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Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of AMATH 475 during Winter 2020 as well as other
related resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

Some of the notes (especially special relativity part) are projected to the screen
instead of using blackboards. They can be found on https://sites.google.com/

site/emmfis/teaching/gr.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.
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0
Pre-Math

0.1 Index notation

A =

(
A1

1 A1
2

A2
1 A2

2

)
B =

(
B1

1 B1
2

B2
1 B2

2

)

(A ·B)ab = AacB
c
b = Bc

bA
a
c sum over all possible c

Identify followings:

Bκ
νAµ

κ = Aµ
κBκ

ν = Cµ
ν = (A ·B)µ

ν

AκµBκ
ν = Dµ

ν = (AT )µ
κBκ

ν = (AT ·B)µ
κ

Aκ
νBµ

κ = Eµ
ν = (B · A)µ

ν

AκµB
ν
κ = (AT )µ

κ(BT )κ
ν =

(
(B · A)T

)
µ

ν

v = v1e1 + v2e2 {e1, e2} Basis 1.

v = vaea = v′ae′a {e′1, e′2} Basis 2.

Change of basis matrix Λ
e′a = Λa

beb

v′a = Λ̃a
bv
b

4



CHAPTER 0. PRE-MATH 5

vaea = v′ae′a

= Λ̃a
bv
bΛa

cec

= Λ̃a
bΛa

cvbec

=
(

Λ̃T
)
b

a

Λa
c︸ ︷︷ ︸

δcb

vbec

= vbeb

=⇒
(

Λ̃T
)
b

a

Λa
c = δcb

Λ̃T · Λ = 1

Λ̃T is the inverse transpose of Λ

covariant and contravariant object

A covariant object is an object that under change of basis transforms like the
elements of a basis. Λ. (sub-indices)

A contravariant object transforms like components of vectors. (Λ̃ = (ΛT )−1).
(super-indices)

0.2 Vectors and one-forms

one-form

Let V be a vector space. A one-form is a linear map ω : V → R.

or we write: (ω, ·) : V → R and (ω,v) ∈ R.

dual vector space

The set of all one-forms on V (call V ∗) is a vector space as well called the
dual vector space to V .

dual basis

Let {Υ1,Υ2, . . .} (or {Υi}) be a basis of V so that any v ∈ V can be written
as v = viΥi.

We define the dual basis (of V ∗) to {Υi} as {ωi} such that ωi(Υj) = δij.
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For a one form ω we denote its “components of the basis Υ” as (ω,Υm) = ωm

Proposition 0.1

The dual basis of V ∗ is actually a basis of V ∗.

The action of ω ∈ V ∗ on a vector v = vµΥ ∈ V is

(ω,v) = (ω, vµΥµ) = vµωµ

Let’s prove {Υa} is linear independent.

Proof:
A linear comb. caΥ

a acts on a vector v = vaΥa

(caΥ
a,v) = ca(Υ

a,v)

= ca(Υ
a, vbΥb)

= cav
b (Υa,Υb)︸ ︷︷ ︸

δab

= cav
bδab = cav

a

For LI,
caΥ

a = 0 ⇐⇒ ca = 0 ∀a

cav
a = 0 ∀v ⇐⇒ ca = 0

vectors: take one-forms → R one-forms: take vectors → R

0.3 Tensor

type (m,n) tensor

A type (m,n) tensor is a multilinear map that

T : V n ⊗ (V ∗)m → R

Components of T:

T(Υa1, . . . ,Υan,Υ
b1, . . . ,Υbm) = Ta1...an

b1...bm

1. Tensor product takes
(
m
n

)
and

(
m′

n′

)
→
(
m+m′

n+n′

)
tensor

2. Contraction takes
(
m
n

)
→
(
m−1
n−1

)
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Example:

1. Ta
b, Sc

d.
(T⊗ S)a

b
c
d = Ta

dSc
d = Pa

b
c
d

2. Ta
bc → cbTa

ba

va, wb

{
vaωb

vaωa

If you have a favorite type (2, 0) symmetric tensor g

vµ = gµνv
ν

gµν := components of the inverse of gµν

vν = gµν

then
gµνgνσ = δµσ

gµνv
µwν = vµw

ν = vw

||v||2 = gνµv
µvν

Then we can define the angle

v ·w
||w|| ||v||

:= cos θ

Tµ
ν = gνσTµσ

T µν = gνσgµρTσρ

gνµ = gνσgσµ = σνµ

0.4 Levi-Civita symbol

Levi-Civita symbol εabc..., εabc...

• is antisymmetric

• ε1234... = 1, ε1234 = 1

ε123 = 1, ε213 = −1, ε312 = 1, ε113 = 0

ε123456 = 1, ε612453 = −1

Idea just see the permutations
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Levi-Civita symbol

εa1a2a3...an =


+1 if (a1, a2, a3, . . . , an) is an even permutation of (1, 2, 3, . . . , n)

−1 if (a1, a2, a3, . . . , an) is an odd permutation of (1, 2, 3, . . . , n)

0 otherwise

Here is a short-cut:

1 2 3

12 3

odd number crossings, so odd permutation.

Note that det(M) := εijk...M
i
1M

j
2M

j
3 . . .

Exercise

prove εi1i2...inεj1j2...jn = n!ij = 1, . . . , n

εijkεilm = δjl δ
k
m − δjmδkl

εijmnεklmn = 2(δikδ
j
l − δ

j
kδ
i
l)

Prove ~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C

Proof:

Let ~F = ~A× ( ~B × ~C) ~D = ~B × ~C

Then
Dk = εkijB

iCj

F l = εlmkA
mDk =⇒ F l = εlmkε

k
ijA

mBiCj

Then
F l = (δliδmj − δljδmi)AmBiCj

= δliδmjA
mBiCj − δljδmiAmBiCj

= Bl(AjC
j)− C l(AiB

i)

where we use
~A · ~B = AiBi



1
Special Relativity

1.1 Postulates of SR

Postulate 0

Newton’s first law

Postulate 1: Principle of relativity

In the absence of gravity, all the laws of Physics are identical in all inertial
reference frames.

Postulate 2

The speed of light in vacuum c is constant and the same from all inertial
reference frames, regardless of their state of motion.

1.2 Lorentz Transformation

We define the spacetime interval ∆s2

∆s2 = −c2∆t2 + ∆x2 = −c2 (t2 − t1)2 + (x2 − x1)2

Assuming the following:

1. The difference between the two frames is a constant speed v

2. The transformation has to be linear.

9
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t′ = γ
(
t− v · x

c2

)
, x′ = x+ (γ − 1)(n · x)n− γvt

and index notation

t′ = γ

(
t− vix

i

c2

)
, xi = xi + (γ − 1)

xjvjv
i

v2
− γvit

1.3 Line element, proper time and spacelike, time-

like and null separation

1.3.1 Classification of spacetime intervals

We can classify events according to the following criterion:

• Spacelike separated, ∆s2 > 0

• Timelike separated, ∆s2 < 0

• Lightlike (null) separated, ∆s2 = 0

Given the trajectory of a physical particle moving inertially, we will call co-moving
frame (inertial) or proper frame (non-inertial) to the frame Sp where the particle is
at rest.

1.3.2 Proper time and line element

ds2 = −c2dt2 + dx2

We will call ds2 the spacetime line element.

v :=
dx

dt

P0, P1, P2 + linearity

=⇒ t′ = t

(
t− vix

i

c2

)
(1)

x′i = xi + (γ − 1)
xjvjv

i

v2
− γvit

Particle trajectory in a given inertial (Lab) frame x(t)

Particle trajectory in its proper frame ξ(t) = 0
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Comoving frame’s trajectories at each t (from lab frame) x = v(t)t.

dτ = dt′ = γ(t)

(
1− v(t)2

c2

)
dt (2)

ds2 = −c2dt2

1− 1

c2

(
dx

dt

)
︸ ︷︷ ︸

v(t)

2

 = −c2 γ−2dt2︸ ︷︷ ︸
dτ2

=⇒ ds2 = −c2dτ 2 (3)

Example:

Find τ(t) for the three following trajectories.

1. x(t) = v(t)

ds2 = −c2dτ 2 = −c2dt2 + dx2 =⇒ dτ = γ−1dt =⇒ ∆τ = γ−1∆t

2. x(t) = c2

a

[√
1 + a2t2

c2
− 1

]
Then dx

dt
= at√

1+a2t2

c2 (
dτ

dt

)2

= 1− 1

c2

(
dx

dt

)2

=⇒ dτ

dt
=

√
1− 1

c2

a2t2

1 +
(
at
c

)2

=⇒ τ(t) =
c

a
arcsinh

(
at

c

)
and t(τ) =

c

a
sinh

(aτ
c

)
3. x(t) = L sin(ωt) =⇒ dx

dt
= Lw cos(ωt) with Lω < c

(
dτ

dt

)2

= 1− 1

c2

(
dx

dt

)2

=⇒ dτ

dt
=

√
1− 1

c2

(
dx

dt

)2

=⇒ dτ =

√
1− L2ω2

c2
ωt dt

Then

τ(t) =

E

(
tω, 1

1− c2

L2ω2

)
ω
√

1

1−L2ω2

c2

where

E(ϕ|m) =

∫ ϕ

0

(1−m sin2 θ)1/2dθ
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1.4 Lorentzian Tensors

See notes for details.

Aµ transposes with Λ and it’s covariant.

Aµ transposes with Λ̃ = (Λ−1)T and it’s controvariant.

1.5 Poincare group

The derivations are in notes.

1.6 Relativistic dynamics

1.6.1 Hamilton’s principle and Euler-Lagrange equations

There exists at least one function (called action) of the trajectories that the degrees
of freedom of a system may take in phase space. The physical trajectories are
obtained demanding stationarity of this functional under variations that keep the
initial and final positions constant.

Usually, the action S of a system of n particles can be written in terms of a La-

grangian L(s, x,
◦
x) where ◦ represents

◦
x = dx

ds
so that

S =

∫ s2

s1

ds L(s, x,
◦
x)

δS =
∑
n

∫ s2

s1

ds

(
∂L

∂xµn
δxµn +

∂L

∂
◦
x
µ

n

δ
◦
x
µ

n

)
=
∑
n

∫ s2

s1

ds

(
∂L

∂xµn
− d

ds

∂L

∂
◦
x
µ

n

)
δxµn+

∑
n

[
∂L

∂
◦
x
µ

n

δxµn

]s2
s1

Impose Hamilton’s Principle

δS = 0⇒ ∂L

∂xµn
− d

ds

∂L

∂
◦
x
µ

n

= 0

1.6.2 Conserved quantities and Noether’s theorem

Noether’s theorem

If the variation of the action around a physical trajectory under a continuous vari-
ation of the positions ∂x is zero, then the quantity

δQ =
∑
n

∂L

∂
◦
x
µ

n

δxµ
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is conserved. That is
d(∂Q)

ds
= 0.

Proof:
See notes.

1.6.3 Four-momentum

Let S be invariant under ∂x = nδα.

=⇒ δQ =
∂L

∂
◦
x
µn

µδα

is constant =⇒ the projection n · p = nµpµ = ηµνn
µpν (where pµ := ∂L

∂
◦
x
µ ) is

conserved.

If the action is invariant under Lorentz transformation δxµ = δωµνx
ν , then

Jµν := xµpν − xνpµ

is conserved.

1.6.4 Angular momentum

The angular momentum J associated to spatial rotations and the vector K associ-
ated to boosts can be extracted directly from Jµν :

J i =
1

2
εijkJjk, Ki = Ji0

1.6.5 Free particle dynamics

• S has to be a scalar (Invariant under Lorentz)

• Must coincide with the non-relativistic action in the limit v
c
� 1.

S = mc

∫
ds = −mc2

∫
dτ = −mc2

∫
dt
dτ

dt
= −mc2

∫
dt

γ
= −mc2

∫
dt

√
1− v2

c2

= −mc2

∫
dt

[
1− 1

2

v2

c2
+O

(
v4

c4

)]
and

L = −mc2

√
1− v2

c2
= −mc2 +

1

2
mv2 +O

(
v4

c4

)

Euler-Lagrange d
dt

(γmv) = 0



CHAPTER 1. SPECIAL RELATIVITY 14

pi =
δS

δvi
=
∂L

∂vi
= mγvi, p = mγv

Hamiltonian
H = (p · v − L)v→v(p) =

√
m2c4 + c2p2

Let’s introduce Four-velocity.

dxµ

dτ
=: ẋµ ≡ uµ

solid dot means derivative w.r.t proper time.

ẋµ :=
dxµ

dτ
=

d

dτ

(
ct

x

)
=

(
c dt
dτ
dx
dτ

)
=

(
c dt
dτ

dx
dt

dt
dτ

)
= γ

(
c

v

)

If we choose action as (not four-velocity)

S = mv

∫
dt

√
ηαβ

dxα

dt

dxβ

dt

Lagrangian

L = mc

√
−ηαβ

dxα

dt

dxβ

dt

pµ =
δS

δẋµ
= mẋµ =⇒ pµ = mẋµ = mγ

(
c

v

)
p0 in the proper frame: p0 = mc, p = 0. so cp0 is energy.

Let’s compute
pµpµ = m2ẋµẋµ = −m2c2

pµpµ = −(p0)2 + p2

=⇒ −m2c2 = −(p0)2 + p2 =⇒ p0 =
1

c

√
m2c4 + c2p2

=⇒ E =
√
m2c4 + c2p2 = mc2

√
1 + γ2

v2

c2
= mc2 +

1

2
mv2 +O

(
v2

c2

)
• Ultrarrelativistic limit: The kinetic term inside the square root is much

larger than the rest energy of the particle: pc� mc2, E ≈ cp

• Deep non-relativistic limit: The rest energy is much larger than the kinetic
energy of the particle: mc2 � pc, E ≈ mc2
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Two problems

You are designing a particle collider, you have two identical part of mass M and
energy budget E = 2ε. You have two strategies:

a) spend 1/2E on each and accelerate them.

b) spend E on one of them and accelerate it

Which one optimizes the center of mass energy?

Solution

a)

p −p

Lab frame pµ1 =
(
ε
c

+Mc, p, 0, 0
)

pµ2 =
(
ε
c

+Mc,−p, 0, c
)

pµlab = pµ1 + pµ2 =

(
2ε

c
+ 2Mc, 0, 0, 0

)
= pµCM

Then

E
(a)
CM = cp0

CM = 2ε+ 2Mc2 = 2Mc2

(
1 +

ε

µc2

)
b) Here the p is different from the p above.

Lab frame pµ1 =
(

2ε
c

+Mc, p, 0, 0
)

pµ2 = (Mc, 0, 0, c)

pµlab = pµ1 + pµ2 =

(
2ε

c
+ 2Mc, p, 0, 0

)
Determine

pµ1p1µ = −M2c2 = −
(

4ε2

c2
+M2c2 +M2c2 + 4εM

)
+ p2

=⇒ p =

√
4ε2

c2
+ 4εM =

2ε

c

√
1 +

Mc2

ε

We want p0
cm, and we know pµCM = (p0

CM ,0)

Lorentz scalar: pCM
µpCMµ = −(p0

CM)2 and lab frame plab
µplabµ = −(p0

CM)2
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plab
µplabµ = −

(
4ε2

c2
+ 4M2c2 + 8εM

)
+

4ε2

c2

(
1 +

Mc2

ε

)
= −4M2c2 − 8εM + 4εM

= −4M(Mc2 + ε)

= −(p0
CM)2

p0
CM =

√
−pµlabplabµ = 2

√
µ(Mc2 + ε) =⇒ E

(b)
CM = cp0

CM = 2Mc2

√
1 +

ε

Mc2

So

R =
E

(a)
CM

E
(b)
CM

=

√
1 +

ε

Mc2
> 1

In Deep non-real ε�Mc2, lim
ε

Mc2
→0
R = 1.

In Ultra limit lim
ε→pc

R =

√
1 +

pc

Mc2
→∞.

A massless particle cannot → two identical mass particle. (converse is also true).

Kµ

M

M

P µ
1

P µ
2

θ

Kµ = P µ
1 + P µ

2

KµKµ = P µ
1 P1µ + P µ

2 P2µ + 2P µ
1 P2µ (1)

where KµKµ = 0, P µ
1 P1µ = −M2c2 = P µ

2 P2µ, and

P µ
1 P2µ = ηµνP

µ
1 P

ν
2 = −P 0

1P
0
2 + P1 · P2 = − 1

c2
+ P1 · P2

Sub them into (1), we get

P1 · P2 = M2c2 +
E1E2

c2
≤ ‖P1‖‖P2‖ =⇒ E1E2

c2
≤ ‖P1‖‖P2‖

where we used
‖P1‖‖P2‖ cos θ ≤ ‖P1‖‖P2‖

M2c2 +
E1E2

c2
≤ ‖P1‖‖P2‖ ≥

E1E2

c2
(2)
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E1 =

√
M2c4 + ‖P1‖2c2 =⇒ ‖P1‖ =

√
E2

1

c2
−M2c2 =⇒ ‖P1‖ <

E1

c
(3)

E2 =

√
M2c4 + ‖P2‖2c2 =⇒ ‖P2‖ =

√
E2

2

c2
−M2c2 =⇒ ‖P2‖ <

E2

c
(4)

M2c2 +
E1

c

E2

c
≤ ‖P1‖‖P2‖

(4)

≤ E1

c

E2

c
=⇒ M2c2 < 0

which is impossible.

1.7 Accelerated observers and the Rindler metric

1.7.1 Four-acceleration

xµ → dxµ

dτ
= ẋµ ≡ eµ,

duµ

dτ
=

d2xµ

dτ 2
= ẍµ ≡ bµ

We know (ẋµ) = γ(c,v).
d

dτ
=

dt

dτ

d

dt

then
dγ

dt
= γ2v · a

where v :=
dx

dt
, a :=

d2x

dt2
. Then

(bµ) =

(
b0

b

)
=

( γ4

c
v · a

γ4

c2
(v · a)v + γ2a

)

In the co-moving frame, we have v = 0, γ = 1, then (bµ) =
(

0
a

)
.

In general,

bµbµ = γ4

[
γ2

c2
(v · a)2 + a2

]
≥ 0

In the co-moving frame, bµbµ = a2, proper acceleration |a| =
√
bµbµ.

Now let’s compute this

bµẋ
µ =

dẋµ
dτ

ẋµ =
1

2

d

dτ
(ẋµẋµ) =

1

2

d

dτ
(−c2) = 0
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1.7.2 Constantly accelerated

From the co-moving frame (t,x), at time t = 0, v(0) = 0.

dpi

dt
= mbi =⇒ m

dγv

dt
= ma =⇒ a =

d(γv)

dt

=⇒ adt = γ

(
γ2v

2

c2
+ 1

)
dv ⇒ adt =

dv(
1− v2

c2

) 3
2

=⇒ v =
dx

dt
=

at√
1 +

(
at
c

)2
⇒ x =

c2

a

√1 +

(
at

c

)2

− 1


With initial condition t = 0, τ = t, we get

dτ

dt
= γ−1 =

√
1− 1

c2

(
dx

dt

)2

=

√
1− 1

c2

a2t2

1 +
(
at
c

)2 ⇒ τ =
c

a
asinh

(
at

c

)
⇒ t =

c

a
sinh

(aτ
c

)
which, using the properties of the hyperbolic functions

x =
c2

a

[
cosh

(aτ
c

)
− 1
]
, t =

c

a
sinh

(aτ
c

)
Let’s find coordinates (τ, ξ) such that the particle going with trajectory (t(τ),x(τ))
is always at (0, 0).

t =

(
c

a
+
ξ

c

)
sinh

(aτ
c

)
, x =

(
c2

a
+ ξ

)
cosh

(aτ
c

)
− c2

a

(τ, ξ) are called Rindler coordinates.

1.7.3 Flat spacetime in Rindler coordinates

ds2 = −c2dt2 + dx2 + dy2 + dz2 (Minkowski)

Apply the transformation above t = . . . sinh(. . .), x = . . ., we get

ds2 = −cdt2 + dx2 + dy2 + dz2 → ds2 = −
(

1 +
aξ

c2

)2

c2dτ 2 + dξ2 + dy2 + dz2

Just use elementary calculus/arithmetic knowledge to derive it. This is “a” Rindler
metric.

In Rindler, light

0 = −
(

1 +
aξ

c2

)2

c2dτ 2 + dξ2 ⇒ dξ

dτ
=

(
1 +

aξ

c2

)
c
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So

0 <
dξ

dτ
<∞

If we integrate it,

ξ(τ) =
c2

a

[
ξc exp

(aτ
c

)
− 1
]

which is exponential trajectory.

1.8 Bell’s Paradox

The rope breaks, all right!

Solve the Paradox in Assignment 1.

Problem A ship takes off from Earth on May 15th 2075 and travels per five years
(as docks onboard measure) with constant acceleration a = 1g = 9.8m · s2. (also
measured by instruments on board), then it slows down for another five years at the
same rate, and returns in the same way (for a total trip time of 20 years). What
is the distance the ship travelled? How long did the whole trip take as measure on
Earth? (take c = 3× 108m/s)

Bonus: If you were the ship’s captain, would you believe it if, on arrival to Earth,
somebody told you that while you were absent Earth was scheduled to be demolished
to make way for a hyperspace bypass? Why?

Solution On Earth coordinate (t, x).

a(t) =
du(t)

dt
=

a′

γ3u(t)
=⇒ dt = du

γ3(u)

g
=⇒ t =

1

g

∫
du√

1−
(
u
c

)2

substitute in u
c

= sin θ, u(0) = 0

=⇒ u(t) =
gt√

1 +
(
gt
c

)2

and

x(t) =

∫
dtu(t) =

∫
gt√

1 +
(
gt
c

)2
dt =

c2

g

√1 +

(
gt

c

)2

− 1


γ(t) = γ(u(t)) =

√
1 + g2t2

These two implies

dτ =
dt

γ(t)
, t =

c

g
sinh

(
g2

c

)
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Then

x(τ) = x(t(τ)) =
c2

g

(
cosh

g2

c
− 1

)
Now plug all numbers in, we get

t(τ = 5 years) = 83.76years

x(t = 83.76 years) = x(τ = 5 years) = 82.79 lightyears

... to Bonus April 1st 2406



2
Differential Geometry

2.1 Differentiable manifolds

A chart is a pair (U , ϕ) where ϕ is a homeomorphism from an open subset U ⊆ M
and an open subset ϕ(U) ⊆ Rn.

An infinitely differentiable atlas (smooth atlas) is a set of continuous chart {(Uα, ϕα)}
and transition functions ϕα ◦ ϕ−1

β such that their union covers the whole manifold
and the transition functions are C∞.

ϕα ◦ ϕ−1
β : Rn → Rn

A differentiable manifold (C∞) is a topological manifold M with a C∞ atlas.

We will call coordinates xµ = (x1, . . . , xn) of the point p ∈M in a chart (U , ϕ), the
coordinates of its image p ∈ U , xµ are the Rn coordinates of ϕ(p) ∈ ϕ(U) ⊆ Rn.

A function f :M→ R is smooth iff the function f := f ◦ ϕ−1 : Rn → R is C∞.

2.2 Vectors

Given a parametric curve γ(s) ∈ M, s ∈ R. We define the tangent vector to the
curve γ at the point p = γ(0) as the operator vγ(s0) that assigns to each smooth
function f :M→ R the number

v|γ(s0)(f) := ∂s(f ◦ γ)|s0 ≡
∂

∂s
(f ◦ γ)

∣∣∣∣
s0

v|γ(s0)(f) = ∂s(f(yµ(s)))|s0 = ∂sy
µ|s0 ∂µf

∣∣
y(s0)

= v|γ(s0)f = ∂sy
µ
s0
∂µf |yµs0

21
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where ∂µ := ∂
∂yµ

.

v|p = ∂sy
µ

vµ
∂µ = vµΥµ

The set TpM of all the vectors vp at the point p ∈M is a vector space of the same
dimension as the manifold. We call TpM the tangent vector space to M at p.

Change of basis

Υ′µ = Λν
µΥν ⇔ ∂′µ = Λν

µ∂ν = Λµ
ν ∂

∂yν

where

Λµ
ν =

∂yν

∂y′ν

is Jacobian.

Vectors (elements of TpM)

• act on functions (of M) return R.

• are defined as a set of directional derivatives

A vector field over M is a set of vectors of the tangent space TpM per each point
p ∈M such that their components in any coordinate basis are smooth.

Let v,w be vector fields on M.

Linear map
(v ◦ w)(f) := v[w(f)]

v = vµ(p)Υµ

Then

(v ◦ w)(fg) = . . . = f · (v ◦ w)(g) + g · (v ◦ w)(f) + w(f) · v(g) + v(f) · w(g)

By eliminating terms, we get

[v,w] := v ◦ w − w ◦ v

Lie bracket, commutator.

• Antisymmetric: [v,w] = −[w, v]

• Jacobi Identity: [u, [v,w]] + [w, [u, v]] + [v, [w, u]] = 0

Exercise
Show that in a coordinate basis the composite of the commutator of two vector
fields v,w are

([v,w])µ = vν∂νw
µ − wν∂νvµ

[v,w] = (vν∂νw
µ − wν∂νvµ)∂µ
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Proof:
First see that these two are equivalent: v = vµΥµ = vµ∂µ.

[v,w] f = v[w(f)]− w[v(f)]

= vµ∂µ(wν∂νf)− wµ∂µ(vν∂νf)

= vµ(∂µw
ν)∂νf + vµwν∂µ∂νf − wν(∂µvν)∂νf − wµvν∂µ∂νf

= vν(∂µw
ν)∂νf − wµ(∂µv

ν)∂νf

= [v,w]f

[v,w] = (vν∂νw
µ − wν∂νvµ)∂µ

Coordinate Υµ are tangent vectors to coordinate curves {∂x, ∂y, ∂z}

2.2.1 Coordinate vs Non-coordinate basis

Non-coordinate basis Υµ
1 are not tangent vectors to coordinate curves {∂x, x∂y}.

a set of vector fields that span TpM ∀p ∈ M and a coordinate basis iff they are
mutually commute in M.

Notation

• Υa: a, b, c for arbitrary basis

• Υµ: µ, ν, η, . . . for coordinate basis

• Υi: i, j, k spatial components

Exercise

Consider Cartesian Vs “Polar” coordinates in R2 \ {0}.

Note that x = r cos θ, y = r sin θ.

2 basis of R2 are

{
{∂x, ∂y}
{∂r, ∂θ}

∂r =
∂x

∂r
∂x +

∂y

∂r
∂y = cos θ∂x + sin θ∂y

∂θ =
∂x

∂θ
∂x +

∂y

∂θ
∂y = −r sin θ + r cos θ∂y

Is {∂x, ∂y} a coordinate basis? Is {∂x, ∂y} a coordinate basis?

[∂x, ∂y] = ∂x∂y − ∂y∂x = 0

1For simplicity, I write Υ instead of Υ. Readers should be clear on this.
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which commutes. Let’s check the other one.

[∂r, ∂θ] = ∂r∂θ − ∂θ∂r
= ∂r(−r sin θ∂x + r cos θ∂y)︸ ︷︷ ︸

∂r∂θ

− ∂θ(cos θ∂x + sin θ∂y)︸ ︷︷ ︸
∂θ∂r

= − sin θ∂x + cos θ∂y − (− sin θ∂x + cos θ∂y)

= 0

Now let’s define a new polar “coordinates”a

Υ′r = Υr =

(
cos θ

sin θ

)
Υ′θ =

1

r
Υθ =

1

r

(
−r sin θ

r cos θ

)
Is {Υ′r,Υ′θ} a coordinate basis?

[Υ′r,Υ
′
θ] = Υ′rΥ

′
θ −Υ′θΥ

′
r

= ∂r
∂θ
r
− ∂θ∂r

r

=
∂r∂θ
r
− ∂θ
r2
− ∂θ∂r

r

= −∂θ
r2

6= 0

thus not coordinate basis after we normalize.

aNote the difference...

2.3 One-forms

linear functional over TpM.

ω : TpM→ R, ω : v→ 〈ω, v〉 ∈ R

Given an arbitrary basis of TpM, {Υa} there is a unique set of one-forms {Υa} such
that 〈Υa,Υb〉 = δab . The set {Υa} is linear independent and forms a basis (called
the dual basis) of the vector space T ∗pM (cotangent vector space to M at p).

Given an arbitrary vector v = vaΥa and an arbitrary one-form ω = ωaΥ
a.

〈w, v〉 =
〈
ωaΥ

a, vbΥb

〉
= ωav

b 〈Υa,Υb〉 = ωav
bδba = ωav

a

Each function f over M defines a one-form df |p that we call the differential if f :

〈df, v〉 := v(f)
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Given now the coordinate basis

〈df,Υµ〉 = 〈df, ∂µ〉 = ∂µf

Given coordinate function xµ(p) = xµ

〈dxµ,Υµ〉 = 〈dxµ, ∂ν〉 = ∂νx
µ =

∂xµ

∂xν
= δµν

df = 〈df,Υµ〉Υν = ∂µfdx
µ =

∂f

∂xµ
dxµ =

∂f

∂x
dx+

∂f

∂y
dy + . . .

2.4 Tensors

A tensor T of type(r, s) is multilinear map that acts on (TpM)×r and (TpM)×s and
return real number. We call T a s times covariant and r times contravariant tensor.

T(Υa1 , . . . ,Υar ,Υb1 , . . . ,Υbs) := T a1...ar b1...bs

Example:

T ′abc = Λc
dΛ̃a

eΛ̃
b
fTd

ef

T ′c
a′b′ = Λ′c

cΛ̃a′
aΛ

b′
bTa

ab

T = T µνΥν ⊗Υν

T(ω,σ) = T (ωaΥ
a, σbΥ

b) = T abωaωb

T type (r, s), “eats r one-forms, and s vectors and spits out real numbers”

a tenser of type (0, 1) eats one vector and returns a number is a one-form.

a tensor of type (1, 0) eats one one-form and returns a number is a vector.

2.4.1 Some tensor operations

• – Symmetrization:

T(a,b) =
1

2
(Tab + Tba)

– Antisymmetrization:

T[a,b] =
1

2
(Tab − Tba)

Ta[bCc] =
1

2
[TabCc − TacCb]

See the full formula in the notes.

• Contraction: f = vawa
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• Tensor product: (v ⊗ w)ab = vawb

v = vaΥa, w = wbΥ
b

(vaΥa)⊗ (wbΥ
b) = vawbΥa ⊗Υb

2.5 Smooth maps and Diffeomorphisms

2.5.1 Smooth maps

A map ϕ :M→M′ is a smooth map iff given two atlases {Uα, ϕα}, {U ′β, ϕ′β} ofM
and M′ respectively, the functions ϕ′β ◦ ϕ ◦ ϕ−1

α : Rn → Rm are smooth. In other
words, given two sets of local coordinates for p, p′ the coordinates of p′ = ϕ(p) ∈M′,
the image of p ∈M are smooth functions of the coordinates of p.

The map ϕ indices a linear map ϕ∗, which we call pull-back between the space of
functions F{M′} (maps p′ ∈ M′ to R) and F{M} (maps p ∈ M to R) according
to the following rule:

Given a function f ′ :M′ → R we define its pull-back ϕ∗f ′ :M→ R
such that

ϕ∗f ′(p) := f ′ ◦ ϕ(p) = f ′ (p′) ∈ R

Can we ϕ∗f(p′) := f ◦ ϕ−1(p′) = f(p)? No, since ϕ−1 may not exist.

The map ϕ does induce a push-forward between TpM and Tp′M′ according to the
following rule:

Given v ∈ TpM then ϕ∗v ∈ Tp′M′, p′ = ϕ(p) ∈ M ′ such that its
action on a f ′ = F{M} as given by

(ϕ∗v)|ϕ(p) (f ′) := v|p (ϕ∗f ′)

The map ϕ induces a pull-back between T ∗ϕ(p)M′ and T ∗pM according to this rule:

Given a one-form ω′ ∈ T ∗ϕ(p)M′, then we define ϕ∗ω′ ∈ T ∗PM as the
one-form whose action on vectors of TpM is given by

〈ϕ∗ω′, v〉|p := 〈ω′, ϕ∗v〉|ϕ(p)

Exercise

ϕ∗ (df ′)|p = d (ϕ∗f ′)|ϕ(p)

2.5.2 Diffeomorphisms

A map ϕ :M→M′ is a diffeomorphism if both ϕ and ϕ−1 are smooth bijection.
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Let us focus on the diffeomorphisms mapping fromM to itself. Let γp(s) be a curve
in M such that γp(0) = p, and whose tangent vector at every point γp(s) is the
vector field k, k is the “generator of (a set of) local diffeomorphisms ϕs : p ∈ M→
ϕs(p) ∈M′ iff ϕs(p) = γp(s).

2.5.3 Lie derivative

Given a diffeomorphism ϕ : M → M there is an isomorphism ϕ∗ :
(
Tϕ(p)

)r
s
M →

(Tp)
r
sM between the “tangent tensor” spaces at ϕ(p) and o.

More explicitly, consider a tensor field T. The difference between T(p) and Tp′=ϕ(p):[
ϕ∗
(
Tϕ(p)

)]
p
− Tp

Consider the flow ϕv
t generated by the vector v ϕv

t = p′.

We define the Lie derivative of a tensor field T along the vector field v at the point
p

LvTp := lim
t→0

[
ϕ∗t
(
Tϕt(p)

)]
p
− Tp

t

Properties

• Linear

• It preserves type, symmetries of tensor fields.

• Leibniz rule (and therefore it is a derivation)

Lv(T⊗ S) = LvT⊗ S + T⊗ LvS

Lie derivative of a function
Lvf = v(f)

Lie derivative of a vector field

Lvu = [v, u] = −Luv

Apply the vector Lvu to a function:

(Lvu)(f) = v[u(f)]− u[v(f)]

Components of Lvu? in the coordinate basis {Υu}
(Lvu)µ = vν∂νu

µ − uν∂νvµ

Lvω is such that for any vector u.

Lv(〈ω, u〉) = 〈Lvω, u〉 = 〈ω,Lvu〉
〈Lvω, u〉 = Lv 〈ω, u〉 − 〈ω,Lvu〉

Components of Lvω
(Lvω)µ = vν∂νωµ + ων∂µv

ν
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2.5.4 Affine connection and covariant derivative

An affine connection ∇ is a rule through which we assign to every tensor field T of
type (r, s) and components T bc...de... another tensor field ∇T of type (r, s + 1) and
components

(∇T )bc...de... ≡ ∇aT
bc...

de... ≡ T bc...de...;a

called the covariant derivative of T, which satisfies

• Linearity

• Leibniz

• commute with the contraction

• over functions ∇f = df

Directional covariant derivative in the direction v. ∇vT is type (r, x).

(∇vT)bc... de... = va∇aT
bc...

de...

Components of the connection ∇ in an arbitrary basis {Υa}.

Γabc := (∇Υc)
a
b = 〈Υa,∇ΥbΥc〉
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