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Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly /indirectly from the lectures of AMATH 475 during Winter 2020 as well as other
related resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

Some of the notes (especially special relativity part) are projected to the screen
instead of using blackboards. They can be found on https://sites.google.com/
site/emmfis/teaching/gr.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sllelias Fomg
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Pre-Math

0.1 Index notation

All A12 Bll BIQ
A= (A21 A2, B=1\p, B
(A-B)", = A%.B% = B%A%, sum over all possible ¢

Identify followings:
B."A,"=A,B"=C/=(A-B),”

AK,U,BI{V — DMV — (AT)MKBKV — (AT . B),ul{
AB,"=E)=(B-A),"

AR, BY, = (AT)MH(BT)HV _ <(B ‘ A)T>

m

v =vle; +v?ey {e|, e} Basis 1.
/ / / / :
v =", = v {€], e} Basis 2.

Change of basis matrix A
e, = ALle,

v/a — Aab’l)b
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ot

a la !
vie, =ve,
= A%0PACe,
= AabAaC’UbeC
VAN b
= (A ) ASv'e,
b
N— —

%

= vbeb

— (A7) " A =5
b
AT A=1
AT is the inverse transpose of A

covariant and contravariant object

A covariant object is an object that under change of basis transforms like the
elements of a basis. A. (sub-indices)

A contravariant object transforms like components of vectors. (A = (AT)™1).
(super-indices)

0.2 Vectors and one-forms

one-form

Let V' be a vector space. A one-form is a linear map w : V. — R.

or we write: (w,-):V — R and (w,v) € R.

dual vector space

The set of all one-forms on V' (call V*) is a vector space as well called the
dual vector space to V.

dual basis

Let {Y,Y,,...} (or {Y;}) be a basis of V so that any v € V can be written
as v =0'Y,.

We define the dual basis (of V*) to {Y;} as {w’} such that w’(Y;) = &’

J
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For a one form w we denote its “components of the basis Y7 as (w, T,,) = wp,

Proposition 0.1

The dual basis of V* is actually a basis of V*.

The action of w € V* on a vector v =v*Y € V is

(w,v) = (w,v"Y,) = v'w,

Let’s prove { Y} is linear independent.

Proof:
A linear comb. ¢, Y% acts on a vector v = v*Y,

(X V) =co(Y V)
= ¢, (X, 0°0)
= c0” (X9, Yy)
6(1
b

= cavbél‘f = c v

For LI,
e Y"=0 <= ¢,=0 Va

eV =0 VW < ¢, =0

vectors: take one-forms — R one-forms: take vectors — R

0.3 Tensor

type (m,n) tensor

A type (m,n) tensor is a multilinear map that

T:V"® (V)™ >R

Components of T

T(Tala ©00 7‘ran7 Tbl, soog 'I‘b’m) = Talmanbl-nbm

1. Tensor product takes (’7’:) and (’7’:,/) — (m+ml) tensor

n+n’

2. Contraction takes (") — (m—l)

n—1
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Example:

1. T,b, S.9.

2. T, — cbT,be

If you have a favorite type (2,0) symmetric tensor g

_ v
Uy = GV

g"” 1= components of the inverse of g,

o= g,uu
then
17
9" gvo = 0}
g V'w” = v,w” = vw

VI = guv”

Then we can define the angle
VW osh
1wl {[v]]
TMV — guaTMo_
T = g7 gh’T,,

v __ Vo 7
gu_g go’u_o-p,

0.4 Levi-Civita symbol

Levi-Civita symbol €% €.

e is antisymmetric

° 61234... — 17 €1934 = 1
6123 — 1’ 6213 — _1’ 6312 — 1’ €113 =0
E123456 =1 6612453 =_1

Y

Idea just see the permutations
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Levi-Civita symbol

+1 if (a1,a9,as,...,a,) is an even permutation of (1,2,3,...,n)

€arasag..an = § —1 if (a1,a9,as,...,a,) is an odd permutation of (1,2,3,...

0 otherwise

Here is a short-cut:

1 2 3

2 1 3

odd number crossings, so odd permutation.

Note that det(M) := ;. My M7y My . ..

Exercise
i — ol —
prove €12+ 5, o o=nli;=1,...,n

ijk _ ¢Jsk i sk
€% e = 6705 — 57 5]

I et = 20,0 — 610))

Prove Ax (Bx C) = (A-C)B—(A-B)C
Proof:
Let F=Ax (Bx(C)D=BxC(C
Then
D* = ¢k, B'C,
Fl =  A"D" = F'=¢ " ;A"B'CY

Then o
F' = (010 — 640m) A" B'CY
= 616, A" B'CY — 86, A B'CY
- Bl(AjCj) - Cl(AlBZ)

where we use




Special Relativity

1.1 Postulates of SR

Newton’s first law

Postulate 1: Principle of relativity

In the absence of gravity, all the laws of Physics are identical in all inertial
reference frames.

The speed of light in vacuum c¢ is constant and the same from all inertial
reference frames, regardless of their state of motion.

1.2 Lorentz Transformation

We define the spacetime interval As?

As® = —PAP 4+ Az =~ (t, — 1) + (x — x1)°

Assuming the following:
1. The difference between the two frames is a constant speed

2. The transformation has to be linear.
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t’:fy(t—v'Qw), =z+(y—1)(n-z)n— ot
c

and index notation

o ;T
t —v(t— 2

i Jay oy
/v

), =a"+(y-1) 2 — 't

1.3 Line element, proper time and spacelike, time-
like and null separation

1.3.1 Classification of spacetime intervals

We can classify events according to the following criterion:
e Spacelike separated, As? > 0
e Timelike separated, As? < 0
e Lightlike (null) separated, As* =0

Given the trajectory of a physical particle moving inertially, we will call co-moving
frame (inertial) or proper frame (non-inertial) to the frame S, where the particle is
at rest.

1.3.2 Proper time and line element

ds® = —c*dt? + da?
We will call ds® the spacetime line element.

Cdt

PO, P1, P2 + linearity

Tyt
/v

oo i
t=a"+(y-1) 2 — 't

Particle trajectory in a given inertial (Lab) frame x(t)

Particle trajectory in its proper frame &(¢) = 0
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Comoving frame’s trajectories at each t (from lab frame) x = v(¢)t.

2
dr = dt' = ~(t) (1 — V(? ) dt (2)
C
1 2
d82 — —C2dt2 1 — = d_X — _02 7_2dt2 E d32 = —C2d7'2 (3)
c2\ dt N——
dr?

v(t)
Example:

Find 7(t) for the three following trajectories.

L. x(t) = v(t)

ds? = —dr? = —2dt?* + dx®> = dr = ’771dt = A7 = 771At

dr\*_ | _ 1 (dz)’
at ) 2 \ dt

dt 24 ()

t
= 7(t) = £ arcsinh <a_) and  t(7) = € sinh (ﬂ>

a C a C

3. z(t) = Lsin(wt) = % = Lw cos(wt) with Lw < ¢

dr 2_1_1 dm2:>d7_ 1_1 d:):2:>d_ 1—L2wztdt
at ) 2\ dt dt 2 \ dt = 2 v

Then
E (tw, — )
T(t) = IW
w1 e
where
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1.4 Lorentzian Tensors

See notes for details.
A, transposes with A and it’s covariant.

AP transposes with A = (A~")7 and it’s controvariant.

1.5 Poincare group

The derivations are in notes.

1.6 Relativistic dynamics

1.6.1 Hamilton’s principle and Euler-Lagrange equations

There exists at least one function (called action) of the trajectories that the degrees
of freedom of a system may take in phase space. The physical trajectories are
obtained demanding stationarity of this functional under variations that keep the
initial and final positions constant.

Usually, the action S of a system of n particles can be written in terms of a La-

: ° o °  dx
grangian L(s, x,x) where ° represents x = ¢ so that

S:/ ds L(s,x,x)

S1

52 oL OL on 52 oL d OL oL >
55:;/31 o (a_xét‘sx“ O“&C”) - Z/ o (8354“{ B £8;5> o+ [3 Z&CZ]

o
ox,, n x .

Impose Hamilton’s Principle

5S:0:>8—L d oL _

Ok dsps’
n oz,

1.6.2 Conserved quantities and Noether’s theorem

Noether’s theorem

If the variation of the action around a physical trajectory under a continuous vari-
ation of the positions Ox is zero, then the quantity
oL
0Q =Y —poat

n xn
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is conserved. That is

a0Q) _
ds '
Proof:
See notes. O]
1.6.3 Four-momentum
Let S be invariant under 0x = ndc.
oL
= 0Q = T‘LLTLMCSO{
ox
is constant == the projection n-p = n¥p, = n,n"p" (where p, = ;ﬁ) is

conserved.
If the action is invariant under Lorentz transformation dz* = dw”,x", then

J/,w = TuPy — TPy
is conserved.
1.6.4 Angular momentum

The angular momentum J associated to spatial rotations and the vector K associ-
ated to boosts can be extracted directly from J,,:

. 1 ..
Jt = §EZJijk’ K, = Jy

1.6.5 Free particle dynamics

e S has to be a scalar (Invariant under Lorentz)

e Must coincide with the non-relativistic action in the limit % < 1.

d dt 2
S:mc/ds:—mCQ/dT:—mCQ/dt—T:—m02 —:—mcz/dt 1—U—
dt v c?
102 vt
_ 2

2 1 4
L=—md 1—v—:—m02+—m02—|—0 v
2 A

and
2

Euler-Lagrange £ (ymwv) = 0
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0S 0L
Di i v moyvs, pb=myv
Hamiltonian
H=(p v—L)ysop = vVm?ct+ c?p?
Let’s introduce Four-velocity
L
-

solid dot means derivative w.r.t proper time.

P dx“ d (ct cg—i B c% B c
T T ar\e)  \de) T e ) Ty

If we choose action as (not four-velocity)

/ dxo‘ dxﬂ
dze dzP
A

c
=mz, = p'=mi" =my (v)

Lagrangian

05

Pu = din

p° in the proper frame: p® = me, p = 0. so cp is energy.

Let’s compute
p'p, = miiti, = —m?c?

p'p, = —(@") + p’

1
—m2c? = _(p0>2+p2 . pO: - /m204+02p2
c
2 v? 2 L 9 v
= L =/m?c'+c?p* =mc\[1+7%— =mc +§mv +0| >
c c

e Ultrarrelativistic limit: The kinetic term inside the square root is much
larger than the rest energy of the particle: pc > mc?, E =~ cp

e Deep non-relativistic limit: The rest energy is much larger than the kinetic
energy of the particle: mc® > pc, E =~ mc?
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Two problems

You are designing a particle collider, you have two identical part of mass M and
energy budget E = 2¢. You have two strategies:

a) spend 1/2F on each and accelerate them.
b) spend E on one of them and accelerate it

Which one optimizes the center of mass energy?

Solution

a)

p -p
Q — -~
Lab frame p{ = (£ + M,,p,0,0) ph = (£ + M., —p,0,c)
1 w w 2€ w
Plap =P1 Py = +2Me, 0,00 | = poy,

Then

ES; = cplyy = 26+ 2Mc* = 2M (1 + %)

b) Here the p is different from the p above.

Lab frame p{ = (% + Mc,p,0,0) Py = (Mc,0,0,c)

2¢
p?ab = plf +pg = (? + 2Mcvpa 07 0)
Determine

42
Pipi, = —M?? = — (c_(; + M3 + M3 —|—46M> +p?

4e2 2 Mc?
— p=1/ o pdeM =14+ 2E
c? c €

We want p?, and we know pfi,, = (p2,y,0)

Lorentz scalar: poy*pon, = —(p2y)? and lab frame prop”prav, = —(2ar)?



CHAPTER 1. SPECIAL RELATIVITY 16

4¢? 4¢? Mc?
Plav’ Plaby = — (? +AM?*2 + 86M) + = (1 + ; )

= —4AM?*® — 8eM + 4eM

= _4M(M02+6)
= _(pOCM)2
Pen = \/mz 2Vu(ME +6) = Egy = cply = 2M 1+ Mec2
So E@

In Deep non-real € < Mc?, lim R=1.

M2 —0

In Ultra limit lim R = /1 + pe — 00.
e—pc MC2

A massless particle cannot — two identical mass particle. (converse is also true).

M =

K" 0

K= P!+ PY
K'K, = PI'P,, + P} Py, +2P{' Py, (1)
where K¥K,, =0, P/'P,,, = —M?c* = P§'P,,, and
1
PPy, =0, PPy =—P'P) + P, - P, = 5+ P P

Sub them into (1), we get

ErEy
c2

E\Ey

Pl'P2:M2C2+ 5
C

< 1Pl P]] =

< || Pi||||P ||

where we used

[ Py[[[| P2l cos 6 < [| P ||| Pl

E1E2 E1E2
e 1 A [ A 2)
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E2 Ey
B= M2+ | PP = P =y/oE - M = B <= (3)
E2 Ey
B = M2+ | PP = Pl = /22— M2 = [P <=2 (4)
E, B ) By E
M2 + —1—2 < || PP 2 —1—2 — M*? <0
c

which is impossible.

1.7 Accelerated observers and the Rindler metric

1.7.1 Four-acceleration

d dt d
dr _ drdt
then
dry _ 2
E YU-Q
2
where v ((1;:, a:= (317;6 Then

= ()= (et )

In the co-moving frame, we have v = 0,7 = 1, then (") = (?).

In general,

,}/2
Vb, = Al [E(U -a)’ + a21 >0

In the co-moving frame, b#b, = a?, proper acceleration |a| = /b*b,,.

Now let’s compute this

dz 1d 1d
but ar * 2d7'(x ) 2d7‘< ¢)=0
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1.7.2 Constantly accelerated

From the co-moving frame (¢, ), at time ¢t = 0, v(0) = 0.

dp’ : dyv d(yv)
= bZ — _— = — f—
at " e T AT
2 d
— adt:7(72v—2+1)dv:>adt:—vg
c (1-22)2
2 2
dz at c at
:>U:E:—2:>x:— 1+(—) —1
L+ (%) ‘ ‘

With initial condition t = 0,7 = t, we get

1 2 1 242
d_T:7—1: 1— = d_:z: = 1__—at 2$T:Easinh a_t ﬁt=£sinh<a—7>
dt 2\ dt 021+(a_t) a c a c

which, using the properties of the hyperbolic functions

2
T = < [cosh <a_¢> — 1] , t= Esinh (a—T>
a c a c
Let’s find coordinates (7, &) such that the particle going with trajectory (t(7), z(7))
is always at (0,0).

2

2
t= (E—l—é) sinh (a_7'>, T = (0—4—5) cosh (a_7'> -
a ¢ c a c a

(1,€) are called Rindler coordinates.

1.7.3 Flat spacetime in Rindler coordinates

ds* = —c*dt* + da* + dy* + d2* (Minkowski)
Apply the transformation above t = ...sinh(...),z = ..., we get
ag\’
ds? = —cdt? + da? + dy? + d2? — ds? = — (1 + —2> Adr? +de? + dy? + d2?
c

Just use elementary calculus/arithmetic knowledge to derive it. This is “a” Rindler
metric.

In Rindler, light

2
0:—(1+Z—§) c2d72+d§2;»%=(1+g)c

dr c?
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So

If we integrate it,

which is exponential trajectory.

1.8 Bell’s Paradox

The rope breaks, all right!

Solve the Paradox in Assignment 1.

Problem A ship takes off from Earth on May 15th 2075 and travels per five years
(as docks onboard measure) with constant acceleration a = 1g = 9.8m - s%. (also
measured by instruments on board), then it slows down for another five years at the
same rate, and returns in the same way (for a total trip time of 20 years). What

is the distance the ship travelled? How long did the whole trip take as measure on
Earth? (take ¢ = 3 x 10%m/s)

Bonus: If you were the ship’s captain, would you believe it if, on arrival to Earth,
somebody told you that while you were absent Earth was scheduled to be demolished
to make way for a hyperspace bypass? Why?

Solution On Earth coordinate (¢, x).

d t ! 3
u(t) a :>dt:du7( == t=-

ot ="g ~ () g / /1

substitute in % = sin ¢, u(0) = 0

— () = 2
L+ (4)°
and
T dtu(t _c_ \/ -1
<) / / /1+ gt 2 g
v(t) = y(u(?)) V1t gt

dr = . = - smh (g_>

c
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Then

)
—~
3

Il

)
—~
=
2

Il

no
VR

o

o

n

=

|Q
no
|

—_

~

Now plug all numbers in, we get
t(T =5 years) = 83.76years

x(t = 83.76 years) = z(17 = 5 years) = 82.79 lightyears

... to Bonus April 1st 2406

20



Differential Geometry

2.1 Differentiable manifolds

A chart is a pair (U, @) where ¢ is a homeomorphism from an open subset U C M
and an open subset p(U) C R".

An infinitely differentiable atlas (smooth atlas) is a set of continuous chart {(Us, )}
and transition functions ¢, o <p/gl such that their union covers the whole manifold
and the transition functions are C*.

goaogo/gl:R"—ﬂR"

A differentiable manifold (C'*) is a topological manifold M with a C*° atlas.

We will call coordinates z# = (z!,...,2") of the point p € M in a chart (U, ¢), the
coordinates of its image p € U, x* are the R™ coordinates of ¢(p) € p(U) C R™.

A function f: M — R is smooth iff the function f := foe™':R* = R is C™.

2.2 Vectors

Given a parametric curve y(s) € M,s € R. We define the tangent vector to the
curve y at the point p = (o) as the operator v,(s,) that assigns to each smooth
function f : M — R the number

0
Vls(so) (f) 1= 0s(f 075 =

%(fO”Y)

S0

V|7(80)(f) = aS(T(y#(S»HSO = 8sy#|50 8”7|y(so) = V|V(50)f = 85y508#7

yn
Yso

21
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0

where 0, := EIE

vlp = 05y"0, = 'Y,
v

The set T,M of all the vectors v, at the point p € M is a vector space of the same
dimension as the manifold. We call 7},M the tangent vector space to M at p.

Change of basis

14 14 14 8
T'L = A#TV <~ 8; = A#ay = AN 8_yV
where 9
v Y
A'u - ay/u

is Jacobian.

Vectors (elements of T, M)
e act on functions (of M) return R.
e are defined as a set of directional derivatives

A vector field over M is a set of vectors of the tangent space 7, M per each point
p € M such that their components in any coordinate basis are smooth.

Let v, w be vector fields on M.

Linear map

v=uv,T,
Then
(vow)(fg)=...=[f-(vow)(g) +g-(vow)(f) +w(f)-v(g)+v(f) w(g)
By eliminating terms, we get
[v,w] :==vow—wov

Lie bracket, commutator.

e Antisymmetric: |[v,w] = —[w, V]

e Jacobi Identity: [u, [v,w]] + [w, [u,V]] + [v, [w,u]] =0

Exercise

Show that in a coordinate basis the composite of the commutator of two vector
fields v, w are
([v, w])¥ = v"0w" — w”0,v*

v, w| = (v"0,w" — w”0,v")d,
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Proof:
First see that these two are equivalent: v = v#T, = v*0,.

[v,w] f = v[w(f)] — w(v(f)]

0, (w0, f) — w'0,(v"0, f)

v*(0,w”)0, f + v*w" 0,0, f —w” (0,0")0, f — w'v” 0,0, f
= v"(0,w")0, f — w*(0,v")0, f

= [v,w]f

v,w| = (vYd,w" — w”d,v")0
“w

Coordinate T, are tangent vectors to coordinate curves {0,, 0y, 0.}

2.2.1 Coordinate vs Non-coordinate basis

Non-coordinate basis T,' are not tangent vectors to coordinate curves {0,,zd,}.

a set of vector fields that span T, M Vp € M and a coordinate basis iff they are
mutually commute in M.

Notation
e Y% a,b,c for arbitrary basis
o TH: v m,... for coordinate basis

e Y': i, 4, k spatial components

Exercise
Consider Cartesian Vs “Polar” coordinates in R? \ {0}.

Note that x = rcosf,y = rsinf.

2 basis of R? are (02,0, }
{ara 80}
0, = ?&E + ?83, = cos 00, + sin 60,
r r
Oy = gg@x + %ay = —rsinf + rcos 00,

Is {0;,0,} a coordinate basis? Is {0,,0,} a coordinate basis?

(02, 0,) = 0,0, — 8,0, = 0

1For simplicity, I write T instead of Y. Readers should be clear on this.
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which commutes. Let’s check the other one.

[87‘7 89] = 87‘89 - 6087“
= 0,(—rsin 00, + r cos §0,) — dy(cos 00,, + sin #0,)

3:59 8;1,%
= —sin 00, + cos 00, — (—sin 00, + cos 00,)

=0

Now let’s define a new polar “coordinates””

cos
T =7, =
" (ﬁn@)

T ng _ l(—rsin@)

r r \ 7cosf
Is {1, T,} a coordinate basis?

T4 = T, — Yy

B @_89&

-y r

_arag_@_agar

or 72 r
Oy

-T2

thus not coordinate basis after we normalize.

%Note the difference...

2.3 One-forms

linear functional over T, M.
w:THM — R, w:v— (w,v)eR

Given an arbitrary basis of T, M, {1} there is a unique set of one-forms {Y*} such
that (Y% Tp) = 0y. The set {Y*} is linear independent and forms a basis (called
the dual basis) of the vector space Ty M (cotangent vector space to M at p).

Given an arbitrary vector v = v*T, and an arbitrary one-form w = w, 1.

(w,v) = <waT“, vbTb> = wWet? (T, 1) = wav®0’ = wyv®

Each function f over M defines a one-form df|, that we call the differential if f:

{df,v) == v(f)
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Given now the coordinate basis

<df> TH> = (df, au> - auf

Given coordinate function a#(p) = z*

Oxt
<dl’“7 TM> = <dxﬂ’ al/> - ayl‘“ = aZL‘V — (55
aof of of
== v = H _ —_—— M —
df = {df,T,,) T" = Oufda” = 5-2da" = = dw + y dy+ ...

2.4 Tensors

A tensor T of type(r, s) is multilinear map that acts on (7,,M)*" and (7,M)** and
return real number. We call T a s times covariant and r times contravariant tensor.

T4, Y Yy, ) i= Ty b,
Example:
7' = AR AY T
7Y = ATeRY AT,
T=T"7T,7,
T(w, o) = T(w, X%, 03 Y%) = Tw,wy,

Y

T type (r,s), “eats r one-forms, and s vectors and spits out real numbers’
a tenser of type (0,1) eats one vector and returns a number is a one-form.

a tensor of type (1,0) eats one one-form and returns a number is a vector.

2.4.1 Some tensor operations

e — Symmetrization:

1
T(a,b) - §(Tab + Tba)

— Antisymmetrization:

1
T[a,b] = §(Tab - Tba)

1

Ta[ch] = §[TabCC - Tach]

See the full formula in the notes.

e Contraction: f = v%w,
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e Tensor product: (v® w)%, = v%w,
v =1, w=w,Y’

(V"Y,) @ (wpX?) = vwp Ty ® TP

2.5 Smooth maps and Diffeomorphisms

2.5.1 Smooth maps

A map ¢ : M — M’ is a smooth map iff given two atlases {Ua, pa }, {Us, ¢} of M
and M’ respectively, the functions ¢j; 0 o ool R" — R™ are smooth. In other
words, given two sets of local coordinates for p, p’ the coordinates of p’ = ¢(p) € M’,
the image of p € M are smooth functions of the coordinates of p.

The map ¢ indices a linear map ¢*, which we call pull-back between the space of
functions F{M'} (maps p’ € M’ to R) and F{M} (maps p € M to R) according
to the following rule:

Given a function f': M’ — R we define its pull-back ¢*f': M — R
such that

@ f'(p) == fowlp) =1 )R
Can we . f(p') :== fop Y (p') = f(p)? No, since p~! may not exist.

The map ¢ does induce a push-forward between 7, M and T,y M’ according to the
following rule:

Given v € T,M then ¢,v € TyM' . p) = ¢(p) € M’ such that its
action on a f' = F{M} as given by

(SO*V)Lp(p) (f/) = V|p (So*f/)
The map ¢ induces a pull-back between T;(p)/\/l’ and Ty M according to this rule:

Given a one-form w’ € T7 ) M, then we define p*w' € Ty M as the
one-form whose action on vectors of 7),M is given by

<g0*w/7 V> ’p = <wl7 QO*V> ’(p(p)

Exercise

©* (df/)|p =d (Sp*f,”@(p)

2.5.2 Diffeomorphisms

A map ¢ : M — M’ is a diffeomorphism if both ¢ and ¢~! are smooth bijection.
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Let us focus on the diffeomorphisms mapping from M to itself. Let 7,(s) be a curve
in M such that v,(0) = p, and whose tangent vector at every point 7,(s) is the
vector field k, k is the “generator of (a set of) local diffeomorphisms ¢, : p € M —

ws(p) € M iff i(p) = 'Vp(s)'

2.5.3 Lie derivative
Given a diffeomorphism ¢ : M — M there is an isomorphism ¢* : (T,,)). M —
(T,). M between the “tangent tensor” spaces at ¢(p) and o.

More explicitly, consider a tensor field T. The difference between T,y and T, — )

[ (Tso(p))]p - Ty
Consider the flow ¢ generated by the vector v ¢} = p'.

We define the Lie derivative of a tensor field T along the vector field v at the point

p
(T -T
,CVTp — hm [spt ( Cpt(p))}p p
t—0 t

Properties
e Linear
e [t preserves type, symmetries of tensor fields.

e Leibniz rule (and therefore it is a derivation)

L(T®S)=LTRS+TRL,S

Lie derivative of a function
Evf = V(f )

Lie derivative of a vector field
Lou=|v,ul =—Lyv
Apply the vector L,u to a function:

(Lou)(f) = v[u(f)] = ulv(f)]

Components of £,u? in the coordinate basis {Y,}

(L))" = v"d,u” — u’ o, 0"

L,w is such that for any vector u.
L,({(w,u)) = (Lyw,u) = (w, L,u)
(Lyw,u) = L, (w,u) — (w, L,u)

Components of L,w
(Lyw), = v" 0w, + w,0,v"
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2.5.4 Affine connection and covariant derivative

An affine connection V is a rule through which we assign to every tensor field T of
type (r,s) and components 7% 4. another tensor field VT of type (r,s + 1) and

components
(VT>bcmde... = VaTbcmde... = Tbcmde...;a

called the covariant derivative of T, which satisfies
e Linearity
e Leibniz
e commute with the contraction
e over functions Vf = df
Directional covariant derivative in the direction v. V, T is type (r, x).
(V)™ e = 0" VT .
Components of the connection V in an arbitrary basis {1,}.

1_‘abc = (VTC)G b — <Ta7 vaTc>
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