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Intfroduction

Given a set S, and a function f: S — R. An optimization problem is:

max f(z)
st. zeS (OPT)
~—~

subject to

e S feasible region
e A point T € S is a feasible solution
e f(z)is objective function
(OPT) means: “Find a feasible solution z* such that f(z) < f(z*),Vz € S”
e Such z* is an optimal solution
e f(z*) is optimal value
Other ways to write (OPT):

max{f(z),x € S}

e )

Analogous problem
min f(z)
st. zef
Note

st. xze€S st. z €S

max  f(z) _1(min —f(:c))

Problem 2x* may not exist



CHAPTER 1. INTRODUCTION 6
a) Problem is unbounded:
VM eR,3z € S, s.t. f(T) > M
b) S =, ie (OPT)is INFEASIBLE
¢) There may not exist x* achieving supremum.
Example:
max x
st. <1
+00 if OPT unbounded

sup{f(z):z € S} = ¢ —o0 if S=o

min{z : x > f(x),Vx € S} otherwise

always exist and are well-defined

infimum

inf{f(z) :x € S} = —1-sup{—f(z) : x € S}
From this point on, we will abuse notation and say max{f(z) : z € S} is sup{f(x) :
r €S}
One way to specify that I want an opt. sol. (if exists) is

" € argmax{f(z):x € S}
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Linear Optimization (Programming)
(LP)

S={xreR": Az < b}
where A € R™" b € R™ and f(z) = c''z,c € R™

1
max clw
st. Az <b (LP)
Note
| | i
A=14 --- A, A=
| | A
Clarifying
u,v € R", u<v & u; <v,Vjel,...,n
Note

u £ v is not the same as u > v
1 0
(0) %)

max 2x1+ 0.5x9

Example:

s.t. T S 2
1+ 9 <2
z >0

e Strict ineq. not allowed
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halfspace, hyperplane, polyhedron

Let h € R", hy € R.
{x € R": hTz < hy} is a halfspace.
{x € R": hTx = hy} is a hyperplane.

Az < b is a polyhedron (i.e. intersection of finitely many halfspaces).

Example:

n products, m resources. Producing j € {l,...,n} given ¢; profit/unit and
consumes a;; units of resource i, Vi € {1,...,m}. There are b; units available
Vie{l,...,m}.

n
max E Cjj
J=1
n
s.t. E Q35T < bi, Vi = 1,...,m
=1

x>0

which is an LP.

2.1 Determining Feasibility

Given a polyhedron
P={zeR": Az <b}

either find 7 € P or show P = @.
Idea In 1-d, easy. — Reduce problem in dimension n to one in dimension n — 1.

Notation Let S ={(z,y) € R" x RP: Ax + Gy < b}, then
proj, S := {z € R" : Jy so that (z,y) € S}
is the (orthogonal) projection if S onto z.

Y

proj, S —r



CHAPTER 2. LINEAR OPTIMIZATION

We will find if P = & by looking at proj,, ., | (P)

2.2 Fourier-Motzkin Elimination

Call a;; entries of A. Let

M:={1,2,...,m}
Mt :={ie M :a; >0}
M~ :={ie M:a; <0}
M":={ieM:a;,=0}

For i € M™:
n n—1 L b
a?azﬁbi <— Zaijxjgbi <— Zﬁxj—i—xnéi, Vie M™*
7=1 7=1
Forie M~
n—1 a b
a; v < b = Zamxj xn__am Vie M
7j=1
For i € M° )
aiTx <b = Zaijxj < bi7 Vi € M°
j=1
P={zeR":(1)(2)(3)}
Define ,
- ij j b; b; .
Z(ﬂ—aﬂ>xjg—— ,  YieM"\Vke M-
=1 Qin Qkn Ain Akn

(4)

Theorem 2.1

(ZT1,...,Tp_1) satisfies (3), (4) <= 3T, : (T1,...,Tn) € P
Proof:

adding (1), (2) = (Z1,...,%,_1) satisfies (4)

= If (T1,...,T,_1) satisfies (4)

Let

— If (71,...,T,) satisfies (1), (2), (3) then (Zy,...,T,—1) satisfies (3) and
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and

Note
Proof assumes M+, M~ are nonempty. But statement holds regardless.

(if M™ or M~ = & then (4) yields no constraints)

Algorithm 1: Fourier-Motzkin

1 A" =A0"=b

2 given A’ b' obtain A""! b"~! (A""! has one less column than A’ column than
AY) by applying the steps described

P={rcR: Az <b}

then

3 Keep applying projection until 7 = 1.

Phb=0 < P,=P=0

Let ' ' '
Pl=P xR""'"={x e R"(A",0)z <}

)

not hard tosee P' =@ <= P, =0

Notice that
Ph=9 < P'=09,P={0<t"}

Example:
T +2Q32 < 1
_ 9. —T1 <0
PQ = r e R —z, S _9

—31’1 —31'2 §—6

draw the graph, clearly empty

1 1
M+Z 51‘1—|—ZL‘2 S 5

M= —xy < =2 —x1 — X9 < =2
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M% —x, <0
—X1 S 0
P = $1€RZ%(L’1 S—%
1 3
301 < —3
M+I T S -3

M~ —xz; <0and —z; <=3

2 2 0<-3

Here 0° = (_7)

Remark:
Inequality in P/

e All inequalities are obtained by a nonnegative combination of inequality in
P
—> all nonnegative combination of inequalities in P.

e If all A,b are rational then so are all A%, b’

o Ifb=0,b =0,V

Theorem 2.2: Farkas’ Lemma
u'A=0
P={zeR": Az <b} =0 < FueR":uw'b<0
u>0

Proof:
(<) Suppose T satisfies AT < b.
0=uTAT <u'b <0
which is impossible.
(=) If P = @. Apply Fourier-Motzkin until we get
Pl=g={reR":0x <’}
i.e. there exists j for which b? <0.

If we look at corresponding constraint in FJ' is

07z < b?
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which can be obtained by a vector u such that u”A = 0,u”b = b?, u > 0.

]

Farkas’ Lemma (alternate statement)

Exactly one of the following has a solution:
a) Ar <b
u'A=0

b) ufb <0
u>0

Farkas’ Lemma (Different Form)

Exactly one of the following has a solution:

Ax =b
a) o

uTA>0
u'h <0

Proof:
(Sketch)

A b
Az =b
P:{x: * }: z: | -Alz< | —-b

z20 1 0
———
A’ b

Apply original Farkas’ Lemma to get P = @ <= Ju; € R™, us € R™ v € R™

ulA—ulA—v=0
ulb—uib <0

Uy, U2,V Z 0
Let u = (ug — ug)

WA—v=0 = uTAEO, u'h <0

Consider a linear programming (LP):

max CTJZ

st. Az <b (LP)
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Theorem 2.3: Fundamental Theorem of Linear Programming

(LP) has exactly one of 3 outcomes:

a) Infeasible

b

)
)
) Unbounded
)

¢) There exists an optimal solution.

Proof:
Let’s assume a), b) don’t hold.
If n =1, then (LP) has an optimal solution. (Why?)

Else, define
max 2z
z—clz <0 (LP)

s.t. Az <b

(LP’) is also not in case a) or b). (Why?)

Also if (x*, z*) is an optimal solution to (LP’), then z* is an optimal solution to
(LP). (Why?)

Apply Fourier-Motzkin to

2—c'x <0
(z,2) :
Ax <b

Until we are left with a polyhedron
{zeR:Az<V}

max =2

Now s.t. Az

<y is not cases a) or b). (Why?)

— can get an optimal solution z* to such problem. Apply Fourier-Motzkin back
to get (x*, z*) optimal solution to (LP’). (Why?) O

2.3 Certifying Optimality

max c X

st. Az <b (LP)

and let T € P = {x: Az < b}

Question Can we certify that T is optimal?
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Example:
max 2x7 + o
T1 + 225 < 2
st. T F+ <2
T, — 2Ty < 0.5

Consider T = (0,1)7 is clearly NOT optimal.
z* = (1,0.5)T and ¢Tz* = 2.5. Any feasible solution satisfies

SC1+2£IZ'2 <2 X1/3

1+ To SQ x1
+ T — X9 §05 X2/3
2131 + X2 §3

Instead do 1 x 1st constraint + 1 x 3rd constraint =— 2x1 + x5 < 2.5

In general:
r1+2x2 <2 Xy

T t+we <2 Xy
+ X1 — Z9 §05 X Y3

(1 +y2 +ys)or + 2yr + y2 — ys) 22 < 2y1 + 2y + 0.5y3

As long as y1,y2,y3 > 0 and

Y1+ Y2 +ys =2
2 +y2 —ys =1
This leads to the following linear program:
min 2y; + 2y, + 0.5y3

Y1 +y2 +ys =2
st. 21+ 1y, —ys =1

Y1,Y2,y3 > 0

This is called the dual LP.
In general:

max clx

st. Ax <b (P)
Dual of (P)

min b’y
yT'A=cr (D)

s.t. y>0
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Remark:
We call (P) primal LP.

Theorem 2.4: Weak Duality

Let T feasible for (P), ¥ feasible for (D). Then c’x < bTy.

Proof:
'z =75"(Az) <y'b

U

where we used AT < b and 7 > 0.

Corollary 2.5

Several results:
e If (P) is unbounded then (D) is infeasible.

e If (D) is unbounded then (P) is infeasible.

Note
(P) and (D) can both be infeasible.

e If 7 is feasible for (P) ¥ feasible for (D) ¢!Z = b’y, then T optimal for
(P), 7 optimal for (D).

Theorem 2.6: Strong Duality

x* is optimal for (P) <= Jy* feasible for (D) such that ¢’a* = bTy*.
Proof:

(=) Vv

(=) Is (D) infeasible?

S e R" ¢ =J
uppose .

. ut AT >0 Ad <0
(Alternate version of Farkas’ Lemma) Ju: = dd:
uc<0 cd>0

Take look at o/ = z* + d, then

Ax' = Az* + Ad < b
A =ce +cd> T

Contradiction. Thus (D) has an optimal solution y*.

Ax <b
Now let v = bTy*, and let 6 := {x erR*: }
—c < —y
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If 8 = @, by Farkas’

Case 1: A > 0.
Let ¢y = % Then we have
T _ ATY _ T _17Y
Ay—AX—c and by—bx<v and y

Contradicts optimality of y*.

ATy =0
Case 2: A =0. Then b7y < 0
y=0

ATy/:ATy*_’_ATy:C
and
Y=y +y=0
bTy/ — bTy* + bTy < bTy*

Contradicts optimality of y*.

Thus 6 # @.
Let T € 6,
~— ~—
weak duality zelh

(P).

2.4 Possible Outcomes

See here.

¢ /—\ 1T
NN (Ao
A —cT _
ATy = )
] N/ b by < AN
(G ()0 =,
A — y=0
A>0

16

Now we can do the same thing previously. Let ¢y = y* + 7, then

where the last inequality is because T feasible for (P), z* optimal for

O


https://notes.sibeliusp.com/pdfs/1189/co255.pdf#page=21
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2.5 Duals of generic LPs

max 2.’13'1 + 3.1'2 — 4$3

T +7$3 <5
21‘2 —XI3 23
I +x3 =8
s.t. s <6
T ZO
i) SO
max (2,3,—4)x
r 0 7 )
0o -2 1 -3
10 1 8
s.t. -1 0 —-1]lz | -8
0O 1 0 6
-1 0 0 0
0O 1 0 0
and dual
min (5,-3,8,—8,6,0,0)y
1 0 1 -1 0 -1 0 2 (Dy)
st. [0 =20 0 1 0 1]|ly=]{ 3 and y >0 !
7T 1 1 -1 0 0 O —4

min (5,—3,8,—8,6)y
1 0 1 -1 0
st. [0 =20 0 1]y
7 1 1 -1 0

IN IV
N

|
|
W

Claim (yj,...,y%) is optimal for (Dy) <= (vi,..., ¥, v, y5) optimal for (D)
with

Yo = Y1 T Y3 — Y1 —2

yr =3~ (=252 + ;)

min (5,3,8,6)y

IN IV

1
s.t. 0 2 0 3 and y; >0,y <0 ys >0
1

I
|
i



CHAPTER 2. LINEAR OPTIMIZATION 18

Claim Opt value of (D) and (Dj3) are same.

In general

max cl'x min b’y
Ax?b Aly?
s.t. v (P) s.t. vee (D)
x?0 y?0

2.5.1 Cheat Sheet

Here or
Primal (max) Dual (min)
< | >0
Constraint | > | <0 | Variable
= | free
> | >0
Variable < | <0 | Constraint
free | =
Remark:

This is not symmetric... The way you can remember it is by thinking natural
variables in real life, like you cannot have negative number of cars and so on...

Q What if you start with a minimization LP as primal?

Example:
min x; — o
21’1 + 31’2 S 5
st 1 — T2 Z 3 (P)
o T+ 51’2 =7
T Z 0, i) S 0
Rewrite as:
max —xj+ X9
—1x |4
S.t.

Will lead to finding dual:

max oy; + 3y2 + Tys3

200 +y2 <1
S.t. 3y1 — Y2 + 5’y3 > —1
1 < 0,92 > 0,y3 free

Also

e Weak duality holds.


https://notes.sibeliusp.com/pdfs/1189/co255.pdf
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If 7 feasible for (P), 7 feasible for (D), then ¢’z > b'7.

e Strong duality holds

Note
The dual of the dual of (P) is (P).

Example:
Given a simple undirected graph G = (V, E). M C E is a matching if every
vertex v € V is incident to < 1 edge in M.

See examples of matching in CO 342 or MATH 249.

Max cardinality matching

Find matching M with largest |M|.

1, if M
Define z, =< ' hee )
0, otherwise
max er
ecE
4
Z . <1, YveV
s.t. e€d(v)

0<zxz, VeekF

where d(v) = set of edges in E incident to v.

min Z Yo

veV

Yu + Yo > 1, Ve=uv € B

s.t. Y >0

2.6 Other interpretations of dual

Example:
Resources
Per unit Profit Per unit consumption
A B
1 5 5 3
Product 5 5 p :
Available Resources 15 10



https://notes.sibeliusp.com/pdfs/1195/co342.pdf
https://notes.sibeliusp.com/pdfs/1189/math249.pdf

CHAPTER 2. LINEAR OPTIMIZATION 20

max 5xy + 3x2
+
2x1 + 4x9 < 15
s.t. 31 + 29 < 10
x>0

Suppose somebody wants to buy A, B from me. What is the lowest price I should
ask?

Let ya,yp be prices:
min  15y4 + 10yp

3
294+ 3yp > 5
s.t. dys+yp > 3
y=>0

Example: Zero-Sum

Alice, Bob play game. A: m choices. B: n choices. Alice play i, Bob plays j, Bob
pays Alice M;; dollars.

Alice
R P S
RO 1 -1
Bob P|-1 0 1
S|1 -1 0

Zero-sum: Amount won by Alice - Amount won by Bob = 0
Let y € R, Alice’s probability distribution.
Let x € R"}, Bob’s probability distribution.

Expected Amount Bob pays Alice:

yeQR zeP zeP yeQ

Alice wants max {min yTMI}. Bob wants min {max yTMx}.
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Suppose ¥y € @ is fixed. Bob’s problem is

min Z (Z Mijyi> x;
j=1 \i=1
miIIDl 7TM, = + n
re
s.t. ij =1
j=1
z >0

This is equivalent to picking smallest number in

max u

n

J=1

<—

— maxminy’ M, = max
yeEQ xEP yE

max u
{
= u<y'Me;, Vj=1,...,n
st.  yl =
y=>0
Similarly Bob’s problem:
min v
+
v>elM,, Vi=1,...,m
st.  zl =
x>0

Now get back to Farkas’ Lemma Theorem 2.2. !

Proof:

max 07z

4

s.t. Ax <b

min  blu

J

ot uTA=0
o u >0

(D) is always feasible (u = 0).

st.  w<y'Me; Vj=1,...

21

There are z*, y* for which strategy values match — Nash’s Equilibrium.

'Rephrase it a little bit: Exactly one of the two has a solution (i) Az < b (i) u” . ...
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If 37 : AT < b, T optimal for (P) = optimal for (D) has value 0.
= Au satistying (ii).

And the converse is also true. ]

2.7 Complementary Slackness (C.S.)

Let z*,y* be feasible for primal and dual respectively.

Complementary Slackness

Abbreviated as C.S.

i) Either x; = 0 or corresponding dual constraint is tight at y*, Vj =
1,...,n.

ii) Either y7 = 0 or corresponding primal constraint is tight at z*, Vi =

1,....m.
Example:
min T; — o
4
2£E1 + 3$2 S 5
.t 1 — T Z 3 (P)
o 1+ 51‘2 =7

21 20,20 <0

max  oy; + 3y2 + 7ys

l

21 +y2+ys <1 (D)
s.t. 3Yy1r — Yo +Hy3 > —1

y1 < 0,92 >0

1) 21=00R 2yj +ys +y; =1
x5 =0 OR 3yf —y5 + 5y = —1

i) y7 =0OR 227 + 32, =5

ys =00R 2] — 25 =3
ys =00R 27 + 525 =7

Theorem 2.7

Let x*,y* be feasible for primal/dual respectively. TFAE“

a) x* opt for primal AND y* opt. for dual

b) Obj. value of z* = Obj. value of y*
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c) z*,y* satisfy C.S.

%he following are equivalent

Proof:
a) <= b) done.

b) <= ¢) Proof for

max clx min by
I \
< T
s.t. Ar <b S.t. Ay=c
x>0 y>0

Note

m
ATyZC g ZaijinCj, ijl,,n

=1

n
e = Z c;x”
j=1
n m
> (S )
1 \i=1

Jj=

m n
* *
= g Qi T; | Y;
i=1 \j=1

< i biy; = by’
=1

IN

where first and second inequalities come from x > 0,y > 0 respec-
tively.

(b) cf'z* = bTy* <= C.S. holds. (Just play with some strict in-
equality conditions)

O]
Example:
min y
max X1+ T d
1 y=1
s.t. T+ a9 <1 S.t. y=1
y=>0

Consider a pair z* = (0,0), y* = 1 which violates CS.
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2.7.1 Geometric Interpretation of C.S.

max clx

!

s.t Ax <b
A:

C.S says alz* = b; or y; = 0.

Aly=¢c = a1 a

min 'y
' T
s.t. Ay=c
y=>0
R

| m
| v = Yam=c
| i=1

C.S. says ¢ is a nonnegative combination of tight constraint at z*.

Example:

max

s.t.

T2

25E1 + 051’2

l'1§2
[E2§2
.1'1—|—$2§3
x1, 9 2 0

objective function
cannot be improved

3N T1

24
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Theorem 2.8

max ¢’z
J (P)
S.t. Az <b

: : : : . cld>0

is unbounded iff (P) is feasible and 3d € R™ : Ad<0

Proof:
=) Let 7 feasible for (P), T 4+ A\d is also feasible for (P) VA > 0.

¢’ (T + A\d) can be made arbitrary large.

<= ) Hard exercise but doable.

O

2.8 Geometry of Polyhedra

line segment

7,y € R” the line segment between z,7 is

n T=XT+(1-N7y
{:vE]R " for some \ € [0, 1] }

convex set

S is a convex set if Va,y € S, line segment between z,y is contained in S.

Example:

B

NOT a convex set

Polyhedra are convex sets. P = {x: Az < b}. T,7 € P then
_ N < N —
AAAX T4+A =N <N+ (1-Xb=b

>0 >0
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convex combination

Given z',..., 2" € R*. We say 7 is a convex combination of z!,..., 2" if I\:

k

A2

o

Optimal solution seems to be happen at “corners”.

Let P be a polyhedron P = {x € R" : Az < b}.

vertex

T is a vertex of P if de: ¥ is unique optimal solution to

max CTLL'

st. Az <b

extreme point

7 is an extreme point of P if Au,v € P\ {Z} such that Z is in line segment
between u, v.

basic feasible solution

T € P is a basic feasible solution of P if there are n linearly independent tight
constraints at 7.

Note
Constraints
alr<b, Vi=1,....m

are linearly independent if {a;}™, are linearly independent.

Theorem 2.9

Let T € P. TFAE:
a) T is a vertex of P.
b) T is a basic feasible solution of P.

¢) 7 is a extreme point of P.
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Proof:
a) = ¢) Suppose Ju,v € P\ {T} such that
Z=M+(1-Av

for some A € (0,1). Consider ¢ for which T is an optimal solution to

max clx
st. xeP
Iz >y
Iz >
and
AdT= N dut+r1-Ncv< I z+(1-N"z="%
~~ ——

= 7 NOT a vertex.

¢) => b) Suppose T is not a BFS. Let I C {1,...,m} be the index set of tight
constraint at z. Consider

ald=0, Yiel (%)
But since Z not BFS, 3d # 0 satisfying ().%
() =T +ed

Te()=alz <b;, Viel

a:
ajz(e) = alT +eald < by, ViglI
——

which is satisfied if || is small enough.
z(e) € P if |¢| is small enough.

But then ) ]
T = 51‘(6) + éx(—e)

b) = a) Let I C {1,...,m} index set of tight constraint at .

Define
c:= Z a;
i€l
Then Vx € P
clr = ZaiTx < sz
icl icl
And
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=—> T is optimal solution to

max CTIL'

st. xzelP (x4)
If 2/ € P is optimal solution to (), then
aj ' = b, Viel (% % %)

But since there are n linear independent constraints in I, T is unique
solution to (* * *). — 2/ =T7.

]

%by Rank-Nullity Theorem.

Q When does P have extreme points?

line

Let Z,d € R, d # 0. The set
{z € R": x =7 + Ad for some \ € R}

is called a line.

\

We say a polyhedron P has a line if 3%, d has a line if 37,d s.t. T € P,d # 0 and

{r €R:2z =7+ \d for some \ € R} C P

+
i

Proposition 2.10

P ={x € R": Ar < b} has a line iff P # @ and 3d # 0 such that Ad =0

<= P # @ and rank(4) <n

Proof:
Exercise. O
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Theorem 2.11

P ={z € R": Az < b} has an extreme point

<= P # @ and P has no lines.

Proof:

Exercise.

pointed polyhedron

A non-empty polyhedron is called pointed if it has no lines.

U

Note
I not pointed does not imply bounded. For example, in R?, x > 0 and y > 0.

Theorem 2.12

' max 'z
Let P # @& pointed polyhedron. If st. zeP

it has an optimal solution that is an extreme point.

(LP) has an optimal solution,

Proof:
Let T be an optimal solution to (LP) with largest number of linear independent
tight constraints.

Suppose there are < n — 1 linear independent tight constraints at 7.

Pick d # 0 such that ald = 0,Vi € I, where I is the index set of tight constraints.
By the exact same argument as before, T + ed € P for € small enough. But

'@ +ed) =c'TEec’d

= T'd=0
= cld(T+ted) =T

—€

Since P is pointed, J€ for which
TtedeP

and one of them not in P if |¢|] > €. That can only happen if

a; (T +&d) = by or al (T — ed) = by,

for some k & 1.
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= ald # 0, = a, is linear independent from {a;};c; since non-zero cannot
be linear combination of zeros. Contradiction to choice of T. O

2.9 Simplex Algorithm

Standard Equality Form

A linear program is in Standard Equality Form (SEF) if it is of the form

max clx

+

ot Az =b
o z >0

Proposition 2.13

Given any linear program, there exists an equivalent LP in SEF.

Example:
max x1+ 2% + 3
J
3.T1 + X2 S 5 (Pl)
S.t. —x1+2x3>06
1 < 0,23 >0
) = —x1 >0 and

Ty = xy — x5 wWhere x5 > 0,75, >0

We introduce

81:5—3111—1’220, 82:—331+£U3—6ZO
Then
max —) + 2z — 225 + 13
{
=37y + 225 —x5 +8 =5 (P2)
st. 2] +x3—5,=6

e
T1,Ty, Ty, X3, 51,52 Z 0

x feasible for (P1) <= (2,23, 25, 3,51, s7) feasible for (P2) and they have
same cost.

Assumption A € R™" — rank(A) = m. This is WLOG. Since if

a; — Z )\kak

ki



CHAPTER 2. LINEAR OPTIMIZATION 31

Either

bi ) Akbi

ki

in which case (SEF) is infeasible. Or alx = b; is redundant. So it can be removed
from (SEF).

Note
{z : Az = b,z > 0} is pointed polyhedron (if nonempty).

Structure of BFS Any feasible solution has m linear independent tight con-
straints (n — m) extra tight constraint must come from x; > 0.

Let B C {1,...,n} such that |B| = m and Ag? is invertible.

N={l,...,n}\ B. zy =0, ie. z; =0,Vj € N.

Feasible solutions obtained this way are precisely BFS.

Example:
max (3 2 1 4)x
4
1 2 -1 0 (5
s.t. 21 0 1) \7
x>0
If we pick

B={1,2} AB:(; f)
N={34} Ay-—
CB = (3 2)T CN == (1 4)T

B=1{1,3},B={2,4}, Ap = (; _01) Ay = (? (1))

= ()= (= ()= )

If we set oy = 0 (for B = {1,3}) we are left with

660

This has a unique solution z; = 3.5, x3 = —1.5, but not feasible.

2 Ap is submatrix obtained by picking columns of A indexed by B. Such B is called a basis.



CHAPTER 2. LINEAR OPTIMIZATION 32

£9()-0

r3=1x4 =0, 1 = 3,29 = 1, which is feasible.
——

If we pick B = {1,2}

TN

In general,
Ar =b <— ABxB—FMEb

has unique solution x, = AZ'b.

For any basis B, the corresponding basic solution is
B . Al_;lb
N - 0

If AZ'b > 0, then it is a BFS.

2.9.1 Canonical Form

Let B be a feasible basis (i.e. corresponding basis solution is feasible).

Ar =b < ABI‘B—I—ANI'N:b
< .IB—FAElANIN:AElb

Now let’s take a look at objective.

'z = chrp +cyay — ch(rp + A Avoy — AR'D)
= (ch — cBAG AN)Nn + cEAG'D
Thus (SEF) is said to be in canonical form for B if it is written as

E}QHReduced costs

max

(ch — cAG AN) oy + cBAS'D
1
st CL’B—FAEIANZ’N :Aglb

rp,ry > 0

Example:
Back to our previous example...

B = {1,2}. Rewriting in canonical form for B:
e (1323
5=\ 2/3 —1/3

10 1/3 —2/3
ABA:(O 1 2/3 —1/3)




CHAPTER 2. LINEAR OPTIMIZATION 33

LA AN = (3 2) (%g j?g)z(m —3/3)

Cn — CRAG Ay = (—4/3  4/3)

Hhen max (0 0 —4/3 4/3)z+11
i
w12 8)=(0)

z>0

is in canonical form for B = {1, 2}.

Example:
(1 3 =20 0z +0
max ~—
obj. value
1
1 1 110\ /(4 (LP)
5.t 1 -1301)""

x>0

Canonical form for B = {4, 5}.

Ty =4
Corresponding BFS ! X z; =0,V €N
Ty =

z=(0 00 4 1)"

Objective value = 0

If increase x; or x5. Objective function increases.

Let’s try to increase x; from 0 — 6. (Keep x5 = 23 = 0)

0"‘1’4:4 St 134:4—6
9+x5:1 < .T5:1—9

New objective: 0+ 6. However, we have

— Increase 1 by 1
x5 >0 = 6<1

] 1 enters basis ]
x5 will be 0 — . . Then new basis B = {1,4}.
x5 leaves basis

Rewriting (LP) in canonical form for B = {1, 4}.
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04 =50 -1)z+ _1

max ~—
obj. value

+
1 -1 3 0 1 (1
5.t 0 2 -2 1 -1)"7\3

x>0
Corresponding BF'S:
(1 0 0 3 O)

Obj. value =1

Pick je N:¢; >0 (j =2)
Increase x5 to 6, keep x3 = x5 =0

r1—0=1 <= z1=1+6
.T4—|—20:3 1 5134:3—26

and

3

3 o enters basis
Set 0 < 5 — .
x4 leaves basis

New basis B = {1, 2}.

(LP) in canonical form for B = {1,2}.

max (0 0 —1 -2 1)x+7
0 0.5 0.5 . 2.5
1 —1 0.5 —05)7  \15

= (25 15 0 0 0)

O

Corresponding BF'S:

Obj. value =7

Find j € N, ¢ >0 (j =5)

1 =25—-050>0 0<5 x1 leaves basis
— — ,
o =15+050 >0 # > —3 x5 enters basis

New basis B = {2,5}
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(LP) in canonical form for B = {2,5}

max (-2 0 —5 —3 0)z+12
I

11110\ [4
s.t. 2041 1)7 5

x>0

BFSz=(0 4 0 0 5)"
Optimal Solution

Obj. value = 12.

2.9.2 Iteration of simplex

Algorithm 2: Iteration of simplex
Start with feasible basis B

Rewrite LP in canonical form for B
Pick j € N :¢; > 0 (z; enters basis)
Let b= Az'b, Ay = Az Ay

Find largest 6 so that b— Gﬁj > 0.

Corresponding basic variable that becomes 0 (say xj) leaves basis.
B+ B\ {k}U{j}. Iterate.

If problem has optimal solution AND 6 is always > 0, simplex finishes.

Note
If at current BFS we have a basic variable = 0, we may have § = 0. — May lead
to cycling. (i.e. return to current basis in future iteration)

Bland’s Rule

If there are multiple choices of entering or leaving variables, always pick lowest
index variable.

Using Bland’s Rule avoids cycling

Observations If ¢y <0, then the (LP) obj. value in canonical form is

_T T A—1 T A—1
cy TN +cgAgb<cpAzb

<0 >0

For any feasible solution = Current BFS is optimal
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T T T T T 1
/ I o s AN 1‘
[ Jﬂ [T T 1T cycling pattern

Figure 2.1: Simplex method

Original LP

max clx
{
ot Axr =b
x>0
Dual
min by min  y'b
\ — |
st. ATy>c st. ylA>cr
min  y'b
i}
s.t v Ap > Cg

If satisfies C.S with BFS corresponding to B
y'Ap =cp
= Yl =LA <= cLAZ' AN >ch = Ty <0

T
yTAN > Cn

2.9.3 Mechanics of Simplex

Example: 1

36
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For 0

and we have
T4 .
Ty N

d

We are actually picking min {I’ I}

Pick, out of all rows min {g—} where j is entering variable.
ij

Then now in row ¢ (second row here). Make row operations so that pivot element
become 1, all others in col j becomes 0.

— Row 2 x1
— Subtract tow 2 from row 1

— subtract row 2 from objective function (with RHS multiplied by —1)

max (O 4 =5 0 —1)$+1
!
0 2 —2 1 -1\ (3
5. (1 -1 3 0 1)”5_(1)
x>0

3
00+1,=3 < 124=3-20>0 = 935

—O+zr1=1 < 2,=0+1>0 = 0> -1

b,
where we are finding mi% {_—Z } Now follow the similar procedure, we have
aij >0 Qg

max (0 0 -1 -2 1)37—1—7
1

. 01 -1 05 —05) _ (15
S 10 2 05 05/)% \25

In general Pick j € N:¢; > 0.

bi
Let ¢ = argmin {_—} (Ratio Test)

aij>0 a’ij

1
e Multiply row ¢ by —
Qyj

T
o Add — = times row ¢ to row i # /.
Qyj
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e Add —w to variable coeff in objective. Vk € 1,...,n
agj

by -
e Add DG to objective value in objective function

Cllj
Example: 2
max (2 1 1 0 0)z
{
(1 2 -1 10y _ (2
s.t. \2 -2 -1 0 1)" \3
x>0
. . [23
Ratio Test mm{?g} = 2. (zy enters, x5 leaves)

max (0 3 2 0 —1)z+3

I
0 3 -05 1 —05\ (05
<1 -1 —05 0 0.5)I_<1.5>
z >0

If we increase x3 — 6 and keep x5 = x5 =0

—0.50 + x4 =0.5 x1 = 1.5+ 0.50

— — Problem is unbounded!
—050 4+, =15 x4 = 0.5+ 0.50

In general Let B be a basis

max E%xN
s.t.

ol

rp+ Ayry =
rg,xy 2> 0

Found j : ¢; > 0 AND Xj < 0.

Construct d € R" to reflect what we are trying to do when we increase x; — 0.
rB . Aglb
N N 0
—1
B _ AB b i 9 dB
TN 0 dN

Right now, we are at BFS:

We want:
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|
I

where dy = | 1 | =¢; and dp = — —AglAj.

Found d: d > 0, then

Ad = Apdp + Aydy = —AgAG'A; + A; =0

and
c'd=chdp + chydy = —cEAZ' Aj+¢; =T > 0
ie.,
c'd>0
Ad =0 = Problem is unbounded
d>0

But wazit, how to find an initial BFS?

Given
max clx
l
; Arx =10 (LP)
s.t. 2> 0
where b > 0.
Construct auxiliary
max —elw
i}
ot Az +Tw =10 (AUX)
o r,w >0

Note
e (AUX) is feasible (z = 0,w = b)

e (AUX) is bounded —ew < 0

So (AUX) has an optimal solution.

Proposition 2.14

(AUX) has optimal value 0 iff (LP) is feasible.

Proof:
If optimal solution (z*,w*) has value 0, then w* =0 so Az* + 10 =10

= 2" is feasible for (LP)
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If z is feasible for (LP) then (x,0) has value 0 in (AUX).

Moreover, if optimal value of (AUX) is < 0, then we can use the dual for a
certificate.

min  y’b
!

A0 (DAUX)
s.t. y> —e

y* optimal y*Tb < 0 and y*TA >0

— y* satisfies {z: Ar =0, x >0} =g O

2.9.4 Two Stage Simplex

Phase 1
e write (AUX)
e solve (AUX) with BFS corresponding to w
e if opt value < 0, get certificate y* (LP) is infeasible
e opt value 0, BFS x where w =0
Phase 2

e simplex with x as initial BFS

Example: 1
max (2 1 3)x
N
2 10 < -1
5.t (1 1 2)932 3
x>0
max (2 1 3 0 0)z
1
-2 -1 0 -1 0 (1 (SEF)
5.t (1 1 2 0 —1>$_(3)
x>0

—2 -1 0 -1 0 10\ (1 (AUX)
s.t. 1 2 0 —-10 1/ {3
X
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canonical form: B = {6, 7}

max (-1 0 2 -1 —1 0 0)z—4

add 3 to the basis
: b; _

min <E> = %

7 leaves the basis.

canonical form for B = {3,6}

max (-2 -1 0 -1 0 0 —1)z—1
I

st (f/22 1_/12 (1) _01 _?/2 (1) 192)35:(3}2)

=0 0200 10)

certificate of infeasibility

= (-1 0)
Example: 2
max (1 0 Q)x
d
2 1 1 (T
s.t. 1 -1 —2)" 7 =5
>0
in SEF.

max (1 0 2)x
4

) 2 1 1\ (7

5t (1 1 2)“’_(5)

max (0 0 0 -1 —1)=

+ (AUX)

. 21 110\ (7
St 11201/ \»5
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canonical form B = {4,5}

max (3 2 3 0 0)z—12

(1D

1 enters basis = + 6d d:(l 00 —2 —1)T

min ( b") =1
a;1 2

4 leaves the basis

max (0 1/2 3/2 —3/2 0)z—3/2

1
(0 172 a2 2102 1) 7= (55)

z >0

s.t.

2 enters the basis
. b \ _ 3/2
min <@) = m

5 leaves the basis

max (0 0 0 —1 —1)z+0

( >0

Thusz= (2 3 0 0 0) is optimal for (AUX)

— O
o |
—
~~
&
|
N\
w N
~—__

Forget (AUX). Start Simplex with z = (2 3 0) as initial BFS.

Now return to SEF.

g

max (0 0 3)z+2

canonical form for B = {1, 2}
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How long does simplex take?

At each pivot, we move from an extreme point to another.

PN
NN

Every pivot rule has a bad example.

Sprelman & Teng (2001): bad examples are pathological. Small changes become
good examples.

Polynomial Hirsch Conjecture

Poelynomtallymany—vertexfor-boundedPolyhedral:

Let G be the graph of a d-polytope with n facets. Then the diameter of G is
bounded above by a polynomial of d and n.

or

The (combinatorial) diameter of a polytope of dimension d with n facets
cannot be greater than n — d.

Remark:
Here we call combinatorial diameter of a polytope the maximum number of steps
needed to go from one vertex to another, where a step consists in traversing an

edge.

What this conjecture tells us is that it will take only finitely many edges from
initial BFS to optimal one.

There’s one counterexample: 43-dimensional polytope with 86 facets and diame-
ter (at least) 44.

2.10 Ellipsoid Algorithm

Feasibility Given polyhedron P, find T € P or show P = &.

Fourier-Motzkin & simplex solve this problem.


https://annals.math.princeton.edu/wp-content/uploads/annals-v176-n1-p07-p.pdf

1

2

- NS TN
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Aside Given an algorithm an input [ to it,

size(I) = # of bits needed to represent I.

Example:
max clx
$
s.t. Az <D

Assume c € Q", A € Q™™ b € Q".
By scaling, we may assume ¢ € Z", A € Z™*" b € 7Z™.

Let a = max{||¢|/oo, || Alloos |00 }-

Size of input to LP ~ (n + n,m + m) log(a)

Efficient Algorithm # of operations to solve an instance of size k are bounded
by a polynomial on k.

Thus Simplex & FM NOT Efficient.

Goal Derive an efficient alg.

If you have an efficient algorithm to solve feasibility for any polyhedron P, can be
used to solve LP.

Option 1

max CTCL'

st. Ax<b

Assume I know L < OPT < U.

Algorithm 3: Option 1

while Repeat do
L+U
V= 5 )

, Az <)
P—{x. CTxZV}
if P/ == & then

| U+V

else
L L+ V
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Option 2

Is the following nonempty?

T

2.10.1 Ellipsoid

Ball B(z,R) :={z € R" : ||z — z|| < R}
Unit Ball B := B(0, 1)
Apply an affine map to B.
f(z) = A(z — b) where b € R*, A € R™" invertible
fB) :={z eR": |[f(2)]| <1} = {z e R": [[A(x = D)[| < 1}

Sets of this form are Ellipsoid. Denoted E(A,b).

Idea
e Suppose I know P C B(0, R)

e Also, suppose either P = @ OR Vol P > ¢ > 0.

Algorithm 4: Ellipsoid Algorithm

E <« E(M, z), where P C E(M, z).

2 while Vol(£) > € do

3

ES T < BN

if z € P then
| STOP
else
e Find o’z < aq so that o’z < ap,Vx € P and o’z > «y
e Find F(M’,2') such that EN{z: o’z < ap} C E(M’,2') and volume
of E(M’,2") is much lower than E
o L« E(M' 2

Note
At any point P C E.

The reason why we choose ellipsoid instead of ball is that it can actually shrink
“thinner” than ball.
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E(M,z)

Figure 2.2: Ellipsoid Algorithm

There exists E(M’, ') that can be computed in polynomial time such that

Vol(E(M', 2"))
Vol(E(M, z))

1
< e 2n+2

Number of While Loop Iterations
If B(0, R) initial ellipsoid, then Vol(B(0, R)) < (2R)". After k(2n + 2) iterations,
Vol(E) < e *(2R)".
We want
e "2R)" < e = —k+nIn(2R) <In(e) = k> [nIn(2R) — In(e)]
Alg stops after [nIn(2R) — In(e)](2n + 2) iterations.

We only used that
JaTz < ag such that

2@ P << o'z< VT EP
alz > a

Theorem 2.16: Separating Hyperplane

Let C be a closed, convex set, z € R". Then z ¢ C <= 3 a hyperplane
alz < ap separating z and C.
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Is runtime polynomial?
e In(R) is polynomial in input size — NOT a problem

e Finding a separating hyperplane: can be done in polynomial time.

2.11 Grotchel-Lovasz-Schrijver (GLS)

2.11.1 3 problems

e OPTIMIZATION
Given K CR", c € Q™.

Find 2* € K such that
A >z Ve e K

or determine K = &.

e SEPARATION
Given K CR", w € R".
Determine if w € K or find a:

lafloo =1 oz < a’w,Vr € K
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e FEASIBILITY
Given K C R".

Find 7 € K or determine K = &.

Feas <, Opt. (i.e. if we can solve opt efficiently, we can solve feas efficiently)

Weaker version...
e WEAK OPTIMIZATION
Give K CR",ce Q™ e>0

Find z* € S(K,¢€) such that
c'r <cla* +e Vo e S(K, —e)

or determine S(K, —¢) = &
e WEAK SEPARATION
Given K CR™", w € R", e > 0.
Determine if w € S(K,¢) or find a:
lalleo = 1 oz < afw+e Vo € S(K, —¢)
e WEAK FEASIBILITY
Given K C R".
Determine S(K, —e€) = € or find T € S(K,¢)
W-Feas <, W-Opt.

Ellipsoid gives us: W-Feas <, W-Sep.

e Grotchel-Lovasz-Schrijver (GLS) have shown that

W-SEP, W-Feas, W-OPT are polynomially equivalent.

48

In particular, for rational polyhedra® (even unbounded) then OPT, FEAS, SEP are

polynomially equivalent.

Khachiyan (’80) used ellipsoid to give polytime algorithm for LPs.

2.11.2 Consequence of GLS

Example TSP: complete graph G = (V, E)
3o e R": Az < b} where A € Q™*" b e Q™
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Edge costs c., Ve € E.

Find a tour visiting every vertex exactly once of min cost.

1, ifeisint
IP formulation z,=1< new 1? o
0, otherwise

min = Y. p Cele
1
St Deesy Te =2, YWEV

u €S

In general, 6(S) = {uv S vd S

} where S C V.

Subtour elimination Z T 2>2, YOO SCV
e€d(S)

min = Y . p Cele

i
doecsmyTe =2, WEV

Sb DeesyTe =2, VOCSCV
z. € {0, 1}, Vee E

LP-relaxation Replace x, € {0,1} by 0 <z, < 1,Ve € E.

Can I solve the LP in polynomial time on # vertices/edges?

Separation/Feasibility Given 7., Ve € E. Can I know if Z, if feasible for LP in
time polynomial in # vertices?

If YES, GLS tells we can also solve OPT.

2666(1)) fe - 2, VU < V

In polytime (in # vertices) I can check
polytime (in 7 ) {ogfeg, Ve e E

Min-Cut problem Given G = (V, E),w, > 0. Find Z We
e€d(S)

Problem can be solved in polytime in # vertices.

Then we solve mincut with w, = 7. If optimal value is > 2, then T feasible for LP.

Otherwise found S : Z T, < 2.
e€d(9)



Integer Programming

An integer program is a problem of the form:

max clx
1l
Az <b
s.t. .
v, € L,Nj el

where @ # I C {1,...,n}.
If I ={1,...,n},it’s pure IP. Otherwise, Mixed IP (MIP).

If all variables are constrained to be in {0, 1}, it’s a Binary IP.

Key Assumption: All data is rational (A € Q™" b € Q™) i.e, Az < bisa
rational polyhedron.

Let P={x eR": Az <b}, PP=Pn{z; € Z:jel}

Theorem 3.1

conv(Pr) is a polyhedron.

From now on, assume we have a pure IP.

[ ] ([ ]
Py
([ ] ([ ] ([ ] ([ ]
[ ] [ ] ([ ] ([ ]
([ ] ([ ] ()

20
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recession cone

Let P be a polyhedron. Its recession cone is

VzeP
rec(P):=<¢reR": VA>0
T+ A\reP

Let P ={z € R": Az < b} # @ then

rec(P)=reR": Ar <0
\ ; A ~~ >
R Ry

2 i)

rec(P)

) T

Proof:

RggRl) LetEEP,AZO,TERQ

AT+ ) =AT+ ) NAr<b = T+ eP = rek

R C Ry) Letr &€ Ry, ie, Jizalr>0

Let T € P, itis clear IN > 0:al (T+ A\r) > b, = r & Ry.

]

Theorem 3.3

P # @ is a bounded polyhedron

<= P =conv(z!,...,2%) for some vectors z!,... 2% € R™.

conv(z?, ..., x%) is smallest convex set containing z',..., 2% <= set of all finite
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combinations of z!, ..., z*.

Proof:

k

P'=< (z,A) eR" xR : % is a bounded polyhedron.

P = proj, P’ which is a bounded polyhedron.
P bounded = P has no lines.
Let 2!, ..., 2% be extreme points. Want to show P = conv(z!, ..., z%)
k

P D conv(zt,. .., x") follows since P is a convex set containing z!,..., 2",

Suppose 3T € P\ conv(z!, ..., z%)

Consider
min 0T\
\l/ .
SE ATt =T aeR” (1)
st. SN =1 aqeR
A >0
and its dual .
max o'ZT+ g (2)

st. afzi+ap<0, Vi=1,...,k

(a, a) = (0,0) feasible for (2). By assumption, (1) is infeasible.
Let (@, @) be such that a’Z + @y > 0
Now consider

max a'x+ Qo
st. xze€P

(3)

(3) has optimal solution since P # @ bounded and its has an optimal
extreme point, i.e., @’ x° + @ is optimal value. But by (2)

alrt+a, <0<az+a

Contradiction.

Back to IP...
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Theorem 3.4

If P is a rational polyhedron, then conv(Pr) is also a rational polyhedron
(Pr = PNZ™). Moreover, if Pr # &, rec(conv(Py)) = rec(P).

Proof:
Done if P is bounded ({0}).

Skipped for unbounded P.

rec(conv(Py)) = rec(P)

conv(Pr)

O
Theorem 3.5
max clx _ max cTx
st. xz€P st conv(P)

Note

1. Using Fund Thm of LP. I know IP is either infeas., unbounded, or 3 opt.
sol.

max clz

2. If P; # @, then unboundedness can be detected by checking if st zeP
T

max ¢ x Ir>0

is unbounded. Since st zEP unbounded iff P # @ and Jr : Ar<0
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max clx

P # @ = P # @. But then this implies st. e conu(P)) unbounded.

Proof:
WMA (we may assume) P # .

max CTI max CTZL‘

L = = .
et % st. xzePy 25t g € conv(FPy)

Since Py C conv(P;) = 2z < 2.
Now let z* € conv(P;) = >

= Fi: Tz > ¢T'x* since otherwise

contradiction = z; > z5. O

Corollary 3.6

If P # @ and pointed. Then conv(Pr) is pointed and any extreme point of
conv(Py) is integral.

Proof:
rec(P) = rec(conv(Pr)) implies conv(Pr) pointed.

Let z* be extreme point of conv(Pr). Let ¢ be such that z* is unique optimal

) max clx
solution to

s.t. = € conv(Py)

By theorem, 37 € P; : ¢T7 = cTa*.

By uniqueness of x*, ¥ = x*, then z* is integral. O]

Note
P={rcR?: 2y > 22}
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T2 T2

€

conv(Pr) is not even closed (dotted line plus (0,0)), NOT a polyhedron.

3.1 Cutting Plane Algorithm

max CTZE

st. xePr=PnNZ" (IP)

where P is rational polyhedron.

max clzx

We know it can be solved by solving st conv(Py)
.t. T

Problem Hard to compute conv(FP).

conv(Pr) is smallest convex set containing P;. P is a convex set containing Pj.

Idea
e Start with P

e Iteratively make P “closer” to conv(Pr)

conv(Pr)

x
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(ag)T T < ag

\ ()" & < ol

conv(FPr)

((XQ)T T < ag

Idea 2 Want to know only part of conv(P;) that is in the “direction I am opti-
mizing”.

LP relaxation

The LP you obtain from (IP) after dropping integrality, i.e.,

max clz

st. xzelP

An ineq oz < oy is valid for S CR"if Vz € S: o7 < ay.

Assumption LP relaxation has an optimal solution.

If P= o, then P, = @. If LP relaxation is unbounded, either P; = & or (IP) is
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unbounded.

Algorithm 5: Cutting Plane Algorithm

1 R+ P
2 do

max CTJT

3 Let x* be optimal solution to st 1R
if x* is integral then
‘ STOP // x* is opt sol for (IP)
else

Find valid ineq o’z < g for conv(Pr) s.t. afz* >
L R+ RN{z:a’x < ag}

9 while R # o;
10 Declare (IP) infeasible

o N O v s

Issues...
1. a, ap must be rational
2. Finiteness?

3. How to find a, ag?

Note
Any any point P; C conv(P;) C R C P.

max ch max CTZL'

st. zePr — st. x€R

If x* € Z", then z* € P;.

T
?SX ;g P, > cf'z* = 2* is optimal for P;
To solve the issues, impose 2* being an opt. BFS of c'z
’ P s bt st. z€R

Proposition 3.7

Let R be a pointed rational polyhedron such that RN Z" = P;. Let x* be a
BES of R.

Then z* is integral <= z* € conv(Fy)

Proof:
Exercise. O

How to find valid ineq for conv(P;) arz < ag s.t. aTx* > ag?

Call such ineq. a CUTTING PLANE or a CUT separating conv(Fr) and z*.
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Assumption R = {x e R™: Ar=1b }

x>0

max clx

i

ot Ax =10 (1)
o x>0

Let B be opt. basis.

max exay + cEAR

!
1 _
1 = 2
s.t. B+ AglAN N = Aglb
x>0

z* is integral <= Apz'be Z™
If * is not integral, then 3i € {1,...,m} : (A5'D); € Z.

Look at constraint ~
Z; + Zaijl'j = bl

jEN
is valid for Pr since it is valid for R.
it Y layle; < b
jEN
is valid for Pr since it is valid for R.
Since LEUJ < m-j and Z; >0 = LEZJJLU] < dij:z:j.

Since LHS is integer Vz € P,

it Y layle; < (b (%)

jEN
is valid for P;.

Note
For z*, 27 =0,Vj €N zj =b;.

Thus ~ ~

JEN
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(%) is the cut we wanted. Called a Chvatal-Gomory (CG) cut.

Algorithm 6: Cutting Plane Algorithm (Correct)

1 R« P // (P pointed)
2 do

max CTZ'

3 Let x* be optimal BEFS solution to st rcR
if x* is integral then
‘ STOP // x* is opt sol for (IP)
else
Find valid ineq o’z < aq for conv(P;) s.t. aTz* > aq
R+ Rn{z: o’z < g}

9 while R # o;
10 Declare (IP) infeasible

Theorem 3.8

The cutting plane algorithm using CG cuts terminates in finitely many itera-
tions (for pure IPs).

o N O o s

Proof:
SKIPPED. O
Example:
max (1 3 —2 0 0)z
1
1 2 110\ (3
1 -1 30 1)\
S.t.

x>0, x €ZP
Opt basis for LP relaxation: B = {2,5}.

In canonical form:

max (=05 0 —35 —1.5 0)z+4.5
)
05 1 05 05 0\ (15
5.t (1.5 0 35 0.5 1)x_ (2.5)
x>0
and 2= (0 1.5 0 0 2.5)"

CG-cut:

Ox1 + 22+ 023 + 0y + 025 <1 <= 29 <1 From 1st constraint
1+ 3x3 + 25 <2 CG-cut from 2nd constraint

Can add both to R.
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New LP

max (1 3 =2 0 0)z

!
1 2 110\ = /3
1 -1301] = |1

s.t. 01 000]%< |1
1 0 301/ < \2
x>0

Add zg, x7 > 0 convert to SEF, where
SL’2+$6=1, $1+3$3+.’II5+$7:2
If x1,..., 25 € Z, then z¢, x7 € Z.

New Opt for LP:
2"=(1 10010 0

So opt sol to original LP is (1 100 1).

3.2 Total Unimodularity

totally unimodular

A matrix U is called totally unimodular (TU) if all its square submatrices have
determinant in {—1,0,1}.

Example:

( 0 O) is not TU.

0 00

11 =1 0
0O 0 0 0] isNOTTU.

(1] o [1] 1

Note
Square submatrices are obtained by deleting rows/columns.

0 —1 1.
(1 1 _1> 1s TU.
Theorem 3.9

If A Z™" is TU and b € Z™ then every BFS of P = {meR”: szob }

is integral.

Recall
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Cramer’s Rule

If D is n x n invertible, then unique solution to Dx = b is given by

o det D(1)
' detD

where D(i) is D replacing i-th column with b.

Example:
1 -1\ (=) (2
0 3 i) N 1
Solution
2 -1 1 2
det (1 3 ) 7 det (0 1) 1
S ) PETTTN 3
det(0 3) det(o 3)
Proof:
Ar=1b . .
Let 2* be a BFS of < x : >0 , B corresponding basis.

Then z% = AZ'b, 2% =0
Note 7} is unique solution to Agpxp =0

—> By Cramer’s rule,

det AB(Z)
f=———2cZ
i det AB <
since det Ap(i) € Z and by TU, det Ap € {1,—1} which cannot be 0 since
invertible. u
Note
<
Result remains true if P = {x : Az <b} or P = {x ; fi_() b }

We say a polyhedron is integral if all its extreme points are integral.

P is an integral polyhedron iff P = conv(P NZ").

Proof:
Exercise. O
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Let A e Z™™ TU.

Then applying any of the following operations on A yields a TU matrix.
a) Delete row/column
b) Multiply row/column by —1
c¢) Permute rows/columns

)
)
)
d) Transpose
e) Duplicate row/column
)

f) Add a row/column with at most one nonzero entry, which is in {41, —1}.

Proof:
a) v

b)-d) Potentially changes signs of det.

e) Only can create new submatrices if row and its duplicate are in it. But that
has det = 0.

f) Recall

Laplace formula

D square:

Let M;; be the matrix obtained by deleting row ¢, column j.

Then for any row ¢ of D:
det(D) = > (—1)""dj; det(M)
J

For any column j:

det(D) = Z<_1)i+jdij det(M;;)

i




CHAPTER 3. INTEGER PROGRAMMING 63

0
Let D be square submatrix of A’. If D does not contain first col, then
det(D) € {£1,0} since A is TU.

If D does not contain first row, but contains first column, then det(D) = 0.

Else,
1l x X %X X X
0
D=1 : D
0
0

By Laplace formula: |det(D)| = |det(D)| € {0,1}.

Application 1 Suppose A is TU € Z™ ™. If b€ Z™ and {,u € Z", then

Az <D
P = {x eR: (<z<u }
is integer polyhedron.
A b
P=<zeR": | I |z<| u
-1 —/
A b

b integral, A” TU = P is integral

Application 2 A e Z™"™ TU, be Z™, c € Z", then

max clx min by
\J 3 ;
< >
s.t Az < b s.t. Ay=c
x>0 y>0

have integral opt solutions (if both are feasible).
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3.3 Sufficient condition for TU

Let A € Z™*" with entries {—1,0,1}. If A has:
e At most two nonzeros per column, AND
e There exists a partition Iy, I5 of its rows such that, for every column:
i) Nonzero entries of same sign lie in different partitions

ii) Nonzero entries of opposite signs lie in same partition.

Then A is TU.
Example:
0 0 1 0 1 0 1
10 -1 0 0 -1 0
A= 01 0 0O 0 0 O
10 0 -1 0 0 O
01 O 1 0 0 1
above the line: Iy; below: I. A is TU.
1 1 0
1 0 -1
A= 0 -1 0
0 O 1

Line 1 and line 3: I; Line 2 and 4: I,. A is TU.

Proof:
Suppose Lemma is False. Let M be a minimal counterexample, i.e.,

e M is not TU,
e )M satisfies conditions of Lemma,
e Any submatrix of M is TU.

Then M itself is a square matrix with det(M) ¢ {—1,0,1} and all its submatrix
have det € {—1,0,1}.

If M has < 1 nonzero in a column, then M is obtained by adding a column with
at most 1 nonzero to a TU matrix = M is TU (By Lemma 3.11).
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Thus, we may assume all columns of M has exactly two nonzero elements.

— M1T —

M = :
— ]\4NT1 —

Consider:

> M =Y M;=0

i€l i€l
since i) and ii) hold. Then this means {M;}, are not linearly independent,
which implies det(M) = 0. O

Example:
Given G = (V, E) undirected simple graph.
G is bipartite if V = ViUV,  and Vu,v € E has u € Vi, v € Va.
——
disjoint union
M C FE is a matching if |[M Ndo(v)| < 1,Yv € V where d(v) := {e € E :

v is an endpoint of e}.

Given G bipartite. Goal: Find max carnality matching.

1, if M
Let z. € {0,1} and x, = ¢ 1 cca
0, ifeg M

max ) ..pTe

1

st 2565(1)) Te S 17 YeeV (1)

x€{0,1}F

Let’s now take a look at example.




CHAPTER 3. INTEGER PROGRAMMING 66

T
SE:($13 T4 Ti15 T23 T24 !E25)

max (1 1 1 1 1 1)z

i
111000 1 1
(000111\ 1 2
1 001 00fjxg)1 3
8.1 010010 1 4
001 001 1 5
vertex
r e {0,1}F

In general:
e [; — constraints correspond to V;
e [, — constraints correspond to V5

If we look at a column z,,, it will have a 1 in row of u a 1 in row of v, 0 everywhere
else.

— Bipartite = Lemma is satisfied = (1) can be solved via LP.

Let (2) be LP relaxation of (1) without z, < 1,Ve € E, otherwise the first
constraint is violated.

max ) . pTe

1
2
ot Zeeé(v) 1. <1, VeeV (2)
x>0
Let us write the dual of (2)
min - Y v Y
{
ot Yo +Yp > 1, Vuv e E (3)
Y20
and add integral constraints,
min Z’UEV Yu
l
ot Yo+ Yo > 1, Yuv e B (4)
ooy e{o, 1}

Let z; be the optimal value for (i) then
21 <z =23< 2

. . Rl = 22
G bipartite —
3 = 24
Vertex Cover: such that Ve € E |enNU| > 1. Problem: Finding smallest
vertex cover.
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Konig’s Theorem

In bipartite graph G, size of largest matching = size of smallest vertex
cover.

Example:
Consider a directed graph D = (V, A).

Incidence matrix of D has one row per vertex, one column per arc.

-1, ifv=w
Forv eV, (w,y) € A, then a,e =1, ifv=y

0, otherwise

1 /-1 -1 0 0

2 1 0 1 -1

3 0 1 -1 0

4\0 0 0 1
I; = everything, [, = @ = Matrix is TU
Max Flow: Given D = (V, A), s,t € V(s #t). An s-t flow is a nonnegative
vector # € R4, where

Z Te — Z ze =0, YveV\{st}
)

e€d(v) e€dt (v
where
- — . ugS + . ) uesS
5(5)—{(u,v)€A.U€S} and 5(5’)_{(%@)614_”%5}

S
- (5) 07 (9)
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— v [~
—7 ™~

Goal: Find a flow maximizing Z Te
ccd+(S)

also 0 < z, < ¢, Ve € A where ¢, is some capacity constraint.

TU = max flow is integral if ¢, € Z,Ve € A.

Theorem 3.13

An m x n integral matrix A is TU iff for every subset R C {1,...,m}, there
exists a partition of R into Ry, Ry (that is, Ry U Ry = R and Ry N Ry = 9)

such that
ZCLZ’]‘ — Zaij € {—1,0,1},v_] = 1,...,7'L

1€R 1€ER2

Note
Careful that in the previous result that we had seen, we just needed to partition
the original rows into two such sets.

This result says that if I pick ANY SUBSET of rows, I must be able to do the
same.

Skipped branch-and-bound, Minimum Cost Perfect Matching in Bipartite Graphs...
due to one week suspension



Nonlinear Programming

The general form: Let f,g1,...,9m : R™ — R.

min f(x)
st. gi(z) <0, Vi=1,...,m (NLP)

Note that this is minimization problem with “<” constraints.

Example: Linear Programs

f(x) := Tz and g;(x) := al'x — b;. These give us

min 'z
st. alz<b, Vi=1,....m

Example: Binary integer program
Let f(z):=c'x, gi(z) := 2,(1 — 21) and go(x) := —21(1 — 21). These give us

min 'z
s.t. .I'l(]_ - .7)1) =0

where the constraint is equivalent to z; € {0, 1}. Extend it to

min 'z
4

; Ax <b
Storefo1n

69
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4.1 Convex functions

convex functions

Let S C R" be a convex set. The function f : S — R" is a convex function if
Ve, y € S,V € [0,1],

fOz+ (1 =Ny) <Af(x) + (1= A)f(y)

Example:
Here we let S = R.
f(x)
() + (1 =N f(v)
NOT
f(z) Convex Conve?c
! function )
\ function
x Y
fAz+ (1 =Ny
A convex NLP is one of the form:
min f(x)
st. gi(z) <0, Vi=1,...,m (CVX)
where f, g1,...,9m: R — R are convex functions.
Note

It is important that constraints are < and that the objective is a minimization
problem.
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Proposition 4.1

If g : R" — R is a convex function, then S = {z € R" : g(z) < 0} is a convex
set.

Proof:
Let z,y € S, i.e., g(z) <0,9(y) <0. Now we want to prove Az + (1 — A\)y € S.

g Az + (1 —N)y) < Ag(z)+ (1 —XN)g(y) since g is a convex function
<0

g(x) <0,A>0

where the last ineq is from oy) <0.(1—N) >0

O

This implies Az + (1 — Ny € S, VA € [0,1].

epigraph

epi(f) ={(z,y) -y = f(2)}

f is convex <= epi(f) is convex.

4.2 Gradients & Hessian

Let f: R™ — R be a twice differentiable function.

The gradient of f at 7 is the vector

of
o0z

V(@) =

oz
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The Hessian of f at T is the n X n symmetric matrix
V2 f(z)
where the element is defined as

I
V@ = 3o,

Example:
f(z) = 2229 + 221 + 3. Then

2r179 + 2 219 214

Orr = (7)) = (22 2)

Now looking at 1-D convex functions, two key properties stand out:

f(@)
e second derivative is
> 0 (at any point )
x@ e value of f is above
tangent line at =
: T
T

Translating:
o f(z)>0,Vx

e f(x)> f(z)+ f'(T)(x — T), V&, T

Theorem 4.2

Let S C R be a convex set. Let S — R be twice differentiable. TFAE:

What is the generalization of b), ¢), d) to f: R* - R?
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b): f(z) > f(x)+ V@) (x—7), Vo, T€S.
c): (Vf(z)—=Vf@)"(x—7)>0, Vo,T€S.
d): V2f(z) is Positive Semidefinite (PSD), Vz € S.

Note
A symmetric n X n matrix @) is said to be positive semidefinite if Vy € R",

y'Qy >0
Denoted as Q = 0.
(@ is said to be positive definite (PD) if Vy € R", y # 0,

¥y Qy >0

Denoted as @ = 0.

Theorem 4.3

Let S C R” be a convex set. Let f : R — R be a continuous twice differen-
tiable function. TFAE:

f is convex on S
fx) > f@+Vf@T(x-7), Vz,T€ S

a) f

)
¢) (Vf(z)-Vf@)T(x—7) >0, Vo,7€ S
)

b

d) V2f(z) = 0, Va € S.

Example:

F(a) = o]* = 3 a2
7=1

2561
Vix)=1] : and V2f(x) =2I

2%,

Now
yIV2f(x)y = 29" Ty = 24"y = 2||y||> > 0

= V2f(z) = 0,Vo = f(z) is convex.

Example:
f(x) = 327 2Qx + d"x + p where Q is PSD.

f(z) = Z 93J+ ZZQ%%QU-FZIBJCZ +p

Zl]>Z
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n n
on + szj%‘j +dy lej%j + di
j= = | Jj=

Vi(x)= =Qx+d

Vif(x) =Q =0 = f is convex.

4.3 Local vs. Global optimality

Consider an NLP n (o)
min T
st gi(x) <0, Vi=1,....m (NLP)

Let S be its feasible region. z* € S is said to be a local optimum if 3R > 0 so
that
f(z*) < f(x), Vo e B(z*,R)NS.

x* is said to be a global optimum if

flz") < f(x), VxzeS.

1)0(?1 global
pt- opt.

Proposition 4.4

If (NLP) is a convex program, then

x* is a local optimum <= z” is a global optimum.
Proof:
(<) Trivial.
(=) Suppose z* is a local optimum. But suppose 37 € S: f(z*) > f(T).
Consider z(\) = AT + (1 — \)z*.

Since (NLP) is a convex program, S is a convex set, therefore z(\) € S,V €
[0,1]. Since f is a convex function, we have

fxA) = FOAT + (1 = A)2*) <Af(@) + (1 = A)f(27)
Also, for any A > 0, we have Af(Z) < Af(z*). Therefore,
f@(N) < Af(@®) + (1 =N f(a") = f(z"), YA€ (0,1]
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Therefore, YR > 0,3\ such that z(\) € B(z*, R) N S. Contradicts local
optimality of x*.

T

Note
This does not require differentiability.

4.3.1 Characterizing Optimality
The previous proposition suggests that only local information is needed for deter-
mining optimality.

Can we characterize optimality based on local info?

Proposition 4.5

Consider a convex optimization problem where f is differentiable. Let S be
the feasible set. The z* is global optimal iff

Vi) (z—2*)>0, VzeS.

Proof:
(<) From convexity of f

f@) > f@") + Vf(2) (z —a"

-~

>0

\—
Y
—
B
<
8
M
n

(=) Sketch idea:
Suppose 3T € S : Vf(2*)T <0
Define g(\) := f(AT + (1 — A\)z™)

Can be argued that ¢'(0) = V f(2*)T (T — 2*) < 0.

For small A, g(\) < ¢g(0) = f(z*). Therefore, z* is not optimal.
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\

-

O

Intuition Going from z* in the direction towards another x feasible takes us in
the opposite direction that we want to go (opposite to the gradient).

Corollary 4.6

If f:R™ — R is convex, differentiable then z* is optimal to

min f(z)

st. xeR"”
ifft Vf(z*)=0.

Proof:
(<) Follows from previous proposition.

(=) Suppose Vf(z*) # 0. Let y = =V f(2*) + x*.
Vi) (y—2") = =VI@@) V@) ==V <0

—> 2 is not optimal from previous proposition.
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4.4 Lagrangian Duality

Consider a general NLP

min f(z)
st gi(x) <0, Yi=1,....m (NLP)

(that is NOT necessarily convex)

The Lagrangian of (NLP) is the following function L : R" x R™ — R,

L(x,\) = f(z) + Z Aigi(x)

A; are called Lagrangian multipliers associated to g; constraints.

Intuitively, we associate a penalty term \; that would steer us away from points
with g; > 0, if we try to minimize L(x,\). We can restate the previous result as a
generalization of LP weak duality.

Proposition 4.7

If € Sand A >0, then L(Z, \) < f(T).

Proof:

<0

L@ A) = f@) + Y N a(@) < f(@)

—
=1 >0 <o
O
Now let £(\) = m]'%n L(z, \).
zeR™
It follows that, YA > 0, ¢(\) < z* where z* is optimal value of (NLP).
Thus we get a lower bound for any A > 0.
As in LP duality, we are interested in the best possible lower bound.
So we want ‘o)
max {(A
st. A>0 (LD)

This is called the Lagrangian dual problem.
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Proposition 4.8: Weak duality

If € Sand A > 0, then £(\) < f(T).

Example:

min ¢’z

st. Arxr<b << Az —-b<0
Then f(z) =Tz, gi(x) =alx —b;, Vi=1,...m
Lz, A) = f(z) + Z Aigi(z)

i=1

= CTI + Z )\Z((IZTCC — bz>

i=1

= (CT + i )\ﬂl?) T — i )\,bz
=1 =1

Then .
(N = min L(z, \)
~min (" + 30 Nal e — D00 Aibs
st zxeR”
) =00, if (74>, Nal) #0
=S A, i (T AaT) =0
Then
—ST b, T
max  (()) tnax 2 iz Aibi max by
+ -~ T3 T =y T T
'+ hal =0 y"A=c
s.t. A>0 s.t. A>0 s.t. <0
Example:
min  (z; — 1)? + (23 — 1)?
{
T+ 2.%2 —1 < 0
s.t.

2![‘1 + Ty — 1 S 0
L(CC, /\) = (ZEl — 1)2 + (CCQ — ].)2 + /\1(1‘1 + 2!)’)2 — 1) + )\2(21’1 —+ x9 — 1)

Check: L(z, A) is a convex function (for a fixed A it is a convex function of x)

Now for ¢(\) = mingegn L(x, \) is achieved when V,L(z,\) =0

L =M —2N
Ao =1+ +20) _ (0 _ =g !
2(1’2—1)+2>\1+>\2 ~\o " —2XA1 — Ao

=y
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2 2

(—2)\1 — )\2)

+)\2(—)\1—2)\2+2+ 5

= —1.25A7 — 1.2505 — 2X\ Mg + 2\ + 2)9
=:{(N)

max {()\) _ max L(z*,\)
st. A>0  st. A>0

4 4
If we set V) L(z*,\) =0, we get \* = (5, 5) with objective value

4\ ? 4\ ? 4 8
(M) = —2. Z) —2(2 4x - =2
(A") 5><<9> <9>+ ><9 9

11 8
And note that z* = (5, §> gives f(z*) = 9’ which gives optimal solution.

4.5 Karush-Kuhn-Tucker Optimality Conditions

Lagrangean dual for problems with equality constraints

For problems of the form,

min  f(z)

l

o g(@) <0, Vi=1...m (NLP)
SUoh@) =0, Vi=1,....p

We can define

m p
i=1 i=1
Here the Lagrangean dual:
max ((A\,v)
st. A>0,veRP

where £(\,v) = min L(z, A\, v). Weak duality still holds for A > 0,v € RP.

reR?

Note
If f,g; are convex, Vi = 1,...,m and h;(x) are affine functions, then (NLP) is a
convex program.

Note
Weak Duality holds regardless if g;, h; are convex.

2 2
L(x*,/\):(ﬂ) +(M) + )\ (¥+1_2/\1_/\2+2_1>

+1_1)
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Example: Least square solutions of linear equations

Suppose we want to find, out of all possible solutions to Az = b, the one with

smallest norm.

min zlx

st. Ar=0>
Lagrangian: L(x,v) = aTz + v (Az —b).

Then ¢(v) = min L(z,v).

zeR™

T ATV
VIL(I,I/)ZO — 22+ A'rv=0 = x:_T

B vT AATY B vTAATY B

= U(v) =— 5 b'v
TAAT
= _¥ — vy
min 2’z
—st. Az =0b

When does Strong Duality Hold?

This is hard to characterize in general, but there are some easily checkable sufficient
conditions.

- (a)

min f(x

st gil2) <0, Vi=1,....m (CVX)
where f,g; are convex Vi =1,...,m.

Slater’s Condition

7 :g:(7) <0, Vi=1,...,m.

That is, there exists a point in the relative interior of the feasible region.

Theorem 4.9

If Slater’s condition holds for (CVX), then IA* > 0 such that

Recall that this was
min f(l‘ ) abuse of notation and

£(A*) = min L(x, \*) = . ~ it is not clear that
( ) 2ERT ( ) ) s.t. gl(x) < 0’ Vi = 17 ) it is not clear tha
Jx* achieving inf.

_min f(x)
WIONS 0t e =0, V=1

and the max is attained at A\*.

For example: min{e " : —z <0} =0, but Az* : e
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Proof:
SKIPPED. m
To derive optimality conditions, suppose we have \*, z* opti. for dual/primal.
((X") = min f(x +ZAgz (x)+;&gz(x) T f(a®)
A* >0, gi(z*
Now if we want strong duality to hold, i.e., we want {(\*) = f(z ) en all above

inequalities must hold at equality.

The first inequality holding as equality implies z* is a minimizer of L(z, \*) for all
x e R™

L(xz,\) = f(:v)—kZm: Nigi(z) = V,L(a",\)=0 = Vf(x —1—2 A Vgi(z*) =

The second inequality holding as equality means a complementary slackness-type
condition, i.e., Afg;(z*) =0 <= AN =0 or g(z*)=0.

Formally, these are the so-called Karush-Kuhn-Tucker (KKT) optimality con-
ditions:

KKT conditions

Theorem 4.10: Necessary opt. conditions

Consider

min f(z)
st gi(x) <0, Vi=1,....m (NLP)

where f, g; are differentiable, Vi =1,...,m

If 2*, \* are optimal to the (NLP) and its Lagrangean dual, respectively, such
that f(z*) = L(x*, \*) = ¢(\*), then KKT conditions hold.

Proof:
Follows from above discussion.

U

Theorem 4.11: Sufficient opt. conditions

Assume that, in addition, the functions g; are convex, Vi = 1,...,m, f is
convex. Then if z*, \* satisfy KKT conditions, z*, \* are optimal for (NLP)
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and its Lagrangean dual, and f(z*) = ¢(\*) = L(z*, \*).

Proof:
Follows similar to necessity proof, using the fact that L(z, A) is a convex function
and thus V,L(z*,\*) =0 = 2" is a minimizer of L(z, \*) over = € R™. O
Note
For problems of the form:

min  f(z)

+

o< Yi=1.m (NLP-EQ)

hi(z) =0, Yi=1,...,p

the KKT conditions are:

KKT

i) gi(z*) <0, Vi=1,...,m
i) hi(z*) =0, Vi=1,...,p
iii) A* >0
iv) AXgi(z*) =0, Vi=1,...,m
V) V(") + 2205 Agia™) + 2, viVhi(z™) = 0

With equality constraint:

o If z* opt for (NLP-EQ), (A\*,v*) opt for its lag. dual and f(x*) = (", )
then KKT holds.

o If f,g1,...,9n are convex and hyq, ..., h, are affine functions, then z*, \*, v*
satisfying KKT = z* opt for (NLP-EQ), A\*, v* opt for its Lag. dual and
flz*) = (N, v*).

Where is Slater’s condition needed in convex programs?

Example:
min =z
st. 22<0

is a convex program with unique feasible solution x = 0 = Slater’s condition
does not hold.

Now z = 0 is optimal. But Vf(z*) + > ", Vg (z*) =14+0=1#0.
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Note
L(z,\) = x + A% and

((\) =minz + \z? = { 0o ! X

1 .
seR —a ifA>0

This problem violates Slater’s condition and Ax*, \* achieving strong duality.
Example:

min 22+ 1

st. (z—2)(z—4)<0
is a convex program (CHECK) and Slater’s condition holds. (z = 3 satisfies it).
Let us try and find KKT points.

Vf(x) =2z, Vgi(x) =22 —6, Vf(x)+ Vg (zx) =22+ (22 —6) =0

.)\1:

2z
6—2x

o \i(z—2)(z—4)

1'22,)\1:2
r=4M=-2 X
N_ 0 (i.e., x = 0), but X

then (z —2)(x —4) =8> 0

Thus point = = 2, \; = 2 satisfies KKT = primal/dual optimal.

When does primal admait an opt. sol?

If feasible region is closed and bounded and f is continuous, then primal has optimal
solution.

Coerciveness

f is coercive if {x : f(z) < a} is bounded Va € R.

TFAE
a) f is coercive

b) f(z) = o as [|z]| = o

Proof:
SKIPPED. O]
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Coercive & Convex

_\\ ________

- _\‘ I\ _/_ ' Coercive & Not convex Convex & Not coercive
vV [ Y

Theorem 4.13

If S — R"™ is nonempty and closed, f : R® — R is continuous and coercive,

then
min  f(z)
st. z €S
has a minimizer.
Proof:
SKIPPED. O

4.6 Summary of NLP results

min  f(z)
st gi(x) <0, Vi=1,...,m

Generic NLP | Generic & diff. | Convex | Convex & diff.
Weak duality. M feas. v v v v
dual, T feas. primal.

— () < f(@)

Slater = d sol. dual X X v v
matching the inf of pri-

mal

If 3 opt. sol to primal X 4 X v

& Dual w/ equal values
= KKT holds

If x, A satisfy KKT X X X v
= fla7) = €\)
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4.7 Algorithms for convex NLPs

Unconstrained case
min  fo(z)
st. zeR"

fo convex, differentiable.

Assumption Opt. Sol exists. — Goal: find z* so that V fo(z*) =0

4.7.1 Descent methods for unconstrained

Iterative methods that start from a feasible point 2° and move from z* to
ok« 2k 4 tFd* for some search direction d¥ € R™, step length t* € R,
Want: fo(z*1) < fo(a®).

Now if we move from x to y then d =y — z.

Now if Vf(z*)T(y — 2*) > 0,Vy = 2" optimal.
So goal is to pick descent d : Vf(z*)Td < 0.

Algorithm 7: General Descent Method

20 e R?

while STOPPING CRITERION NOT SATISFIED do
Find descent direction d*

Choose step size t*
oL gk gk gk

Choosing a step size Several options exist. Here are two common.

a) Exact line search: Solve the 1-D convex minimization problem

t = argmin { fo(z* + sd")}
s>0

b) Backtracking

Algorithm 8: Backtracking

1 Let a € (0,0.5) and § € (0,1)

2 141

3 while fo(z* + td*) > fo(z*) + atV fo(2*)Td* do
a | tept
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Note for ¢ small
f@® 4+ td™) = f(aF) +tV ()T d" < f(2*) + taV F(aF)Td" < f(2*)
So the method terminates with the desired .
Choosing a descent direction

a) gradient descent d* = —V f(zF)

Note
Using exact line search, or backtracking

fa®) —p* < F(f(°) —pY)

where p* is opt. value and c is a constant in (0, 1). (we will not prove this)

b) Newton method

If V2fy(z) is positive definite, \¥ = —V2 () 71V fo (2F)
Note

V fola®)Tdb = =V fo(z*)TV2 fo(a") 7'V fo(z*) < 0

Remark:
M is positive definite = M is invertible and M~ is positive definite

— Faster convergence

These are just two examples. There are lots of other variations/methods, each with
pros/cons.

4.7.2 Methods for constrained problems

Consider @)
. _ min fo(z
© 7 st filx) <0, Vi=1,....,m (CVX)
where f; are convex, twice differentiable, Vi =0,... ,m
Assumptions

e Jan opt. sol. to (CVX)

e Slater’s condition holds

Idea (CVX) is equivalent to:

m

min fo(z) + Z I_(fi(z))

i=1
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where I; : R — RU {oo}

Problem [_ is non differentiable & highly intractable.

Consider

¢

which is a convex function (check!)

— (1) log(—u), for ¢ >0

Y =05
— (=1
u
/—1

This function tries to approximate I_, but has the advantage of being differentiable
& convex. — Solve unconstrained min:

min fy(z +Z ()log fi(z))

Solving this problem for ( > 0 ensures that we get a feasible point since obj, fct.
goes to +00 as we approach f;(z) = 0.

Note
Unconstrained method can be made to work over the domain of the function.

Define ¢(x) := — > log(— fi(z)) which is called the log-barrier function.

We will solve min ¢ fo(x) + ¢(x) for increasing values of (.

Note
In principle, one can just solve min ( fo(x) + ¢(x) for one vert large (. — Com-
putationally is bad — Numerical issues!

Note
We are using the scaled version of the objective function, for later convenience.
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Algorithm 9: Barrier Method
Let 2° be such that fi(2°) <0, Vi=1,...,m
Let (°>0. u>1,e>0
k1
while Stopping criterion not satisfied do
Let 2*(¢*) < argmin ¢* fo(x) + ¢(z) // can be computed by descent

method starting at F1

2%« 2%(¢)
¢* = ugt!

Consider, for ¢ > 0.

z"(¢) + argmin ( fo(x) + ¢(x)

Intuition As ( — 0, it starts becoming more important to be as far away from
fi(z) = 0 as possible. So points tend to go towards the “center” of feasible region.

As ( — oo, it starts becoming more important to minimize f, and z*(¢) tends to
get closer to opt. sol.

—C

~

x*(10)

What are properties of x*(¢)?
e fi(z*(¢)) <0, Vi=1,....m
o (Vo(z*(¢)) + V(2" (¢)) = 0
= (Vfo(a*(()) + ;—_ fi(x*(g))wz( (€)=0
1

Now define A} (¢) = @0 Vi=1,...,m
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Note A*(¢) > 0. Then

Viola +ZA* )V fi(a*(0)) = 0

— 2*(() is a minimizer ofn{;(x, X)) = folz) + 27, A(0) fil=)
= g(A"(Q)) = fo(z"(C)) — 7

In other words: fo(z*(¢)) — g(A*()) = % and since g(\*) < z*

— f(2*(0) — 2* < f(27(Q)) — g(A(Q)) = %

i.e., 2*({) is not too far from optimal and as ( — oo, x*(() converges to the optimal
solution.

Interpretation as KKT

Note that 2*(¢) and \*(¢) satisfy:
D fi(2"(Q) <0, Vi=1,....m
i) A*(¢) =0
i) A (Qfi(a* () =¢ Vi=1,....m
iv) Vfo(z*(C)) + 225 A (QV fi(z*(¢)) = 0

which are almost KKT conditions and as ( — oo, become KKT.

Note
e This method can be adapted to deal with affine constraints Ax = b.

e It can be used for LPs. In particular, it performs reasonably well, outper-
forming simplex in dense LPs.

e Drawback
— Does not give BFS. (Bad for cutting plane)
— Gives usually dense solutions.




Conic Optimization

Let K be a closed convex cone. We will consider the following optimization problem

min ¢’
+
- Ar— b (Con)
o rxeK
Sometimes also represented as:
min ¢’
+
Axr =10
s.t.
Xz EK 0

It is trivial to see (Con) is a convex optimization problem, i.e., the feasible region is
convex and also the objective function.

Now for K = {x : z > 0}, i.e., non-negative orthant' (Con) is just LP.
Other cones:

e Second-order cone: K = {a: cwp >\ rE 4+ x%}

€3

g

T2

From wiki: In geometry, an orthant or hyperoctant is the analogue in n-dimensional Euclidean
space of a quadrant in the plane or an octant in three dimensions.

90
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(Con) is called Second-Order cone program.
e Semidefinite cone.

Let M (z) be the symmetric k X k matrix whose upper triangular submatrix is

I ) e T
Trpt1 -+ T2k-1
Tn

K = {x: M(x) is PSD} i.e., y' M(z)y > 0,Vy € RF

— This assumes n has a certain dimension, w.r.t. k.
(Con) is called a semi-definite program.

Example:
min 2z + x5 + 23
' (LP)
st 1+ Tg+ X3 = 1
x>0

min 21’1 + o + T3

!

L mtmtm=1 (80CP)
Tom > Jad 4 a2

min 2z 4+ x5 + 23

d

s.t. (ZL‘l ZL‘Q) t 0
T2 T3

Given K C R", a closed convex cone. The dual cone is
K ={yeR":y"x >0,Vr € K}
Note

All cones mentioned above are self dual, i.e., K = K*. (we will not prove this)

5.1 Lagrangian

Lagrangian: L(x,y,p) = cTay? (b — Az) — p''x

y'b, ifc— ATy —pu=0

9(y, ) = min L(z,y, u) = .
x —o00, otherwise
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Now, Yy € R™, Vu € K*, T feasible for (Con).

gy, p) < 'z +y"(b— A7) —

Lagrange dual:

max y’b
max g(y,pu) = st. p=c—Aly
y,MeK e K*

Note that writing KKT using L(z,y, 1), we get:

i) r € K, Ax = Primal feas.

i) pe K* Dual feas.
i) plx Complementary slackness <= (¢ — ATy)Tz =0
iv) VoL(z,y,pu) =0 <= ' —yTA— " =0 <= p=c— ATy

Weak duality

max y’b
st. c—ATye K*

92

(D)

Dual feas.

Theorem 5.1

Let
min ¢’z
zf=st. Ax=0b> , d =
ze K

max bly

c— ATy € K*

then d* < z* and if both are strictly feasible, then:

e d* = z* and both values are attained.

e (z,y) are primal/dual opt <= KKT conditions hold.

Proof:
SKIPPED.

Note
Strict feasible:

e Primal: 37 : AT = b,T € int(K)

e Dual: 3y : ¢ — ATy € int(K*)

This is yet another way to generalize LPs. Leads to algorithms to solve (Con).

5.2 Connections to IP

SDP relaxations of some IPs.
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5.2.1 Max-cut problem

Give G = (V,E),c.,Ve € E. Find @ # S C V maximizing ) ) Ce-

S
0(5)
We can formulate as:

max Y ..pCele
i

yu+yv§2_xuv7 Yuv € E
ot 1—y)+ 1 —yy) <2—124, Yww eFE
7y, €{0,1}, Yve E

'T(i E {07 1}7 \V/G 6 E

1 represents v € S

Above, y, = { and ., =1 <= e € 4(9)

0 represents v € S

Alternative:

Yo = —1 = uv € §(9)
Yulp = 1 = uv & §(S)

S e = Z#'Cuv

e€d(S) u,veV
uFv

Then

So to get max-cut, it suffices to solve

min ZUWEV YuYovCuv
UFAV

st. oy, €{-1,1}, YueV

Defining ¢, = 0, we get
min Zu,vEV YulYvCuv
st. yi=1 YueV

This is NP-Hard to solve, but we can relax asa follows:

Consider Y = yy? € R,
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Note Y, = y? and Y,, = yu¥,. And note Vw € RY,
w'Yw = (w'y)(y"w) = (w'y)* >0 = Y =0
So we can write equivalently.

min ZuEV ZveV CuvTuw

St Ty =1, YueV
Tuw = Tou, Yu,v €V
Lo >0

Ly = YulYv, VU, veV
Yy € {—1,1}

Eliminating the last two constraints gives an SDP which is a relaxation — gives a

lower bound for MAX-CUT.

Note
Geomans & Williamson gave an SDP-based randomized that gives the best ap-
prox. alg. for Max-Cut (= 0.87)

— gives rise to alternative approaches to solve NP-Hard optimization problems.
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