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Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of CO 255 during Winter 2020 as well as other re-
lated resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email viahttps://notes.sibeliusp.com/contact/.

You can �nd my notes for other courses onhttps://notes.sibeliusp.com/.
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1
Introduction

Given a setS, and a function f : S ! R. An optimization problem is:

max f (x)
s:t :|{z}

subject to

x 2 S (OPT)

� S feasible region

� A point x 2 S is a feasible solution

� f (x) is objective function

(OPT) means: \Find a feasible solutionx � such that f (x) � f (x � ); 8x 2 S"

� Suchx � is an optimal solution

� f (x � ) is optimal value

Other ways to write (OPT):

maxf f (x); x 2 Sg

max
x2 S

f (x)

Analogous problem
min f (x)
s.t. x 2 S

Note
max f (x)
s.t. x 2 S = � 1

�
min � f (x)
s.t. x 2 S

�

Problem x � may not exist

3



4 CHAPTER 1. INTRODUCTION

a) Problem is unbounded:

8M 2 R; 9x 2 S; s:t : f (x) > M

b) S = ∅, i.e. (OPT) is INFEASIBLE

c) There may not existx � achieving supremum.

Example:
max x
s.t. x < 1

supremum

supf f (x) : x 2 Sg =

8
><

>:

+ 1 if OPT unbounded
�1 if S = ∅
minf x : x � f (x); 8x 2 Sg otherwise

always exist and are well-de�ned

in�mum

inf f f (x) : x 2 Sg = � 1 � supf� f (x) : x 2 Sg

From this point on, we will abuse notation and say maxf f (x) : x 2 Sg is supf f (x) :
x 2 Sg.

One way to specify that I want an opt. sol. (if exists) is

x � 2 argmaxf f (x) : x 2 Sg



2
Linear Optimization (Programming)
(LP)

S = f x 2 Rn : Ax � bg

whereA 2 Rm � n ; b2 Rm and f (x) = cT x; c 2 Rn .

#

max cT x
s.t. Ax � b (LP)

Note

A =

0

@
j j

A1 � � � An
j j

1

A A =

0

B@
� aT

1 �
...

� aT
m �

1

CA

Clarifying
u; v 2 Rn ; u � v () uj � vj ; 8j 2 1; : : : ; n

Note
u 6� v is not the same asu > v

�
1
0

�
6�

�
0
1

�

Example:
max 2x1+ 0 :5x2

s:t : x1 � 2
x1+ x2 � 2

x � 0

� Strict ineq. not allowed

5



6 CHAPTER 2. LINEAR OPTIMIZATION

halfspace, hyperplane, polyhedron

Let h 2 Rn ; h0 2 R.

f x 2 Rn : hT x � h0g is a halfspace .

f x 2 Rn : hT x = h0g is a hyperplane .

Ax � b is a polyhedron (i.e. intersection of �nitely many halfspaces).

Example:
n products, m resources. Producingj 2 f 1; : : : ; ng given cj pro�t/unit and
consumesaij units of resourcei , 8i 2 f 1; : : : ; mg. There are bi units available
8i 2 f 1; : : : ; mg.

max
nX

j =1

cj x j

s:t :
nX

j =1

aij x j � bi ; 8i = 1 ; : : : ; m

x � 0

which is an LP.

2.1 Determining Feasibility

Given a polyhedron
P = f x 2 Rn : Ax � bg

either �nd x 2 P or showP = ∅.

Idea In 1-d, easy. ! Reduce problem in dimensionn to one in dimensionn � 1.

Notation Let S = f (x; y) 2 Rn � Rp : Ax + Gy � bg, then

projx S := f x 2 Rn : 9y so that (x; y) 2 Sg

is the (orthogonal) projection if S onto x.

projx S x

y

S
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We will �nd if P = ∅ by looking at projx1 ;:::;x n � 1
(P)

2.2 Fourier-Motzkin Elimination

Call aij entries ofA. Let

M := f 1; 2; : : : ; mg
M + := f i 2 M : ain > 0g
M � := f i 2 M : ain < 0g
M 0 := f i 2 M : ain = 0g

For i 2 M + :

aT
i x � bi ()

nX

j =1

aij x j � bi ()
n � 1X

j =1

aij

ain
x j + xn �

bi

ain
; 8i 2 M + (1)

For i 2 M �

aT
i x � bi ()

n � 1X

j =1

aij

ain
x j � xn �

bi

� ain
; 8i 2 M � (2)

For i 2 M 0

aT
i x � bi ()

n � 1X

j =1

aij x j � bi ; 8i 2 M 0 (3)

P = f x 2 Rn : (1)(2)(3)g

De�ne
n � 1X

j =1

�
aij

ain
�

akj

akn

�
x j �

bi

ain
�

bi

akn
; 8i 2 M + ; 8k 2 M � (4)

Theorem 2.1

(x1; : : : ; xn � 1) satis�es (3), (4) () 9 xn : (x1; : : : ; xn ) 2 P

Proof:
( = If ( x1; : : : ; xn ) satis�es (1), (2), (3) then (x1; : : : ; xn � 1) satis�es (3) and

adding (1), (2) =) (x1; : : : ; xn � 1) satis�es (4)

=) If ( x1; : : : ; xn � 1) satis�es (4)
n � 1X

j =1

aij

ain
x j �

bi

ain
�

n � 1X

j =1

akj

akn
x j �

bk

akn
; 8i 2 M + ; k 2 M �

Let

xn := max
i 2 M +

(
n � 1X

j =1

aij

ain
x j �

bi

ain

)
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=)
n � 1X

j =1

aij

ain
x j �

bi

ain
� � xn ; 8i 2 M +

and

� xn �
n � 1X

j =1

akj

akn
x j �

bk

akn
; 8k 2 M �

=) (x1; : : : ; xn ) 2 P

Note
Proof assumesM + ; M � are nonempty. But statement holds regardless.

(if M + or M � = ∅ then (4) yields no constraints)

Algorithm 1: Fourier-Motzkin
1 An = A; bn = b
2 given A i ; bi obtain A i � 1; bi � 1 (A i � 1 has one less column thanA i column than

A i ) by applying the steps described

Pi := f x 2 Ri : A i x � bi g

then
Pi � 1 = proj x1 ;:::;x i � 1

Pi

3 Keep applying projection until i = 1.

P0 = ∅ () Pn = P = ∅

Let
Pn

i = Pi � Rn � i = f x 2 Rn (A i ; 0)x � bi g

not hard to seePn
i = ∅ () Pi = ∅

Notice that
P0 = ∅ () Pn

0 = ∅; Pn
0 = f 0 � b0g

Example:

P2 =

8
>><

>>:
x 2 R2 :

x1 +2x2 � 1
� x1 � 0

� x2 � � 2
� 3x1 � 3x2 � � 6

9
>>=

>>;

draw the graph, clearly empty

M + : 1
2x1 + x2 � 1

2

M � : � x2 � � 2 � x1 � x2 � � 2
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M 0: � x1 � 0

P1 =

8
>>>><

>>>>:

x1 2 R :

� x1 � 0

1
2x1 � � 3

2

� 1
2x1 � � 3

2

9
>>>>=

>>>>;

M + : x1 � � 3

M � : � x1 � 0 and � x1 � � 3

P2
0 =

(

x 2 R2 :
0 � � 3
0 � � 6

)

= ∅

Here b0 =
� � 3

� 6

�

Remark:
Inequality in Pn

i :

� All inequalities are obtained by a nonnegative combination of inequality in
Pn

i +1
=) all nonnegative combination of inequalities inP .

� If all A; b are rational then so are allA i ; bi

� If b= 0 ; bi = 0 ; 8i

Theorem 2.2: Farkas’ Lemma

P = f x 2 Rn : Ax � bg = ∅ () 9 u 2 Rm :
uT A = 0
uT b < 0
u � 0

Proof:
( ( = ) Supposex satis�es Ax � b.

0 = uT Ax � uT b < 0

which is impossible.

( =) ) If P = ∅. Apply Fourier-Motzkin until we get

Pn
0 = ∅ = f x 2 Rn : 0x � b0g

i.e. there existsj for which b0
j < 0.

If we look at corresponding constraint inPn
0 is

0T x � b0
j
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which can be obtained by a vectoru such that uT A = 0 ; uT b= b0
j ; u � 0.

Farkas’ Lemma (alternate statement)

Exactly one of the following has a solution:

a) Ax � b

b)
uT A = 0
uT b < 0
u � 0

Farkas’ Lemma (Di�erent Form)

Exactly one of the following has a solution:

a)
Ax = b

x � 0

b)
uT A � 0
uT b < 0

Proof:
(Sketch)

P =

(

x :
Ax = b

x � 0

)

=

8
>>>><

>>>>:

x :

0

@
A

� A
� I

1

A

| {z }
A 0

x �

0

@
b

� b
� 0

1

A

| {z }
b0

9
>>>>=

>>>>;

Apply original Farkas’ Lemma to getP = ∅ () 9 u1 2 Rm ; u2 2 Rm ; v 2 Rn :

uT
1 A � uT

2 A � v = 0
uT

1 b � uT
2 b < 0

u1; u2; v � 0

Let u = ( u2 � u2)

uT A � v = 0 = ) uT A � 0; uT b < 0

Consider a linear programming (LP):

max cT x
s.t. Ax � b (LP)
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Theorem 2.3: Fundamental Theorem of Linear Programming

(LP) has exactly one of 3 outcomes:

a) Infeasible

b) Unbounded

c) There exists an optimal solution.

Proof:
Let’s assume a), b) don’t hold.

If n = 1, then (LP) has an optimal solution. (Why?)

Else, de�ne
max z

s.t. z � cT x � 0
Ax � b

(LP’)

(LP’) is also not in case a) or b). (Why?)

Also if (x � ; z� ) is an optimal solution to (LP’), then x � is an optimal solution to
(LP). (Why?)

Apply Fourier-Motzkin to
(

(x; z) :
z � cT x � 0

Ax � b

)

Until we are left with a polyhedron

f z 2 R : A0z � b0g

Now max z
s.t. A0z � b0 is not cases a) or b). (Why?)

! can get an optimal solutionz� to such problem. Apply Fourier-Motzkin back
to get (x � ; z� ) optimal solution to (LP’). (Why?)

2.3 Certifying Optimality

max cT x
s.t. Ax � b (LP)

and let x 2 P = f x : Ax � bg

Question Can we certify that x is optimal?
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Example:
max 2x1 + x2

s:t :
x1 + 2x2 � 2
x1 + x2 � 2
x1 � x2 � 0:5

Considerx = (0 ; 1)T is clearly NOT optimal.

x � = (1 ; 0:5)T and cT x � = 2 :5. Any feasible solution satis�es

x1 + 2x2 � 2 � 1=3
x1 + x2 � 2 � 1

+ x1 � x2 � 0:5 � 2=3
2x1 + x2 � 3

Instead do 1� 1st constraint + 1 � 3rd constraint =) 2x1 + x2 � 2:5

In general:
x1 + 2x2 � 2 � y1

x1 + x2 � 2 � y2

+ x1 � x2 � 0:5 � y3

(y1 + y2 + y3)x1 + (2 y1 + y2 � y3)x2 � 2y1 + 2y2 + 0 :5y3

As long asy1; y2; y3 � 0 and

y1 + y2 + y3 = 2
2y1 + y2 � y3 = 1

This leads to the following linear program:

min 2y1 + 2y2 + 0 :5y3

s:t:
y1 + y2 + y3 = 2

2y1 + y2 � y3 = 1
y1; y2; y3 � 0

This is called the dual LP.

In general:
max cT x
s.t. Ax � b (P)

Dual of (P)
min bT y

s.t. yT A = cT

y � 0
(D)



2.3. CERTIFYING OPTIMALITY 13

Remark:
We call (P) primal LP.

Theorem 2.4: Weak Duality

Let x feasible for (P),y feasible for (D). ThencT x � bT y.

Proof:
cT x = yT (Ax) � yT b

where we usedAx � b and y � 0.

Corollary 2.5

Several results:

� If (P) is unbounded then (D) is infeasible.

� If (D) is unbounded then (P) is infeasible.

Note
(P) and (D) can both be infeasible.

� If x is feasible for (P)y feasible for (D) cT x = bT y, then x optimal for
(P), y optimal for (D).

Theorem 2.6: Strong Duality

x � is optimal for (P) () 9 y� feasible for (D) such thatcT x � = bT y� .

Proof:
( ( = ) X

( =) ) Is (D) infeasible?

Suppose

(

y 2 Rn :
AT y = c

y � 0

)

= ∅

(Alternate version of Farkas’ Lemma)9u :
uT AT � 0

uT c < 0
() 9 d :

Ad � 0
cT d > 0

Take look at x0 = x � + d, then

Ax 0 = Ax � + Ad � b
cT x0 = cT x � + cT d > cT x �

Contradiction. Thus (D) has an optimal solutiony� .

Now let  = bT y� , and let � :=

(

x 2 Rn :
Ax � b

� cT x � � 

)

.
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If � = ∅, by Farkas’

9
�

y
�

�
:

8
>>>>>>>>>>><

>>>>>>>>>>>:

�
y
�

� T �
A

� cT

�
= 0

�
y
�

� T �
b

� 

�
< 0

�
y
�

�
� 0

()

AT y = c�
bT y <  �
y � 0
� � 0

Case 1: � > 0.

Let y0 =
y
�

. Then we have

AT y0 = AT y
�

= c and bT y0 = bT y
�

<  and y0 =
y
�

� 0

Contradicts optimality of y� .

Case 2: � = 0. Then
AT y = 0
bT y < 0
y � 0

Now we can do the same thing previously. Lety0 = y� + y, then

AT y0 = AT y� + AT y = c

and
y0 = y� + y � 0

bT y0 = bT y� + bT y < bT y�

Contradicts optimality of y� .

Thus � 6= ∅.

Let x 2 � ,
cT x � �|{z}

weak duality

bT y� =  �|{z}
x2 �

cT x � cT x �

where the last inequality is becausex feasible for (P),x � optimal for
(P).

2.4 Possible Outcomes

See here.

https://notes.sibeliusp.com/pdfs/1189/co255.pdf#page=21
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2.5 Duals of generic LPs

max 2x1 + 3x2 � 4x3

s.t.

x1 +7x3 � 5
2x2 � x3 � 3

x1 + x3 = 8
x2 � 6

x1 � 0
x2 � 0

max (2; 3; � 4)x

s.t.

0

BBBBBBBB@

1 0 7
0 � 2 1
1 0 1

� 1 0 � 1
0 1 0

� 1 0 0
0 1 0

1

CCCCCCCCA

x �

0

BBBBBBBB@

5
� 3
8

� 8
6
0
0

1

CCCCCCCCA

and dual

min (5; � 3; 8; � 8; 6; 0; 0)y

s.t.

0

@
1 0 1 � 1 0 � 1 0
0 � 2 0 0 1 0 1
7 1 1 � 1 0 0 0

1

A y =

0

@
2
3

� 4

1

A and y � 0 (D1)

min (5; � 3; 8; � 8; 6)y

s.t.

0

@
1 0 1 � 1 0
0 � 2 0 0 1
7 1 1 � 1 0

1

A y
�
�
=

0

@
2
3

� 4

1

A and y � 0 (D2)

Claim (y�
1; : : : ; y�

5) is optimal for (D2) () (y�
1; : : : ; y�

5; y�
6; y�

7) optimal for (D1)
with

y�
6 = y�

1 + y�
3 � y�

4 � 2
y�

7 = 3 � (� 2y�
2 + y�

5)

min (5; 3; 8; 6)y

s.t.

0

@
1 0 1 0
0 2 0 1
7 � 1 1 0

1

A y
�
�
=

0

@
2
3

� 4

1

A and y1 � 0; y2 � 0 y4 � 0 (D3)
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Claim Opt value of (D2) and (D3) are same.

In general

max cT x

s.t.
Ax?b

x?0
(P )

min bT y

s.t.
AT y?c

y?0
(D )

2.5.1 Cheat Sheet

Here or

Primal (max) Dual (min)

Constraint
� � 0

Variable� � 0
= free

Variable
� � 0

Constraint� � 0
free =

Remark:
This is not symmetric... The way you can remember it is by thinking natural
variables in real life, like you cannot have negative number of cars and so on...

Q What if you start with a minimization LP as primal?

Example:

min x1 � x2

s.t.

2x1 + 3x2 � 5
x1 � x2 � 3
x1 + 5x2 = 7
x1 � 0; x2 � 0

(P)

Rewrite as:

� 1 �

0

@
max � x1 + x2
#
s.t. : : :

1

A

Will lead to �nding dual:

max 5y1 + 3y2 + 7y3
#

s.t.
2y1 + y2 � 1
3y1 � y2 + 5y3 � � 1
y1 � 0; y2 � 0; y3 free

Also

� Weak duality holds.

https://notes.sibeliusp.com/pdfs/1189/co255.pdf
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If x feasible for (P),y feasible for (D), thencT x � bT y.

� Strong duality holds

Note
The dual of the dual of (P) is (P).

Example:
Given a simple undirected graphG = ( V; E). M � E is a matching if every
vertex v 2 V is incident to � 1 edge inM .

See examples of matching in CO 342 or MATH 249.

Max cardinality matching

Find matching M with largest jM j.

De�ne xe =

(
1; if e 2 M
0; otherwise

.

max
X

e2 E

xe

#

s.t.

X

e2 � (v)

xe � 1; 8v 2 V

0 � xe; 8e 2 E

where � (v) = set of edges inE incident to v.

min
X

v2 V

yv

#

s.t. yu + yv � 1; 8e = uv 2 E
y � 0

2.6 Other interpretations of dual

Example:
Resources

Per unit Pro�t Per unit consumption
A B

Product 1 5 2 3
2 3 4 1

Available Resources 15 10

https://notes.sibeliusp.com/pdfs/1195/co342.pdf
https://notes.sibeliusp.com/pdfs/1189/math249.pdf
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max 5x1 + 3x2
#

s.t.
2x1 + 4x2 � 15
3x1 + x2 � 10
x � 0

Suppose somebody wants to buyA; B from me. What is the lowest price I should
ask?

Let yA ; yB be prices:
min 15yA + 10yB
#

s.t.
2yA + 3yB � 5
4yA + yB � 3
y � 0

Example: Zero-Sum
Alice, Bob play game. A:m choices. B:n choices. Alice playi , Bob plays j , Bob
pays AliceM ij dollars.

Alice
R P S

Bob
R 0 1 -1
P -1 0 1
S 1 -1 0

Zero-sum: Amount won by Alice - Amount won by Bob = 0

Let y 2 Rm
+ , Alice’s probability distribution.

Let x 2 Rn
+ , Bob’s probability distribution.

Expected Amount Bob pays Alice:

mX

i =1

nX

j =1

yi M ij x j = yT M x

P =
�

x 2 Rn :
P

x j = 1
x � 0

�

Q =
�

y 2 Rm :
P

yi = 1
y � 0

�

Alice wants max
y2 Q

�
min
x2 P

yT M x

�
. Bob wants min

x2 P

�
max
y2 Q

yT M x

�
.
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Supposey 2 Q is �xed. Bob’s problem is

min
x2 P

yT M x =

min
nX

j =1

 
mX

i =1

M ij yi

!

x j

#

s.t.

nX

j =1

x j = 1

x � 0

This is equivalent to picking smallest number in
(

mX

i =1

M ij yi

) n

j =1

=) max
y2 Q

min
x2 P

yT M x = max
y2 Q

8
<

:

max u
#
s.t. u � yT Mej ; 8j = 1 ; : : : ; n

9
=

;

=

max u
#

s.t.
u � yT Mej ; 8j = 1 ; : : : ; n
yT = 1
y � 0

Similarly Bob’s problem:

min v
#

s.t.
v � eT

i M x ; 8i = 1 ; : : : ; m
xT = 1
x � 0

There arex � ; y� for which strategy values match! Nash’s Equilibrium.

Now get back to Farkas’ Lemma Theorem 2.2.1

Proof:
max 0T x
#
s.t. Ax � b

(P)

min bT u
#

s.t. uT A = 0
u � 0

(D)

(D) is always feasible (u = 0).

1Rephrase it a little bit: Exactly one of the two has a solution (i) Ax � b (ii) uT : : :.
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If 9x : Ax � b, x optimal for (P) = ) optimal for (D) has value 0.
=) 6 9u satisfying (ii).

And the converse is also true.

2.7 Complementary Slackness (C.S.)

Let x � ; y� be feasible for primal and dual respectively.

Complementary Slackness

Abbreviated as C.S.

i) Either x �
j = 0 or corresponding dual constraint is tight at y� , 8j =

1; : : : ; n.

ii) Either y�
i = 0 or corresponding primal constraint is tight at x � , 8i =

1; : : : ; m.

Example:

min x1 � x2
#

s.t.

2x1 + 3x2 � 5
x1 � x2 � 3
x1 + 5x2 = 7
x1 � 0; x2 � 0

(P)

max 5y1 + 3y2 + 7y3
#

s.t.
2y1 + y2 + y3 � 1
3y1 � y2 + 5y3 � � 1
y1 � 0; y2 � 0

(D)

i) x �
1 = 0 OR 2y�

1 + y�
2 + y�

3 = 1
x �

2 = 0 OR 3y�
1 � y�

2 + 5y�
3 = � 1

ii) y�
1 = 0 OR 2x �

1 + 3x �
2 = 5

y�
2 = 0 OR x �

1 � x �
2 = 3

y�
3 = 0 OR x �

1 + 5x �
2 = 7

Theorem 2.7

Let x � ; y� be feasible for primal/dual respectively. TFAEa

a) x � opt for primal AND y� opt. for dual

b) Obj. value of x � = Obj. value of y�
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c) x � ; y� satisfy C.S.
athe following are equivalent

Proof:
a) () b) done.

b) () c) Proof for
max cT x
#

s.t. Ax � b
x � 0

min bT y
#

s.t. AT y � c
y � 0

Note

AT y � c ()
mX

i =1

aij yi � cj ; 8j = 1 ; : : : ; n

cT x � =
nX

j =1

cj x �

�
nX

j =1

 
mX

i =1

aij y�
i

!

x �
j

=
mX

i =1

 
nX

j =1

aij x �
i

!

y�
i

�
mX

i =1

bi y�
i = bT y�

where �rst and second inequalities come fromx � 0; y � 0 respec-
tively.

(b) cT x � = bT y� () C.S. holds. (Just play with some strict in-
equality conditions)

Example:

max x1 + x2
#
s.t. x1 + x2 � 1

min y
#

s.t.
y = 1
y = 1
y � 0

Consider a pairx � = (0 ; 0); y� = 1 which violates CS.
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2.7.1 Geometric Interpretation of C.S.

max cT x
#
s.t. Ax � b

min cT y
#

s.t. AT y = c
y � 0

A =

0

B@
� aT

1 �
...

� aT
m �

1

CA

C.S saysaT
i x � = bi or y�

i = 0.

AT y = c =)

0

@
j j j

a1 a2 � � � am
j j j

1

A y = c =)
mX

i =1

ai yi = c

C.S. saysc is a nonnegative combination of tight constraint atx � .

Example:
max 2x1 + 0 :5x2
#

s.t.

x1 � 2
x2 � 2
x1 + x2 � 3
x1; x2 � 0

1 2 3

1

2

3

c

objective function
cannot be improved

x �

Not Optimal

x1

x2
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Theorem 2.8

max cT x
#
s.t. Ax � b

(P)

is unbounded i� (P) is feasible and9d 2 Rn : cT d > 0
Ad � 0 .

Proof:
=) ) Let x feasible for (P),x + �d is also feasible for (P)8� � 0.

cT (x + �d ) can be made arbitrary large.

( = ) Hard exercise but doable.

2.8 Geometry of Polyhedra

line segment

x; y 2 Rn the line segment betweenx; y is
�

x 2 Rn : x = � x + (1 � � )y
for some� 2 [0; 1]

�

convex set

S is a convex set if8x; y 2 S, line segment betweenx; y is contained inS.

Example:

NOT a convex set

Polyhedra are convex sets.P = f x : Ax � bg. x; y 2 P then

A( �|{z}
� 0

x + (1 � � )
| {z }

� 0

y) � �b + (1 � � )b= b
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convex combination

Given x1; : : : ; xk 2 Rn . We sayx is a convex combination ofx1; : : : ; xk if 9� :

x =
kX

i =1

� i x i

1 =
kX

i =1

� i

� � 0

Optimal solution seems to be happen at \corners".

Let P be a polyhedronP = f x 2 Rn : Ax � bg.

vertex

x is a vertex ofP if 9c: x is unique optimal solution to

max cT x
s.t. Ax � b

extreme point

x is an extreme point ofP if @u; v 2 P n f xg such that x is in line segment
betweenu; v.

basic feasible solution

x 2 P is a basic feasible solution ofP if there aren linearly independent tight
constraints at x.

Note
Constraints

aT
i x � bi ; 8i = 1 ; : : : ; m

are linearly independent iff ai gm
i =1 are linearly independent.

Theorem 2.9

Let x 2 P . TFAE:

a) x is a vertex ofP .

b) x is a basic feasible solution ofP .

c) x is a extreme point ofP .
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Proof:
a) =) c) Suppose9u; v 2 P n f xg such that

x = �u + (1 � � )v

for some� 2 (0; 1). Considerc for which x is an optimal solution to

max cT x
s.t. x 2 P

=) cT x � cT u
cT x � cT v

and

cT x = �|{z}
� 0

cT u + (1 � � )
| {z }

� 0

cT v � �c T x + (1 � � )cT x = cT x

=) cT u = cT v = cT x

=) x NOT a vertex.

c) =) b) Supposex is not a BFS. Let I � f 1; : : : ; mg be the index set of tight
constraint at x. Consider

aT
i d = 0 ; 8i 2 I (� )

But since x not BFS, 9d 6= 0 satisfying (� ).a

x(� ) = x + � d

aT
i x(� ) = aT

i x � bi ; 8i 2 I

aT
i x(� ) = aT

i x
|{z}
<b i

+ �aT
i d � bi ; 8i 62I

which is satis�ed if j� j is small enough.

x(� ) 2 P if j� j is small enough.

But then
x =

1
2

x(� ) +
1
2

x(� � )

b) =) a) Let I � f 1; : : : ; mg index set of tight constraint at x.

De�ne
c :=

X

i 2 I

ai

Then 8x 2 P
cT x =

X

i 2 I

aT
i x �

X

i 2 I

bi

And
cT x =

X

i 2 I

aT
i x =

X

i 2 I

bi
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=) x is optimal solution to

max cT x
s.t. x 2 P (�� )

If x0 2 P is optimal solution to (�� ), then

aT
i x0 = bi ; 8i 2 I (� � � )

But since there aren linear independent constraints inI , x is unique
solution to (� � � ). =) x0 = x.

aby Rank-Nullity Theorem.

Q When doesP have extreme points?

line

Let x; d 2 Rn , d 6= 0. The set

f x 2 Rn : x = x + �d for some� 2 Rg

is called a line.

x

d

We say a polyhedronP has a line if9x; d has a line if9x; d s.t. x 2 P;d 6= 0 and

f x 2 R : x = x + � d for some� 2 Rg � P

P

x

Proposition 2.10

P = f x 2 Rn : Ax � bg has a line i� P 6= ∅ and 9d 6= 0 such that Ad = 0

() P 6= ∅ and rank(A) < n

Proof:
Exercise.
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Theorem 2.11

P = f x 2 Rn : Ax � bg has an extreme point

() P 6= ∅ and P has no lines.

Proof:
Exercise.

pointed polyhedron

A non-empty polyhedron is called pointed if it has no lines.

Note
not pointed does not imply bounded. For example, inR2, x � 0 and y � 0.

Theorem 2.12

Let P 6= ∅ pointed polyhedron. Ifmax cT x
s.t. x 2 P (LP) has an optimal solution,

it has an optimal solution that is an extreme point.

Proof:
Let x be an optimal solution to (LP) with largest number of linear independent
tight constraints.

Suppose there are� n � 1 linear independent tight constraints atx.

Pick d 6= 0 such that aT
i d = 0 ; 8i 2 I , whereI is the index set of tight constraints.

By the exact same argument as before,x � � d 2 P for � small enough. But

cT (x � � d) = cT x � �cT d

=) cT d = 0
=) cT d(x � �d) = cT x

x

d

�

� �

SinceP is pointed, 9� for which

x � � d 2 P

and one of them not inP if j� j > � . That can only happen if

aT
k (x + � d) = bk or aT

k (x � � d) = bk

for somek 62I .
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=) aT
k d 6= 0 ; =) ak is linear independent fromf ai gi 2 I since non-zero cannot

be linear combination of zeros. Contradiction to choice ofx.

2.9 Simplex Algorithm

Standard Equality Form

A linear program is in Standard Equality Form (SEF) if it is of the form

max cT x
#

s.t. Ax = b
x � 0

Proposition 2.13

Given any linear program, there exists an equivalent LP in SEF.

Example:

max x1 + 2x2 + x3
#

s.t.
3x1 + x2 � 5
� x1 + x3 � 6
x1 � 0; x3 � 0

(P1)

x0
1 = � x1 � 0 and

x2 = x+
2 � x �

2 wherex+
2 � 0; x �

2 � 0

We introduce

s1 = 5 � 3x1 � x2 � 0; s2 = � x1 + x3 � 6 � 0

Then
max � x0

1 + 2x+
2 � 2x �

2 + x3
#

s.t.
� 3x0

1 + 2x+
2 � x �

2 + s1 = 5
x0

1 + x3 � s2 = 6
x0

1; x+
2 ; x �

2 ; x3; s1; s2 � 0

(P2)

x feasible for (P1) () (x0
1; x+

2 ; x �
2 ; x3; s1; s2) feasible for (P2) and they have

same cost.

Assumption A 2 Rm � n ! rank(A) = m. This is WLOG. Since if

ai =
X

k6= i

� kak
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Either

bi 6=
X

k6= i

� kbk

in which case (SEF) is infeasible. OraT
i x = bi is redundant. So it can be removed

from (SEF).

Note
f x : Ax = b; x � 0g is pointed polyhedron (if nonempty).

Structure of BFS Any feasible solution hasm linear independent tight con-
straints (n � m) extra tight constraint must come from x j � 0.

Let B � f 1; : : : ; ng such that jB j = m and AB
2 is invertible.

N = f 1; : : : ; ng nB . xN = 0, i.e. x j = 0 ; 8j 2 N .

Feasible solutions obtained this way are precisely BFS.

Example:
max

�
3 2 1 4

�
x

#

s.t.

�
1 2 � 1 0
2 1 0 1

�
x =

�
5
7

�

x � 0

If we pick

B = f 1; 2g AB =
�

1 2
2 1

�

N = f 3; 4g AN =
�

� 1 0
0 1

�

CB = (3 2) T CN = (1 4) T

xB =
�

x1

x2

�
xN =

�
x3

x4

�

B = f 1; 3g; B = f 2; 4g; AB =
�

1 � 1
2 0

�
; AN =

�
2 0
1 1

�

CB =
�

3
1

�
; CN =

�
2
4

�
; xB =

�
x1

x3

�
; xN =

�
x2

x4

�

If we set xN = 0 (for B = f 1; 3g) we are left with
�

1 � 1
2 0

� �
x1

x3

�
=

�
5
7

�

This has a unique solutionx1 = 3 :5; x3 = � 1:5, but not feasible.

2AB is submatrix obtained by picking columns of A indexed by B . Such B is called a basis.
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If we pick B = f 1; 2g �
1 2
2 1

� �
x1

x2

�
=

�
5
7

�

x3 = x4| {z }
xN

= 0, x1 = 3 ; x2 = 1, which is feasible.

In general,
Ax = b () AB xB + ����:0AN xN = b

has unique solutionxb = A � 1
B b.

For any basisB , the correspondingbasic solutionis
�

xB

xN

�
=

�
A � 1

B b
0

�

If A � 1
B b � 0, then it is a BFS.

2.9.1 Canonical Form

Let B be a feasible basis (i.e. corresponding basis solution is feasible).

Ax = b () AB xB + AN xN = b
() xB + A � 1

B AN xN = A � 1
B b

Now let’s take a look at objective.

cT x = cT
B xB + cT

N xN � cT
B (xB + A � 1

B AN xN � A � 1
B b)

= ( cT
N � cT

B A � 1
B AN )xN + cT

B A � 1
B b

Thus (SEF) is said to be in canonical form forB if it is written as

max
cT

N ! Reduced costs
z }| {
(cT

N � cT
B A � 1

B AN ) xN + cT
B A � 1

B b
#

s.t. xB + A � 1
B AN xN = A � 1

B b
xB ; xN � 0

Example:
Back to our previous example...

B = f 1; 2g. Rewriting in canonical form forB :

A � 1
B =

�
� 1=3 2=3
2=3 � 1=3

�

AB A =
�

1 0 1=3 � 2=3
0 1 2=3 � 1=3

�
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cT
B A � 1

B AN = (3 2)
�

1=3 � 2=3
2=3 � 1=3

�
= (7 =3 � 8=3)

cT
N � cT

B A � 1
B AN = ( � 4=3 4=3)

Then
max (0 0 � 4=3 4=3)x + 11
#

s.t.

�
1 0 1=3 � 2=3
0 1 2=3 � 1=3

�
x =

�
3
1

�

x � 0

is in canonical form forB = f 1; 2g.

Example:

max
�
1 3 � 2 0 0

�
x +0|{z}

obj. value

#

s.t.

�
1 1 1 1 0
1 � 1 3 0 1

�
x =

�
4
1

�

x � 0

(LP)

Canonical form forB = f 4; 5g.

Corresponding BFS
x4 = 4
x5 = 1

; x j = 0 ; 8j 2 N

x =
�
0 0 0 4 1

� T

Objective value = 0

If increasex1 or x2. Objective function increases.

Let’s try to increasex1 from 0 ! � . (Keep x2 = x3 = 0)

� + x4 = 4 () x4 = 4 � �
� + x5 = 1 () x5 = 1 � �

New objective: 0 +� . However, we have

x4 � 0 =) � � 4
x5 � 0 =) � � 1

=) Increasex1 by 1

x5 will be 0 !
x1 enters basis
x5 leaves basis

. Then new basisB = f 1; 4g.

Rewriting (LP) in canonical form for B = f 1; 4g.
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max
�
0 4 � 5 0 � 1

�
x + 1|{z}

obj. value

#

s.t.

�
1 � 1 3 0 1
0 2 � 2 1 � 1

�
x =

�
1
3

�

x � 0

Corresponding BFS:
x =

�
1 0 0 3 0

� T

Obj. value = 1

Pick j 2 N : cj > 0 (j = 2)

Increasex2 to � , keepx3 = x5 = 0

x1 � � = 1 () x1 = 1 + �
x4 + 2 � = 3 () x4 = 3 � 2�

and
x1 � 0 =) � � � 1

x4 � 0 =) � �
3
2

Set �  3
2 !

x2 enters basis
x4 leaves basis

New basisB = f 1; 2g.

(LP) in canonical form for B = f 1; 2g.

max
�
0 0 � 1 � 2 1

�
x + 7

#

s.t.

�
1 0 2 0:5 0:5
0 1 � 1 0:5 � 0:5

�
x =

�
2:5
1:5

�

x � 0

Corresponding BFS:
x =

�
2:5 1:5 0 0 0

� T

Obj. value = 7

Find j 2 N , cj > 0 (j = 5)

x1 = 2 :5 � 0:5� � 0
x2 = 1 :5 + 0:5� � 0

=)
� � 5
� � � 3

!
x1 leaves basis
x5 enters basis

New basisB = f 2; 5g
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(LP) in canonical form for B = f 2; 5g

max
�
� 2 0 � 5 � 3 0

�
x + 12

#

s.t.

�
1 1 1 1 0
2 0 4 1 1

�
x =

�
4
5

�

x � 0

BFS x =
�
0 4 0 0 5

� T

Obj. value = 12.
Optimal Solution

2.9.2 Iteration of simplex

Algorithm 2: Iteration of simplex
1 Start with feasible basisB
2 Rewrite LP in canonical form forB
3 Pick j 2 N : cj > 0 (x j enters basis)
4 Let b= A � 1

B b, AN = A � 1
B AN

Find largest � so that b � � A j � 0.
Corresponding basic variable that becomes 0 (sayxk) leaves basis.

5 B  B n f kg [ f j g. Iterate.

If problem has optimal solution AND � is always> 0, simplex �nishes.

Note
If at current BFS we have a basic variable = 0, we may have� = 0. ! May lead
to cycling. (i.e. return to current basis in future iteration)

Bland’s Rule

If there are multiple choices of entering or leaving variables, always pick lowest
index variable.

Using Bland’s Rule avoids cycling

Observations If cN � 0, then the (LP) obj. value in canonical form is

cT
N|{z}

� 0

xN|{z}
� 0

+ cT
B A � 1

B b � cT
B A � 1

B b

For any feasible solution =) Current BFS is optimal
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c
cycling pattern

Figure 2.1: Simplex method

Original LP
max cT x
#

s.t. Ax = b
x � 0

Dual
min bT y
#
s.t. AT y � c

()
min yT b
#
s.t. yT A � cT

()

min yT b
#

s.t. yT AB � cT
B

yT AN � cT
N

If satis�es C.S with BFS corresponding toB

=)
yT AB = cT

B

yT = cT
B A � 1

B

yT AN � cT
N

() cT
B A � 1

B AN � cT
N () cN � 0

2.9.3 Mechanics of Simplex

Example: 1
max

�
1

enters basis

3 � 2 0

j

0
�

x
#

s.t.

�
1 1 1 1 0
1

pivot

� 1 3 0 1

�
x =

�
4
1 row ‘

�

x � 0
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For �
�
�

1
1

�
+

�
x4

x5

�
=

�
4
1

�

and we have �
x4

x5

�
=

�
4 � �
1 � �

�
� 0 =)

� � 4
� � 1

We are actually picking min
�

4
1

;
1
1

�

Pick, out of all rows min
n

bi
aij

o
where j is entering variable.

Then now in row ‘ (second row here). Make row operations so that pivot element
become 1, all others in colj becomes 0.

! Row 2 � 1

! Subtract tow 2 from row 1

! subtract row 2 from objective function (with RHS multiplied by � 1)

max
�
0 4

j

� 5 0 � 1
�

x + 1
#

s.t.

�
0 2

pivot

� 2 1 � 1
1 � 1 3 0 1

�
x =

�
3 row ‘

1

�

x � 0

2� + x4 = 3 () x4 = 3 � 2� � 0 =) � �
3
2

� � + x1 = 1 () x1 = � + 1 � 0 =) � � � 1

where we are �nding min
aij > 0

�
bi

aij

�
. Now follow the similar procedure, we have

max
�
0 0 � 1 � 2 1

�
x + 7

#

s.t.
�

0 1 � 1 0:5 � 0:5
1 0 2 0:5 0:5

�
x =

�
1:5
2:5

�

In general Pick j 2 N : cj > 0.

Let ‘ = argmin
aij > 0

�
bi

aij

�
(Ratio Test)

� Multiply row ‘ by
1

a‘j

� Add �
aij

a‘j
times row ‘ to row i 6= ‘ .
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� Add �
cj � a‘k

a‘j
to variable coe� in objective. 8k 2 1; : : : ; n

� Add
b‘ � cj

aij
to objective value in objective function

Example: 2
max

�
2

j

1 1 0 0
�

x
#

s.t.

�
1 2 � 1 1 0
2

pivot

� 2 � 1 0 1

�
x =

�
2
3 row ‘

�

x � 0

Ratio Test min
�

2
1

;
3
2

�
= 1 :5. ‘ = 2. ( x2 enters,x5 leaves)

max
�
0 3 2

j

0 � 1
�

x + 3
#

s.t.

�
0 3 � 0:5 1 � 0:5
1 � 1 � 0:5 0 0:5

�
x =

�
0:5
1:5

�

x � 0

If we increasex3 ! � and keepx2 = x5 = 0

� 0:5� + x4 = 0 :5
� 0:5� + x1 = 1 :5

=)
x1 = 1 :5 + 0:5�
x4 = 0 :5 + 0:5�

! Problem is unbounded!

In general Let B be a basis

max cT
N xN

#

s.t. xB + AN xN = b
xB ; xN � 0

Found j : cj > 0 AND A j � 0.

Construct d 2 Rn to reect what we are trying to do when we increasex j ! � .

Right now, we are at BFS:
�

xB

xN

�
=

�
A � 1

B b
0

�

We want:
�

xB

xN

�
=

�
A � 1

B b
0

�
+ �

�
dB

dN

�
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wheredN =

0

BBBBBBBBB@

0
0
...
1

j

...
0
0

1

CCCCCCCCCA

= ej and dB = � A j = � A � 1
B A j .

Found d: d � 0, then

Ad = AB dB + AN dN = � AB A � 1
B A j + A j = 0

and
cT d = cT

B dB + cT
N dN = � cT

B A � 1
B A j + cj = cj > 0

i.e.,
cT d > 0
Ad = 0

d � 0
=) Problem is unbounded

But wait, how to �nd an initial BFS?

Given
max cT x
#

s.t. Ax = b
x � 0

(LP)

whereb � 0.

Construct auxiliary
max � eT w
#

s.t. Ax + Iw = b
x; w � 0

(AUX)

Note
� (AUX) is feasible (x = 0 ; w = b)

� (AUX) is bounded � eT w � 0

So (AUX) has an optimal solution.

Proposition 2.14

(AUX) has optimal value 0 i� (LP) is feasible.

Proof:
If optimal solution (x � ; w� ) has value 0, thenw� = 0 so Ax � + I 0 = b

=) x � is feasible for (LP)
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If x is feasible for (LP) then (x; 0) has value 0 in (AUX).

Moreover, if optimal value of (AUX) is < 0, then we can use the dual for a
certi�cate.

min yT b
#

s.t. yT A � 0
y � � e

(DAUX)

y� optimal y� T b < 0 and y� T A � 0

=) y� satis�es f x : Ax = b; x � 0g = ∅

2.9.4 Two Stage Simplex

Phase 1

� write (AUX)

� solve (AUX) with BFS corresponding tow

� if opt value < 0, get certi�cate y� (LP) is infeasible

� opt value 0, BFSx wherew = 0

Phase 2

� simplex with x as initial BFS

Example: 1
max

�
2 1 3

�
x

#

s.t.

�
2 1 0
1 1 2

�
x � � 1

� 3
x � 0

max
�
2 1 3 0 0

�
x

#

s.t.

�
� 2 � 1 0 � 1 0
1 1 2 0 � 1

�
x =

�
1
3

�

x � 0

(SEF)

max
�
0 0 0 0 0 � 1 � 1

�
x

#

s.t.

�
� 2 � 1 0 � 1 0 1 0
1 1 2 0 � 1 0 1

�
x =

�
1
3

�

x � 0

(AUX)
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canonical form: B = f 6; 7g

max
�
� 1 0 2 � 1 � 1 0 0

�
x � 4

#

s.t.

�
� 2 � 1 0 � 1 0 1 0
1 1 2 0 � 1 0 1

�
x =

�
1
3

�

x � 0

add 3 to the basis

min
�

bi
ai 3

�
= 3

2

7 leaves the basis.

canonical form forB = f 3; 6g

max
�
� 2 � 1 0 � 1 0 0 � 1

�
x � 1

#

s.t.
�

� 2 � 1 0 � 1 0 1 0
1=2 1=2 1 0 � 1=2 0 1=2

�
x =

�
1

3=2

�

x � =
�
0 0 3

2 0 0 1 0
�

certi�cate of infeasibility

yT = cT
B A � 1

B

=
�
0 � 1

� �
0 1
2 0

� � 1

=
�
0 � 1

� �
0 1=2
1 0

�

=
�
� 1 0

�

Example: 2
max

�
1 0 2

�
x

#

s.t.

�
2 1 1

� 1 � 1 � 2

�
x =

�
7

� 5

�

x � 0

in SEF.
max

�
1 0 2

�
x

#

s.t.
�

2 1 1
1 1 2

�
x =

�
7
5

�

max
�
0 0 0 � 1 � 1

�
x

#

s.t.
�

2 1 1 1 0
1 1 2 0 1

�
x =

�
7
5

� (AUX)
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canonical formB = f 4; 5g

max
�
3 2 3 0 0

�
x � 12

#

s.t.

�
2 1 1 1 0
1 1 2 0 1

�
x =

�
7
5

�

x � 0

1 enters basisx + �d d =
�
1 0 0 � 2 � 1

� T

min
�

bi
ai 1

�
= 7

2

4 leaves the basis

max
�
0 1=2 3=2 � 3=2 0

�
x � 3=2

#

s.t.

�
1 1=2 1=2 1=2 0
0 1=2 3=2 � 1=2 1

�
x =

�
7=2
3=2

�

x � 0

2 enters the basis

min
�

bi
ai 2

�
= 3=2

1=2

5 leaves the basis

max
�
0 0 0 � 1 � 1

�
x + 0

#

s.t.

�
1 0 � 1 1 � 1
0 1 3 � 1 2

�
x =

�
2
3

�

x � 0

Thus x =
�
2 3 0 0 0

�
is optimal for (AUX)

Forget (AUX). Start Simplex with x =
�
2 3 0

�
as initial BFS.

Now return to SEF.

max
�
1 0 2

�
x

#

s.t.

�
2 1 1
1 1 2

�
x =

�
7
5

�

x � 0

(SEF)

canonical form forB = f 1; 2g

max
�
0 0 3

�
x + 2

#

s.t.
�

1 0 � 1
0 1 3

�
x =

�
2
3

�
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How long does simplex take?

At each pivot, we move from an extreme point to another.

Every pivot rule has a bad example.

Sprelman & Teng (2001): bad examples are pathological. Small changes become
good examples.

Polynomial Hirsch Conjecture

Polynomially many vertex for boundedPolyhedral.

Let G be the graph of ad-polytope with n facets. Then the diameter ofG is
bounded above by a polynomial ofd and n.

or

The (combinatorial) diameter of a polytope of dimensiond with n facets
cannot be greater thann � d.

Remark:
Here we call combinatorial diameter of a polytope the maximum number of steps
needed to go from one vertex to another, where a step consists in traversing an
edge.

What this conjecture tells us is that it will take only �nitely many edges from
initial BFS to optimal one.

There’s one counterexample: 43-dimensional polytope with 86 facets and diame-
ter (at least) 44.

2.10 Ellipsoid Algorithm

Feasibility Given polyhedronP , �nd x 2 P or showP = ∅.

Fourier-Motzkin & simplex solve this problem.

https://annals.math.princeton.edu/wp-content/uploads/annals-v176-n1-p07-p.pdf
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Aside Given an algorithm an input I to it,

size(I ) = # of bits needed to represent I:

Example:
max cT x
#
s.t. Ax � b

Assumec 2 Qn ; A 2 Qm � n ; b2 Qn .

By scaling, we may assumec 2 Zn ; A 2 Zm � n ; b2 Zm .

Let � = max fk ck1 ; kAk1 ; kbk1 g.

Size of input to LP � (n + n; m + m) log(� )

E�cient Algorithm # of operations to solve an instance of sizek are bounded
by a polynomial onk.

Thus Simplex & FM NOT E�cient.

Goal Derive an e�cient alg.

If you have an e�cient algorithm to solve feasibility for any polyhedronP , can be
used to solve LP.

Option 1

max cT x
s.t. Ax � b

Assume I knowL � OPT � U.

Algorithm 3: Option 1
1 while Repeatdo

2 V =
L + U

2
3 P0 =

�
x : Ax � b

cT x � V

�

4 if P0 == ∅ then
5 U  V
6 else
7 L  V
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Option 2

Is the following nonempty?
8
>><

>>:
x; y :

Ax � b
yT A = cT

y � 0
cT x = bT y

9
>>=

>>;

2.10.1 Ellipsoid

Ball B (z; R) := f x 2 Rn : kx � zk � Rg

Unit Ball B := B (0; 1)

Apply an a�ne map to B .

f (x) = A(x � b) where b2 Rn ; A 2 Rn � n invertible

f (B ) := f x 2 Rn : kf (x)k � 1g = f x 2 Rn : kA(x � b)k � 1g

Sets of this form areEllipsoid . DenotedE (A; b).

Idea

� Suppose I knowP � B (0; R)

� Also, suppose eitherP = ∅ OR Vol P � � > 0.

Algorithm 4: Ellipsoid Algorithm
1 E  E (M; z ), where P � E (M; z ).
2 while Vol(E ) � � do
3 if z 2 P then
4 STOP
5 else
6 � Find � T x � � 0 so that � T x � � 0; 8x 2 P and � T z > � 0
7 � Find E (M 0; z0) such that E \ f x : � T x � � 0g � E (M 0; z0) and volume

of E (M 0; z0) is much lower thanE
8 � E  E (M 0; z0)

Note
At any point P � E .

The reason why we choose ellipsoid instead of ball is that it can actually shrink
\thinner" than ball.
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E (M; z )

E (M 0; z0)
z

z0

P

�
T x � � 0

Figure 2.2: Ellipsoid Algorithm

Lemma 2.15

There existsE (M 0; z0) that can be computed in polynomial time such that

Vol(E (M 0; z0))
Vol(E (M; z ))

� e� 1
2n +2

Number of While Loop Iterations

If B (0; R) initial ellipsoid, then Vol( B (0; R)) � (2R)n . After k(2n + 2) iterations,
Vol(E ) � e� k(2R)n .

We want

e� k(2R)n < � =) � k + n ln(2R) < ln( � ) =) k � d n ln(2R) � ln( � )e

Alg stops after dn ln(2R) � ln( � )e(2n + 2) iterations.

We only used that

z 62P ()
9� T x � � 0 such that
� T x � � 0; 8x 2 P
� T z > � 0

Theorem 2.16: Separating Hyperplane

Let C be a closed, convex set,z 2 Rn . Then z 62C () 9 a hyperplane
� T x � � 0 separatingz and C.
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Is runtime polynomial?

� ln(R) is polynomial in input size ! NOT a problem

� Finding a separating hyperplane: can be done in polynomial time.

2.11 Gr�otchel-Lov�asz-Schrijver (GLS)

S(K; � � )

Let K � Rn be closed bounded convex set.

S(K; � ) := f x : kx � yk � �; for somey 2 K g

S(K; � � ) := f x : S(x; � ) � K g

K

S(K; � )

S(K; � � )

2.11.1 3 problems

� Optimization

Given K � Rn , c 2 Qn .

Find x � 2 K such that
cT x � � cT x; 8x 2 K

or determineK = ∅.

� Separation

Given K � Rn , w 2 Rn .

Determine if w 2 K or �nd � :

k� k1 = 1 � T x < � T w;8x 2 K
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� Feasibility

Given K � Rn .

Find x 2 K or determineK = ∅.

Feas� p Opt. (i.e. if we can solve opt e�ciently, we can solve feas e�ciently)

Weaker version...

� Weak Optimization

Give K � Rn ; c 2 Qn ; � > 0

Find x � 2 S(K; � ) such that

cT x � cT x � + �; 8x 2 S(K; � � )

or determineS(K; � � ) = ∅

� Weak Separation

Given K � Rn ; w 2 Rn ; � > 0.

Determine if w 2 S(K; � ) or �nd � :

k� k1 = 1 � T x < � T w + �; 8x 2 S(K; � � )

� Weak Feasibility

Given K � Rn .

Determine S(K; � � ) = � or �nd x 2 S(K; � )

W-Feas � p W-Opt.

Ellipsoid gives us: W-Feas� p W-Sep.

� Gr�otchel-Lov�asz-Schrijver (GLS) have shown that

W-SEP, W-Feas, W-OPT are polynomially equivalent.

In particular, for rational polyhedra3 (even unbounded) then OPT, FEAS, SEP are
polynomially equivalent.

Khachiyan (’80) used ellipsoid to give polytime algorithm for LPs.

2.11.2 Consequence of GLS

Example TSP: complete graph G = ( V; E)
3f x 2 Rn : Ax � bg where A 2 Qm � n ; b 2 Qm
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Edge costsce; 8e 2 E .

Find a tour visiting every vertex exactly once of min cost.

IP formulation xe =

(
1; if e is in tour
0; otherwise

min
P

e2 E cexe
#
s.t.

P
e2 � (v) xe = 2 ; 8v 2 V

In general, � (S) =
�

uv 2 E : u 2 S
v 62S

�
whereS � V .

Subtour elimination
X

e2 � (S)

xe � 2; 8∅ ( S ( V

min
P

e2 E cexe
#

s.t.

P
e2 � (v) xe = 2 ; 8v 2 VP
e2 � (S) xe � 2; 8∅ ( S ( V

xe 2 f 0; 1g; 8e 2 E

LP-relaxation Replacexe 2 f 0; 1g by 0 � xe � 1; 8e 2 E .

Can I solve the LP in polynomial time on # vertices/edges?

Separation/Feasibility Given xe; 8e 2 E . Can I know if xe if feasible for LP in
time polynomial in # vertices?

If YES, GLS tells we can also solve OPT.

In polytime (in # vertices) I can check

( P
e2 � (v) xe = 2 ; 8v 2 V

0 � xe � 1; 8e 2 E

Min-Cut problem Given G = ( V; E); we � 0. Find
X

e2 � (S)

we

Problem can be solved in polytime in # vertices.

Then we solve mincut withwe = xe. If optimal value is � 2, then x feasible for LP.
Otherwise foundS :

X

e2 � (S)

xe < 2.
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3
Integer Programming

An integer program is a problem of the form:

max cT x
#

s.t. Ax � b
x i 2 Z; 8j 2 I

where∅ 6= I � f 1; : : : ; ng.

If I = f 1; : : : ; ng, it’s pure IP. Otherwise, Mixed IP (MIP).

If all variables are constrained to be inf 0; 1g, it’s a Binary IP.

Key Assumption: All data is rational (A 2 Qm � n ; b 2 Qm ) i.e, Ax � b is a
rational polyhedron.

Let P = f x 2 Rn : Ax � bg, PI = P \ f x j 2 Z : j 2 I g.

Theorem 3.1

conv(PI ) is a polyhedron.

From now on, assume we have a pure IP.

P

PI

49
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recession cone

Let P be a polyhedron. Its recession cone is

rec(P ) :=

8
<

:
r 2 Rn :

8x 2 P
8� � 0
x + �r 2 P

9
=

;

Lemma 3.2

Let P = f x 2 Rn : Ax � bg 6= ∅ then

rec(P )
| {z }

R1

= r 2 Rn : Ar � 0| {z }
R2

x1

x2

P

x1

rec(P )

x2

Proof:
R2 � R1) Let x 2 P; � � 0; r 2 R2

A(x + �r ) = Ax + �Ar � b =) x + �r 2 P =) r 2 R1

R1 � R2) Let r 62R2, i.e., 9i : aT
i r > 0

Let x 2 P , it is clear 9� > 0 : aT
i (x + �r ) > bi =) r 62R1.

Theorem 3.3

P 6= ∅ is a bounded polyhedron

() P = conv(x1; : : : ; xk) for some vectorsx1; : : : ; xk 2 Rn .

conv(x1; : : : ; xk) is smallest convex set containingx1; : : : ; xk () set of all �nite
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combinations ofx1; : : : ; xk .

Proof:

( ) P =

8
<

:
x 2 Rn :

x =
P k

i =1 � i x i
P k

i =1 � i = 1
� � 0

9
=

;

P0 =

8
<

:
(x; � ) 2 Rn � Rk :

x =
P k

i =1 � i x i
P k

i =1 � i = 1
� � 0

9
=

;
is a bounded polyhedron.

P = proj x P0 which is a bounded polyhedron.

) ) P bounded =) P has no lines.

Let x1; : : : ; xk be extreme points. Want to showP = conv(x1; : : : ; xk)

P � conv(x1; : : : ; xk) follows sinceP is a convex set containingx1; : : : ; xk .

Suppose9x 2 P n conv(x1; : : : ; xk)

Consider
min 0T �
#

s.t.

P k
i =1 � i x i = x � 2 Rn

P k
i =1 � i = 1 � 0 2 R

� � 0

(1)

and its dual
max � T x + � 0
s.t. � T x i + � 0 � 0; 8i = 1 ; : : : ; k (2)

(�; � 0) = (0 ; 0) feasible for (2). By assumption, (1) is infeasible.

Let ( �; � 0) be such that � T x + � 0 > 0

Now consider
max � T x + � 0
s.t. x 2 P (3)

(3) has optimal solution sinceP 6= ∅ bounded and its has an optimal
extreme point, i.e., � T x i + � 0 is optimal value. But by (2)

� T x i + � 0 � 0 < � T x + � 0

Contradiction.

Back to IP...
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Theorem 3.4

If P is a rational polyhedron, then conv(PI ) is also a rational polyhedron
(PI = P \ Zn ). Moreover, if PI 6= ∅, rec(conv(PI )) = rec( P ).

Proof:
Done if P is bounded (f 0g).

Skipped for unboundedP .

conv(PI )

P

rec(conv(PI )) = rec( P )

Theorem 3.5

max cT x
s.t. x 2 PI

= max cT x
s.t. conv(PI )

Note

1. Using Fund Thm of LP. I know IP is either infeas., unbounded, or9 opt.
sol.

2. If PI 6= ∅, then unboundedness can be detected by checking ifmax cT x
s.t. x 2 P

is unbounded. Sincemax cT x
s.t. x 2 P unbounded i� P 6= ∅ and 9r : cT r > 0

Ar � 0 .
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PI 6= ∅ =) P 6= ∅. But then this implies max cT x
s.t. x 2 conv(PI ) unbounded.

Proof:
WMA (we may assume)PI 6= ∅.

Let z1 = max cT x
s.t. x 2 PI

, z2 = max cT x
s.t. x 2 conv(PI ).

SincePI � conv(PI ) =) z1 � z2.

Now let x � 2 conv(PI ) =)
x � =

P k
i =1 � i x i

P k
i =1 � i = 1

� � 0
for x1; : : : ; xk 2 PI .

=) 9 i : cT x i � cT x � since otherwise

cT x � =
kX

i =1

� i (cT x � ) >
kX

i =1

� i (cT x i ) = cT

 
kX

i =1

� i x i

!

= cT x �

contradiction =) z1 � z2.

Corollary 3.6

If P 6= ∅ and pointed. Then conv(PI ) is pointed and any extreme point of
conv(PI ) is integral.

Proof:
rec(P ) = rec(conv(PI )) implies conv(PI ) pointed.

Let x � be extreme point ofconv(PI ). Let c be such that x � is unique optimal

solution to max cT x
s.t. x 2 conv(PI ).

By theorem, 9x 2 PI : cT x = cT x � .

By uniqueness ofx � , x = x � , then x � is integral.

Note
P = f x 2 R2 : x2 �

p
2x1g
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x1

x2

P

x1

x2

conv(PI )

conv(PI ) is not even closed (dotted line plus (0; 0)), NOT a polyhedron.

3.1 Cutting Plane Algorithm

max cT x
s.t. x 2 PI := P \ Zn (IP)

whereP is rational polyhedron.

We know it can be solved by solving max cT x
s.t. conv(PI )

Problem Hard to compute conv(PI ).

conv(PI ) is smallest convex set containingPI . P is a convex set containingPI .

Idea

� Start with P

� Iteratively make P \closer" to conv(PI )
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PI = P \ Zn

P

�
� 1� T x � � 1

0

�
� 2� T x � � 2

0

�
� 3� T x � � 3

0

conv(PI )

Idea 2 Want to know only part of conv(PI ) that is in the \direction I am opti-
mizing".

LP relaxation

The LP you obtain from (IP) after dropping integrality, i.e.,

max cT x
s.t. x 2 P

valid ineq

An ineq � T x � � 0 is valid for S � Rn if 8x 2 S: � T x � � 0.

Assumption LP relaxation has an optimal solution.

If P = ∅, then PI = ∅. If LP relaxation is unbounded, eitherPI = ∅ or (IP) is



56 CHAPTER 3. INTEGER PROGRAMMING

unbounded.

Algorithm 5: Cutting Plane Algorithm
1 R  P
2 do

3 Let x � be optimal solution to max cT x
s.t. x 2 R

4 if x � is integral then
5 STOP // x � is opt sol for (IP)

6 else
7 Find valid ineq � T x � � 0 for conv(PI ) s.t. � T x � > � 0
8 R  R \ f x : � T x � � 0g

9 while R 6= ∅;
10 Declare (IP) infeasible

Issues...

1. �; � 0 must be rational

2. Finiteness?

3. How to �nd �; � 0?

Note
Any any point PI � conv(PI ) � R � P .

max cT x
s.t. x 2 PI

� max cT x
s.t. x 2 R

If x � 2 Zn , then x � 2 PI .

=) max cT x
s.t. x 2 PI

� cT x � =) x � is optimal for PI

To solve the issues, imposex � being an opt. BFS of max cT x
s.t. x 2 R

Proposition 3.7

Let R be a pointed rational polyhedron such thatR \ Zn = PI . Let x � be a
BFS of R.

Then x � is integral () x � 2 conv(PI )

Proof:
Exercise.

How to �nd valid ineq for conv(PI ) � T x � � 0 s.t. � T x � > � 0?

Call such ineq. aCUTTING PLANE or a CUT separating conv(PI ) and x � .
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Assumption R =
�

x 2 Rn : Ax = b
x � 0

�
.

max cT x
#

s.t. Ax = b
x � 0

(1)

Let B be opt. basis.

(1) ()

max cT
N xN + cT

B A � 1
B b

#

s.t. xB +

A Nz }| {
A � 1

B AN xN =

bz}| {
A � 1

B b
x � 0

x � is integral () A � 1
B b2 Zm

If x � is not integral, then 9i 2 f 1; : : : ; mg : (A � 1
B b) i 62Z.

Look at constraint

x i +
X

j 2 N

aij x j = bi

is valid for PI since it is valid for R.

x i +
X

j 2 N

baij cx j � bi

is valid for PI since it is valid for R.

Sincebaij c � aij and x j � 0 =) b aij cx j � aij x j .

Since LHS is integer8x 2 PI ,

x i +
X

j 2 N

baij cx j � b bi c (?)

is valid for PI .

Note
For x � , x �

j = 0, 8j 2 N x �
i = bi .

Thus
x �

i +
X

j 2 N

baij cx �
j = bi > bbi c
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(?) is the cut we wanted. Called a Chv�atal-Gomory (CG) cut.

Algorithm 6: Cutting Plane Algorithm (Correct)
1 R  P // (P pointed)

2 do

3 Let x � be optimal BFS solution to max cT x
s.t. x 2 R

4 if x � is integral then
5 STOP // x � is opt sol for (IP)

6 else
7 Find valid ineq � T x � � 0 for conv(PI ) s.t. � T x � > � 0
8 R  R \ f x : � T x � � 0g

9 while R 6= ∅;
10 Declare (IP) infeasible

Theorem 3.8

The cutting plane algorithm using CG cuts terminates in �nitely many itera-
tions (for pure IPs).

Proof:
SKIPPED.
Example:

max
�
1 3 � 2 0 0

�
x

#

s.t.

�
1 2 1 1 0
1 � 1 3 0 1

�
x =

�
3
1

�

x � 0; x 2 Z5

Opt basis for LP relaxation: B = f 2; 5g.

In canonical form:

max
�
� 0:5 0 � 3:5 � 1:5 0

�
x + 4 :5

#

s.t.

�
0:5 1 0:5 0:5 0
1:5 0 3:5 0:5 1

�
x =

�
1:5
2:5

�

x � 0

and x � =
�
0 1:5 0 0 2:5

� T

CG-cut :

0x1 + x2 + 0x3 + 0x4 + 0x5 � 1 () x2 � 1 From 1st constraint
x1 + 3x3 + x5 � 2 CG-cut from 2nd constraint

Can add both to R.
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New LP
max

�
1 3 � 2 0 0

�
x

#

s.t.

0

BB@

1 2 1 1 0
1 � 1 3 0 1
0 1 0 0 0
1 0 3 0 1

1

CCA x

=
=
�
�

0

BB@

3
1
1
2

1

CCA

x � 0

Add x6; x7 � 0 convert to SEF, where

x2 + x6 = 1 ; x1 + 3x3 + x5 + x7 = 2

If x1; : : : ; x5 2 Z, then x6; x7 2 Z.

New Opt for LP:
xT =

�
1 1 0 0 1 0 0

�

So opt sol to original LP is
�
1 1 0 0 1

�
.

3.2 Total Unimodularity

totally unimodular

A matrix U is called totally unimodular (TU) if all its square submatrices have
determinant in f� 1; 0; 1g.

Example:
�

2 0 0
0 0 0

�
is not TU.

0

@
1 1 � 1 0
0 0 0 0
1 0 1 1

1

A is NOT TU.

Note
Square submatrices are obtained by deleting rows/columns.

�
0 � 1 1
1 1 � 1

�
is TU.

Theorem 3.9

If A 2 Zm � n is TU and b 2 Zm then every BFS ofP =
�

x 2 Rn : Ax = b
x � 0

�

is integral.

Recall
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Cramer’s Rule

If D is n � n invertible, then unique solution to Dx = b is given by

x i =
detD (i )
detD

whereD (i ) is D replacing i -th column with b.

Example:
�

1 � 1
0 3

� �
x1
x2

�
=

�
2
1

�

Solution

x1 =
det

�
2 � 1
1 3

�

det
�

1 � 1
0 3

� =
7
3

; x2 =
det

�
1 2
0 1

�

det
�

1 � 1
0 3

� =
1
3

Proof:

Let x � be a BFS of
�

x : Ax = b
x � 0

�
, B corresponding basis.

Then x �
B = A � 1

B b; x�
N = 0

Note x �
B is unique solution toAB xB = b

=) By Cramer’s rule,

x �
i =

detAB (i )
detAB

2 Z

since detAB (i ) 2 Z and by TU, det AB 2 f 1; � 1g which cannot be 0 since
invertible.
Note

Result remains true ifP = f x : Ax � bg or P =
�

x : Ax � b
x � 0

�

integral

We say a polyhedron is integral if all its extreme points are integral.

Lemma 3.10

P is an integral polyhedron i� P = conv(P \ Zn ).

Proof:
Exercise.
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Lemma 3.11

Let A 2 Zm � n TU.

Then applying any of the following operations onA yields a TU matrix.

a) Delete row/column

b) Multiply row/column by � 1

c) Permute rows/columns

d) Transpose

e) Duplicate row/column

f) Add a row/column with at most one nonzero entry, which is inf +1 ; � 1g.

Proof:
a) X

b)-d) Potentially changes signs of det.

e) Only can create new submatrices if row and its duplicate are in it. But that
has det = 0.

f) Recall

Laplace formula

D square:

D =

0

@
j

�� dij ��
j

1

A

Let M ij be the matrix obtained by deleting rowi , column j .

Then for any row i of D :

det(D ) =
X

j

(� 1)i + j dij det(M ij )

For any column j :

det(D ) =
X

i

(� 1)i + j dij det(M ij )
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A0 =

0

BBBBBBBBBB@

1
0
0
... A
...
...
0

1

CCCCCCCCCCA

Let D be square submatrix ofA0. If D does not contain �rst col, then
det(D ) 2 f� 1; 0g sinceA is TU.

If D does not contain �rst row, but contains �rst column, then det(D ) = 0.

Else,

D =

0

BBBBB@

1 � � � � �
0
... D
0
0

1

CCCCCA

By Laplace formula: j det(D )j = j det
�
D

�
j 2 f 0; 1g.

Application 1 SupposeA is TU 2 Zm � n . If b2 Zm and ‘; u 2 Zn , then

P =
�

x 2 R : Ax � b
‘ � x � u

�

is integer polyhedron.

P =

8
>>>><

>>>>:

x 2 Rn :

0

@
A
I

� I

1

A

| {z }
A 0

x �

0

@
b
u

� ‘

1

A

| {z }
b0

9
>>>>=

>>>>;

b0 integral, A0 TU = ) P is integral

Application 2 A 2 Zm � n TU, b2 Zm , c 2 Zn , then

max cT x
#

s.t. Ax � b
x � 0

min bT y
#

s.t. AT y � c
y � 0

have integral opt solutions (if both are feasible).



3.3. SUFFICIENT CONDITION FOR TU 63

3.3 Su�cient condition for TU

Lemma 3.12

Let A 2 Zm � n with entries f� 1; 0; 1g. If A has:

� At most two nonzeros per column, AND

� There exists a partition I 1; I 2 of its rows such that, for every column:

i) Nonzero entries of same sign lie in di�erent partitions

ii) Nonzero entries of opposite signs lie in same partition.

Then A is TU.

Example:

A =

0

BBBB@

0 0 1 0 1 0 1
1 0 � 1 0 0 � 1 0
0 1 0 0 0 0 0
1 0 0 � 1 0 0 0
0 1 0 1 0 0 1

1

CCCCA

above the line: I 1; below: I 2. A is TU.

A =

0

BB@

1 1 0
1 0 � 1
0 � 1 0
0 0 1

1

CCA

Line 1 and line 3: I 1; Line 2 and 4: I 2. A is TU.

Proof:
Suppose Lemma is False. LetM be a minimal counterexample, i.e.,

� M is not TU,

� M satis�es conditions of Lemma,

� Any submatrix of M is TU.

Then M itself is a square matrix with det(M ) 62 f� 1; 0; 1g and all its submatrix
have det2 f� 1; 0; 1g.

If M has � 1 nonzero in a column, thenM is obtained by adding a column with
at most 1 nonzero to a TU matrix =) M is TU (By Lemma 3.11).
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Thus, we may assume all columns ofM has exactly two nonzero elements.

M =

0

B@
� M T

1 �
...

� M T
m �

1

CA

Consider: X

i 2 I 1

M i �
X

i 2 I 2

M i = 0

since i) and ii) hold. Then this meansf M i gm
i =1 are not linearly independent,

which implies det(M ) = 0.

Example:
Given G = ( V; E) undirected simple graph.

G is bipartite if V = V1 _[ V2| {z }
disjoint union

and 8u; v 2 E hasu 2 V1; v 2 V2.

M � E is a matching if jM \ � (v)j � 1; 8v 2 V where � (v) := f e 2 E :
v is an endpoint ofeg.

Given G bipartite. Goal : Find max carnality matching.

Let xe 2 f 0; 1g and xe =

(
1; if e 2 M
0; if e 62M

.

max
P

e2 E xe
#

s.t.
P

e2 � (v) xe � 1; 8c 2 V
x 2 f 0; 1gE

(1)

Let’s now take a look at example.

1

2

3

4

5
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x =
�
x13 x14 x15 x23 x24 x25

� T

max
�
1 1 1 1 1 1

�
x

#

s.t.

0

BBBB@

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1

CCCCA
x �

0

BBBB@

1
1
1
1
1

1

CCCCA

1
2
3
4
5

vertex
x 2 f 0; 1gE

In general:

� I 1 ! constraints correspond toV1

� I 2 ! constraints correspond toV2

If we look at a columnxuv , it will have a 1 in row of u a 1 in row ofv, 0 everywhere
else.

! Bipartite = ) Lemma is satis�ed =) (1) can be solved via LP.

Let (2) be LP relaxation of (1) without xe � 1; 8e 2 E , otherwise the �rst
constraint is violated.

max
P

e2 E xe
#

s.t.
P

e2 � (v) xe � 1; 8c 2 V
x � 0

(2)

Let us write the dual of (2)

min
P

v2 V yv
#

s.t. yu + yv � 1; 8uv 2 E
y � 0

(3)

and add integral constraints,

min
P

v2 V yv
#

s.t. yu + yv � 1; 8uv 2 E
y 2 f 0; 1gV

(4)

Let zi be the optimal value for (i) then

z1 � z2 = z3 � z4

G bipartite = )
z1 = z2

z3 = z4

Vertex Cover : such that 8e 2 E; je \ Uj � 1. Problem : Finding smallest
vertex cover.
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K�onig’s Theorem

In bipartite graph G, size of largest matching = size of smallest vertex
cover.

Example:
Consider a directed graphD = ( V; A).

Incidence matrix ofD has one row per vertex, one column per arc.

For v 2 V , (w; y) 2 A, then ave =

8
><

>:

� 1; if v = w
1; if v = y
0; otherwise

1

2

3

4

1
2
3
4

0

BB@

� 1 � 1 0 0
1 0 1 � 1
0 1 � 1 0
0 0 0 1

1

CCA

I 1 = everything, I 2 = ∅ =) Matrix is TU

Max Flow : Given D = ( V; A); s; t 2 V (s 6= t). An s-t ow is a nonnegative
vector x 2 RA , where

X

e2 � � (v)

xe �
X

e2 � + (v)

xe = 0 ; 8v 2 V n f s; tg

where

� � (S) =
�

(u; v) 2 A : u 62S
v 2 S

�
and � + (S) =

�
(u; v) 2 A : u 2 S

v 62S

�

� � (S) � + (S)
S
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X

e2 � � (v)

xe

v

X

e2 � + (v)

xe

Goal : Find a ow maximizing
X

e2 � + (S)

xe

s t

4
2

4
2 2

3
1

3

also 0� xe � ce; 8e 2 A wherece is some capacity constraint.

TU = ) max ow is integral if ce 2 Z; 8e 2 A.

Theorem 3.13

An m � n integral matrix A is TU i� for every subset R � f 1; : : : ; mg, there
exists a partition of R into R1; R2 (that is, R1 [ R2 = R and R1 \ R2 = ∅)
such that X

i 2 R1

aij �
X

i 2 R2

aij 2 f� 1; 0; 1g; 8j = 1 ; : : : ; n

Note
Careful that in the previous result that we had seen, we just needed to partition
the original rows into two such sets.

This result says that if I pick ANY SUBSET of rows, I must be able to do the
same.

Skipped branch-and-bound, Minimum Cost Perfect Matching in Bipartite Graphs...
due to one week suspension
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4
Nonlinear Programming

The general form: Letf; g 1; : : : ; gm : Rm ! R.

min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m (NLP)

Note that this is minimization problem with \ � " constraints.

Example: Linear Programs
f (x) := cT x and gi (x) := aT

i x � bi . These give us

min cT x
s.t. aT

i x � bi ; 8i = 1 ; : : : ; m

Example: Binary integer program
Let f (x) := cT x, g1(x) := x1(1 � x1) and g2(x) := � x1(1 � x1). These give us

min cT x
s.t. x1(1 � x1) = 0

where the constraint is equivalent tox1 2 f 0; 1g. Extend it to

min cT x
#

s.t. Ax � b
x 2 f 0; 1gn

69
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4.1 Convex functions

convex functions

Let S � Rn be a convex set. The functionf : S ! Rn is a convex function if
8x; y 2 S;8� 2 [0; 1],

f (�x + (1 � � )y) � �f (x) + (1 � � )f (y)

Example:
Here we letS = R.

f (x)

x
x y

f (x)
f (y)

f (�x + (1 � � )y)

�f (x) + (1 � � )f (y)

Convex
function

f (x)

x
x y

f (x) f (y)

f (�x + (1 � � )y)

�f (x) + (1 � � )f (y)

NOT a
Convex
function

A convex NLP is one of the form:

min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m (CVX)

where f; g 1; : : : ; gm : Rn ! R are convex functions.

Note
It is important that constraints are � and that the objective is a minimization
problem.
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Proposition 4.1

If g : Rn ! R is a convex function, thenS = f x 2 Rn : g(x) � 0g is a convex
set.

Proof:
Let x; y 2 S, i.e., g(x) � 0; g(y) � 0. Now we want to prove�x + (1 � � )y 2 S.

g(�x + (1 � � )y) � �g (x) + (1 � � )g(y) sinceg is a convex function
� 0

where the last ineq is from
g(x) � 0; � � 0

g(y) � 0; (1 � � ) � 0
.

This implies �x + (1 � � )y 2 S; 8� 2 [0; 1].

epigraph

epi(f ) = f (x; y) : y � f (x)g

f is convex () epi(f ) is convex.

4.2 Gradients & Hessian

Let f : Rn ! R be a twice di�erentiable function.

The gradient of f at x is the vector

r f (x) =

0

B@

@f
@x1...
@f

@xn

1

CA
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The Hessian of f at x is the n � n symmetric matrix

r 2f (x)

where the element is de�ned as
�
r 2f (x)

�
ij =

@2f
@xi @xi

Example:
f (x) = x2

1x2 + 2x1 + 3. Then

r f (x) =
�

2x1x2 + 2
x2

1

�
and r 2f (x) =

�
2x2 2x1
2x1 0

�

Now looking at 1-D convex functions, two key properties stand out:

f (x)

x

f (x)

x

� second derivative is
� 0 (at any point x)

� value of f is above
tangent line at x

Translating:

� f 00(x) � 0; 8x

� f (x) � f (x) + f 0(x)(x � x), 8x; x

Theorem 4.2

Let S � R be a convex set. LetS ! R be twice di�erentiable. TFAE:

a) f is convex onS

b) f (x) � f (x) + f 0(x)(x � x), 8x; x 2 S

c) (f 0(x) � f 0(x))( x � x) � 0, 8x; x 2 S

d) f 00(x) � 0, 8x 2 S.

What is the generalization of b), c), d) tof : Rn ! R?
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b): f (x) � f (x) + r f (x)T (x � x); 8x; x 2 S.

c): (r f (x) � r f (x))T (x � x) � 0; 8x; x 2 S.

d): r 2f (x) is Positive Semide�nite (PSD), 8x 2 S.

Note
A symmetric n � n matrix Q is said to bepositive semide�nite if 8y 2 Rn ,

yT Qy � 0

Denoted asQ � 0.

Q is said to bepositive de�nite (PD) if 8y 2 Rn ; y 6= 0,

yT Qy > 0

Denoted asQ � 0.

Theorem 4.3

Let S � Rn be a convex set. Letf : Rn ! R be a continuous twice di�eren-
tiable function. TFAE:

a) f is convex onS

b) f (x) � f (x) + r f (x)T (x � x); 8x; x 2 S

c) (r f (x) � r f (x))T (x � x) � 0; 8x; x 2 S

d) r 2f (x) � 0; 8x 2 S.

Example:

f (x) = kxk2 =
nP

j =1
x2

j

r f (x) =

0

B@
2x1

...
2xn

1

CA and r 2f (x) = 2 I

Now
yT r 2f (x)y = 2yT Iy = 2yT y = 2kyk2 � 0

=) r 2f (x) � 0; 8x =) f (x) is convex.

Example:
f (x) = 1

2xT xQx + dT x + p whereQ is PSD.

f (x) =
nX

j =1

x2
j

2
gjj +

1
2

nX

i =1

X

j>i

2x i x j qij +
nX

j =1

x j dj + p
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r f (x) =

0

B@
2x1

2 q11 +
nP

j =2
x j qij + d1

...

1

CA =

0

B@

nP

j =1
x j qij + d1

...

1

CA = Qx + d

r 2f (x) = Q � 0 =) f is convex.

4.3 Local vs. Global optimality

Consider an NLP
min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m (NLP)

Let S be its feasible region.x � 2 S is said to be alocal optimum if 9R > 0 so
that

f (x � ) � f (x); 8x 2 B (x � ; R) \ S:
x � is said to be aglobal optimum if

f (x � ) � f (x); 8x 2 S:

local
opt.

( )

global
opt.

Proposition 4.4

If (NLP) is a convex program, then

x � is a local optimum () x � is a global optimum.

Proof:
(( ) Trivial.

() ) Supposex � is a local optimum. But suppose9x 2 S: f (x � ) > f (x).

Considerx(� ) = � x + (1 � � )x � .

Since (NLP) is a convex program,S is a convex set, thereforex(� ) 2 S;8� 2
[0; 1]. Sincef is a convex function, we have

f (x(� )) = f (� x + (1 � � )x � ) � �f (x) + (1 � � )f (x � )

Also, for any � > 0, we have�f (x) < �f (x � ). Therefore,

f (x(� )) < �f (x � ) + (1 � � )f (x � ) = f (x � ); 8� 2 (0; 1]
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Therefore, 8R > 0; 9� such that x(� ) 2 B (x � ; R) \ S. Contradicts local
optimality of x � .

( )
xx �

x(� )

Note
This does not require di�erentiability.

4.3.1 Characterizing Optimality

The previous proposition suggests that only local information is needed for deter-
mining optimality.

Can we characterize optimality based on local info?

Proposition 4.5

Consider a convex optimization problem wheref is di�erentiable. Let S be
the feasible set. Thex � is global optimal i�

r f (x � )T (x � x � ) � 0; 8x 2 S:

Proof:
(( ) From convexity of f

f (x) � f (x � ) + r f (x � )T (x � x � )
| {z }

� 0

� f (x � ); 8x 2 S

() ) Sketch idea:

Suppose9x 2 S : r f (x � )T < 0

De�ne g(� ) := f (� x + (1 � � )x � )

Can be argued thatg0(0) = r f (x � )T (x � x � ) < 0.

For small � , g(� ) < g (0) = f (x � ). Therefore,x � is not optimal.
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x x �

Intuition Going from x � in the direction towards anotherx feasible takes us in
the opposite direction that we want to go (opposite to the gradient).

�r f (x � )x �x

Corollary 4.6

If f : Rn ! R is convex, di�erentiable then x � is optimal to

min f (x)
s.t. x 2 Rn

i� r f (x � ) = 0.

Proof:
(( ) Follows from previous proposition.

() ) Supposer f (x � ) 6= 0. Let y = �r f (x � ) + x � .

r f (x � )T (y � x � ) = �r f (x � )T r f (x � ) = �kr f (x � )k2 � 0

=) x � is not optimal from previous proposition.
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4.4 Lagrangian Duality

Consider a general NLP

min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m (NLP)

(that is NOT necessarily convex)

Lagrangian

The Lagrangian of (NLP) is the following functionL : Rn � Rm ! R,

L (x; � ) := f (x) +
mX

i =1

� i gi (x)

� i are calledLagrangian multipliers associated togi constraints.

Intuitively, we associate a penalty term� i that would steer us away from points
with gi � 0, if we try to minimize L (x; � ). We can restate the previous result as a
generalization of LP weak duality.

Proposition 4.7

If x 2 S and � � 0, then L (x; � ) � f (x).

Proof:

L (x; � ) = f (x) +

� 0z }| {
mX

i =1

� i|{z}
� 0

gi (x)
| {z }

� 0

� f (x)

Now let ‘ (� ) = min
x2Rn

L (x; � ).

It follows that, 8� � 0, ‘ (� ) � z� wherex � is optimal value of (NLP).

Thus we get a lower bound for any� � 0.

As in LP duality, we are interested in the best possible lower bound.

So we want
max ‘ (� )
s.t. � � 0 (LD)

This is called theLagrangian dual problem.
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Proposition 4.8: Weak duality

If x 2 S and � � 0, then ‘ (� ) � f (x).

Example:
min cT x
s.t. Ax � b () Ax � b � 0

Then f (x) = cT x; gi (x) = aT
i x � bi ; 8i = 1 ; : : : m

L (x; � ) = f (x) +
mX

i =1

� i gi (x)

= cT x +
mX

i =1

� i (aT
i x � bi )

=

 

cT +
mX

i =1

� i aT
i

!

x �
mX

i =1

� i bi

Then
‘ (� ) = min

x2Rn
L (x; � )

= min (cT +
P m

i =1 � i aT
i )x �

P m
i =1 � i bi

s.t. x 2 Rn

=

(
�1 ; if

�
cT +

P m
i =1 � i aT

i
�

6= 0
�

P m
i =1 � i bi ; if

�
cT +

P m
i =1 � i aT

i
�

= 0

Then

max ‘ (� )
#
s.t. � � 0

=

max �
P m

i =1 � i bi
#

s.t. cT +
P m

i =1 � i aT
i = 0

� � 0

y= � �=

max bT y
#

s.t. yT A = cT

y � 0

Example:
min (x1 � 1)2 + ( x2 � 1)2

#

s.t. x1 + 2x2 � 1 � 0
2x1 + x2 � 1 � 0

L (x; � ) = ( x1 � 1)2 + ( x2 � 1)2 + � 1(x1 + 2x2 � 1) + � 2(2x1 + x2 � 1)

Check: L (x; � ) is a convex function (for a �xed � it is a convex function ofx)

Now for ‘ (� ) = min x2Rn L (x; � ) is achieved whenr xL (x; � ) = 0

�
2(x1 � 1) + � 1 + 2 � 2

2(x2 � 1) + 2 � 1 + � 2

�
=

�
0
0

�
=)

x �
1 =

� � 1 � 2� 2

2
+ 1

x �
2 =

� 2� 1 � � 2

2
+ 1
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L (x � ; � ) =
�

� � 1 � 2� 2

2

� 2

+
�

� 2� 1 � � 2

2

� 2

+ � 1

�
� � 1 � 2� 2

2
+ 1 � 2� 1 � � 2 + 2 � 1

�

+ � 2

�
� � 1 � 2� 2 + 2 +

(� 2� 1 � � 2)
2

+ 1 � 1
�

= � 1:25� 2
1 � 1:25� 2

2 � 2� 1� 2 + 2 � 1 + 2 � 2

=: ‘ (� )

max ‘ (� )
s.t. � � 0 = max L (x � ; � )

s.t. � � 0

If we set r � L (x � ; � ) = 0, we get � � =
�

4
9

;
4
9

�
with objective value

‘ (� � ) = � 2:5 �
�

4
9

� 2

� 2
�

4
9

� 2

+ 4 �
4
9

=
8
9

And note that x � =
�

1
3

;
1
3

�
gives f (x � ) =

8
9

, which gives optimal solution.

4.5 Karush-Kuhn-Tucker Optimality Conditions

Lagrangean dual for problems with equality constraints

For problems of the form,

min f (x)
#

s.t. gi (x) � 0; 8i = 1 ; : : : ; m
hi (x) = 0 ; 8i = 1 ; : : : ; p

(NLP)

We can de�ne

L (x; �; � ) = f (x) +
mX

i =1

� i gi (x) +
pX

i =1

� i hi (x)

Here the Lagrangean dual:
max ‘ (�; � )
s.t. � � 0; � 2 Rp

where ‘ (�; � ) = min
x2Rn

L (x; �; � ). Weak duality still holds for � � 0; � 2 Rp.

Note
If f; g i are convex,8i = 1 ; : : : ; m and hi (x) are a�ne functions, then (NLP) is a
convex program.

Note
Weak Duality holds regardless ifgi ; hi are convex.
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Example: Least square solutions of linear equations
Suppose we want to �nd, out of all possible solutions toAx = b, the one with
smallest norm.

min xT x
s.t. Ax = b

Lagrangian: L (x; � ) = xT x + � T (Ax � b).

Then ‘ (� ) = min
x2Rn

L (x; � ).

r xL (x; � ) = 0 = ) 2x + AT � = 0 = ) x = �
AT �

2

=) ‘ (� ) =
� T AA T �

4
�

� T AA T �
2

� bT �

= �
� T AA T �

4
� bT �

� min xT x
s.t. Ax = b

When does Strong Duality Hold?

This is hard to characterize in general, but there are some easily checkable su�cient
conditions.

Let
min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m (CVX)

where f; g i are convex8i = 1 ; : : : ; m.

Slater’s Condition

9x : gi (x) < 0; 8i = 1 ; : : : ; m.

That is, there exists a point in the relative interior of the feasible region.

Theorem 4.9

If Slater’s condition holds for (CVX), then 9� � � 0 such that

‘ (� � ) = min
x2Rn

L (x; � � ) = min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m

Recall that this was
abuse of notation and
it is not clear that

9x � achieving inf.

i.e.,

max
� � 0

‘ (� ) = min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m

and the max is attained at � � .

For example: minf e� x : � x � 0g = 0, but 6 9x � : e� x � = 0.
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Proof:
SKIPPED.

To derive optimality conditions, suppose we have� � ; x � opti. for dual/primal.

‘ (� � ) = min
x2Rn

f (x) +
mX

i =1

� �
i gi (x) � f (x � ) +

mX

i =1

� �
i gi (x � ) �

� � � 0; gi (x � ) � 0

f (x � )

Now if we want strong duality to hold, i.e., we want‘ (� � ) = f (x � ) then all above
inequalities must hold at equality.

The �rst inequality holding as equality implies x � is a minimizer ofL (x; � � ) for all
x 2 Rn .

L (x; � ) = f (x)+
mX

i =1

� i gi (x) =) r xL (x � ; � � ) = 0 = ) r f (x � )+
mX

i =1

� �
i r gi (x � ) = 0

The second inequality holding as equality means a complementary slackness-type
condition, i.e., � �

i gi (x � ) = 0 () � �
i = 0 or gi (x � ) = 0.

Formally, these are the so-calledKarush-Kuhn-Tucker (KKT) optimality con-
ditions:

KKT conditions

i) gi (x � ) � 0; 8i = 1 ; : : : ; m

ii) � � � 0

iii) � �
i gi (x � ) = 0 ; 8i = 1 ; : : : ; m

iv) r f (x � ) +
P m

i =1 � �
i gi (x � ) = 0

Theorem 4.10: Necessary opt. conditions

Consider
min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m (NLP)

where f; g i are di�erentiable, 8i = 1 ; : : : ; m.

If x � ; � � are optimal to the (NLP) and its Lagrangean dual, respectively, such
that f (x � ) = L (x � ; � � ) = ‘ (� � ), then KKT conditions hold.

Proof:
Follows from above discussion.

Theorem 4.11: Su�cient opt. conditions

Assume that, in addition, the functions gi are convex,8i = 1 ; : : : ; m, f is
convex. Then if x � ; � � satisfy KKT conditions, x � ; � � are optimal for (NLP)
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and its Lagrangean dual, andf (x � ) = ‘ (� � ) = L (x � ; � � ).

Proof:
Follows similar to necessity proof, using the fact thatL (x; � ) is a convex function
and thus r xL (x � ; � � ) = 0 = ) x � is a minimizer ofL (x; � � ) over x 2 Rn .

Note
For problems of the form:

min f (x)
#

s.t. gi (x) � ; 8i = 1 ; : : : ; m
hi (x) = 0 ; 8i = 1 ; : : : ; p

(NLP-EQ)

the KKT conditions are:

KKT

i) gi (x � ) � 0; 8i = 1 ; : : : ; m

ii) hi (x � ) = 0 ; 8i = 1 ; : : : ; p

iii) � � � 0

iv) � �
i gi (x � ) = 0 ; 8i = 1 ; : : : ; m

v) r f (x � ) +
P m

i =1 � �
i gi (x � ) +

P p
i =1 � i r hi (x � ) = 0

With equality constraint:

� If x � opt for (NLP-EQ), ( � � ; � � ) opt for its lag. dual and f (x � ) = ‘ (� � ; � � )
then KKT holds.

� If f; g 1; : : : ; gm are convex andh1; : : : ; hp are a�ne functions, then x � ; � � ; � �

satisfying KKT = ) x � opt for (NLP-EQ), � � ; � � opt for its Lag. dual and
f (x � ) = ‘ (� � ; � � ).

Where is Slater’s condition needed in convex programs?

Example:
min x
s.t. x2 � 0

is a convex program with unique feasible solutionx = 0 = ) Slater’s condition
does not hold.

Now x = 0 is optimal. But r f (x � ) +
P m

i =1 � i r gi (x � ) = 1 + 0 = 1 6= 0.
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Note
L (x; � ) = x + �x 2 and

‘ (� ) = min
x2R

x + �x 2 =

(
�1 ; if � = 0
� 1

2� ; if � > 0

This problem violates Slater’s condition and6 9x � ; � � achieving strong duality.

Example:
min x2 + 1
s.t. (x � 2)(x � 4) � 0

is a convex program (CHECK) and Slater’s condition holds. (x = 3 satis�es it).
Let us try and �nd KKT points.

r f (x) = 2 x, r g1(x) = 2 x � 6, r f (x) + � 1r g1(x) = 2 x + (2 x � 6) = 0

� � 1 = 2x
6� 2x

� � 1(x � 2)(x � 4)

=)

x = 2 ; � 1 = 2
x = 4 ; � 1 = � 2 7

� = 0 (i.e., x = 0), but
then (x � 2)(x � 4) = 8 > 0 7

Thus point x = 2 ; � 1 = 2 satis�es KKT = ) primal/dual optimal.

When does primal admit an opt. sol?

If feasible region is closed and bounded andf is continuous, then primal has optimal
solution.

Coerciveness

f is coercive iff x : f (x) � � g is bounded8� 2 R.

Lemma 4.12

TFAE

a) f is coercive

b) f (x) ! 1 as kxk ! 1

Proof:
SKIPPED.



84 CHAPTER 4. NONLINEAR PROGRAMMING

Convex & Not coerciveCoercive & Not convex

Coercive & Convex

Theorem 4.13

If S ! Rn is nonempty and closed,f : Rn ! R is continuous and coercive,
then

min f (x)
s.t. x 2 S

has a minimizer.

Proof:
SKIPPED.

4.6 Summary of NLP results

min f (x)
s.t. gi (x) � 0; 8i = 1 ; : : : ; m

Generic NLP Generic & di�. Convex Convex & di�.
Weak duality. � feas.
dual, x feas. primal.
=) ‘ (� ) � f (x)

3 3 3 3

Slater =) 9 sol. dual
matching the inf of pri-
mal

7 7 3 3

If 9 opt. sol to primal
& Dual w/ equal values
=) KKT holds

7 3 7 3

If x; � satisfy KKT
=) f (x � ) = ‘ (� � )

7 7 7 3



4.7. ALGORITHMS FOR CONVEX NLPS 85

4.7 Algorithms for convex NLPs

Unconstrained case
min f 0(x)
s.t. x 2 Rn

f 0 convex, di�erentiable.

Assumption Opt. Sol exists. ! Goal: �nd x � so that r f 0(x � ) = 0

4.7.1 Descent methods for unconstrained

Iterative methods that start from a feasible pointx0 and move fromxk to
xk+1  xk + tkdk for some search directiondk 2 Rm , step length tk 2 R+ .

Want: f 0(xk+1 ) < f 0(xk).

Now if we move fromx to y then d = y � x.

Now if r f (xk)T (y � xk) � 0; 8y =) xk optimal.
So goal is to pick descentd : r f (xk)T d < 0.

Algorithm 7: General Descent Method
1 x0 2 Rn

2 while STOPPING CRITERION NOT SATISFIED do
3 Find descent directiondk

4 Choose step sizetk

5 xk+1  xk + tkdk

Choosing a step size Several options exist. Here are two common.

a) Exact line search : Solve the 1-D convex minimization problem

t = argmin
s� 0

�
f 0(xk + sdk)

	

b) Backtracking

Algorithm 8: Backtracking
1 Let � 2 (0; 0:5) and � 2 (0; 1)
2 t  1
3 while f 0(xk + tdk) > f 0(xk) + �t r f 0(xk)T dk do
4 t  �t
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Note for t small

f (xk + tdk) � f (xk) + tr f (xk)T dk < f (xk) + t� r f (xk)T dk < f (xk)

So the method terminates with the desiredt.

Choosing a descent direction

a) gradient descent dk = �r f (xk)

Note
Using exact line search, or backtracking

f (xk) � p� � ck(f (x0) � p� )

wherep� is opt. value andc is a constant in (0; 1). (we will not prove this)

b) Newton method

If r 2f 0(x) is positive de�nite, � k = �r 2f 0(xk)� 1r f 0(xk)

Note
r f 0(xk)T dk = �r f 0(xk)T r 2f 0(xk)� 1r f 0(xk) < 0

Remark:
M is positive de�nite =) M is invertible and M � 1 is positive de�nite

! Faster convergence

These are just two examples. There are lots of other variations/methods, each with
pros/cons.

4.7.2 Methods for constrained problems

Consider

z� = min f 0(x)
s.t. f i (x) � 0; 8i = 1 ; : : : ; m (CVX)

where f i are convex, twice di�erentiable,8i = 0 ; : : : ; m

Assumptions

� 9 an opt. sol. to (CVX)

� Slater’s condition holds

Idea (CVX) is equivalent to:

min f 0(x) +
mX

i =1

I � (f i (x))
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where I i : R ! R [ f1g

I � (u) =

(
0; u � 0
+ 1 ; u > 0

Problem I � is non di�erentiable & highly intractable.

Consider

�
�

1
�

�
log(� u); for � > 0

which is a convex function (check!)

� 1
u

y � = 0 :5
� = 1
� = 2

This function tries to approximate I � , but has the advantage of being di�erentiable
& convex. ! Solve unconstrained min:

min f 0(x) +
mX

i =1

�
�

1
�

�
log(� f i (x))

Solving this problem for � > 0 ensures that we get a feasible point since obj, fct.
goes to +1 as we approachf i (x) = 0.

Note
Unconstrained method can be made to work over the domain of the function.

De�ne � (x) := �
P m

i =1 log(� f i (x)) which is called the log-barrier function.

We will solve min�f 0(x) + � (x) for increasing values of� .

Note
In principle, one can just solve min�f 0(x) + � (x) for one vert large � . ! Com-
putationally is bad ! Numerical issues!

Note
We are using the scaled version of the objective function, for later convenience.
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Algorithm 9: Barrier Method
1 Let x0 be such that f i (x0) < 0; 8i = 1 ; : : : ; m
2 Let � 0 > 0. � > 1; � > 0
3 k  1
4 while Stopping criterion not satis�ed do
5 Let x � (� k)  argmin � k f 0(x) + � (x) // can be computed by descent

method starting at xk � 1

6 xk  x � (� )
7 � k  �� k � 1

Central path

Consider, for � > 0.

x � (� )  argmin �f 0(x) + � (x)

We call the set of pointsx � (� ) : � > 0 the central path.

Intuition As � ! 0, it starts becoming more important to be as far away from
f i (x) = 0 as possible. So points tend to go towards the \center" of feasible region.

As � ! 1 , it starts becoming more important to minimize f 0 and x � (� ) tends to
get closer to opt. sol.

� c

x �

x� (0:1)

x
� (2

)

x � (10)

What are properties ofx � (� )?

� f i (x � (� )) < 0; 8i = 1 ; : : : ; m

� � r f 0(x � (� )) + r � (x � (� )) = 0

() � r f 0(x � (� )) +
mX

i =1

1
� f i (x � (� ))

r f i (x � (� )) = 0

Now de�ne � �
i (� ) = �

1
�f i (x � (� ))

; 8i = 1 ; : : : ; m
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Note � � (� ) � 0. Then

r f 0(x � (� )) +
mX

i =1

� �
i (� )r f i (x � (� )) = 0

=) x � (� ) is a minimizer of L (x; � � (� )) = f 0(x) +
P m

i =1 � �
i (� )f i (x)

=) g(� � (� )) = f 0(x � (� )) �
m
�

In other words: f 0(x � (� )) � g(� � (� )) =
m
�

and sinceg(� � ) � z�

=) f (x � (� )) � z� � f (x � (� )) � g(� � (� )) =
m
�

i.e., x � (� ) is not too far from optimal and as� ! 1 , x � (� ) converges to the optimal
solution.

Interpretation as KKT

Note that x � (� ) and � � (� ) satisfy:

i) f i (x � (� )) � 0; 8i = 1 ; : : : ; m

ii) � � (� ) � 0

iii) � � �
i (� )f i (x � (� )) = 1

� ; 8i = 1 ; : : : ; m

iv) r f 0(x � (� )) +
P m

i =1 � �
i (� )r f i (x � (� )) = 0

which are almost KKT conditions and as� ! 1 , become KKT.

Note
� This method can be adapted to deal with a�ne constraintsAx = b.

� It can be used for LPs. In particular, it performs reasonably well, outper-
forming simplex in dense LPs.

� Drawback
! Does not give BFS. (Bad for cutting plane)
! Gives usually dense solutions.
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