (bk) with bk = ak for all k ≥ 1 is a subsequence of (an).

The sequence
(
−1,−1

3
,−1

5
, . . .

)
is a subsequence.

The sequence
(

1
2
, 1

4
, . . .

)
is another subsequence.

18
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5.2 Some properties of Subsequences

Lemma 5.1

Let nk be integers satisfying n1 ≥ 1 and nk < nk+1 for all k ≥ 1. Then nk ≥ k
for all k ≥ 1.

Theorem 5.2

Suppose the sequence (an)∞n=1 converges to the limit L. Then every subse-
quence of (an) also converges to L.

Proof:
By definition of limit, for every ε > 0, there exists N such that |an − L| < ε for
all n ≥ N .

Let (bk)
∞
k=1 be any subsequence of (an), where bk = ank

for each k ≥ 1.

From Lemma 5.1, we know that nk ≥ k for each k. Given ε > 0, chose N as in
definition of lim

n→∞
an = L. For every k ≥ N ,

nk ≥ k ≥ N =⇒ |bk − L| = |ank
− L| < ε

Example:

1. From 5.1, the theorem holds just as it is.

2. Converse is not true. If a subsequence converges, we cannot conclude that
the original sequence converges.

5.3 Bolzano-Weierstrass

If for every integer n ≥ 1, we have a nonempty, closed interval In = [an, bn] such that
In+1 ⊆ In, then we say that (In) is a nested sequence of closed, bounded intervals.

Lemma 5.3: Nested Intervals Lemma

If (In) is a nested sequence of closed bounded intervals, then

∞⋂
n=1

In 6= ∅.

Proof:
Exercise.
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Theorem 5.4: Bolzano-Weierstrass Theorem

Every bounded sequence of real numbers has a convergent subsequence.

Proof:
Outline.

1. Given a bounded sequence (an), construct a nested sequence of closed,
bounded intervals In with lengths decreasing to zero, and such that each In
contains infinitely many elements of the sequence (an).

2. Construct a subsequence (bk) such that bk ∈ Ik for each k ≥ 1.

3. Show that (bk) converges.

Proof:

Step 1: Suppose (an)∞n=1 is a bounded sequence of real numbers. Let m1 be a
lower bound and M1 be an upper-bound for A = {an : n ≥ 1}.

Define an interval I1 = [m1,M1]. Define the point c1 = 1
2
(m1 + M1).

Choose one smaller interval either [m1, c1] or [c1,M1] that contains an
infinite member of elements of (an) → call this interval I2 = [m2,M2].

We repeat this process for all k ≥ 2. This gives a sequence of intervals
(Ik)

∞
k=1 such that In+1 ⊆ In for all n ≥ 1, and lengths of In converges

to zero. Also each Ik contains an infinite number of elements of (an).

Step 2: Let n1 = 2 so b1 = a1. Suppose we have our subsequence (bj) up to
element k. Then we have ni ≥ 1 for all i = 1, 2, . . . , k and ni < ni+1 for
all i = 1, 2, . . . , k − 1.

Since there are an infinite number of elements of (an) contained in
Ik+1, we can choose nk+1 such that nk+1 > nk and ank+1

∈ Ik+1, i.e.
bk+1 ∈ Ik+1. In this way, we inductively define (bj) as a subsequence of
(an).

Step 3: By Nested Intervals Lemma (Lemma 5.3),
∞⋂
k=1

Ik 6= ∅, so there must

exist a point L ∈ ∩∞k=1Ik. The length of interval Ij is
(M1 −m1)

2j−1
. For

any k ≥ 1, we have L ∈ Ik and bk ∈ Ik. Hence |bk − L| ≤
(M1 −m1)

2k−1
.

Consider sequence (|bk−L|)∞k=1. We can use Squeeze Theorem to show
that limn→∞ |bk − L| = 0 since

0 ≤ |bk − L| ≤
(M1 −m1)

2k−1
.

Hence lim
k→∞

bk = L.
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6
Cauchy Sequences

6.1 Definition

A sequence (an) is Cauchy if for any ε > 0, there exists an integer N such that

|an − am| < ε

for all n,m ≥ N .

Example:

(an)∞n=1 = (3, 3.1, 3.14, 3.141, . . .)

More generally, if x is any real number with infinite decimal expression x0◦x1x2x3 . . .,
then the sequence of finite truncations, i.e., ak is the truncation of x to k decimal
places, is Cauchy.

ak = x0◦x1 . . . xk000 . . .

Given ε > 0, we can find N such that 10−N < ε.

For any n ≥ 1, we have
an ≤ x ≤ an + 10−n

In particular,
aN ≤ x ≤ aN + 10−N

Note that (an) is monotone increasing, so aN ≤ an, am ≤ x ≤ aN + 10−N for any
n,m ≥ N .

So
|an − am| ≤ length of interval = 10−N < ε

=⇒ (an)∞n=1 is Cauchy.

22



7
Cauchy and Completeness

7.1 Properties of Cauchy Sequences

Proposition 7.1

If a Cauchy sequence (an) has a convergent subsequence, then (an) converges.
The limit is the same as the limit of the subsequence.

Proof:
Let ε > 0. By definition of limit of (bk) = (ank

) being L, i.e., limk→∞ bnk
= L,

there exists K such that

|bk − L| = |ank
− L| < ε

2

for all k ≥ K.

By Cauchy property of (an), there exists N such that

|an − am| <
ε

2

for all n,m ≥ N .

By Lemma 5.1, nk ≥ k for all k ≥ 1, so

|an − ank
| < ε

2

for all n, k ≥ N . Choose any k ≥ max{K,N}. Then, for all n ≥ N ,

|an − L| = |an − ank
+ ank

− L| ≤ |an − ank
|+ |ank

− L| < ε

2
+
ε

2
= ε

23
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Proposition 7.2

If a sequence (an) is Cauchy, then the set {an : n ≥ 1} is bounded.

Proof:
Exercise, or see PDF.

7.2 Example of not quite Cauchy

Consider the sequence (an)∞n=1, with an = log n.

The difference between successive terms is

|an+1 − an| = | log(n+ 1)− log(n)| =
∣∣∣∣log

(
n+ 1

n

)∣∣∣∣
limn→∞

n+1
n

= 1, so lim |an+1 − an| = 0.

(an) is not bounded, since log(n)→∞, hence by Proposition 7.2, (an) is not Cauchy.

7.3 Cauchy, Convergent and Complete

Proposition 7.3

Every convergent sequence is Cauchy.

Proof:
(Sketch)

N,K and use ε/2.

complete

We say that a subset X of R is complete if every Cauchy sequence in X has a
limit in X.

Theorem 7.4: Completeness Theorem for Real Numbers

R is complete.

In other words, every Cauchy sequence of real numbers converges.

Proof:
Suppose (an) is any Cauchy sequence of real numbers. By Proposition 7.2, {an :
n ≥ 1} is bounded. By Theorem 5.4, there must exist a convergent subsequence.
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By Proposition 7.1, (an) must also converge.

Remark:
The sequence of truncated decimal expansions of x (from Lecture 6) was shown
to be Cauchy. Now we know, it must converge. It can be shown that the limit is
x.

Note
Q is not a complete subset of R. Using sequence of finite decimal expansions, we
see that sequences of rational numbers can converge to an irrational limit.

7.4 Equivalent Statements of Completeness

We showed that construction of R as set of infinite decimal expansions leads to Least
Upper Bound Principle.

=⇒ Monotone Convergence Theorem

=⇒ Nested Intervals Lemma

=⇒ Bolzano-Weierstrass Theorem

=⇒ Completeness Theorem

It is possible to show that Completeness =⇒ LUBP. So all of these properties
describe the same “behaviour” of R.

7.5 Application: Proving convergence by Cauchy

property

Sometimes it’s easier to show that a sequence is Cauchy than convergent.

Example:

Consider a sequence an = 1− 1
2

+ 1
3
− 1

4
+ . . .+ (−1)n+1

n
. We can show that (an)∞n=1

is Cauchy. For m > n,

|am − an| =
∣∣∣∣(−1)n+2

n+ 1
+
−1n+3

n+ 2
+ . . .+

(−1)m

m− 1
+

(−1)m+1

m

∣∣∣∣
= . . .

Suppose m− n is even

|am − an| =
∣∣∣∣ 1

n+ 1
− 1

n+ 2
+

1

n+ 3
− . . .+ 1

m− 1
− 1

m

∣∣∣∣ a
aSth wrong here... corrected in the lecture notes.



8
Series

8.1 Definitions for series

If (an)∞n=1 is a sequence of real numbers, we define its sequence of partial sums
(Sn)∞n=1 by Sn =

∑n
k=1 ak.

The (infinite) series associated with (an) is
∑∞

n=1 an. If the sequence of partial sums
converges to a limit L ∈ R, then we say the series

∑∞
n=1 converges. In this case, we

say the sum or value of the series is L.

The series
∑∞

n=1 an is called absolutely convergent if
∑∞

n=1 |an| converges.

If a series does not converge, then it diverges.

A series that converges but is not absolutely convergent, then we say it is condition-
ally convergent.

Example:

1. (an)∞n=1 = (1, 1, 1, 1, 1, . . .). This sequence converges to 1.

Sequence of partial sums is (Sn) = (1, 2, 3, 4, 5, . . .) does not converge (it
diverges to ∞) so the series

∑∞
n=1 an diverges.

2. The harmonic series
∑∞

n=1
1
n

diverges.

Note

Sn = 1 + 1
2

+ . . .+ 1
n

forms a sequence such that

Sn+1 − Sn =
1

n+ 1
→ 0

but (Sn) is not convergent, which means (Sn) is not Cauchy.

3. an = 1
n(n+2)

.

26
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We will show that
∑∞

n=1 an converges.

Note
We can write

2

n(n+ 2)
=

1

n
− 1

n+ 2

Then the sequence of partial sums is

Sn =
1

2

n∑
k=1

2

k(k + 2)
=

1

2

(
1

k
− 1

k + 2

)
=

1

2

[(
1 +

1

2

)
−
(

1

n+ 1
+

1

n+ 2

)]

lim
n→∞

Sn =
3

4

Hence,
∞∑
n=1

1

n(n+ 2)
=

3

4

4. A geometric series
∑∞

n=0 an is one where the elements are of the form an =
a0r

n for some a0 ∈ R, r ∈ R, for each n ≥ 0.

If |r| < 1, then the series converges

∞∑
n=0

an =
a0

1− r

If |r| ≥ 1 and a0 6= 0, then the series diverges.

5. The alternating harmonic series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

converges. It is not absolutely convergent. (See Example 2), so it is condi-
tionally convergent.

Proposition 8.1

Every absolute convergent series is convergent.

Proof:
Trivial.
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8.2 Convergence Tests

Theorem 8.2: Cauchy criterion for series

Given a series
∑∞

n=1 an, the following are equivalent:

1. The series converges.

2. Given ε > 0, there exists an integer N such that∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ < ε

for all m > n ≥ N .

Note
If (Sn) is sequence of partial sums. Suppose m > n,

|Sm − Sn| =

∣∣∣∣∣
m∑
k=1

ak −
n∑
k=1

ak

∣∣∣∣∣ =

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣
Theorem 8.3: Comparison Test for Series

Suppose (an), (bn) are two sequences and |an| ≤ bn for all n ≥ 1.

1. If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges, and∣∣∣∣∣
∞∑
n=1

an

∣∣∣∣∣ ≤
∞∑
n=1

bn

2. If
∑n

n=1 an diverges, then
∑∞

n=1 bn diverges.

Proof:
Note that 2 follows from 1.

So, we just need to prove 1.

First, we show that

∞∑
n=1

bn converges =⇒
∞∑
n=1

an converges

Let ε > 0. By Cauchy criterion, there exists N such that∣∣∣∣∣
m∑

k=n+1

bk

∣∣∣∣∣ < ε for all m > n ≥ N
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Since bk ≥ 0 for all k, we can ignore absolute value sign.

ε >

m∑
k=n+1

bk ≥
m∑

k=n+1

|ak| ≥

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣
This is the Cauchy criterion for

∑
an, so

∑
an converges.

The rest of proof is left as an exercise: Show remaining inequality.



9
Rearrangements of Series

9.1 Definition

A rearrangement is a series considering of the same terms as another series but in
a different order. Suppose π : Z+ → Z+ is a permutation of the positive integers.
Then, the series

∑∞
n=1 aπ(n) is a rearrangement of

∑∞
n=1 an.

∞∑
n=1

an = a1 + a2 + a3 + a4 + a5 + . . .

∞∑
n=1

aπ(n) = a3 + a4 + a2 + a1 + a6 + . . .

9.2 Rearrangements of absolutely convergent se-

ries

Proposition 9.1

If an absolutely convergent series
∑∞

n=1 an converges to L, then every rear-
rangement of

∑∞
n=1 an also converges to L.

Proof:
Let

∑
n=1 aπ(n) be a rearrangement. Fix ε > 0. By absolute convergence of

30



LECTURE 9. REARRANGEMENTS OF SERIES 31

∑∞
n=1 an, there exist N such that∣∣∣∣∣

N∑
n=1

|an| −
∞∑
n=1

|an|

∣∣∣∣∣ =
∞∑

n=N+1

|an| <
ε

2

Since every term of the series
∑∞

n=1 an must appear in the rearrangement, there

must exist M ≥ N such that
∑M

n=1 aπ(n) includes all terms

a1, a2, a3, . . . , aN

For any m ≥M ,∣∣∣∣∣
m∑
n=1

aπ(n) − L

∣∣∣∣∣ =

∣∣∣∣∣
m∑
n=1

aπ(n) −
N∑
n=1

aπ(n) +
N∑
n=1

aπ(n) − L

∣∣∣∣∣
≤

∣∣∣∣∣
m∑
n=1

aπ(n) −
N∑
n=1

aπ(n)

∣∣∣∣∣+

∣∣∣∣∣
N∑
n=1

aπ(n) − L

∣∣∣∣∣
≤

∞∑
n=N+1

|an|+
∞∑

n=N+1

|an|

<
ε

2
+
ε

2
< ε

So
∑∞

n=1 aπ(n) = L.

9.3 Rearrangements of conditionally convergent

series

Lemma 9.2

Let
∑∞

n=1 an be a conditionally convergent series. Then there is an infinite
number of non-negative terms and an infinite number of negative terms in the
series.

Proof:
Use contrapositive.

Suppose there is a finite number of negative terms.

Remark:
Case with finite number of non-negative terms can be proved in the same way.

There must exist integer N such that N is the largest number for which aN < 0.
i.e. an ≥ 0 for all n > N .

Case (i)
∑∞

n=1 an diverges. Trivially, not conditionally convergent.
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Case (ii)
∑∞

n=1 an converges.

∞∑
n=N+1

|an| =
∞∑

n=N+1

an =
∞∑
n=1

an −
N∑
n=1

aN

=⇒
∞∑
n=1

|an| =
N∑
n=1

|an|+
∞∑

n=N+1

|an|

=
N∑
n=1

|an|︸ ︷︷ ︸
finite sum

=⇒ real number

+
∞∑
n=1

an︸ ︷︷ ︸
converges

−
N∑
n=1

an︸ ︷︷ ︸
finite sum

=⇒ real number

By properties of limits,
∑∞

n=1 |an| converges.

=⇒
∑∞

n=1 an is absolutely convergent.

=⇒
∑∞

n=1 an not conditionally convergent.

Lemma 9.3

Let
∑∞

n=1 an be conditionally convergent. For each n ≥ 1, define bn to be the
n-th non-negative and cn is the n-th negative term in the series. Then,

1. limn→∞ bn = 0 and limn→∞ cn = 0, and

2.
∑∞

n=1 bn =∞ and
∑∞

n=1 cn = −∞.

Proof:
Exercise.

Theorem 9.4

Let
∑∞

n=1 an be conditionally convergent series. Then, for any L ∈ R, there
exists a rearrangement of

∑∞
n=1 an that convergent to L.

Proof:
Exercise.



10
Euclidean Space

10.1 Rn Euclidean inner product and norm

We define the space Rn to be the set of all n-vectors x = (x1, x2, x3, . . . , xn) where
xi ∈ R for each i = 1, 2, 3, . . . , n.1

Rn, equipped with vector addition and scalar multiplication, is a vector space.

We also define the Euclidean inner product of two vectors x and y is

〈x, y〉 =
n∑
i=1

xiyi

Also called dot product or scalar product.

The Euclidean norm of a vector x ∈ Rn is

‖x‖ = 〈x, x〉1/2 =

(
n∑
i=1

|xi|2
)1/2

Bt Euclidean space, we mean Rn with the structure imposed by the Euclidean inner
product and norm.

1I will use x, ~x or just x (from optimization courses) to represent vector. Readers should be
clear when it is vector.

33
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y

x

‖v‖ =
√
x2 + y2 =

(
2∑
i=1

|vi|2
)1/2

v = (x, y)

Figure 10.1: Example of n = 2

10.2 Properties of Euclidean inner product and

norm

Proposition 10.1

Let x, y, zRn and α, β ∈ R. The Euclidean inner product satisfies

1. 〈x, x〉 ≥ 0 with equality iff x = 0. (positive definite)

2. 〈x, y〉 = 〈y, x〉. (symmetry)

3. 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉. (Bilinearty)

Proposition 10.2

Let x, y ∈ Rn and α ∈ R. The Euclidean norm satisfies:

1. ‖x‖ ≥ 0 with equality iff x = 0. (positive definite)

2. ‖αx‖ = |α| ‖x‖. (homogeneous)

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (4 ineq)

Proof:
1,2 → Exercise.

3 → See Theorem 10.4.
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10.3 Inequalities

Theorem 10.3: Cauchy-Shwarz Inequality

For any x, y ∈ Rn,
| 〈x, y〉 | ≤ ‖x‖ · ‖y‖

Equality holds iff x and y are linearly dependent (i.e., there exists α1, α2 ∈ R
such that α1x+ α2y = 0 and it is not true that α1 = α2 = 0).

Proof:
First, note that the result is trivial if x = 0 or y = 0.

Suppose x 6= 0 and y 6= 0. We define the unit vectors

u = (u1, . . . , un) =
x

||x||

and
v = (v1, . . . , vn) =

y

||y||
For each i = 1, 2, . . . , n,

0 ≤ (ui − vi)2 = u2
i − 2uivi + v2

i

uivi ≤
1

2
(u2

i + v2
i )

Adding together inequalities for all i:

n∑
i=1

uivi ≤
1

2

n∑
i=1

(u2
i + v2

i ) =⇒ 〈u, v〉 ≤ 1

2
(||u||2 + ||v||2) = 1

We can do the same manipulation as above starting form

0 ≤ (ui + vi)
2 = ui + 2uivi + v2

i =⇒ 〈u, v〉 ≥ −1

Hence |〈u, v〉| ≤ 1.

Exercise: Complete this proof.

Theorem 10.4: Triangle Inequality

For any two vectors, x, y ∈ Rn

‖x+ y‖ ≤ ‖x‖+ ‖y‖

Equality holds iff x = 0 or y = αx for some α ≥ 0.
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Proof:

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 by bilinearity

≤ 〈x, x〉+ |〈x, y〉|+ |〈x, y〉|+ 〈y, y〉 by properties of abs values

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2

Take square roots:
‖x+ y‖ ≤ ‖x‖+ ‖y‖

Now prove “equality” statement.

=⇒ ) If equality holds, then

〈x, y〉 = |〈x, y〉| = ‖x‖ · ‖y‖

The first “=”: compare first introduction of inequality in proof.

The second “=”: second inequality.

So we need C.S equality condition and we need 〈x, y〉 ≥ 0.

Case 1 α2 6= 0, then y = αx where α = −α1

α2
.

Case 2 α2 = 0. Exercise.



11
Convergence and Completeness in
Rn

11.1 Definitions of sequences and convergence in

Rn

An (infinite) sequence of vectors or points in Rn is an infinite enumerated list
(xk)

∞
k=1 = (x1, x2, . . .) where each xk ∈ Rn for k ≥ 1.

A sequence (xk)
∞
k=1 converges to a point a ∈ Rn if

Given ε > 0, there exists N such that ‖xk − a‖ < ε for all k ≥ N .

If this holds, then a is called the limit of the sequence, and we write

lim
k→∞

xk = a

Lemma 11.1

Let (xk)
∞
k=1 be a sequence in Rn. Then,

lim
k→∞

xk = a ⇐⇒ lim
k→∞
‖xk − a‖ = 0

Each xk = (xk,1
∈R
, . . . , xk,n) ∈ Rn.

Lemma 11.2

Let xk be a sequence in Rn. Then lim
k→∞

xk = a = (a1, a2, . . . , an) if and only if

lim
k→∞

xk,j = aj for 1 ≤ j ≤ n

37
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Proof:
=⇒ ) Suppose limk→∞ xk = a. We must show that for each j ∈ {1, 2, . . . , n} and

for all ε > 0, we can find Nj such that

|xk,j − aj| < ε for all k ≥ Nj

Fix (arbitrary) j ∈ {1, . . . , n} and let ε > 0. By definition of limk→∞ x = a,
there exists N such that ‖xk − a‖ < ε for all k ≥ N . By definition or norm,

‖xk − a‖2 =
n∑
i=1

|xk,i − ai|2 ≥ |xk,j − aj|2

Hence, for Nj := N , we have

|xk,j − aj| < ε for all k ≥ N

as required.

⇐= ) Let ε > 0. By convergence of components for each j ∈ {1, . . . , n}, there
exists Nj such that

|xk,j − aj| < ε :=
ε√
n

for all k ≥ Nj

Define N = max{Nj}. Then for all k ≥ N

|xk,j − aj| < ε for all j ∈ {1, . . . , n}

Then

‖xk − a‖2 =
n∑
j=1

|xk,j − aj|2 < nε2 = ε2

So ‖xk − a‖ < ε for all k ≥ N , as required.

11.2 Cauchy sequences

A sequence (xk)
∞
k=1 is Cauchy if ...

Lemma 11.3

Let (xk) be a sequence of points in Rn. Then (xk) is Cauchy if and only if
(xk,j)

∞
k=1 is Cauchy for all j ∈ {1, 2, . . . , n}.
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11.3 Completeness

A subset S of Rn is complete if every Cauchy sequence in S converges to a limit in
S.

Proposition 11.4

Every convergent sequence in Rn is Cauchy.

Theorem 11.5: Completeness Theorem for Rn

Rn is complete.

Proof:

(xk)
∞
k=1 is Cauchy~w�Lemma 11.3

(xk,j)
∞
k=1 is Cauchy for all j ∈ {1, . . . , n}~w�Theorem 11.5

(xk,j)
∞
k=1 is convergent for each j~w�Lemma 11.2

(xk)
∞
k=1 is convergent

Actually, we have shown iff.

11.4 Closed subsets of Rn

Let X ⊂ Rn. We define a limit point of X as a point a ∈ Rn for which there exists
a sequence in X converging to a.

Example:

(0, 2] = X

1, 2 is a limit point of X. 3 is not a limit point. 0 is a limit point, but not in X.

If X contains all of its limit points, we say it is closed.

So (0, 2] is not closed.

Given any subset X ⊆ Rn, we define the closure of X, denoted X, as the set of all
limit points of X.

Example:

1. ∅ is closed since it contains all limit points.

2. Rn is closed.
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3. The open interval (0, 1) ⊆ R. It is not closed.

4. The closure of (0, 1) is [0, 1] which is closed.

5.

X =

{
(x, y) ∈ R2 :

x2

4
+ y2 < 1

}

X is not closed. Consider

xk =

((
0, 1− 1

k

))∞
k=1

→ (0, 1) 6∈ X

Proposition 11.6

A subset S ∈ Rn is closed if and only if it is complete.

Remark:
Not always equivalent - relies on completeness of Rn.
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Closed Subsets in Rn

12.1 Properties of closed sets

Proposition 12.1

For any subset X ⊆ Rn, the closure of X is closed, and is in fact, the smallest
closed set that contains X.

Proof:
Exercise.

Proposition 12.2

If A and B are closed subsets of Rn, then A ∪B is closed.

Proof:
First note that A ∪ B is trivially closed if A = B = ∅. Now, suppose A and B
are closed, and not both empty.

Let x be a limit point of A ∪B. We must show that x ∈ A ∪B.

By definition, there must be a sequence (xk)
∞
k=1 in A∪B converging to x. Either

A or B (or both) must contain infinitely many terms of the sequence.

Suppose WLOG that A contains infinitely many terms in the sequence. Then,
we can make a subsequence (xkj)

∞
j=1 in A.

Since this is a subsequence of a convergent sequence, it must converge, and its
limit is x.

By closeness of A, x ∈ A =⇒ x ∈ A ∪B =⇒ A ∪B is closed.
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Remark:

By induction,
N⋃
i=1

Xi is closed for any integer N if Xi is closed for 1 ≤ i ≤ N . But

this does not extent to infinite unions.

Suppose Xi =
[
0, 1− 1

i+1

]
, i = 1, 2, . . .

Proposition 12.3

If Ai ⊆ Rn is closed for each i in an arbitrary (possibly infinite) indexing set

I, then
⋂
i∈I

Ai is closed.

Proof:

Let X =
⋂
i∈I

Ai. If X = ∅, then it is closed. Now, suppose X 6= ∅. Let x be a

limit point of X. Then, there is a sequence (xk)
∞
k=1 in X converges to x.

By definition of X, xk ∈ Aj for all k ≥ 1, and for all j ∈ I. Hence x ∈ Aj for all

j ∈ I (by closed property of Aj) =⇒ x ∈ X =
⋂
j∈I

Aj.

12.2 Closedness and Boundaries

We define the open ball of radius r > 0 about a point a ∈ Rn as the set

Br(a) = {x ∈ Rn : ‖x− a‖ < r}

The complement of a set X ⊆ Rn is

X ′ = Rn \X = {x ∈ Rn : x 6∈ X}

This can also be denoted by XC .

A point a ∈ Rn is a boundary point of S ⊆ Rn if for every r > 0, the open ball
Br(a) contains a point in S and a point in S ′.

a

B

Figure 12.1: An example of open ball
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X

X ′

Figure 12.2: An example of boundary point

The boundary of a set S ⊆ Rn is the set of all boundary points of S, where we
denote it by ∂S.

Example:

1. Let’s take a look at (0, 1) and [0, 1). 0 and 1 are the (only) BPs for both
cases. BPs may or may not in S.

2. [0, 0.5) ∩ (0.5, 1]. 0.5 is also a boundary point.

Note
boundary point can be “in the middle” of a set.

3. X is a finite set.

×× ×× × × × × ×

X is the boundary of itself, i.e., ∂X = X

4. X = {s ∈ Q : |s| < 1}. 0,1, still BPs. Every number in [0, 1] is BP.

Proposition 12.4

A set S ⊆ Rn is closed if and only if it contains all of its boundary points.

Proof:
Exercise.



13
Open and Compact Subsets of Rn

13.1 Open subsets in Rn

As defined in the last lecture, the open ball of readius r about a point a in Rn is the
set

Br(a) = {x ∈ Rn : ‖x− a‖ < r}

A subset U ⊆ Rn is open if for all a ∈ U , there exists some r > 0 such that
Br(a) ⊆ U .

If U is an open set containing a point a, then we say that U is an open neighbourhood
of a.

An interior point of a set X ⊆ Rn is a point x ∈ X such that Br(x) ⊆ X for some
r > 0.

The interior of a set X ⊆ Rn is the set of all interior points of X. It is denoted by
int(X). If int(X) is empty, then we say X has empty interior. Otherwise, it has
nonempty interior.

Example:

1. X = {1, 2, 3}

• • •( )

~a

Br(a) = (a− r, a+ r) ⊆ X? No =⇒ X not open.

2. ∅ is open

3. Rn is open

Note
The only subsets in Rn that are closed an open is Rn and ∅.

44
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4. The open interval (a, b) is open

5. The close interval [a, b] is not open.

int([a, b]) = (a, b)

6. (a, b], [a, b) is not open and not closed.

7. Br(a) is open for any r > 0 a ∈ Rn

8. X = {s ∈ Q, |s| < 1}. For any r > 0, Br(0) = (−r, r) contains irrational
points. So it is not contained in X. In fact, it has empty interior.

In fact, int(X) = ∅.

Note
“interior” doesn’t always coincide with what you think of as the “inside”
of a set.

9. X = (−1, 1) \ {0}. 0 is not an interior point.

13.2 Properties of open subsets

Proposition 13.1

If U and V are open subsets of Rn, then U ∩ V is open.

Proof:
Exercise.

Proposition 13.2

If Ui is an open subset of Rn for each i in an arbitrary (possible infinite)

indexing set I, then X =
⋂
i∈I

is open.

Proof:
Exercise.

Note
Cannot take intersection of infinitely many open set and expect it to be open.

Example:
∞⋂
n=1

(
− 1

n
,

1

n

)
= {0}

Theorem 13.3

A set X ⊆ Rn is open if and only if its complement is closed.
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Proof:
=⇒ ) Let X be an open subset of Rn and suppose that a is a limit point of X ′.

Suppose for contradiction that a ∈ X. Since X is open, there exists an
open ball Br(a) ⊆ X. Then there is no point y in X ′ with ‖y − a‖ < r. No
sequence in X ′ can converge to a, contradicting the assumption that a is a
limit point of X ′. Therefore, all limit points of X ′ must be in X ′, i.e., X ′

is closed.

⇐= ) Suppose that X is not open. Then there must be a point x ∈ X such that
for every r > 0, the open ball Br(x) contains a point in X ′. Construct a
sequence (ak)

∞
k=1 in X ′ such that ak ∈ Br=1/k(x) for each k ≥ 1. Then,

lim
k→∞

ak = x ∈ X, which means that there is a limit point of X ′ that is not

in X ′. This proves that X ′ is not closed.

Proposition 13.4

A set X ⊆ Rn is open if and only if it contains none of its boundary points.

Proof:
Exercise.

13.3 Bounded sequences and subsets in Rn

We say that a sequence (xk)
∞
k=1 in Rn is bounded if there exists a real number R

such that ‖xk‖ < R for all k.

We say a set X ⊆ Rn is bounded if there exists a real number R such that ‖x‖ < R
for all x ∈ X.

Theorem 13.5: Bolzano-Weierstrass in Rn

Every bounded sequence (xk)
∞
k=1 in Rn has a convergent subsequence (xkl)

∞
l=1.

Proof:
Immediate.

Corollary 13.6

If S is a closed and bounded subset of Rn, then every sequence of points in S
has a subsequence that converges in S.

Proof:
Trivial.
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13.4 Compact sets

Let K be a subset of Rn. We say that K is compact if every sequence of points in
K has a convergent subsequence with a limit in K.

Theorem 13.7: The Heine–Borel Theorem

A subset of Rn is compact if and only if it closed and bounded.

Proof:
The “if” part is Corollary 13.6. We now show that K is compact only if it is
closed and bounded. Let K be a compact subset of Rn.

To show that K is closed, suppose x is a limit point of K. Then there is a sequence
of points in K such that lim

k→∞
xk = x. Since K is compact, there is a subsequence

of this sequence that converges to a point in K. But every subsequence of a
convergent sequence must converge to limit of the sequence. Hence x ∈ K.

We show that K is bounded by contradiction. Suppose that K is not bounded.
Then, we can construct a sequence (xk)

∞
k=1 such that ‖xk‖ > k for each k ≥ 1. If

K is compact, then there must be a subsequence (xkj)
∞
j=1 that converges; denote

the limit x = lim
j→∞

xkj .

Choose ε = 1 in the definition of convergence. There exists an integer N such
that

∥∥xkj − x∥∥ < ε = 1 for all j ≥ N . By the Reverse 4 Ineq,∣∣∥∥xkj∥∥− ‖x‖∣∣ ≤ ∥∥xkj − x∥∥ < 1 ∀j ≥ N

=⇒
∥∥xkj∥∥ < ‖x‖+ 1 ∀j ≥ N

But for any point x ∈ Rn, there exists an integer M > ‖x‖ + 1. For sufficiently
large j, we will have kj > M and by construction,

∥∥xkj∥∥ > k+ j > M > ‖x‖+ 1.
This contradicts the statement above, proving that K must be bounded.

Proposition 13.8

If K is a compact subset of Rn and C is a closed subset of K, then C is
compact.

Proof:
If C ⊆ K and K is bounded, then C must be bounded. By assumption, C is
closed. Hence, by Theorem 13.5, C is compact.

13.4.1 Examples and nonexamples

1. ∅ is compact

2. Rn is not compact (not bounded)
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3. (0, 1] not compact

4. Intervals [a, b] are compact for a, b ∈ R

5. [a, b]n is compact in Rn

Proof:

Sketch in R2.

Suppose X = [a, b]× [a, b].

Let xk = (xk, yk) for k ≥ 1 such that (xk)
∞
k=1 is in X. Need to find

subsequence that converges to x = (x, y) ∈ X.

Consider real sequence (xk)
∞
k=1 in [a, b]. Bounded, so we can apply Theo-

rem 13.5. → (xkj)
∞
j=1 that converges to x. Since [a, b] is closed, x ∈ [a, b].

Now (ykj)
∞
j=1 is a sequence in [a, b].

By Theorem 13.5 and closed property of [a, b], there is a subsequence(
ykjl

)∞
l=1

that converges to y ∈ [a, b].(
xkjl

)∞
l=1

must converge to (x, y)

[convergence of each component to component of limit, + subsequence of
(xkj) must converge to limit of (xkj)]

Since x ∈ [a, b] and y ∈ [a, b],x ∈ X. Hence X is compact.



14
Limits and Continuity of Functions

14.0 Preliminaries

Suppose S ⊆ R and f : S → R. lim
x→a

f(x) = L?

For all ε > 0, there exists δ > 0 such that |f(x) − L| < ε for all x such that
0 < |x− a| < δ.

Where does the notion of limit make sense?

Consider f(x) = 1 for all x ∈ S.

×× ×( ]
1 2

We want to be able to talk about limit at x = 0.

14.1 The limit of a function

Let S ⊆ Rn. We say that a ∈ Rn is an accumulation point of S if it is a limit point
of S \ {a}.

The set of all accumulation points of S is denoted by Sa.

A point a ∈ S \ Sa is called an isolated point of S.

Let f : S → Rm be a function. Let a ∈ Sa. The vector v ∈ Rm is the limit of f at a
if for all ε > 0, there exists δ > 0 such that ‖f(x)− v‖ < ε for all x ∈ S satisfying
0 < ‖x− a‖ < δ.
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If this holds, we write lim
x→a

f(x) = v.

Example:

1.

f(x) =

{
1, if x = 1

|x− 1|, otherwise

Then lim
x→1

f(x) = 0

2. f(x, y) = x3

x2+y4
on R2 \ {0}

lim
x→0

f(x) = 0

Note that this is equivalent to

lim
x→0
|f(x)| = 0

We can do as follows

|f(x)| = x2

x2 + y4
|x| ≤ |x|

Show definition of limit holds (use δ, ε).

14.2 Infinite limits

Suppose S ⊆ Rn, f : S → R, a ∈ Sa. The limit of f at a is +∞ if for all N ≥ 1,
there exists δ > 0 such that f(x) > N for all x ∈ S satisfying 0 < ‖x− a‖ < δ.

14.3 Continuity

Let S ⊆ Rn. We say that a function f : S → Rm is continuous at the point a ∈ S
if:

For all ε > 0, there exists δ > 0 such that ‖f(x)− f(a)‖ < ε for all
x ∈ S satisfying ‖x− a‖ < δ.

If f is continuous at every a ∈ S then we say that it is continuous (on S). If f is
not continuous at a ∈ S, then we say it is discontinuous at a.

Proposition 14.1

Let S ⊆ Rn and f : S → Rm. For every a ∈ S ∩Sa, the function is continuous
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at a iff
lim
x→a

f(x) = f(a)

Proof:
Exercise.

Example:

Show that f : (0,∞)→ R defined by f(x) = 1
x

is continuous on its domain.

Proof:
First, choose arbitrary a > 0. Let ε > 0. We need to find δ > 0 such that
|f(x)− f(a)| < ε for all x ∈ (a− δ, a+ δ).

For any x > 0,

|f(x)− f(a)| =
∣∣∣∣1x − 1

a

∣∣∣∣
=

∣∣∣∣a− xax

∣∣∣∣ =
1

ax
|x− a|

Note
We cannot choose δ = εax so that

|x− a| < δ =⇒ |f(x)− f(a)| < 1

ax
· εax = ε

δ is not allowed to depend on x since it must work for all x.

First, suppose |x− a| < a
2
.

|
0

( )|
aa

2
3a
2

Then x >
a

2
=⇒ ax >

a2

2
⇐⇒ 1

ax
<

2

a2
.

So we have |f(x)− f(a)| < 2

a2
|x− a|.

Pick δ = min{εa
2

2
,
a

2
} so that

|x− a| < δ =⇒ |f(x)− f(a)| < 2

a2
|x− a| < 2

a2
δ < ε



15
Discontinuous Functions

15.1 Examples

1. f(x) =

{
1 if x = 0

0 otherwise

This is discontinuous at x = 0, continuous everywhere else.

This kind of discontinuity is called a removable discontinuity because you can
remove it by changing the value of the function at x = 0 to f(0) = 0.

2. Let f : R→ R be defined by

f(x) =

{
1
|x| if x 6= 0

0 otherwise

Discontinuous at x = 0, not removable.

3. The Heaviside function

H(x) =

{
0 if x < 0

1 if x > 0

Discontinuity at x = 0, not removable.

15.2 One-sided limits

Let f : S → R, where S ⊆ R. Consider a point a ∈ Sa a that is a limit point of
S ∩ (a,∞). We say that the limit of f as x approaches a from the right exists and
is equal to L if given ε > 0, there exists δ > 0 such that |f(x)−L| < ε for all x ∈ S
satisfying a < x < a+ δ.
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If this holds, then we write lim
x→a+

f(x) = L.

The limit from the left is analogous: lim
x→a−

f(x) = L.

Example:

1. Heaviside function: lim
x→0−

H(x) = 0 and limx→0− H(x) = 1.

2. f(x) = x on (0, 1]

10

15.3 Jump discontinuities and piecewise continu-

ity

We say that a function f has a jump discontinuity at a point a ∈ R if the limits of
f as x approaches a from the left and from the right both exist but are not equal.
E.g. Heaviside function at x = 0.

A function on an interval is piecewise continuous if every finite subinterval contains
a finite number of jump discontinuity and no other types of discontinuities.

Example: Thomae’s function

f : R→ R

f(x) =

{
0 x /∈ Q
1/q if x = p/q in lowest terms, with q > 0

It can be shown that lim
x→a

f(x) = 0 at any point a ∈ R. f is continuous at every

irrational point and has a removable discontinuity at every rational point.



16
Properties of Continuous functions

16.1 Equivalent statements of continuity

We say that a subset V of a subset S ⊆ Rn is open in S, or relatively open with
respect to S, if there exists an open set U such that V = U ∩ S. Also, X ⊆ S is
closed in S if there exists a closed set C such that X = C ∩ S.

S V V is open
V = V ∩ S =⇒ open in S

U is open
V = U ∩ S =⇒ open in SS

V
U

X
C is open
X = C ∩ S⇒closed in S

C

S
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Proposition 16.1

A subset V ⊆ S is open in S ⊆ Rn if and only if the following holds:

For every x ∈ V , there exists δ > 0 such that Bδ(x) ∩ S ⊆ V .

Theorem 16.2

For a function f : S → Rm where S ⊆ Rn, the following are equivalent:

1. f is continuous on S.

2. For any sequence (xk)
∞
k=1 in S that converges to a limit a ∈ S. then

lim
k→∞

f(xk) = f(a)

3. If U is an open subset of Rm, then the preimage set f−1(U) = {x ∈ S :
f(x) ∈ U} is open in S.

Remark:
• Statement 2 is called “sequential continuity”.

• Statement 3 is “topological continuity”.

• From the proof (below). Statements 1 and 2 can also be applied at each
point a (pointwise) i.e., continuity at a is equivalent to sequential continuity
at a.

Proof:
1 =⇒ 2 Continuity of f at every a ∈ S means: fix a ∈ S and ε > 0. Then,

there exists δ > 0 such that ‖f(x)− f(a)‖ < ε for all x ∈ S satisfying
‖x− a‖ < δ.

Suppose lim
k→∞

xk = a for (xk) is S.

There exists N such that ‖xk − a‖ < δ for all k ≥ N .

=⇒ ‖f(xk)− f(a)‖ < ε for all k ≥ N

=⇒ lim
k→∞

f(xk) = f(a)

¬1 =⇒ ¬2 If f is not continuous at a ∈ S, then there exists ε > 0 such that for
all δ > 0, ‖x− a‖ < δ and ‖f(x)− f(a)‖ ≥ ε for some x ∈ S.

a

ε
f(a)

For each integer k ≥ 1, choose δk = 1
k

and choose xk ∈ S such that
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‖xk − a‖ < δk and ‖f(xk)− f(a)‖ ≥ ε.

So, lim
k→∞

f(xk) 6= f(a) [It may not exist]

1 =⇒ 3 Suppose f is continuous on S. Let U ⊆ Rm be an arbitrary open set.

The pre-image f−1(U) is either empty or nonempty. If empty, then
open, therefore open in S.

Otherwise, if f−1(U) is non-empty, then there exists a point a ∈ A :=
f−1(U).

S

A = f
−1 (U)

a

U

u
ε

δ

Bδ(a) ∩ S

f

Define u = f(a) ∈ U .

Since U is open, there exists ε > 0 such that Bε(u) ⊆ U .

By continuity of f , there exists δ > 0 such that ‖f(x)− f(a)‖ < ε for
all x ∈ S satisfying ‖x− a‖ < δ.

Hence, f(Bδ(a)∩S) ⊆ Bε(u) ⊆ U . That is, Bδ(a)∩S ⊆ f−1(U) = A.

From Proposition 16.1, A is open in S.

3 =⇒ 1 Let a be an arbitrary point in S and define u = f(a). For arbitrary ε >
0, the open ball Bε(u) is open in Rm so Statement 3 =⇒ f−1(Bε(u))
is open in S.

Note that a ∈ f−1(Bε(u)). By Proposition 16.1, there exists δ > 0
such that Bδ(a) ∩ S = {x ∈ S : ‖x− a‖ < δ} is a subset of A.

Equivalently, ‖f(x)− f(a)‖ < ε for all x ∈ S satisfying ‖x− a‖ < δ.

Example:

Find the limit of the sequence an = cos
(

1
n

)
.

The function f(x) = cos(x) is continuous on R. Since
(
xn = 1

n

)∞
n=1

converges to
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0, sequential continuity =⇒

lim
n→∞

an = cos

(
lim
n→∞

1

n

)
= cos 0 = 1

Note
We only need continuity of f at x = lim

n→∞
xn.

We can also use this theorem to disprove continuity.

Example:

f(x) =

{
sin 1

x
if x 6= 0

0 if x = 0

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−1

−0.5

0

0.5

1

16.2 Combining Limits

Theorem 16.3

Let f and g be two functions from S ⊆ Rn to Rm. Let a ∈ S and u, v ∈ Rm

such that
lim
x→a

f(x) = u and lim
x→a

g(x) = v

Then,

1. lim
x→a

(f + g)(x) = u+ v

2. lim
x→a

αf(x) = αu for any α ∈ R.

In addition, if m = 1, we have

3. lim
x→a

f(x)g(x) = uv, and

4. lim
x→a

f(x)/g(x) = u/v, provided v 6= 0.
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16.3 Combining continuous functions

Theorem 16.4

Let f and g be two functions from S ⊆ Rn to Rm. If there is a point a ∈ S
such that f and g continuous at a, then

1. f + g is continuous at a,

2. αf is continuous at a,

In addition, for m = 1

3. fg is continuous at a, and

4. f/g is continuous at a, provided g(a) 6= 0.

Theorem 16.5

Let S ⊆ Rn, T ⊆ Rm. Suppose we have functions f : S → T and g : T → R`. If
f is continuous at a ∈ S and g is continuous at f(a) ∈ T , then the composition
g ◦ f is continuous at a.

16.4 Examples

Every polynomial is continuous on R.



17
Extreme and Intermediate Value The-
orem

17.1 Extreme Values

Example:

1. Find the point at which the maximum is attained for the function f :
(0, 2)→ R defined by

f(x) = 2x− 3x2 + x3 = x(x− 1)(x− 2)

We can find the value of xmax = 1− 1/
√

3 ≈ 0.42.

2. Consider the same function on domain [1/2, 1]. Now max is at x = 1
2
.

3. What if domain is (1/2, 1]? Now, there is no max.

4. What if domain is (1/2,∞)? Unbounded so no max.

Note
If domain is closed an bounded, we can rule out behaviour like 3 and 4.

Theorem 17.1

Suppose C is a compact subset of Rn and f : C → Rm is continuous on C.
Then, the image f(C) is compact.

Proof:
We must show that any arbitrary sequence (yk)

∞
k=1 in f(C) has a subsequence

that converges to a point in f(C).
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C
f(C)

f

xk yk

c
f(c)

For each k ≥ 1, there exists xk such that f(xk) = yk. So we have a sequence
(xk) in C. By compactness of C, there is a subsequence (xkj)

∞
j=1 that converges

to c ∈ C.

By (sequential) continuity of f ,
(
f
(
xkj
))∞
j=1

must converge to f

(
lim
j→∞

xkj

)
=

f(c).

Since c ∈ C, f(c) ∈ f(C).

Theorem 17.2: Extreme Value Theorem

Let C be a nonempty compact subset of Rn and f : C → R be a continuous
function on C. Then, f attains its minimum and maximum values on C. That
is there exists point a, b ∈ C such that

f(a) ≤ f(x) ≤ f(b), ∀x ∈ C.

Proof:
If C is compact and f is continuous then f(C) is compact (Theorem 17.1) and
hence closed and bounded.

Bounded and nonempty (since C is nonempty) so there must be a supremum
M = sup f(C).

By definition of supremum, we can define a sequence (yk) in f(C) that satisfies

M − 1

k
< yk ≤M

for each k. Note lim
k→∞

yk = M .

But f(C) is closed, so M ∈ f(C). Hence, there exists b ∈ C such that f(b) = M .

Similarly, we can show that infimum is attained at some a ∈ C.

Remark:
You should be familiar with EVT expressed for continuous real-valued functions
on the closed, bounded interval [x1, x2].

We now generalize to functions of multiple variables, but still need function to
be scalar-valued.
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17.2 Intermediate Values

Theorem 17.3: Intermediate Value Theorem

Let f : [a, b] → R be continuous. If y ∈ R satisfies f(a) < y < f(b) or
f(b) < y < f(a), then there exists c ∈ (a, b) such that f(c) < y.

Proof:
(Sketch)

Choose y satisfying hypothesis. Define A = {x ∈ [a, b] : f(x) < y}. a ∈ A so A
is non-empty. b is an upper bound of A.

So there is a supremum c = supA.

Strategy

1. Show that c < b

2. Show that f(c) = y by contradiction.

Suppose f(c) > y. Use continuity of f .

Suppose f(c) < y.

Corollary 17.4

Continuous functions map closed intervals to closed intervals. That is, if f :
[a, b]→ R is continuous, then its image f([a, b]) is a closed interval.

Proof:
Theorem 17.2 can be applied to show that there exists xmin and xmax in the
interval [a, b] for which m = f(xmin) ≤ f(x) ≤ f(xmax) = M for all x ∈ [a, b].
This implies that the image set f([a, b]) ⊆ [m,M ].

WLOG suppose xmin < xmax. Then from Theorem 17.3, we know that any
point y ∈ (m,M) has a pre-image in (xmin, xmax). Hence, f([a, b]) ⊇ [m,M ]. In
conclusion, f([a, b]) = [m,M ], as required.

Corollary 17.5

Let S ⊆ Rn and let f be a continuous function from S to R. If a and b are two
points in S that a re connected by a path in S, then for any y ∈ R between
f(a) and f(b), there exists a point c on the path satisfying f(c) = y.
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17.3 Applications of the Intermediate Value The-

orem

1. Every polynomial of odd degree has at least one real root.

2. Finding roots of an equation f(x) = 0 (if f is continuous). E.g., the bisection
method.

3. Mashed Potato Theorem: A plate of mashed potato can be evenly divided by
a single straight vertical knife cut.

In position K1 less than half the potato is at the left of the knife, in position
K2 more than half is at the left. Hence (by the intermediate value theorem)
there is an intermediate position where exactly half is at one side.

You may care to think of how continuity should be involved in this argument.

4. The mashed potato and beans theorem: A plate of mashed potato and baked
beans can be evenly divided by a single straight vertical knife cut.

Choose one particular angle and the last result shows that you can divide the
potatoes by a cut Kα at this angle. Then (say) there will be more than half
the beans on the left of the cut. Now vary the angle continuously by π until
the knife is in the same position as before, but pointing the other way. At
each angle, make sure you bisect the potatoes. Now less than half the beans
are on the left and so you passed through an intermediate position where both
beans and potatoes were divided fairly.

This result even holds true if you pile the beans on top of the potato (or vice
versa).

5. The bowl of fruit theorem:

An apple, a pear and a banana can be equally divided by a single knife-cut.

Remark:
This last result is usually called the Ham Sandwich Theorem (two pieces of
bread and the ham).

By putting the three pieces of fruit far apart, you should see that you do
not have any freedom to deal with a fourth volume. If you move from three
dimensions to four, though ...

Src: http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/
L20.html

http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/L20.html
http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/L20.html


18
More than Continuous

18.1 Uniformly continuous functions

We say that a function f from S ⊆ Rn to Rm is uniformly continuous if

for all ε > 0, there exists δ > 0 such that ‖f(x)− f(y)‖ < ε for every
x and y in S satisfying ‖x− y‖ < δ.

Remark:
For a function to be continuous at point a (pointwise continuity) we choose δ
after fixing the point a and δ. For uniform continuity, the same δ must work for
all points y. Hence, the “uniform”. In particular, note that uniform continuity
implies continuity.

18.2 Examples

1. Prove f(x) = x2 is uniformly continuous on [a, b] ⊂ R for some real numbers
a < b.

2. f(x) = x2 is not uniformly continuous on R. Check f ′(x) = x.

3. f(x) = 1/x on (0, 1] is not uniformly continuous.

4. f(x) = sin(1/x) on (0, 1] is not uniformly continuous.

5. f(x) = x sin(1/x) on (0, 1] is uniformly continuous.
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Difference between continuity and uniform continuity

For “regular” continuity, choose y ∈ S first, then there must be δ > 0.

For “uniform” continuity, there must be δ > 0 that works for all y ∈ S
simultaneously/

Uniform continuity =⇒ continuity.

ε

ε

a

δδ

a+ δa− δ

f(a) + ε

f(a)− ε

y = f(x)

forbidden

For uniform continuity, for ε.δ. I can slide rect anywhere along graph, keeping
it centered in graph. Graph cannot enter regions above or below rect.

18.3 Compactness and uniform continuity

Theorem 18.1

Let K ⊆ Rn be compact and f : K → Rm be a continuous function. Then f
is uniformly continuous on K.

Proof:
Suppose for contradiction: f not uni cont. This means that ∃ε > 0 s.t. ∀δ > 0,
there are points x and y in K satisfying ‖x− y‖ < δ and ‖f(x)− f(y)‖ ≥ ε.

Define a sequence of δ values, δk = 1
k

and choose points xk and yk satisfy the
condition above. By compactness of K, there must be a subseq (ykj)

∞
j=1 that

converges to a point a ∈ K.

The rest of the proof is left as an exercise.
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18.4 Lipschitz functions

A function f from S ⊆ Rn to Rm is called a Lipschitz function if there exists a
constant C such that

‖f(x)− f(y)‖ ≤ C ‖x− y‖ for all x, y ∈ S.

Any constant C for which this condition is satisfied is called a Lipschitz constant
for f . The smallest C for which this condition holds is called the (best) Lipschitz
constant.

Loosely, this means that the function f cannot change too rapidly as you move a
point x away from y.

If a Lipschitz function f : [a, b] → R is differentiable, then its derivative must be
bounded. In fact, it can also be shown that a differentiable function with bounded
derivative must be Lipschitz.

Example:

The norm function f(x) = ‖x‖ is Lipschitz on Rn. By the Reverse triangle Ineq,
| ‖x‖ − ‖y‖ | ≤ ‖x− y‖. So, 1 is a Lipschitz constant.

Equality holds when y = αx for some α > 0. So the best Lipschitz constant is 1.

Proposition 18.2

Every Lipschitz function is uniformly continuous.

Proof:
Suppose f is a Lipschitz function with Lipschitz constant C. Given ε > 0, let
δ = ε/C. Then

‖~x− ~y‖ < δ =⇒ ‖f(~x)− f(~y)‖ ≤ C‖~x− ~y‖ < Cδ = ε

A function T : Rn → Rm is called a linear map (or linear transformation) if for any
α, β ∈ R and for any x, y ∈ Rn, the function satisfies T (αx+ βy) = αT (x) + βT (y).

Corollary 18.3

Every linear map from Rn to Rm is uniformly cont.

Proof:
Use Lipschitz.



19
Normed Vector Space

19.1 Normed vector spaces

We now consider vectors that are not necessarily in Rn.

We will write x, y, etc for vectors instead of ~x, ~y, etc. For the zero vector, we still
write ~0 to distinguish it from the number 0.

Let V be a vector space over R (i.e., a real vector space).

A norm on V is a function ‖ · ‖ : V → R that satisfies the following properties for
all x, y and for all α ∈ R:

1. ‖x‖ ≥ 0 with equality iff x = ~0

2. ‖αx‖ = |α| ‖x‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

These are the same properties we discussed for Euclidean norm (Proposition 10.2).

Norms are not unique!

19.2 Examples of norms on Rn

• Euclidean

• p-norm

• p = 1, “Manhattan” or “taxicab” norm or “chess”

• infinity norm.
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Exercise
Think about the shape of balls of unit radius for different norms.

19.3 Vector spaces of continuous and differentiable

functions

Let C[a, b] denote the vector space of continuous, real-valued functions on [a, b].

Exercise
Verify that is a vector space.

Recall a function f : [a, b]→ R is n-times continuously differentiable if its deriva-
tives f ′, f ′′, . . . , f (n) are continuous on [a, b].

Let Cn[a, b] denote the vector space of n-times continuously differentiable functions
on [a, b].

We can also generalize notation to C(K), the space of continuous functions on a
compact set K ⊆ Rn.

19.4 Norms on vector spaces of functions

For a function f ∈ C[a, b] and any real number p ≥ 1, we define the Lp norm by

‖f‖p =

(∫ b

a

|f(x)|p dx
)1/p

For functions f ∈ C(K) with K ⊆ Rn compact, we define the uniform norm

‖f‖∞ = sup
x∈K
|f(x)|

Exercise
Check that this is a norm.

For functions f ∈ Cn[a, b], we define

‖f‖Cn = max
0≤j≤n

‖f (j)‖∞ = max{‖f‖∞ , ‖f
′‖∞ , . . . ,

∥∥f (n)
∥∥
∞}

Example:

Find the uniform norm for the function f(x) = x(2− x) on [0, 2].

It’s 1!.

g(x) = sin(πx) + 1
2

on [0, 2].

It’s 3/2.
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Normed and Inner Product Spaces

20.1 Topology in normed vector spaces

Many defns and results are exactly as they were defined for vectors in Rn. Let
(V, ‖·‖) be a normed vector spaces.

Remark:
We will commonly just refer to V instead of (V, ‖·‖) for short.

Convergence, Cauchy seq, open balls, open/closed subsets, bounded subsets and
compact subsets are as before.

Every convergent sequence is a Cauchy sequence.

As in Rn, a subset of V is open iff its complement is closed.

The Heine-Borel Theorem (a subset is compact if and only if closed and bounded)
is not valid in infinite-dimensional vector spaces.

20.2 Counterexample to Heine-Borel Theorem

Consider the normed space (C[−1, 1], ‖·‖∞)

We’ll find a closed and bounded subset of C[−1, 1] is not compact (w.r.t. uniform
norm).

Let (fn)∞n=1 be the seq of funcs in C[−1, 1] defined by

fn(x) =


0, if − 1 ≤ x ≤ 0
nx, if 0 < x < 1/n
1, if 1/n ≤ x ≤ 1

Note that ‖fn‖∞ = 1 for all n ≥ 1 so (fn)∞n=1 is a seq in X. If we can show that
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(fn) has no convergent subseq, then this will imply that it is not compact. We will
prove this by showing that no subsequence can be Cauchy.

Suppose (fnj
)∞j=1 is an arbitrary subseq. Given any pos int j, choose any k s.t.

nk ≥ 2nj. Then 1
2nj
≥ 1

nk
, then∥∥fnj
− fnk

∥∥
∞ = sup

x∈[−1,1]

∣∣fnj
(x)− fnk

(x)
∣∣

≥
∣∣∣∣fnj

(
1

2nj

)
− fnk

(
1

2nj

)∣∣∣∣
= |1/2− 1| = 1/2

So, choosing any postive ε ≤ 1
2
, there does not exists any int N s.t.

∥∥fnj
− fnk

∥∥
∞ < ε

whenever j, k ≥ N . Hence, the subseq is not Cauchy.

20.3 Inner products on vector spaces

V : vector space. An inner product on V is a function 〈·, ·〉 : V × V → R that
satisfies the following three properties for all x, y, z ∈ V and for all α, β ∈ R:

IP1: 〈x, x〉 ≥ 0 with equality iff x = 0 (pos definite)

IP2: 〈x, y〉 = 〈y, x〉 (symmetry)

IP3: 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 (bilinearity)

We call (V, 〈·, ·〉) an inner product space. We also refer to V as the inner product
space (with an implied inner product).

A norm can be induced by any inner product according to the definition: ‖x‖ =

〈x, x〉1/2.

Theorem 20.1: Cauchy-Schwarz Ineq

∀x, y ∈ V
| 〈x, y〉 | ≤ ‖x‖ ‖y‖

with equality holding iff x and y are linearly dependent (collinear).

Proof:
Exercise.

Corollary 20.2

Let (V, 〈·, ·〉) be an IPS and let ‖·‖ be defined as ‖x‖ = 〈x, x〉1/2 for any x ∈ V .
Then ∀x, y ∈ V ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖
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Proof:
Exercise.

As we have just shown, any inner product space has a natural norm so you can think
of V as being both an inner product space and a normed space.

20.4 An inner product for C[a, b]

〈f, g〉 =

∫ b

a

f(x)g(x)dx

The norm is L2 norm

‖f‖2 =

(∫ b

a

|f(x)|2dx
)1/2



21
Convergence of Functions

21.1 Example of a limit in C[a, b]

omitted

21.2 Pointwise convergence of functions

Let S be a subset of Rn and let (fk)
∞
k=1 be a seq of functions fk : S → Rm for all k.

We say that (fk) converges pointwisely to a function f if

lim
k→∞

fk(x) = f(x) ∀x ∈ S

Properties:

1. Pointwise limit of continuous functions can be discontinuous.

2. Limit of integral may not be integral of limit.

3. Pointwise limit of discontinuous functions can be continuous. fk(x) = f
(
dxke
k

)

21.3 Uniform convergence of functions

Given ε > 0, ∃ integer N s.t.

‖fk(x)− f(x)‖ < ε ∀x ∈ S and ∀k ≥ N

Note that uniform convergence implies pointwise convergence.
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Remark:
We see that if ‖·‖∞ is a valid norm for the functions fk and f , then uniform
convergence of (fk)

∞
k=1 to f is equivalent to convergence under the uniform norm.

We defined uniform convergence of a seq of functions to a function f . We did not
refer to the norms, i.e., ‖fk − f‖. Recall C(K) is a normed space (usually use ‖·‖∞).

If fk ∈ C(K) for all k ≥ 1, and f ∈ C(K), then uniform convergence of (fk) to f is
the same (by defn) as convergence under the uniform norm.

‖·‖∞ is not well defined norm for C(R). E.g. f(x) = x. f not bounded, so |f(x)|
does not have supremum.

Can you think of fk : R→ R s.t. (fk) converges to f(x) = x?

fk(x) = x+
1

k

So uniform convergence can still hold for sequences that are not from a normed
space of functions.

21.4 Uniform convergence and continuity

Theorem 21.1

S ⊆ Rn, (fk) a seq of cont functions from S to Rm. If (fk) converges uniformly
to f , then f is cont.

Proof:

‖f(~x)− f(~a)‖ ≤ ‖f(~x)− fN(~x)‖+ ‖fN(~x)− fN(~a)‖+ ‖fN(~a)− f(~a)‖
≤ ε/3 + ε/3 + ε/3

= ε

Remark:
If K ⊆ Rn is compact, then vector space can be given the uniform norm ‖·‖∞.
This can be extended to the space C(K,Rm) of vector valued, cont. functions
from K to Rm. The uniform is defined by

‖f‖∞ = sup
x∈K
‖f(x)‖2

where ‖·‖2 is the Euclidean norm for vectors in Rm.

Theorem 21.2: Completeness Theorem for C(K,Rm)

Let K ⊆ Rn be compact. Then C(K,Rm) is complete w.r.t the uniform norm.
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Proof:
We need to show that every Cauchy sequence converges uniformly to a function
in C(K,Rm).

The rest of proof is left as an exercise to the readers.

Remark:
We only needed K compact to guarantee uniform is well defined. We can relax
this restriction slightly, e.g., to the set of all bounded functions.



22
Discrete Dynamical Systems

Now we are more in the “application” side of this course...

22.1 Introduction to dynamical systems

We consider a system whose state at any given time is described by a vector x ∈ X,
where X is any normed vector space.

The initial state is x0.

In this course, we consider x to evolve in discrete time steps, so the state at time n
is denoted xn.

The dynamical system is governed by a map T : X → X such that

xn+1 = T (xn) for n ≥ 0

Note
We also write Tx for T (x).

Using this map repeatedly gives

x1 = Tx0

x2 = Tx1 = T 2x0

...

xn = T (xn−1) = . . . = T n(x0)

Note
T n(x) = T (T (T . . . T (x)))

not [T (x)]n.
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22.2 Basic definitions for discrete dynamical sys-

tems

Let X ve a subset of a normed vector space and let T : X → X be a continuous
map. We call (X,T ) a discrete dynamical system.

For any point x ∈ X, we define the forward orbit of x as the sequence of points
O(x) = (T nx)∞n=0.

The forward orbit tells you that how the system behaves (evolves) over time starting
from the initial point x.

A fixed point of a dynamical system is x∗ ∈ X that satisfies Tx∗ = x∗.

Any fixed point x∗ has forward orbit O(x∗) = (x∗, x∗, . . .)

A fixed point x∗ is called attractive (or a sink) if there exists an open neighbourhood
U of x∗ such that O(x) converges to x∗ for any x ∈ U ∩X.

A fixed point x∗ is repelling (or a source) if there is an open neighbourhood U such
that O(x) is not contained in U for any x ∈ U ∩X \ {x∗}.

We say that T is a C1 dynamical system on X ⊆ R if T is continuously differentiable
on X.

X = R

n
0

x0
x1

x∗ constant orbit from fixed point

Suppose x∗ attractive fixed point
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n
0

x∗
U

allowed

“Attractive” does not mean ‖x∗ − T nx‖ is strictly decreasing.

Suppose x∗ repelling

n
0

x∗
U

allowed

“repelling” does not mean distance from x∗ is monotone increasing.

22.3 Examples

1. T (x) = x and consider X = R. xn = T (xn−1) = xn−1

Every point is a fixed point.

Every point is (not repelling), (not attractive).

Remark:
fixed point does not to be either attractive or repelling.

2. T (x) = x2, X = [0,∞)
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X = [0,∞)
x0x1x2

or
bi

ts
co

nv
er

ge
s
to

0

y = T (x)

x0 x1 x2

y = x

X = [0,∞)

Start between 0 and 1 =⇒ converges to 0

Start > 1 =⇒ diverges to ∞

x0 =⇒ fixed point



23
Fixed points and Contractions

y = Tx

y = x

Repelling

y = Tx

y = x

Attractive
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y = Tx

y = x

Attractive

y = Tx

y = x

Repelling

23.1 Stability Theorem for fixed points

Theorem 23.1

Let T be C1 dynamical system on X ⊆ R with a fixed point x∗.

1. If |T ′(x)| > 1, then x∗ is a repelling fixed point.

2. If |T ′(x)| < 1, then x∗ is an attractive fixed point.

Further more, for any c satisfying |T ′(x)| < c < 1, then there exists an interval
U = (x∗ − δ, x∗ + δ) with δ > 0 such that for any x0 ∈ U ∩X, the orbit of x0
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satisfies

|xn − x∗| ≤ cn|x0 − x∗| ≤
cn

1− c
|x1 − x0|

Exercise
Check the examples from sec 22.3 to see if they are consistent with this theorem.

23.2 Contractions

Let X be a subset of a normed vector space. A map T : X → X is a contraction
on X if there exists a number c ∈ [0, 1) such that ‖Tx − Ty‖ ≤ c ‖x− y‖ for all
x, y ∈ X. The number c is called the contraction constant.

Remark:
Contractions are Lipschitz functions with Lipschitz constant c < 1.

Example:

T (x) = x2 on [0, 1/4] is a contraction.

Note that for differentiable functions, Lipschitz constant is the supremum of
|T ′(x)|.

T ′(x) = 2x

sup
x∈[0,1/4]

|T ′(x)| = 1

2
= c < 1 =⇒ Contraction

Note that T (x) = x2 is not a contraction on [0, 1] even though |Tx− 0| ≤ |x− 0|
for all x ∈ [0, 1].

Also be careful, ‖Tx− Ty‖ < ‖x− y‖ for all x, y is not sufficient for contraction.
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Banach Contraction Principle

Theorem 24.1: Banach Contraction Principle

Let X be a closed subset of a complete normed space.

If T : X → X is a contraction with contraction constant c, then:

1. T has a unique fixed point x∗,

2. the forward orbit of any point x ∈ X converges to x∗, i.e., limn→∞ T
nx =

x∗, and

3. ‖T nx− x∗‖ ≤ cn ‖x− x∗‖ ≤ cn

1− c
‖x− Tx‖

Proof:
We want to show that for any x ∈ X, the sequence (xn) is Cauchy.

Applying 4 Ineq for a number of times:

‖xn+m − xn‖ = ‖xn+m − xn+m−1 + xn+m−1 − xn+m−2 + . . .− xn‖

≤
m−1∑
i=0

‖xn+i+1 − xn+i‖

Each term of this sum can be bounded by noting that

‖xk+1 − xk‖ = ‖Txk − Txk−1‖ ≤ c ‖xk − xk−1‖ ≤ . . . ≤ ck ‖x1 − x0‖︸ ︷︷ ︸
D

= ckD

So,

‖xn+m − xn‖ ≤
m−1∑
i=0

cn+1D ≤
∞∑
i=0

cn+iD =
cnD

1− c

Hence, (xn) is Cauchy (show this step).
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Initial Value Problems

We will use the Banach Contraction Principle to show that certain initial value
problems have a unique solution.

IVP

An initial value problem is a diff. eq. together with a set of initial value
conditions. We will focus on IVPs of the form

f ′(x) = h(x) = ϕ(x, f(x)), for x ∈ [a, b]

f(x0) = y0

where ϕ : [a, b]×R→ R is a continuous function of two vars and x0 ∈ [a, b] is
the point at which the initial condition is specified.

If f is a solution of the IVP, then by FTC Part 2, f is also a solution of the integral
equation

f(x) = f (x0) +

∫ x

x0

f ′(t)dt = y0 +

∫ x

x0

ϕ(t, f(t))dt

Conversely, if a cont function f satisfies the integral equation

f(x) = y0 +

∫ x

x0

ϕ(t, f(t))dt = y0 +

∫ x

x0

h(t)dt

then by FTC part 1, f is diff on [a, b] and f ′(x) = ϕ(x, f(x)). In addition, f(x0) = y0.
Hence f solves the IVP.

Define a cont map T : C[a, b]→ C[a, b] by

Tf(x) = y0 +

∫ x

x0

ϕ(t, f(t))dt

Fixed points of T are precisely the solutions of the integral equation. If we can
show that T is a contraction for a give IVP, then the Banach Contraction Principle
would guarantee existence and uniqueness of the solution. [Recall, (C[a, b], ‖·‖∞) is
a complete normed vector space.]
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Higher Order Differential Equations

Consider an IVP of the form

f (n)(x) = ϕ
(
x, f(x), f ′(x), . . . , f (n−1)(x)

)
, for x ∈ [a, b]

f (x0) = γ0, f
′ (x0) = γ1, . . . , f

(n−1) (x0) = γn−1

(26.1)

where ϕ : [a, b]× Rn → R is a continuous function of (n + 1) vars and x0 ∈ [a, b] is
the point at which the initial conditions are specified.

We will convert the real-valued DE of nth order into a vector-valued, first order DE.

Suppose we have a solution f of (26.1). Define the function F : [a, b]→ Rn by

F (x) = (f(x), f ′(x), . . . , f (n−1)(x))

Since each f (j) must be cont for 0 ≤ j ≤ (n − 1), the function F belongs to
C([a, b],Rn). Differentiating the components of this vector-valued function gives

F ′(x) =
(
f ′(x), f ′′(x), . . . , f (n−1)(x), f (n)(x)

)
=
(
f ′(x), f ′′(x), . . . , f (n−1)(x), ϕ

(
x, f(x), f ′(x), . . . , f (n−1)(x)

))
= Φ(x, F (x))

where Φ : [a, b]× Rn → Rn is defined by

Φ (x, y0, y1, . . . , yn−1) = (y1, y2, . . . , yn−1, ϕ (x, y0, y1, . . . , yn−1))

We can express the initial conditions as

F (x0) = (γ0, γ1, . . . , γn−1) = Γ

Then F is a solution of the first order IVP

F ′(x) = φ(x, F (x))

F (x0) = Γ
(26.2)

83



LECTURE 26. HIGHER ORDER DIFFERENTIAL EQUATIONS 84

Conversely, if the vector-valued function F (x) = (F0(x), F1(x), . . . , Fn−1(x)) is a
solution of (26.2), then(
F ′0(x), F ′1(x), . . . , F ′n−1(x)

)
= F ′(x)

= Φ(x, F (x))

= (F1(x), F2(x), . . . , Fn−1(x), ϕ (x, F0(x), F1(x), . . . , Fn−1(x)))

Equating coordinates on both sides gives

F ′0(x) = F1(x)

F
(2)
0 (x) = F ′1(x) = F2(x)

...

F
(n−1)
0 (x) = F ′n−2(x) = Fn−1(x)

F
(n)
0 (x) = F ′n−1(x) = ϕ (x, F0(x), F1(x), . . . , Fn−1(x))

Hence, the function F0 satisfies F
(n)
0 (x) = F ′n−1(x) = ϕ(x, F0(x), F ′0(x), . . . , F

(n−1)
0 (x)).

The initial conditions satisfy

F0(x0) = γ0

F ′0(x0) = F1(x0) = γ1

...

F
(n−1)
0 (x0) = Fn−1(x0) = γn−1

Hence, we have solved the IVP (26.1). We can now proceed with the method
introduced in the last lecture first order diff eq.

Integrating diff eq gives the integral eq,

F (x) = Γ +

∫ x

x0

Φ(t, F (t))dt

Solving the diff eq is equivalent to solving the integral equation. In turn, solutions
of this integral equation are fixed point of the map T : C([a, b],Rn)→ C([a, b],Rn)
defined by

T F (x) = Γ +

∫ x

x0

Φ(t, F (t))dt

Recall that the space C([a, b],Rn) is complete with respect to the uniform norm. So
if T is a contraction, then iterating the map T with any initial function will generate
an orbit that converges to the desired solution.

In practice, the requirement that T be a contraction is often too strict. It may be
possible to converge to a solution even when T is not a contraction. We will discuss
existence and uniqueness of solutions in the next lecture.



27
Global Solutions of Differential Equa-
tions

Lipschitz in the y variable

A function Φ(x, y) is said to be Lipschitz in the y variable if there is a constant
L such that

‖Φ(x, y)− Φ(x, z)‖ ≤ L ‖y − z‖

for any (x, y) and (x, z) in the domain of Φ. We call L a Lipschitz constant.

Lemma 27.1

Let Φ : [a, b] × Rn → Rn be a continuous function that is Lipschitz in the y
variable with Lipschitz constant L. Let Γ ∈ Rn. Define the map T by

T F (x) = Γ +

∫ x

a

Φ(t, F (t))dt

Let F and G two functions from Banach space C([a, b],Rn). If there exist an
integer k ≥ 0 and a real number M such that

‖F (x)−G(x)‖ ≤ M(x− a)k

k!
for all x ∈ [a, b],

then

‖TF (x)− TG(x)‖ ≤ LM(x− a)k+1

(k + 1)!
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Proof:

‖TF (x)− TG(x)‖ =

∥∥∥∥Γ +

∫ x

a

Φ(t, F (t))dt− Γ−
∫ x

a

Φ(t, G(t))dt

∥∥∥∥
=

∥∥∥∥∫ x

a

Φ(t, F (t))− Φ(t, G(t))dt

∥∥∥∥
≤
∫ x

a

‖Φ(t, F (t))− Φ(t, G(t))‖dt

≤
∫ x

a

L‖F (t)−G(t)‖dt

≤ LM

k!

∫ x

a

(t− a)kdt

=
LM

(k + 1)!
(x− a)k+1

Corollary 27.2

The map T defined in Lemma 27.1 is uniformly continuous.

Proof:
For any x ∈ [a, b],

‖F (x)−G(x)‖ ≤ ‖F −G‖∞ = ‖F −G‖ (x− a)0

0!

which is the condition form Lemma 27.1 with k = 0 and M = ‖F −G‖∞. Hence,

‖TF (x)− TG(x)‖ ≤ L(x− a)‖F −G‖∞ ≤ L(b− a)‖F −G‖∞

Since this holds for any x ∈ [a, b], it also holds for the supremum so ‖TF − TG‖∞ ≤
L(b− a) ‖F −G‖∞. Hence, T is Lipschitz with Lipschitz constant L(b− a) and
therefore uniformly continuous.

Theorem 27.3: Global Picard Theorem

Let Φ : [a, b] × Rn → Rn be a continuous function that is Lipschitz in the y
variable and let Γ ∈ Rn. Then the initial value problem

F ′(x) = Φ(x, F (x)), F (a) = Γ,

has a unique solution.

Proof:
Define the map T : C([a, b],Rn)→ C([a, b],Rn) by

TF (x) = Γ +

∫ x

a

Φ(t, F (t))dt

and define a sequence of functions (Fk)
∞
k=1 in C([a, b],Rn) recursively by

F0(x) = Γ, Fk+1 = TFk for k ≥ 0
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Let L denote the Lipschitz constant for Φ and define M = sup
x∈[a,b]

‖Φ(x,Γ)‖.

‖F1(x)− F0(x)‖ =

∥∥∥∥∫ x

a

Φ(t,Γ)dt

∥∥∥∥ ≤M(x− a) =
M(x− a)1

1!

By Lemma 27.1, we have

‖F2(x)− F1(x)‖ = ‖TF1(x)− TF0(x)‖ ≤ ML(x− a)2

2!

This also satisfies the condition in the lemma, so we can iterate. We can show
by induction that

‖Fk+1(x)− Fk(x)‖ ≤ MLk(x− a)k+1

(k + 1)!

for any integer k ≥ 0. Following the method in the proof of Banach Contraction
Principle, for k, l ≥ 0, we find that

‖Fk+l(x)− Fk(x)‖ ≤
k+l−1∑
j=k

‖Fj+1(x)− Fj(x)‖

≤
k+l−1∑
j=k

MLj(x− a)j+1

(j + 1)!

≤ M

L

∞∑
j=k+1

[L(b− a)]j

j!

Recall the power series representation of ez is
∞∑
j=0

zj

j!
so

∞∑
j=0

[L(b− a)]j

j!
= eL(b−a).

Since this series converges, we know that given ε > 0, there exists an integer N

such that
M

L

∞∑
k=N

[L(b− a)]j

j!
< ε. Therefore, ‖Fp(x)− Fq(x)‖ ≤ ε for all x ∈ [a, b]

and hence ‖Fp − Fq‖∞ ≤ ε for all p, q ≥ N , proving (Fk) is Cauchy.

But C([a, b],Rn) is complete with respect to the uniform norm so the sequence
must converge to some limit F ∗.

By continuity of T , we have

TF ∗ = T ( lim
k→∞

Fk) = lim
k→∞

TFk = lim
k→∞

Fk+1 = F ∗

sp F ∗ is a fixed point of T , which is a solution of the IVP.

Proving that the fixed point is unique is left as an exercise.



28
Newton’s Method

Newton’s method is an iterative algorithm for

nding a root of a function. We will prove that the algorithm works and

nd an error bound using the Banach Contraction Principle.

Theorem 28.1: Newton’s Method

Let f : R → R be twice continuously differentiable. Suppose there exists
x∗ ∈ R satisfying f(x∗) = 0 and f ′(x∗) 6= 0. Then there exists r > 0 such
that for any x0 ∈ [x∗ − r, x∗ + r], the sequence (xn)∞n=0 defined recursively by
xn+1 = xn − f(xn)/f ′(xn) for n ≥ 0 converges to x∗. Moreover, there exists
M ∈ R such that

|xn+1 − x∗| < M |xn − x∗|2 for all n ≥ 1

Proof:
Define the map T : R→ R by

T (x) := x− f(x)− f ′(x)

Note that x∗ from the hypothesis is a fixed point of T .

By differentiation rules, T ′(x) = f(x)f ′′(x)
f ′(x)2

.

T ′ is continuous and T ′(x∗) = 0 so there exists r > 0 such that |T ′(x)| ≤ 1/2 for
all x satisfying |x − x∗| ≤ r. That is, T is a contraction on X = [x∗ − r, x∗ + r]
with contraction constant c = 1/2.

By Banach Contraction Principle:

1. T has a unique fixed point in X, which must be x∗,

2. limn→∞ T
nx0 = x∗ for all x0 ∈ X, and
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3. |T nx0 − x∗| ≤ 2−n|x0 − x∗| ≤ 21−n|x0 − x1|.

For the last part of the theorem, see text book 11.2.1.

Remark:

1. Newton’s method also works if f is defined on an interval rather than all of
R.

2. Newton’s method establishes “quadratic convergence” to the solution. If
you are close to the fixed point, this is faster than the geometric convergence
offered by the BCP.

3. The algorithm for calculating square roots in Lecture Notes 4.2 can be
derived by applying Newton’s method.



29
Polynomial Approximations

This lecture is about intuitive, but problematic, ways of constructing polynomials
to approximate a given function.

29.1 Taylor polynomial and series

Taylor polynomial

Let f : [a, b] → R and let n be a non-negative integer. If f has n derivatives
at a point c ∈ [a, b], then the Taylor polynomial of order n for the function f
at c is defined by

Pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 + · · ·+ f (n)

n!
(x− c)n

=
n∑
k=0

f (k)(c)

k!
(x− c)k

Taylor remainder

The Taylor remainder of order n for f at c is:

Rn(x) := f(x)− Pn(x)

The Taylor remainder can be regarded as the error in approximating a function f
by its Taylor polynomial.
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Lemma 29.1

Let f ∈ Cn[a, b] and c ∈ [a, b]. The Taylor polynomial Pn of order n for f at c
is the unique polynomial of degree att most n for which P (k)(c) = f (k)(c) for
0 ≤ k ≤ n.

Theorem 29.2: Taylor’s Theorem

Suppose f ∈ Cn[a, b] and that f (n+1) exists and satisfies f ((n+1))(x) ≤ M for
some constant M ∈ R and for all x ∈ [a, b]. Then,

|Rn(x)| ≤ M |x− c|n+1

(n+ 1)!

If the function f is infinitely differentiable, then we can define the Taylor series of

f about c:
∞∑
k=0

f (k)(c)

k!
(x − c)k. The Taylor series is a power series and, in general,

converges only on a certain interval around c.

Although Taylor polynomials might seem like a natural way to approximate func-
tions by polynomials, we see that is has some problems:

1. We need (n+ 1) derivatives of f to construct the Taylor polynomials of order
n and determine an error bound.

2. Error bound may never be small enough.

3. The sequence of Taylor polynomials (equivalently, the Taylor series) may not
converge on the entire domain of f .

4. Even if the Taylor series converges, it may not converge to f .

29.2 Polynomial interpolants

Given a (cont., diff.?) function f : [a, b] → R, we might expect a polynomial
interpolation to reasonably approximate f .

Define n + 1 evenly spaced points xj = a + j
n
(b − a), for j = 0, 1, . . . , n and define

yj = f(xj) for each j. There is unique polynomial pn of degree at most n satisfies
pn(xj) = yj for j = 0, 1, . . . , n.

This does not work for all functions. For example, for f(x) =
1

1 + x2
on the interval

[−5, 5], not only does the sequence pn not converge uniformly, but limn→∞ ‖f − pn‖∞ =
∞.

In this example, if you define the n + 1 points xj differently, it is possible to have
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uniform convergence of pn to f . But it has been shown that no matter how you
distribute xj, there will be a continuous function f for which the sequence of inter-
polating polynomials does not converge uniformly to f .

29.3 Uniform approximations of continuous func-

tions by polynomials

Evidently, Taylor polynomials and polynomial interpolants do not generally provide
good uniform approximations of functions. We will show that it is, in fact, always
possible to uniformly approximate a continuous function on a closed interval by
polynomials:

Theorem 29.3: Weierstrass Approximation Theorem

Every continuous function f : [a, b] → R is the uniform limit of a sequence of
polynomials (pn).

Proof:
See Lecture 31.



30
Bernstein Polynomials

Bernstein basis polynomials

are polynomials of the form

P n
k (x) =

(
n

k

)
xk(1− x)n−k

for integers n ≥ 0 and 0 ≤ k ≤ n.

Recall the binomial formula

(x+ y)n =
n∑
k=0

(
n

k

)
xk(1− x)n−k =

n∑
k=0

P n
k (x)

These polynomials are defined for all real numbers but we will focus on the interval
[0, 1]. Some properties of Bernstein basis polynomials:

1. P n
k is a polynomial of degree n.

2.
∑n

k=0 P
n
k (x) = 1 for all x ∈ [0, 1].

3. P n
k (x) ≥ 0 for all x ∈ [0, 1].

4. P n
k (0) = 0 unless k = 0 and P n

k (1) = 0 unless k = n.

5. P n
k attains its maximum at x = k/n.

Bernstein polynomial

A Bernstein polynomial of degree n is a polynomial of the form

pn(x) =
n∑
k=0

akP
n
k (x)
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for some coeffs ak, k = 0, 1 . . . , n.

Since pn is linear combo of polynomials of degree n, it is a polynomial of degree at
most n.

Note
The text book refers to P n

k as Bernstein polynomials and does not give a name
to what we called a Bernstein polynomial.

Define a map Bn : C[0, 1]→ C[0, 1] by

Bnf(x) =
n∑
k=0

f(k/n)Pk(x), for n ≥ 1

This map constructs a Bernstein polynomial from function f . We will look at some
properties of the map Bn after defining the following notation:

For any two functions f, g ∈ C[0, 1], we write f ≥ g if f(x) ≥ g(x) for
all x ∈ [0, 1]. Similarly, we write f ≤ g if f(x) ≤ g(x) for all x ∈ [0, 1].

Proposition 30.1

The map Bn is linear and monotone: for all f, g ∈ C[0, 1],

1. Bn(αf + βg) = αBnf + βBng for all α, β ∈ R,

2. Bnf ≥ Bng if f ≥ g, and

3. |Bnf | ≤ Bng if |f | ≤ g.



31
Proof of Weierstrass Approximation
Theorem

31.1 Uniform convergence of polynomials

Theorem 31.1: Weierstrass Approximation Theorem

Every continuous function f : [a, b] → R is the uniform limit of a sequence of
polynomials (pn).

Proof:
SKIPPEDa.

atoo long to write here... about 2 pages long...

31.2 Bernstein and beyond

Chebyshev polynomials, Chebyshev series, splines

31.3 Applications of polynomial approximation

Polynomials are very simple functions to analyze. We can find roots, differentiate,
integrate, etc. easily. Approximating functions by polynomials could therefore allow
complex tasks to be greatly simplified.

Chebyshev and other polynomials often appear in numerical algorithms because
they have nice properties.
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A great demonstration of the utility of polynomial approximation is the Chebfun
project, led by Professor Nick Trefethen at the University of Oxford (see http://

www.chebfun.org/ , https://people.maths.ox.ac.uk/trefethen/chebfun.pdf).
Chebyshev functions are used to manipulate formulas “symbolically” at high speed
to do general computations, e.g., optimization, root finding, linear algebra, solving
ODEs and PDEs.

It should also be mentioned that Bernstein polynomials are very important in com-
puter graphics and animations. Smooth curves and motion are often constructed
using Bézier curves, which are essentially Bernstein polynomials.

http://www.chebfun.org/
http://www.chebfun.org/
https://people.maths.ox.ac.uk/trefethen/chebfun.pdf
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