
}
Introduction to Optimization

CO 255}
Ricardo Fukasawa

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

This page intentionally left blank

Preface

Disclaimer Much of the information on this set of notes is transcribed direct-
ly/indirectly from the lectures of CO 255 during Winter 2020 as well as other re-
lated resources. I do not make any warranties about the completeness, reliability
and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

i

https://notes.sibeliusp.com/contact/
https://notes.sibeliusp.com/

This page intentionally left blank

Contents

Preface i

0 Info 1

1 Introduction 3

2 Linear Optimization 5
2.1 Determining Feasibility . 6
2.2 Fourier-Motzkin Elimination . 7
2.3 Certifying Optimality . 11
2.4 Possible Outcomes . 14
2.5 Duals of generic LPs . 15

2.5.1 Cheat Sheet . 16
2.6 Other interpretations of dual . 17
2.7 Complementary Slackness . 20

2.7.1 Geometric Interpretation of C.S. 22
2.8 Geometry of Polyhedra . 23
2.9 Simplex Algorithm . 28

2.9.1 Canonical Form . 30
2.9.2 Iteration of simplex . 33
2.9.3 Mechanics of Simplex . 34
2.9.4 Two Stage Simplex . 38

2.10 Ellipsoid Algorithm . 41
2.10.1 Ellipsoid . 43

2.11 Grötchel-Lovász-Schrijver (GLS) . 45
2.11.1 3 problems . 45
2.11.2 Consequence of GLS . 46

3 Integer Programming 49
3.1 Cutting Plane Algorithm . 54
3.2 Total Unimodularity . 59
3.3 Sufficient condition for TU . 63

4 Nonlinear Programming 69
4.1 Convex functions . 70
4.2 Gradients & Hessian . 71
4.3 Local vs. Global optimality . 74

iii

iv CONTENTS

4.3.1 Characterizing Optimality . 75
4.4 Lagrangian Duality . 77
4.5 Karush-Kuhn-Tucker Optimality Conditions 79
4.6 Summary of NLP results . 84
4.7 Algorithms for convex NLPs . 85

4.7.1 Descent methods for unconstrained 85
4.7.2 Methods for constrained problems 86

5 Conic Optimization 91
5.1 Lagrangian . 92
5.2 Connections to IP . 93

5.2.1 Max-cut problem . 94

0
Info

Ricardo: MC 5036. OH: M 1:30 - 3pm
TA: Adam Brown: MC 5462. OH: F 10-11am

Books (not required)

• Intro to Linear Opt. Bertsimas

• Int Programming. Conforti

Grading

• assns: 20% (≈ 5)

• mid: 30% (Feb 11 in class)

• final: 50%

1

This page intentionally left blank

1
Introduction

Given a set S, and a function f : S → R. An optimization problem is:

max f(x)
s.t.︸︷︷︸

subject to

x ∈ S (OPT)

• S feasible region

• A point x ∈ S is a feasible solution

• f(x) is objective function

(OPT) means: “Find a feasible solution x∗ such that f(x) ≤ f(x∗),∀x ∈ S”

• Such x∗ is an optimal solution

• f(x∗) is optimal value

Other ways to write (OPT):

max{f(x), x ∈ S}

max
x∈S

f(x)

Analogous problem
min f(x)
s.t. x ∈ S

Note

max f(x)
s.t. x ∈ S = −1

(
min −f(x)
s.t. x ∈ S

)

Problem x∗ may not exist

3

4 CHAPTER 1. INTRODUCTION

a) Problem is unbounded:

∀M ∈ R, ∃x ∈ S, s.t. f(x) > M

b) S = ∅, i.e. (OPT) is INFEASIBLE

c) There may not exist x∗ achieving supremum.

Example:

max x
s.t. x < 1

supremum

sup{f(x) : x ∈ S} =


+∞ if OPT unbounded

−∞ if S = ∅
min{x : x ≥ f(x),∀x ∈ S} otherwise

always exist and are well-defined

infimum

inf{f(x) : x ∈ S} = −1 · sup{−f(x) : x ∈ S}

From this point on, we will abuse notation and say max{f(x) : x ∈ S} is sup{f(x) :
x ∈ S}.

One way to specify that I want an opt. sol. (if exists) is

x∗ ∈ argmax{f(x) : x ∈ S}

2
Linear Optimization (Programming)
(LP)

S = {x ∈ Rn : Ax ≤ b}
where A ∈ Rm×n, b ∈ Rm and f(x) = cTx, c ∈ Rn.

↓

max cTx
s.t. Ax ≤ b

(LP)

Note

A =

 | |
A1 · · · An
| |

 A =

− aT1 −
...

− aTm −



Clarifying
u, v ∈ Rn, u ≤ v ⇐⇒ uj ≤ vj, ∀j ∈ 1, . . . , n

Note
u 6≤ v is not the same as u > v (

1

0

)
6≤
(

0

1

)
Example:

max 2x1+ 0.5x2

s.t. x1 ≤ 2

x1+ x2 ≤ 2

x ≥ 0

• Strict ineq. not allowed

5

6 CHAPTER 2. LINEAR OPTIMIZATION

halfspace, hyperplane, polyhedron

Let h ∈ Rn, h0 ∈ R.

{x ∈ Rn : hTx ≤ h0} is a halfspace.

{x ∈ Rn : hTx = h0} is a hyperplane.

Ax ≤ b is a polyhedron (i.e. intersection of finitely many halfspaces).

Example:

n products, m resources. Producing j ∈ {1, . . . , n} given cj profit/unit and
consumes aij units of resource i, ∀i ∈ {1, . . . ,m}. There are bi units available
∀i ∈ {1, . . . ,m}.

max
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi, ∀i = 1, . . . ,m

x ≥ 0

which is an LP.

2.1 Determining Feasibility

Given a polyhedron
P = {x ∈ Rn : Ax ≤ b}

either find x ∈ P or show P = ∅.

Idea In 1-d, easy. → Reduce problem in dimension n to one in dimension n− 1.

Notation Let S = {(x, y) ∈ Rn × Rp : Ax+Gy ≤ b}, then

projx S := {x ∈ Rn : ∃y so that (x, y) ∈ S}

is the (orthogonal) projection if S onto x.

projx S x

y

S

2.2. FOURIER-MOTZKIN ELIMINATION 7

We will find if P = ∅ by looking at projx1,...,xn−1
(P)

2.2 Fourier-Motzkin Elimination

Call aij entries of A. Let

M := {1, 2, . . . ,m}
M+ := {i ∈M : ain > 0}
M− := {i ∈M : ain < 0}
M0 := {i ∈M : ain = 0}

For i ∈M+:

aTi x ≤ bi ⇐⇒
n∑
j=1

aijxj ≤ bi ⇐⇒
n−1∑
j=1

aij
ain

xj + xn ≤
bi
ain

, ∀i ∈M+ (1)

For i ∈M−

aTi x ≤ bi ⇐⇒
n−1∑
j=1

aij
ain

xj − xn ≤
bi
−ain

, ∀i ∈M− (2)

For i ∈M0

aTi x ≤ bi ⇐⇒
n−1∑
j=1

aijxj ≤ bi, ∀i ∈M0 (3)

P = {x ∈ Rn : (1)(2)(3)}
Define

n−1∑
j=1

(
aij
ain
− akj
akn

)
xj ≤

bi
ain
− bi
akn

, ∀i ∈M+, ∀k ∈M− (4)

Theorem 2.1

(x1, . . . , xn−1) satisfies (3), (4) ⇐⇒ ∃xn : (x1, . . . , xn) ∈ P

Proof:
⇐= If (x1, . . . , xn) satisfies (1), (2), (3) then (x1, . . . , xn−1) satisfies (3) and

adding (1), (2) =⇒ (x1, . . . , xn−1) satisfies (4)

=⇒ If (x1, . . . , xn−1) satisfies (4)

n−1∑
j=1

aij
ain

xj −
bi
ain
≤

n−1∑
j=1

akj
akn

xj −
bk
akn

, ∀i ∈M+, k ∈M−

Let

xn := max
i∈M+

{
n−1∑
j=1

aij
ain

xj −
bi
ain

}

8 CHAPTER 2. LINEAR OPTIMIZATION

=⇒
n−1∑
j=1

aij
ain

xj −
bi
ain
≤ −xn, ∀i ∈M+

and

−xn ≤
n−1∑
j=1

akj
akn

xj −
bk
akn

, ∀k ∈M−

=⇒ (x1, . . . , xn) ∈ P

Note
Proof assumes M+,M− are nonempty. But statement holds regardless.

(if M+ or M− = ∅ then (4) yields no constraints)

Algorithm 1: Fourier-Motzkin

1 An = A, bn = b
2 given Ai, bi obtain Ai−1, bi−1 (Ai−1 has one less column than Ai column than

Ai) by applying the steps described

Pi := {x ∈ Ri : Aix ≤ bi}

then
Pi−1 = projx1,...,xi−1

Pi

3 Keep applying projection until i = 1.

P0 = ∅ ⇐⇒ Pn = P = ∅

Let

P n
i = Pi × Rn−i = {x ∈ Rn(Ai, 0)x ≤ bi}

not hard to see P n
i = ∅ ⇐⇒ Pi = ∅

Notice that

P0 = ∅ ⇐⇒ P n
0 = ∅, P n

0 = {0 ≤ b0}

Example:

P2 =

x ∈ R2 :

x1 +2x2 ≤ 1
−x1 ≤ 0

−x2 ≤ −2
−3x1 −3x2 ≤ −6


draw the graph, clearly empty

M+: 1
2
x1 + x2 ≤ 1

2

M−: −x2 ≤ −2 −x1 − x2 ≤ −2

2.2. FOURIER-MOTZKIN ELIMINATION 9

M0: −x1 ≤ 0

P1 =

x1 ∈ R :

−x1 ≤ 0

1
2
x1 ≤ −3

2

−1
2
x1 ≤ −3

2


M+: x1 ≤ −3

M−: −x1 ≤ 0 and −x1 ≤ −3

P 2
0 =

{
x ∈ R2 :

0 ≤ −3

0 ≤ −6

}
= ∅

Here b0 =
(−3
−6

)
Remark:
Inequality in P n

i :

• All inequalities are obtained by a nonnegative combination of inequality in
P n
i+1

=⇒ all nonnegative combination of inequalities in P .

• If all A, b are rational then so are all Ai, bi

• If b = 0, bi = 0,∀i

Theorem 2.2: Farkas’ Lemma

P = {x ∈ Rn : Ax ≤ b} = ∅ ⇐⇒ ∃u ∈ Rm :

uTA = 0

uT b < 0

u ≥ 0

Proof:
(⇐=) Suppose x satisfies Ax ≤ b.

0 = uTAx ≤ uT b < 0

which is impossible.

(=⇒) If P = ∅. Apply Fourier-Motzkin until we get

P n
0 = ∅ = {x ∈ Rn : 0x ≤ b0}

i.e. there exists j for which b0j < 0.

If we look at corresponding constraint in P n
0 is

0Tx ≤ b0j

10 CHAPTER 2. LINEAR OPTIMIZATION

which can be obtained by a vector u such that uTA = 0, uT b = b0j , u ≥ 0.

Farkas’ Lemma (alternate statement)

Exactly one of the following has a solution:

a) Ax ≤ b

b)

uTA = 0

uT b < 0

u ≥ 0

Farkas’ Lemma (Different Form)

Exactly one of the following has a solution:

a)
Ax = b

x ≥ 0

b)
uTA ≥ 0

uT b < 0

Proof:
(Sketch)

P =

{
x :

Ax = b

x ≥ 0

}
=

x :

 A
−A
−I


︸ ︷︷ ︸

A′

x ≤

 b
−b
−0


︸ ︷︷ ︸

b′


Apply original Farkas’ Lemma to get P = ∅ ⇐⇒ ∃u1 ∈ Rm, u2 ∈ Rm, v ∈ Rn:

uT1A− uT2A− v = 0

uT1 b− uT2 b < 0

u1, u2, v ≥ 0

Let u = (u2 − u2)

uTA− v = 0 =⇒ uTA ≥ 0, uT b < 0

Consider a linear programming (LP):

max cTx
s.t. Ax ≤ b

(LP)

2.3. CERTIFYING OPTIMALITY 11

Theorem 2.3: Fundamental Theorem of Linear Programming

(LP) has exactly one of 3 outcomes:

a) Infeasible

b) Unbounded

c) There exists an optimal solution.

Proof:
Let’s assume a), b) don’t hold.

If n = 1, then (LP) has an optimal solution. (Why?)

Else, define
max z

s.t.
z − cTx ≤ 0
Ax ≤ b

(LP’)

(LP’) is also not in case a) or b). (Why?)

Also if (x∗, z∗) is an optimal solution to (LP’), then x∗ is an optimal solution to
(LP). (Why?)

Apply Fourier-Motzkin to {
(x, z) :

z − cTx ≤ 0

Ax ≤ b

}

Until we are left with a polyhedron

{z ∈ R : A′z ≤ b′}

Now
max z
s.t. A′z ≤ b′

is not cases a) or b). (Why?)

→ can get an optimal solution z∗ to such problem. Apply Fourier-Motzkin back
to get (x∗, z∗) optimal solution to (LP’). (Why?)

2.3 Certifying Optimality

max cTx
s.t. Ax ≤ b

(LP)

and let x ∈ P = {x : Ax ≤ b}

Question Can we certify that x is optimal?

12 CHAPTER 2. LINEAR OPTIMIZATION

Example:

max 2x1 + x2

s.t.

x1 + 2x2 ≤ 2

x1 + x2 ≤ 2

x1 − x2 ≤ 0.5

Consider x = (0, 1)T is clearly NOT optimal.

x∗ = (1, 0.5)T and cTx∗ = 2.5. Any feasible solution satisfies

x1 + 2x2 ≤2 ×1/3

x1 + x2 ≤2 ×1

+ x1 − x2 ≤0.5 ×2/3
2x1 + x2 ≤3

Instead do 1× 1st constraint + 1× 3rd constraint =⇒ 2x1 + x2 ≤ 2.5

In general:
x1 + 2x2 ≤2 ×y1
x1 + x2 ≤2 ×y2

+ x1 − x2 ≤0.5 ×y3
(y1 + y2 + y3)x1 + (2y1 + y2 − y3)x2 ≤ 2y1 + 2y2 + 0.5y3

As long as y1, y2, y3 ≥ 0 and

y1 + y2 + y3 = 2

2y1 + y2 − y3 = 1

This leads to the following linear program:

min 2y1 + 2y2 + 0.5y3

s.t.

y1 + y2 + y3 = 2

2y1 + y2 − y3 = 1

y1, y2, y3 ≥ 0

This is called the dual LP.

In general:

max cTx
s.t. Ax ≤ b

(P)

Dual of (P)

min bTy

s.t.
yTA = cT

y ≥ 0
(D)

2.3. CERTIFYING OPTIMALITY 13

Remark:
We call (P) primal LP.

Theorem 2.4: Weak Duality

Let x feasible for (P), y feasible for (D). Then cTx ≤ bTy.

Proof:

cTx = yT (Ax) ≤ yT b

where we used Ax ≤ b and y ≥ 0.

Corollary 2.5

Several results:

• If (P) is unbounded then (D) is infeasible.

• If (D) is unbounded then (P) is infeasible.

Note
(P) and (D) can both be infeasible.

• If x is feasible for (P) y feasible for (D) cTx = bTy, then x optimal for
(P), y optimal for (D).

Theorem 2.6: Strong Duality

x∗ is optimal for (P) ⇐⇒ ∃y∗ feasible for (D) such that cTx∗ = bTy∗.

Proof:
(⇐=) X

(=⇒) Is (D) infeasible?

Suppose

{
y ∈ Rn :

ATy = c

y ≥ 0

}
= ∅

(Alternate version of Farkas’ Lemma) ∃u :
uTAT ≥ 0

uT c < 0
⇐⇒ ∃d :

Ad ≤ 0

cTd > 0

Take look at x′ = x∗ + d, then

Ax′ = Ax∗ + Ad ≤ b

cTx′ = cTx∗ + cTd > cTx∗

Contradiction. Thus (D) has an optimal solution y∗.

Now let γ = bTy∗, and let θ :=

{
x ∈ Rn :

Ax ≤ b

−cTx ≤ −γ

}
.

14 CHAPTER 2. LINEAR OPTIMIZATION

If θ = ∅, by Farkas’

∃
(
y

λ

)
:



(
y

λ

)T(
A

−cT

)
= 0

(
y

λ

)T(
b

−γ

)
< 0

(
y

λ

)
≥ 0

⇐⇒

ATy = cλ

bTy < γλ

y ≥ 0

λ ≥ 0

Case 1: λ > 0.

Let y′ =
y

λ
. Then we have

ATy′ = AT
y

λ
= c and bTy′ = bT

y

λ
< γ and y′ =

y

λ
≥ 0

Contradicts optimality of y∗.

Case 2: λ = 0. Then

ATy = 0

bTy < 0

y ≥ 0

Now we can do the same thing previously. Let y′ = y∗ + y, then

ATy′ = ATy∗ + ATy = c

and
y′ = y∗ + y ≥ 0

bTy′ = bTy∗ + bTy < bTy∗

Contradicts optimality of y∗.

Thus θ 6= ∅.

Let x ∈ θ,
cTx∗ ≤︸︷︷︸

weak duality

bTy∗ = γ ≤︸︷︷︸
x∈θ

cTx ≤ cTx∗

where the last inequality is because x feasible for (P), x∗ optimal for
(P).

2.4 Possible Outcomes

See here.

https://notes.sibeliusp.com/pdfs/1189/co255.pdf#page=21

2.5. DUALS OF GENERIC LPS 15

2.5 Duals of generic LPs

max 2x1 + 3x2 − 4x3

s.t.

x1 +7x3 ≤ 5
2x2 −x3 ≥ 3

x1 +x3 = 8
x2 ≤ 6

x1 ≥ 0
x2 ≤ 0

max (2, 3,−4)x

s.t.



1 0 7
0 −2 1
1 0 1
−1 0 −1
0 1 0
−1 0 0
0 1 0


x ≤



5
−3
8
−8
6
0
0


and dual

min (5,−3, 8,−8, 6, 0, 0)y

s.t.

1 0 1 −1 0 −1 0
0 −2 0 0 1 0 1
7 1 1 −1 0 0 0

 y =

 2
3
−4

 and y ≥ 0
(D1)

min (5,−3, 8,−8, 6)y

s.t.

1 0 1 −1 0
0 −2 0 0 1
7 1 1 −1 0

 y

≥
≤
=

 2
3
−4

 and y ≥ 0
(D2)

Claim (y∗1, . . . , y
∗
5) is optimal for (D2) ⇐⇒ (y∗1, . . . , y

∗
5, y
∗
6, y
∗
7) optimal for (D1)

with

y∗6 = y∗1 + y∗3 − y∗4 − 2

y∗7 = 3− (−2y∗2 + y∗5)

min (5, 3, 8, 6)y

s.t.

1 0 1 0
0 2 0 1
7 −1 1 0

 y

≥
≤
=

 2
3
−4

 and y1 ≥ 0, y2 ≤ 0 y4 ≥ 0
(D3)

16 CHAPTER 2. LINEAR OPTIMIZATION

Claim Opt value of (D2) and (D3) are same.

In general

max cTx

s.t.
Ax?b

x?0

(P)

min bTy

s.t.
ATy?c

y?0

(D)

2.5.1 Cheat Sheet

Here or

Primal (max) Dual (min)

Constraint
≤ ≥ 0

Variable≥ ≤ 0
= free

Variable
≥ ≥ 0

Constraint≤ ≤ 0
free =

Remark:
This is not symmetric... The way you can remember it is by thinking natural
variables in real life, like you cannot have negative number of cars and so on...

Q What if you start with a minimization LP as primal?

Example:

min x1 − x2

s.t.

2x1 + 3x2 ≤ 5
x1 − x2 ≥ 3
x1 + 5x2 = 7
x1 ≥ 0, x2 ≤ 0

(P)

Rewrite as:

−1×

max −x1 + x2
↓
s.t. . . .


Will lead to finding dual:

max 5y1 + 3y2 + 7y3
↓

s.t.
2y1 + y2 ≤ 1
3y1 − y2 + 5y3 ≥ −1
y1 ≤ 0, y2 ≥ 0, y3 free

Also

• Weak duality holds.

https://notes.sibeliusp.com/pdfs/1189/co255.pdf

2.6. OTHER INTERPRETATIONS OF DUAL 17

If x feasible for (P), y feasible for (D), then cTx ≥ bTy.

• Strong duality holds

Note
The dual of the dual of (P) is (P).

Example:

Given a simple undirected graph G = (V,E). M ⊆ E is a matching if every
vertex v ∈ V is incident to ≤ 1 edge in M .

See examples of matching in CO 342 or MATH 249.

Max cardinality matching

Find matching M with largest |M |.

Define xe =

{
1, if e ∈M
0, otherwise

.

max

∑
e∈E

xe

↓

s.t.

∑
e∈δ(v)

xe ≤ 1, ∀v ∈ V

0 ≤ xe, ∀e ∈ E

where δ(v) = set of edges in E incident to v.

min

∑
v∈V

yv

↓

s.t.
yu + yv ≥ 1, ∀e = uv ∈ E
y ≥ 0

2.6 Other interpretations of dual

Example:

Resources

Per unit Profit
Per unit consumption
A B

Product
1 5 2 3
2 3 4 1

Available Resources 15 10

https://notes.sibeliusp.com/pdfs/1195/co342.pdf
https://notes.sibeliusp.com/pdfs/1189/math249.pdf

18 CHAPTER 2. LINEAR OPTIMIZATION

max 5x1 + 3x2
↓

s.t.
2x1 + 4x2 ≤ 15
3x1 + x2 ≤ 10
x ≥ 0

Suppose somebody wants to buy A,B from me. What is the lowest price I should
ask?

Let yA, yB be prices:
min 15yA + 10yB
↓

s.t.
2yA + 3yB ≥ 5
4yA + yB ≥ 3
y ≥ 0

Example: Zero-Sum

Alice, Bob play game. A: m choices. B: n choices. Alice play i, Bob plays j, Bob
pays Alice Mij dollars.

Alice
R P S

Bob
R 0 1 -1
P -1 0 1
S 1 -1 0

Zero-sum: Amount won by Alice - Amount won by Bob = 0

Let y ∈ Rm
+ , Alice’s probability distribution.

Let x ∈ Rn
+, Bob’s probability distribution.

Expected Amount Bob pays Alice:

m∑
i=1

n∑
j=1

yiMijxj = yTMx

P =

{
x ∈ Rn :

∑
xj = 1

x ≥ 0

}
Q =

{
y ∈ Rm :

∑
yi = 1

y ≥ 0

}

Alice wants max
y∈Q

{
min
x∈P

yTMx

}
. Bob wants min

x∈P

{
max
y∈Q

yTMx

}
.

2.6. OTHER INTERPRETATIONS OF DUAL 19

Suppose y ∈ Q is fixed. Bob’s problem is

min
x∈P

yTMx =

min

n∑
j=1

(
m∑
i=1

Mijyi

)
xj

↓

s.t.

n∑
j=1

xj = 1

x ≥ 0

This is equivalent to picking smallest number in{
m∑
i=1

Mijyi

}n

j=1

=⇒ max
y∈Q

min
x∈P

yTMx = max
y∈Q


max u
↓
s.t. u ≤ yTMej, ∀j = 1, . . . , n



=

max u
↓

s.t.
u ≤ yTMej, ∀j = 1, . . . , n
yT = 1
y ≥ 0

Similarly Bob’s problem:

min v
↓

s.t.
v ≥ eTi Mx, ∀i = 1, . . . ,m
xT = 1
x ≥ 0

There are x∗, y∗ for which strategy values match → Nash’s Equilibrium.

Now get back to Farkas’ Lemma Theorem 2.2. 1

Proof:

max 0Tx
↓
s.t. Ax ≤ b

(P)

min bTu
↓

s.t.
uTA = 0
u ≥ 0

(D)

(D) is always feasible (u = 0).

1Rephrase it a little bit: Exactly one of the two has a solution (i) Ax ≤ b (ii) uT

20 CHAPTER 2. LINEAR OPTIMIZATION

If ∃x : Ax ≤ b, x optimal for (P) =⇒ optimal for (D) has value 0.
=⇒ 6 ∃u satisfying (ii).

And the converse is also true.

2.7 Complementary Slackness (C.S.)

Let x∗, y∗ be feasible for primal and dual respectively.

Complementary Slackness

Abbreviated as C.S.

i) Either x∗j = 0 or corresponding dual constraint is tight at y∗, ∀j =
1, . . . , n.

ii) Either y∗i = 0 or corresponding primal constraint is tight at x∗, ∀i =
1, . . . ,m.

Example:

min x1 − x2
↓

s.t.

2x1 + 3x2 ≤ 5
x1 − x2 ≥ 3
x1 + 5x2 = 7
x1 ≥ 0, x2 ≤ 0

(P)

max 5y1 + 3y2 + 7y3
↓

s.t.
2y1 + y2 + y3 ≤ 1
3y1 − y2 + 5y3 ≥ −1
y1 ≤ 0, y2 ≥ 0

(D)

i) x∗1 = 0 OR 2y∗1 + y∗2 + y∗3 = 1
x∗2 = 0 OR 3y∗1 − y∗2 + 5y∗3 = −1

ii) y∗1 = 0 OR 2x∗1 + 3x∗2 = 5
y∗2 = 0 OR x∗1 − x∗2 = 3
y∗3 = 0 OR x∗1 + 5x∗2 = 7

Theorem 2.7

Let x∗, y∗ be feasible for primal/dual respectively. TFAEa

a) x∗ opt for primal AND y∗ opt. for dual

b) Obj. value of x∗ = Obj. value of y∗

2.7. COMPLEMENTARY SLACKNESS 21

c) x∗, y∗ satisfy C.S.

athe following are equivalent

Proof:
a)⇐⇒ b) done.

b)⇐⇒ c) Proof for
max cTx
↓

s.t.
Ax ≤ b
x ≥ 0

min bTy
↓

s.t.
ATy ≥ c
y ≥ 0

Note

ATy ≥ c ⇐⇒
m∑
i=1

aijyi ≥ cj, ∀j = 1, . . . , n

cTx∗ =
n∑
j=1

cjx
∗

≤
n∑
j=1

(
m∑
i=1

aijy
∗
i

)
x∗j

=
m∑
i=1

(
n∑
j=1

aijx
∗
i

)
y∗i

≤
m∑
i=1

biy
∗
i = bTy∗

where first and second inequalities come from x ≥ 0, y ≥ 0 respec-
tively.

(b) cTx∗ = bTy∗ ⇐⇒ C.S. holds. (Just play with some strict in-
equality conditions)

Example:

max x1 + x2
↓
s.t. x1 + x2 ≤ 1

min y
↓

s.t.
y = 1
y = 1
y ≥ 0

Consider a pair x∗ = (0, 0), y∗ = 1 which violates CS.

22 CHAPTER 2. LINEAR OPTIMIZATION

2.7.1 Geometric Interpretation of C.S.

max cTx
↓
s.t. Ax ≤ b

min cTy
↓

s.t.
ATy = c
y ≥ 0

A =

− aT1 −
...

− aTm −


C.S says aTi x

∗ = bi or y∗i = 0.

ATy = c =⇒

 | | |
a1 a2 · · · am
| | |

 y = c =⇒
m∑
i=1

aiyi = c

C.S. says c is a nonnegative combination of tight constraint at x∗.

Example:

max 2x1 + 0.5x2
↓

s.t.

x1 ≤ 2
x2 ≤ 2
x1 + x2 ≤ 3
x1, x2 ≥ 0

1 2 3

1

2

3

c

objective function
cannot be improved

x∗

Not Optimal

x1

x2

2.8. GEOMETRY OF POLYHEDRA 23

Theorem 2.8

max cTx
↓
s.t. Ax ≤ b

(P)

is unbounded iff (P) is feasible and ∃d ∈ Rn :
cTd > 0
Ad ≤ 0

.

Proof:
=⇒) Let x feasible for (P), x+ λd is also feasible for (P) ∀λ ≥ 0.

cT (x+ λd) can be made arbitrary large.

⇐=) Hard exercise but doable.

2.8 Geometry of Polyhedra

line segment

x, y ∈ Rn the line segment between x, y is{
x ∈ Rn :

x = λx+ (1− λ)y
for some λ ∈ [0, 1]

}

convex set

S is a convex set if ∀x, y ∈ S, line segment between x, y is contained in S.

Example:

NOT a convex set

Polyhedra are convex sets. P = {x : Ax ≤ b}. x, y ∈ P then

A(λ︸︷︷︸
≥0

x+ (1− λ)︸ ︷︷ ︸
≥0

y) ≤ λb+ (1− λ)b = b

24 CHAPTER 2. LINEAR OPTIMIZATION

convex combination

Given x1, . . . , xk ∈ Rn. We say x is a convex combination of x1, . . . , xk if ∃λ:

x =
k∑
i=1

λix
i

1 =
k∑
i=1

λi

λ ≥ 0

Optimal solution seems to be happen at “corners”.

Let P be a polyhedron P = {x ∈ Rn : Ax ≤ b}.

vertex

x is a vertex of P if ∃c: x is unique optimal solution to

max cTx
s.t. Ax ≤ b

extreme point

x is an extreme point of P if @u, v ∈ P \ {x} such that x is in line segment
between u, v.

basic feasible solution

x ∈ P is a basic feasible solution of P if there are n linearly independent tight
constraints at x.

Note
Constraints

aTi x ≤ bi, ∀i = 1, . . . ,m

are linearly independent if {ai}mi=1 are linearly independent.

Theorem 2.9

Let x ∈ P . TFAE:

a) x is a vertex of P .

b) x is a basic feasible solution of P .

c) x is a extreme point of P .

2.8. GEOMETRY OF POLYHEDRA 25

Proof:
a) =⇒ c) Suppose ∃u, v ∈ P \ {x} such that

x = λu+ (1− λ)v

for some λ ∈ (0, 1). Consider c for which x is an optimal solution to

max cTx
s.t. x ∈ P

=⇒ cTx ≥ cTu
cTx ≥ cTv

and

cTx = λ︸︷︷︸
≥0

cTu+ (1− λ)︸ ︷︷ ︸
≥0

cTv ≤ λcTx+ (1− λ)cTx = cTx

=⇒ cTu = cTv = cTx

=⇒ x NOT a vertex.

c) =⇒ b) Suppose x is not a BFS. Let I ⊆ {1, . . . ,m} be the index set of tight
constraint at x. Consider

aTi d = 0, ∀i ∈ I (∗)

But since x not BFS, ∃d 6= 0 satisfying (∗).a

x(ε) = x+ εd

aTi x(ε) = aTi x ≤ bi, ∀i ∈ I
aTi x(ε) = aTi x︸︷︷︸

<bi

+εaTi d ≤ bi, ∀i 6∈ I

which is satisfied if |ε| is small enough.

x(ε) ∈ P if |ε| is small enough.

But then

x =
1

2
x(ε) +

1

2
x(−ε)

b) =⇒ a) Let I ⊆ {1, . . . ,m} index set of tight constraint at x.

Define
c :=

∑
i∈I

ai

Then ∀x ∈ P
cTx =

∑
i∈I

aTi x ≤
∑
i∈I

bi

And
cTx =

∑
i∈I

aTi x =
∑
i∈I

bi

26 CHAPTER 2. LINEAR OPTIMIZATION

=⇒ x is optimal solution to

max cTx
s.t. x ∈ P (∗∗)

If x′ ∈ P is optimal solution to (∗∗), then

aTi x
′ = bi, ∀i ∈ I (∗ ∗ ∗)

But since there are n linear independent constraints in I, x is unique
solution to (∗ ∗ ∗). =⇒ x′ = x.

aby Rank-Nullity Theorem.

Q When does P have extreme points?

line

Let x, d ∈ Rn, d 6= 0. The set

{x ∈ Rn : x = x+ λd for some λ ∈ R}

is called a line.

x

d

We say a polyhedron P has a line if ∃x, d has a line if ∃x, d s.t. x ∈ P, d 6= 0 and

{x ∈ R : x = x+ λd for some λ ∈ R} ⊆ P

P

x

Proposition 2.10

P = {x ∈ Rn : Ax ≤ b} has a line iff P 6= ∅ and ∃d 6= 0 such that Ad = 0

⇐⇒ P 6= ∅ and rank(A) < n

Proof:
Exercise.

2.8. GEOMETRY OF POLYHEDRA 27

Theorem 2.11

P = {x ∈ Rn : Ax ≤ b} has an extreme point

⇐⇒ P 6= ∅ and P has no lines.

Proof:
Exercise.

pointed polyhedron

A non-empty polyhedron is called pointed if it has no lines.

Note

not pointed does not imply bounded. For example, in R2, x ≥ 0 and y ≥ 0.

Theorem 2.12

Let P 6= ∅ pointed polyhedron. If
max cTx
s.t. x ∈ P (LP) has an optimal solution,

it has an optimal solution that is an extreme point.

Proof:
Let x be an optimal solution to (LP) with largest number of linear independent
tight constraints.

Suppose there are ≤ n− 1 linear independent tight constraints at x.

Pick d 6= 0 such that aTi d = 0,∀i ∈ I, where I is the index set of tight constraints.
By the exact same argument as before, x± εd ∈ P for ε small enough. But

cT (x± εd) = cTx± εcTd

=⇒ cTd = 0
=⇒ cTd(x± εd) = cTx

x

d

ε

−ε

Since P is pointed, ∃ε for which

x± εd ∈ P

and one of them not in P if |ε| > ε. That can only happen if

aTk (x+ εd) = bk or aTk (x− εd) = bk

for some k 6∈ I.

28 CHAPTER 2. LINEAR OPTIMIZATION

=⇒ aTk d 6= 0, =⇒ ak is linear independent from {ai}i∈I since non-zero cannot
be linear combination of zeros. Contradiction to choice of x.

2.9 Simplex Algorithm

Standard Equality Form

A linear program is in Standard Equality Form (SEF) if it is of the form

max cTx
↓

s.t.
Ax = b
x ≥ 0

Proposition 2.13

Given any linear program, there exists an equivalent LP in SEF.

Example:

max x1 + 2x2 + x3
↓

s.t.
3x1 + x2 ≤ 5
−x1 + x3 ≥ 6
x1 ≤ 0, x3 ≥ 0

(P1)

x′1 = −x1 ≥ 0 and
x2 = x+2 − x−2 where x+2 ≥ 0, x−2 ≥ 0

We introduce

s1 = 5− 3x1 − x2 ≥ 0, s2 = −x1 + x3 − 6 ≥ 0

Then
max −x′1 + 2x+2 − 2x−2 + x3
↓

s.t.
−3x′1 + 2x+2 − x−2 + s1 = 5
x′1 + x3 − s2 = 6
x′1, x

+
2 , x

−
2 , x3, s1, s2 ≥ 0

(P2)

x feasible for (P1) ⇐⇒ (x′1, x
+
2 , x

−
2 , x3, s1, s2) feasible for (P2) and they have

same cost.

Assumption A ∈ Rm×n → rank(A) = m. This is WLOG. Since if

ai =
∑
k 6=i

λkak

2.9. SIMPLEX ALGORITHM 29

Either

bi 6=
∑
k 6=i

λkbk

in which case (SEF) is infeasible. Or aTi x = bi is redundant. So it can be removed
from (SEF).

Note
{x : Ax = b, x ≥ 0} is pointed polyhedron (if nonempty).

Structure of BFS Any feasible solution has m linear independent tight con-
straints (n−m) extra tight constraint must come from xj ≥ 0.

Let B ⊆ {1, . . . , n} such that |B| = m and AB
2 is invertible.

N = {1, . . . , n} \B. xN = 0, i.e. xj = 0,∀j ∈ N .

Feasible solutions obtained this way are precisely BFS.

Example:

max
(
3 2 1 4

)
x

↓

s.t.

(
1 2 −1 0
2 1 0 1

)
x =

(
5
7

)
x ≥ 0

If we pick

B = {1, 2} AB =

(
1 2
2 1

)
N = {3, 4} AN =

(
−1 0
0 1

)
CB = (3 2)T CN = (1 4)T

xB =

(
x1
x2

)
xN =

(
x3
x4

)

B = {1, 3}, B = {2, 4}, AB =

(
1 −1
2 0

)
, AN =

(
2 0
1 1

)

CB =

(
3

1

)
, CN =

(
2

4

)
, xB =

(
x1
x3

)
, xN =

(
x2
x4

)
If we set xN = 0 (for B = {1, 3}) we are left with(

1 −1
2 0

)(
x1
x3

)
=

(
5

7

)
This has a unique solution x1 = 3.5, x3 = −1.5, but not feasible.

2AB is submatrix obtained by picking columns of A indexed by B. Such B is called a basis.

30 CHAPTER 2. LINEAR OPTIMIZATION

If we pick B = {1, 2} (
1 2
2 1

)(
x1
x2

)
=

(
5

7

)
x3 = x4︸ ︷︷ ︸

xN

= 0, x1 = 3, x2 = 1, which is feasible.

In general,

Ax = b ⇐⇒ ABxB +���
�:0

ANxN = b

has unique solution xb = A−1B b.

For any basis B, the corresponding basic solution is(
xB
xN

)
=

(
A−1B b

0

)
If A−1B b ≥ 0, then it is a BFS.

2.9.1 Canonical Form

Let B be a feasible basis (i.e. corresponding basis solution is feasible).

Ax = b ⇐⇒ ABxB + ANxN = b

⇐⇒ xB + A−1B ANxN = A−1B b

Now let’s take a look at objective.

cTx = cTBxB + cTNxN − cTB(xB + A−1B ANxN − A−1B b)

= (cTN − cTBA−1B AN)xN + cTBA
−1
B b

Thus (SEF) is said to be in canonical form for B if it is written as

max
cTN→Reduced costs︷ ︸︸ ︷

(cTN − cTBA−1B AN)xN + cTBA
−1
B b

↓

s.t.
xB + A−1B ANxN = A−1B b
xB, xN ≥ 0

Example:

Back to our previous example...

B = {1, 2}. Rewriting in canonical form for B:

A−1B =

(
−1/3 2/3
2/3 −1/3

)

ABA =

(
1 0 1/3 −2/3
0 1 2/3 −1/3

)

2.9. SIMPLEX ALGORITHM 31

cTBA
−1
B AN = (3 2)

(
1/3 −2/3
2/3 −1/3

)
= (7/3 − 8/3)

cTN − cTBA−1B AN = (−4/3 4/3)

Then
max (0 0 − 4/3 4/3)x+ 11
↓

s.t.

(
1 0 1/3 −2/3
0 1 2/3 −1/3

)
x =

(
3

1

)
x ≥ 0

is in canonical form for B = {1, 2}.

Example:

max

(
1 3 −2 0 0

)
x +0︸︷︷︸

obj. value

↓

s.t.

(
1 1 1 1 0
1 −1 3 0 1

)
x =

(
4

1

)
x ≥ 0

(LP)

Canonical form for B = {4, 5}.

Corresponding BFS
x4 = 4

x5 = 1
, xj = 0, ∀j ∈ N

x =
(
0 0 0 4 1

)T
Objective value = 0

If increase x1 or x2. Objective function increases.

Let’s try to increase x1 from 0→ θ. (Keep x2 = x3 = 0)

θ + x4 = 4 ⇐⇒ x4 = 4− θ
θ + x5 = 1 ⇐⇒ x5 = 1− θ

New objective: 0 + θ. However, we have

x4 ≥ 0 =⇒ θ ≤ 4

x5 ≥ 0 =⇒ θ ≤ 1
=⇒ Increase x1 by 1

x5 will be 0 →
x1 enters basis

x5 leaves basis
. Then new basis B = {1, 4}.

Rewriting (LP) in canonical form for B = {1, 4}.

32 CHAPTER 2. LINEAR OPTIMIZATION

max

(
0 4 −5 0 −1

)
x+ 1︸︷︷︸

obj. value

↓

s.t.

(
1 −1 3 0 1
0 2 −2 1 −1

)
x =

(
1

3

)
x ≥ 0

Corresponding BFS:

x =
(
1 0 0 3 0

)T
Obj. value = 1

Pick j ∈ N : cj > 0 (j = 2)

Increase x2 to θ, keep x3 = x5 = 0

x1 − θ = 1 ⇐⇒ x1 = 1 + θ

x4 + 2θ = 3 ⇐⇒ x4 = 3− 2θ

and
x1 ≥ 0 =⇒ θ ≥ −1

x4 ≥ 0 =⇒ θ ≤ 3

2

Set θ ← 3
2
→

x2 enters basis

x4 leaves basis

New basis B = {1, 2}.

(LP) in canonical form for B = {1, 2}.

max
(
0 0 −1 −2 1

)
x+ 7

↓

s.t.

(
1 0 2 0.5 0.5
0 1 −1 0.5 −0.5

)
x =

(
2.5

1.5

)
x ≥ 0

Corresponding BFS:

x =
(
2.5 1.5 0 0 0

)T
Obj. value = 7

Find j ∈ N , cj > 0 (j = 5)

x1 = 2.5− 0.5θ ≥ 0

x2 = 1.5 + 0.5θ ≥ 0
=⇒

θ ≤ 5

θ ≥ −3
→

x1 leaves basis

x5 enters basis

New basis B = {2, 5}

2.9. SIMPLEX ALGORITHM 33

(LP) in canonical form for B = {2, 5}

max
(
−2 0 −5 −3 0

)
x+ 12

↓

s.t.

(
1 1 1 1 0
2 0 4 1 1

)
x =

(
4

5

)
x ≥ 0

BFS x =
(
0 4 0 0 5

)T
Obj. value = 12.

Optimal Solution

2.9.2 Iteration of simplex

Algorithm 2: Iteration of simplex

1 Start with feasible basis B
2 Rewrite LP in canonical form for B
3 Pick j ∈ N : cj > 0 (xj enters basis)

4 Let b = A−1B b, AN = A−1B AN
Find largest θ so that b− θAj ≥ 0.
Corresponding basic variable that becomes 0 (say xk) leaves basis.

5 B ← B \ {k} ∪ {j}. Iterate.

If problem has optimal solution AND θ is always > 0, simplex finishes.

Note
If at current BFS we have a basic variable = 0, we may have θ = 0. → May lead
to cycling. (i.e. return to current basis in future iteration)

Bland’s Rule

If there are multiple choices of entering or leaving variables, always pick lowest
index variable.

Using Bland’s Rule avoids cycling

Observations If cN ≤ 0, then the (LP) obj. value in canonical form is

cTN︸︷︷︸
≤0

xN︸︷︷︸
≥0

+cTBA
−1
B b ≤ cTBA

−1
B b

For any feasible solution =⇒ Current BFS is optimal

34 CHAPTER 2. LINEAR OPTIMIZATION

c
cycling pattern

Figure 2.1: Simplex method

Original LP

max cTx
↓

s.t.
Ax = b
x ≥ 0

Dual
min bTy
↓
s.t. ATy ≥ c

⇐⇒
min yT b
↓
s.t. yTA ≥ cT

⇐⇒

min yT b
↓

s.t.
yTAB ≥ cTB
yTAN ≥ cTN

If satisfies C.S with BFS corresponding to B

=⇒
yTAB = cTB

yT = cTBA
−1
B

yTAN ≥ cTN

⇐⇒ cTBA
−1
B AN ≥ cTN ⇐⇒ cN ≤ 0

2.9.3 Mechanics of Simplex

Example: 1

max
(
1

enters basis

3 −2 0

j

0
)
x

↓

s.t.

(
1 1 1 1 0
1

pivot

−1 3 0 1

)
x =

(
4
1 row `

)
x ≥ 0

2.9. SIMPLEX ALGORITHM 35

For θ

θ

(
1

1

)
+

(
x4
x5

)
=

(
4

1

)
and we have (

x4
x5

)
=

(
4− θ
1− θ

)
≥ 0 =⇒

θ ≤ 4

θ ≤ 1

We are actually picking min

{
4

1
,
1

1

}
Pick, out of all rows min

{
bi
aij

}
where j is entering variable.

Then now in row ` (second row here). Make row operations so that pivot element
become 1, all others in col j becomes 0.

→ Row 2 ×1

→ Subtract tow 2 from row 1

→ subtract row 2 from objective function (with RHS multiplied by −1)

max
(
0 4

j

−5 0 −1
)
x+ 1

↓

s.t.

(
0 2

pivot

−2 1 −1
1 −1 3 0 1

)
x =

(
3 row `

1

)
x ≥ 0

2θ + x4 = 3 ⇐⇒ x4 = 3− 2θ ≥ 0 =⇒ θ ≤ 3

2
−θ + x1 = 1 ⇐⇒ x1 = θ + 1 ≥ 0 =⇒ θ ≥ −1

where we are finding min
aij>0

{
bi
aij

}
. Now follow the similar procedure, we have

max
(
0 0 −1 −2 1

)
x+ 7

↓

s.t.

(
0 1 −1 0.5 −0.5
1 0 2 0.5 0.5

)
x =

(
1.5

2.5

)

In general Pick j ∈ N : cj > 0.

Let ` = argmin
aij>0

{
bi
aij

}
(Ratio Test)

• Multiply row ` by
1

a`j

• Add −aij
a`j

times row ` to row i 6= `.

36 CHAPTER 2. LINEAR OPTIMIZATION

• Add −cj · a`k
a`j

to variable coeff in objective. ∀k ∈ 1, . . . , n

• Add
b` · cj
aij

to objective value in objective function

Example: 2

max
(
2

j

1 1 0 0
)
x

↓

s.t.

(
1 2 −1 1 0
2

pivot

−2 −1 0 1

)
x =

(
2
3 row `

)
x ≥ 0

Ratio Test min

{
2

1
,
3

2

}
= 1.5. ` = 2. (x2 enters, x5 leaves)

max
(
0 3 2

j

0 −1
)
x+ 3

↓

s.t.

(
0 3 −0.5 1 −0.5
1 −1 −0.5 0 0.5

)
x =

(
0.5
1.5

)
x ≥ 0

If we increase x3 → θ and keep x2 = x5 = 0

−0.5θ + x4 = 0.5

−0.5θ + x1 = 1.5
=⇒

x1 = 1.5 + 0.5θ

x4 = 0.5 + 0.5θ
→ Problem is unbounded!

In general Let B be a basis

max cTNxN
↓

s.t.
xB + ANxN = b
xB, xN ≥ 0

Found j : cj > 0 AND Aj ≤ 0.

Construct d ∈ Rn to reflect what we are trying to do when we increase xj → θ.

Right now, we are at BFS: (
xB
xN

)
=

(
A−1B b

0

)

We want: (
xB
xN

)
=

(
A−1B b

0

)
+ θ

(
dB
dN

)

2.9. SIMPLEX ALGORITHM 37

where dN =



0
0
...
1

j

...
0
0


= ej and dB = −Aj = −A−1B Aj.

Found d: d ≥ 0, then

Ad = ABdB + ANdN = −ABA−1B Aj + Aj = 0

and
cTd = cTBdB + cTNdN = −cTBA−1B Aj + cj = cj > 0

i.e.,
cTd > 0

Ad = 0

d ≥ 0

=⇒ Problem is unbounded

But wait, how to find an initial BFS?

Given
max cTx
↓

s.t.
Ax = b
x ≥ 0

(LP)

where b ≥ 0.

Construct auxiliary
max −eTw
↓

s.t.
Ax+ Iw = b
x, w ≥ 0

(AUX)

Note
• (AUX) is feasible (x = 0, w = b)

• (AUX) is bounded −eTw ≤ 0

So (AUX) has an optimal solution.

Proposition 2.14

(AUX) has optimal value 0 iff (LP) is feasible.

Proof:
If optimal solution (x∗, w∗) has value 0, then w∗ = 0 so Ax∗ + I0 = b

=⇒ x∗ is feasible for (LP)

38 CHAPTER 2. LINEAR OPTIMIZATION

If x is feasible for (LP) then (x, 0) has value 0 in (AUX).

Moreover, if optimal value of (AUX) is < 0, then we can use the dual for a
certificate.

min yT b
↓

s.t.
yTA ≥ 0
y ≥ −e

(DAUX)

y∗ optimal y∗T b < 0 and y∗TA ≥ 0

=⇒ y∗ satisfies {x : Ax = b, x ≥ 0} = ∅

2.9.4 Two Stage Simplex

Phase 1

• write (AUX)

• solve (AUX) with BFS corresponding to w

• if opt value < 0, get certificate y∗ (LP) is infeasible

• opt value 0, BFS x where w = 0

Phase 2

• simplex with x as initial BFS

Example: 1

max
(
2 1 3

)
x

↓

s.t.

(
2 1 0
1 1 2

)
x
≤ −1
≥ 3

x ≥ 0

max
(
2 1 3 0 0

)
x

↓

s.t.

(
−2 −1 0 −1 0
1 1 2 0 −1

)
x =

(
1
3

)
x ≥ 0

(SEF)

max
(
0 0 0 0 0 −1 −1

)
x

↓

s.t.

(
−2 −1 0 −1 0 1 0
1 1 2 0 −1 0 1

)
x =

(
1
3

)
x ≥ 0

(AUX)

2.9. SIMPLEX ALGORITHM 39

canonical form: B = {6, 7}

max
(
−1 0 2 −1 −1 0 0

)
x− 4

↓

s.t.

(
−2 −1 0 −1 0 1 0
1 1 2 0 −1 0 1

)
x =

(
1
3

)
x ≥ 0

add 3 to the basis

min
(
bi
ai3

)
= 3

2

7 leaves the basis.

canonical form for B = {3, 6}

max
(
−2 −1 0 −1 0 0 −1

)
x− 1

↓

s.t.

(
−2 −1 0 −1 0 1 0
1/2 1/2 1 0 −1/2 0 1/2

)
x =

(
1

3/2

)

x∗ =
(
0 0 3

2
0 0 1 0

)
certificate of infeasibility

yT = cTBA
−1
B

=
(
0 −1

)(0 1
2 0

)−1
=
(
0 −1

)(0 1/2
1 0

)
=
(
−1 0

)
Example: 2

max
(
1 0 2

)
x

↓

s.t.

(
2 1 1
−1 −1 −2

)
x =

(
7
−5

)
x ≥ 0

in SEF.
max

(
1 0 2

)
x

↓

s.t.

(
2 1 1
1 1 2

)
x =

(
7
5

)
max

(
0 0 0 −1 −1

)
x

↓

s.t.

(
2 1 1 1 0
1 1 2 0 1

)
x =

(
7
5

) (AUX)

40 CHAPTER 2. LINEAR OPTIMIZATION

canonical form B = {4, 5}

max
(
3 2 3 0 0

)
x− 12

↓

s.t.

(
2 1 1 1 0
1 1 2 0 1

)
x =

(
7
5

)
x ≥ 0

1 enters basis x+ θd d =
(
1 0 0 −2 −1

)T
min

(
bi
ai1

)
= 7

2

4 leaves the basis

max
(
0 1/2 3/2 −3/2 0

)
x− 3/2

↓

s.t.

(
1 1/2 1/2 1/2 0
0 1/2 3/2 −1/2 1

)
x =

(
7/2
3/2

)
x ≥ 0

2 enters the basis

min
(
bi
ai2

)
= 3/2

1/2

5 leaves the basis

max
(
0 0 0 −1 −1

)
x+ 0

↓

s.t.

(
1 0 −1 1 −1
0 1 3 −1 2

)
x =

(
2
3

)
x ≥ 0

Thus x =
(
2 3 0 0 0

)
is optimal for (AUX)

Forget (AUX). Start Simplex with x =
(
2 3 0

)
as initial BFS.

Now return to SEF.

max
(
1 0 2

)
x

↓

s.t.

(
2 1 1
1 1 2

)
x =

(
7
5

)
x ≥ 0

(SEF)

canonical form for B = {1, 2}

max
(
0 0 3

)
x+ 2

↓

s.t.

(
1 0 −1
0 1 3

)
x =

(
2
3

)

2.10. ELLIPSOID ALGORITHM 41

How long does simplex take?

At each pivot, we move from an extreme point to another.

Every pivot rule has a bad example.

Sprelman & Teng (2001): bad examples are pathological. Small changes become
good examples.

Polynomial Hirsch Conjecture

Polynomially many vertex for bounded Polyhedral.

Let G be the graph of a d-polytope with n facets. Then the diameter of G is
bounded above by a polynomial of d and n.

or

The (combinatorial) diameter of a polytope of dimension d with n facets
cannot be greater than n− d.

Remark:
Here we call combinatorial diameter of a polytope the maximum number of steps
needed to go from one vertex to another, where a step consists in traversing an
edge.

What this conjecture tells us is that it will take only finitely many edges from
initial BFS to optimal one.

There’s one counterexample: 43-dimensional polytope with 86 facets and diame-
ter (at least) 44.

2.10 Ellipsoid Algorithm

Feasibility Given polyhedron P , find x ∈ P or show P = ∅.

Fourier-Motzkin & simplex solve this problem.

https://annals.math.princeton.edu/wp-content/uploads/annals-v176-n1-p07-p.pdf

42 CHAPTER 2. LINEAR OPTIMIZATION

Aside Given an algorithm an input I to it,

size(I) = # of bits needed to represent I.

Example:

max cTx
↓
s.t. Ax ≤ b

Assume c ∈ Qn, A ∈ Qm×n, b ∈ Qn.

By scaling, we may assume c ∈ Zn, A ∈ Zm×n, b ∈ Zm.

Let α = max{‖c‖∞, ‖A‖∞, ‖b‖∞}.

Size of input to LP ≈ (n+ n,m+m) log(α)

Efficient Algorithm # of operations to solve an instance of size k are bounded
by a polynomial on k.

Thus Simplex & FM NOT Efficient.

Goal Derive an efficient alg.

If you have an efficient algorithm to solve feasibility for any polyhedron P , can be
used to solve LP.

Option 1

max cTx
s.t. Ax ≤ b

Assume I know L ≤ OPT ≤ U .

Algorithm 3: Option 1

1 while Repeat do

2 V =
L+ U

2

3 P ′ =

{
x :

Ax ≤ b
cTx ≥ V

}
4 if P ′ == ∅ then
5 U ← V
6 else
7 L← V

2.10. ELLIPSOID ALGORITHM 43

Option 2

Is the following nonempty? x, y :

Ax ≤ b
yTA = cT

y ≥ 0
cTx = bTy



2.10.1 Ellipsoid

Ball B(z,R) := {x ∈ Rn : ‖x− z‖ ≤ R}

Unit Ball B := B(0, 1)

Apply an affine map to B.

f(x) = A(x− b) where b ∈ Rn, A ∈ Rn×n invertible

f(B) := {x ∈ Rn : ‖f(x)‖ ≤ 1} = {x ∈ Rn : ‖A(x− b)‖ ≤ 1}

Sets of this form are Ellipsoid. Denoted E(A, b).

Idea

• Suppose I know P ⊆ B(0, R)

• Also, suppose either P = ∅ OR VolP ≥ ε > 0.

Algorithm 4: Ellipsoid Algorithm

1 E ← E(M, z), where P ⊆ E(M, z).
2 while Vol(E) ≥ ε do
3 if z ∈ P then
4 STOP
5 else
6 • Find αTx ≤ α0 so that αTx ≤ α0,∀x ∈ P and αT z > α0

7 • Find E(M ′, z′) such that E ∩ {x : αTx ≤ α0} ⊆ E(M ′, z′) and volume
of E(M ′, z′) is much lower than E

8 • E ← E(M ′, z′)

Note
At any point P ⊆ E.

The reason why we choose ellipsoid instead of ball is that it can actually shrink
“thinner” than ball.

44 CHAPTER 2. LINEAR OPTIMIZATION

E(M, z)

E(M ′, z′)
z

z′

P

α
T x ≤

α0

Figure 2.2: Ellipsoid Algorithm

Lemma 2.15

There exists E(M ′, z′) that can be computed in polynomial time such that

Vol(E(M ′, z′))

Vol(E(M, z))
≤ e−

1
2n+2

Number of While Loop Iterations

If B(0, R) initial ellipsoid, then Vol(B(0, R)) ≤ (2R)n. After k(2n + 2) iterations,
Vol(E) ≤ e−k(2R)n.

We want

e−k(2R)n < ε =⇒ −k + n ln(2R) < ln(ε) =⇒ k ≥ dn ln(2R)− ln(ε)e

Alg stops after dn ln(2R)− ln(ε)e(2n+ 2) iterations.

We only used that

z 6∈ P ⇐⇒
∃αTx ≤ α0 such that
αTx ≤ α0,∀x ∈ P
αT z > α0

Theorem 2.16: Separating Hyperplane

Let C be a closed, convex set, z ∈ Rn. Then z 6∈ C ⇐⇒ ∃ a hyperplane
αTx ≤ α0 separating z and C.

2.11. GRÖTCHEL-LOVÁSZ-SCHRIJVER (GLS) 45

Is runtime polynomial?

• ln(R) is polynomial in input size → NOT a problem

• Finding a separating hyperplane: can be done in polynomial time.

2.11 Grötchel-Lovász-Schrijver (GLS)

S(K,±ε)

Let K ⊆ Rn be closed bounded convex set.

S(K, ε) := {x : ‖x− y‖ ≤ ε, for some y ∈ K}

S(K,−ε) := {x : S(x, ε) ⊆ K}

K

S(K, ε)

S(K,−ε)

2.11.1 3 problems

• Optimization

Given K ⊆ Rn, c ∈ Qn.

Find x∗ ∈ K such that

cTx∗ ≥ cTx, ∀x ∈ K

or determine K = ∅.

• Separation

Given K ⊆ Rn, w ∈ Rn.

Determine if w ∈ K or find α:

‖α‖∞ = 1 αTx < αTw,∀x ∈ K

46 CHAPTER 2. LINEAR OPTIMIZATION

• Feasibility

Given K ⊆ Rn.

Find x ∈ K or determine K = ∅.

Feas ≤p Opt. (i.e. if we can solve opt efficiently, we can solve feas efficiently)

Weaker version...

• Weak Optimization

Give K ⊆ Rn, c ∈ Qn, ε > 0

Find x∗ ∈ S(K, ε) such that

cTx ≤ cTx∗ + ε, ∀x ∈ S(K,−ε)

or determine S(K,−ε) = ∅

• Weak Separation

Given K ⊆ Rn, w ∈ Rn, ε > 0.

Determine if w ∈ S(K, ε) or find α:

‖α‖∞ = 1 αTx < αTw + ε,∀x ∈ S(K,−ε)

• Weak Feasibility

Given K ⊆ Rn.

Determine S(K,−ε) = ε or find x ∈ S(K, ε)

W-Feas ≤p W-Opt.

Ellipsoid gives us: W-Feas ≤p W-Sep.

• Grötchel-Lovász-Schrijver (GLS) have shown that

W-SEP, W-Feas, W-OPT are polynomially equivalent.

In particular, for rational polyhedra3 (even unbounded) then OPT, FEAS, SEP are
polynomially equivalent.

Khachiyan (’80) used ellipsoid to give polytime algorithm for LPs.

2.11.2 Consequence of GLS

Example TSP: complete graph G = (V,E)

3{x ∈ Rn : Ax ≤ b} where A ∈ Qm×n, b ∈ Qm

2.11. GRÖTCHEL-LOVÁSZ-SCHRIJVER (GLS) 47

Edge costs ce,∀e ∈ E.

Find a tour visiting every vertex exactly once of min cost.

IP formulation xe =

{
1, if e is in tour

0, otherwise

min
∑

e∈E cexe
↓
s.t.

∑
e∈δ(v) xe = 2, ∀v ∈ V

In general, δ(S) =

{
uv ∈ E :

u ∈ S
v 6∈ S

}
where S ⊆ V .

Subtour elimination
∑
e∈δ(S)

xe ≥ 2, ∀∅ (S (V

min
∑

e∈E cexe
↓

s.t.

∑
e∈δ(v) xe = 2, ∀v ∈ V∑
e∈δ(S) xe ≥ 2, ∀∅ (S (V

xe ∈ {0, 1}, ∀e ∈ E

LP-relaxation Replace xe ∈ {0, 1} by 0 ≤ xe ≤ 1,∀e ∈ E.

Can I solve the LP in polynomial time on # vertices/edges?

Separation/Feasibility Given xe,∀e ∈ E. Can I know if xe if feasible for LP in
time polynomial in # vertices?

If YES, GLS tells we can also solve OPT.

In polytime (in # vertices) I can check

{∑
e∈δ(v) xe = 2, ∀v ∈ V

0 ≤ xe ≤ 1, ∀e ∈ E

Min-Cut problem Given G = (V,E), we ≥ 0. Find
∑
e∈δ(S)

we

Problem can be solved in polytime in # vertices.

Then we solve mincut with we = xe. If optimal value is ≥ 2, then x feasible for LP.

Otherwise found S :
∑
e∈δ(S)

xe < 2.

This page intentionally left blank

3
Integer Programming

An integer program is a problem of the form:

max cTx
↓

s.t.
Ax ≤ b
xi ∈ Z,∀j ∈ I

where ∅ 6= I ⊆ {1, . . . , n}.

If I = {1, . . . , n}, it’s pure IP. Otherwise, Mixed IP (MIP).

If all variables are constrained to be in {0, 1}, it’s a Binary IP.

Key Assumption: All data is rational (A ∈ Qm×n, b ∈ Qm) i.e, Ax ≤ b is a
rational polyhedron.

Let P = {x ∈ Rn : Ax ≤ b}, PI = P ∩ {xj ∈ Z : j ∈ I}.

Theorem 3.1

conv(PI) is a polyhedron.

From now on, assume we have a pure IP.

P

PI

49

50 CHAPTER 3. INTEGER PROGRAMMING

recession cone

Let P be a polyhedron. Its recession cone is

rec(P) :=

r ∈ Rn :
∀x ∈ P
∀λ ≥ 0
x+ λr ∈ P


Lemma 3.2

Let P = {x ∈ Rn : Ax ≤ b} 6= ∅ then

rec(P)︸ ︷︷ ︸
R1

= r ∈ Rn : Ar ≤ 0︸ ︷︷ ︸
R2

x1

x2

P

x1

rec(P)

x2

Proof:
R2 ⊆ R1) Let x ∈ P, λ ≥ 0, r ∈ R2

A(x+ λr) = Ax+ λAr ≤ b =⇒ x+ λr ∈ P =⇒ r ∈ R1

R1 ⊆ R2) Let r 6∈ R2, i.e., ∃i : aTi r > 0

Let x ∈ P , it is clear ∃λ > 0 : aTi (x+ λr) > bi =⇒ r 6∈ R1.

Theorem 3.3

P 6= ∅ is a bounded polyhedron

⇐⇒ P = conv(x1, . . . , xk) for some vectors x1, . . . , xk ∈ Rn.

conv(x1, . . . , xk) is smallest convex set containing x1, . . . , xk ⇐⇒ set of all finite

51

combinations of x1, . . . , xk.

Proof:

⇐) P =

x ∈ Rn :
x =

∑k
i=1 λix

i∑k
i=1 λi = 1

λ ≥ 0


P ′ =

(x, λ) ∈ Rn × Rk :
x =

∑k
i=1 λix

i∑k
i=1 λi = 1

λ ≥ 0

 is a bounded polyhedron.

P = projx P
′ which is a bounded polyhedron.

⇒) P bounded =⇒ P has no lines.

Let x1, . . . , xk be extreme points. Want to show P = conv(x1, . . . , xk)

P ⊇ conv(x1, . . . , xk) follows since P is a convex set containing x1, . . . , xk.

Suppose ∃x ∈ P \ conv(x1, . . . , xk)

Consider
min 0Tλ
↓

s.t.

∑k
i=1 λix

i = x α ∈ Rn∑k
i=1 λi = 1 α0 ∈ R

λ ≥ 0

(1)

and its dual
max αTx+ α0

s.t. αTxi + α0 ≤ 0, ∀i = 1, . . . , k
(2)

(α, α0) = (0, 0) feasible for (2). By assumption, (1) is infeasible.

Let (α, α0) be such that αTx+ α0 > 0

Now consider
max αTx+ α0

s.t. x ∈ P (3)

(3) has optimal solution since P 6= ∅ bounded and its has an optimal
extreme point, i.e., αTxi + α0 is optimal value. But by (2)

αTxi + α0 ≤ 0 < αTx+ α0

Contradiction.

Back to IP...

52 CHAPTER 3. INTEGER PROGRAMMING

Theorem 3.4

If P is a rational polyhedron, then conv(PI) is also a rational polyhedron
(PI = P ∩ Zn). Moreover, if PI 6= ∅, rec(conv(PI)) = rec(P).

Proof:
Done if P is bounded ({0}).

Skipped for unbounded P .

conv(PI)

P

rec(conv(PI)) = rec(P)

Theorem 3.5

max cTx
s.t. x ∈ PI

=
max cTx
s.t. conv(PI)

Note

1. Using Fund Thm of LP. I know IP is either infeas., unbounded, or ∃ opt.
sol.

2. If PI 6= ∅, then unboundedness can be detected by checking if
max cTx
s.t. x ∈ P

is unbounded. Since
max cTx
s.t. x ∈ P unbounded iff P 6= ∅ and ∃r :

cT r > 0
Ar ≤ 0

.

53

PI 6= ∅ =⇒ P 6= ∅. But then this implies
max cTx
s.t. x ∈ conv(PI)

unbounded.

Proof:
WMA (we may assume) PI 6= ∅.

Let z1 =
max cTx
s.t. x ∈ PI

, z2 =
max cTx
s.t. x ∈ conv(PI)

.

Since PI ⊆ conv(PI) =⇒ z1 ≤ z2.

Now let x∗ ∈ conv(PI) =⇒
x∗ =

∑k
i=1 λix

i∑k
i=1 λi = 1

λ ≥ 0

for x1, . . . , xk ∈ PI .

=⇒ ∃i : cTxi ≥ cTx∗ since otherwise

cTx∗ =
k∑
i=1

λi(c
Tx∗) >

k∑
i=1

λi(c
Txi) = cT

(
k∑
i=1

λix
i

)
= cTx∗

contradiction =⇒ z1 ≥ z2.

Corollary 3.6

If P 6= ∅ and pointed. Then conv(PI) is pointed and any extreme point of
conv(PI) is integral.

Proof:
rec(P) = rec(conv(PI)) implies conv(PI) pointed.

Let x∗ be extreme point of conv(PI). Let c be such that x∗ is unique optimal

solution to
max cTx
s.t. x ∈ conv(PI)

.

By theorem, ∃x ∈ PI : cTx = cTx∗.

By uniqueness of x∗, x = x∗, then x∗ is integral.

Note

P = {x ∈ R2 : x2 ≥
√

2x1}

54 CHAPTER 3. INTEGER PROGRAMMING

x1

x2

P

x1

x2

conv(PI)

conv(PI) is not even closed (dotted line plus (0, 0)), NOT a polyhedron.

3.1 Cutting Plane Algorithm

max cTx
s.t. x ∈ PI := P ∩ Zn (IP)

where P is rational polyhedron.

We know it can be solved by solving
max cTx
s.t. conv(PI)

Problem Hard to compute conv(PI).

conv(PI) is smallest convex set containing PI . P is a convex set containing PI .

Idea

• Start with P

• Iteratively make P “closer” to conv(PI)

3.1. CUTTING PLANE ALGORITHM 55

PI = P ∩ Zn

P

(
α1
)T
x ≤ α1

0

(
α2
)T
x ≤ α2

0

(
α3
)T
x ≤ α3

0

conv(PI)

Idea 2 Want to know only part of conv(PI) that is in the “direction I am opti-
mizing”.

LP relaxation

The LP you obtain from (IP) after dropping integrality, i.e.,

max cTx
s.t. x ∈ P

valid ineq

An ineq αTx ≤ α0 is valid for S ⊆ Rn if ∀x ∈ S: αTx ≤ α0.

Assumption LP relaxation has an optimal solution.

If P = ∅, then PI = ∅. If LP relaxation is unbounded, either PI = ∅ or (IP) is

56 CHAPTER 3. INTEGER PROGRAMMING

unbounded.

Algorithm 5: Cutting Plane Algorithm

1 R← P
2 do

3 Let x∗ be optimal solution to
max cTx
s.t. x ∈ R

4 if x∗ is integral then
5 STOP // x∗ is opt sol for (IP)

6 else
7 Find valid ineq αTx ≤ α0 for conv(PI) s.t. αTx∗ > α0

8 R← R ∩ {x : αTx ≤ α0}
9 while R 6= ∅;

10 Declare (IP) infeasible

Issues...

1. α, α0 must be rational

2. Finiteness?

3. How to find α, α0?

Note
Any any point PI ⊆ conv(PI) ⊆ R ⊆ P .

max cTx
s.t. x ∈ PI

≤ max cTx
s.t. x ∈ R

If x∗ ∈ Zn, then x∗ ∈ PI .

=⇒ max cTx
s.t. x ∈ PI

≥ cTx∗ =⇒ x∗ is optimal for PI

To solve the issues, impose x∗ being an opt. BFS of
max cTx
s.t. x ∈ R

Proposition 3.7

Let R be a pointed rational polyhedron such that R ∩ Zn = PI . Let x∗ be a
BFS of R.

Then x∗ is integral ⇐⇒ x∗ ∈ conv(PI)

Proof:
Exercise.

How to find valid ineq for conv(PI) αTx ≤ α0 s.t. αTx∗ > α0?

Call such ineq. a CUTTING PLANE or a CUT separating conv(PI) and x∗.

3.1. CUTTING PLANE ALGORITHM 57

Assumption R =

{
x ∈ Rn :

Ax = b
x ≥ 0

}
.

max cTx
↓

s.t.
Ax = b
x ≥ 0

(1)

Let B be opt. basis.

(1) ⇐⇒

max cTNxN + cTBA
−1
B b

↓

s.t. xB +

AN︷ ︸︸ ︷
A−1B AN xN =

b︷ ︸︸ ︷
A−1B b

x ≥ 0

x∗ is integral ⇐⇒ A−1B b ∈ Zm

If x∗ is not integral, then ∃i ∈ {1, . . . ,m} : (A−1B b)i 6∈ Z.

Look at constraint

xi +
∑
j∈N

aijxj = bi

is valid for PI since it is valid for R.

xi +
∑
j∈N

baijcxj ≤ bi

is valid for PI since it is valid for R.

Since baijc ≤ aij and xj ≥ 0 =⇒ baijcxj ≤ aijxj.

Since LHS is integer ∀x ∈ PI ,

xi +
∑
j∈N

baijcxj ≤ bbic (?)

is valid for PI .

Note

For x∗, x∗j = 0, ∀j ∈ N x∗i = bi.

Thus
x∗i +

∑
j∈N

baijcx∗j = bi > bbic

58 CHAPTER 3. INTEGER PROGRAMMING

(?) is the cut we wanted. Called a Chvátal-Gomory (CG) cut.

Algorithm 6: Cutting Plane Algorithm (Correct)

1 R← P // (P pointed)

2 do

3 Let x∗ be optimal BFS solution to
max cTx
s.t. x ∈ R

4 if x∗ is integral then
5 STOP // x∗ is opt sol for (IP)

6 else
7 Find valid ineq αTx ≤ α0 for conv(PI) s.t. αTx∗ > α0

8 R← R ∩ {x : αTx ≤ α0}
9 while R 6= ∅;

10 Declare (IP) infeasible

Theorem 3.8

The cutting plane algorithm using CG cuts terminates in finitely many itera-
tions (for pure IPs).

Proof:
SKIPPED.

Example:

max
(
1 3 −2 0 0

)
x

↓

s.t.

(
1 2 1 1 0
1 −1 3 0 1

)
x =

(
3
1

)
x ≥ 0, x ∈ Z5

Opt basis for LP relaxation: B = {2, 5}.

In canonical form:

max
(
−0.5 0 −3.5 −1.5 0

)
x+ 4.5

↓

s.t.

(
0.5 1 0.5 0.5 0
1.5 0 3.5 0.5 1

)
x =

(
1.5
2.5

)
x ≥ 0

and x∗ =
(
0 1.5 0 0 2.5

)T
CG-cut:

0x1 + x2 + 0x3 + 0x4 + 0x5 ≤ 1 ⇐⇒ x2 ≤ 1 From 1st constraint
x1 + 3x3 + x5 ≤ 2 CG-cut from 2nd constraint

Can add both to R.

3.2. TOTAL UNIMODULARITY 59

New LP
max

(
1 3 −2 0 0

)
x

↓

s.t.


1 2 1 1 0
1 −1 3 0 1
0 1 0 0 0
1 0 3 0 1

x

=
=
≤
≤


3
1
1
2


x ≥ 0

Add x6, x7 ≥ 0 convert to SEF, where

x2 + x6 = 1, x1 + 3x3 + x5 + x7 = 2

If x1, . . . , x5 ∈ Z, then x6, x7 ∈ Z.

New Opt for LP:
xT =

(
1 1 0 0 1 0 0

)
So opt sol to original LP is

(
1 1 0 0 1

)
.

3.2 Total Unimodularity

totally unimodular

A matrix U is called totally unimodular (TU) if all its square submatrices have
determinant in {−1, 0, 1}.

Example:(
2 0 0
0 0 0

)
is not TU.

 1 1 −1 0
0 0 0 0

1 0 1 1

 is NOT TU.

Note
Square submatrices are obtained by deleting rows/columns.(

0 −1 1
1 1 −1

)
is TU.

Theorem 3.9

If A ∈ Zm×n is TU and b ∈ Zm then every BFS of P =

{
x ∈ Rn :

Ax = b
x ≥ 0

}
is integral.

Recall

60 CHAPTER 3. INTEGER PROGRAMMING

Cramer’s Rule

If D is n× n invertible, then unique solution to Dx = b is given by

xi =
detD(i)

detD

where D(i) is D replacing i-th column with b.

Example: (
1 −1
0 3

)(
x1
x2

)
=

(
2
1

)
Solution

x1 =

det

(
2 −1
1 3

)
det

(
1 −1
0 3

) =
7

3
, x2 =

det

(
1 2
0 1

)
det

(
1 −1
0 3

) =
1

3

Proof:

Let x∗ be a BFS of

{
x :

Ax = b
x ≥ 0

}
, B corresponding basis.

Then x∗B = A−1B b, x∗N = 0

Note x∗B is unique solution to ABxB = b

=⇒ By Cramer’s rule,

x∗i =
detAB(i)

detAB
∈ Z

since detAB(i) ∈ Z and by TU, detAB ∈ {1,−1} which cannot be 0 since
invertible.

Note

Result remains true if P = {x : Ax ≤ b} or P =

{
x :

Ax ≤ b
x ≥ 0

}

integral

We say a polyhedron is integral if all its extreme points are integral.

Lemma 3.10

P is an integral polyhedron iff P = conv(P ∩ Zn).

Proof:
Exercise.

3.2. TOTAL UNIMODULARITY 61

Lemma 3.11

Let A ∈ Zm×n TU.

Then applying any of the following operations on A yields a TU matrix.

a) Delete row/column

b) Multiply row/column by −1

c) Permute rows/columns

d) Transpose

e) Duplicate row/column

f) Add a row/column with at most one nonzero entry, which is in {+1,−1}.

Proof:
a) X

b)-d) Potentially changes signs of det.

e) Only can create new submatrices if row and its duplicate are in it. But that
has det = 0.

f) Recall

Laplace formula

D square:

D =

 |
−− dij −−

|


Let Mij be the matrix obtained by deleting row i, column j.

Then for any row i of D:

det(D) =
∑
j

(−1)i+jdij det(Mij)

For any column j:

det(D) =
∑
i

(−1)i+jdij det(Mij)

62 CHAPTER 3. INTEGER PROGRAMMING

A′ =



1
0
0
... A
...
...
0


Let D be square submatrix of A′. If D does not contain first col, then
det(D) ∈ {±1, 0} since A is TU.

If D does not contain first row, but contains first column, then det(D) = 0.

Else,

D =


1 × × × × ×
0
... D
0
0


By Laplace formula: | det(D)| = | det

(
D
)
| ∈ {0, 1}.

Application 1 Suppose A is TU ∈ Zm×n. If b ∈ Zm and `, u ∈ Zn, then

P =

{
x ∈ R :

Ax ≤ b
` ≤ x ≤ u

}
is integer polyhedron.

P =

x ∈ Rn :

 A
I
−I


︸ ︷︷ ︸

A′

x ≤

 b
u
−`


︸ ︷︷ ︸

b′


b′ integral, A′ TU =⇒ P is integral

Application 2 A ∈ Zm×n TU, b ∈ Zm, c ∈ Zn, then

max cTx
↓

s.t.
Ax ≤ b
x ≥ 0

min bTy
↓

s.t.
ATy ≥ c
y ≥ 0

have integral opt solutions (if both are feasible).

3.3. SUFFICIENT CONDITION FOR TU 63

3.3 Sufficient condition for TU

Lemma 3.12

Let A ∈ Zm×n with entries {−1, 0, 1}. If A has:

• At most two nonzeros per column, AND

• There exists a partition I1, I2 of its rows such that, for every column:

i) Nonzero entries of same sign lie in different partitions

ii) Nonzero entries of opposite signs lie in same partition.

Then A is TU.

Example:

A =


0 0 1 0 1 0 1
1 0 −1 0 0 −1 0
0 1 0 0 0 0 0
1 0 0 −1 0 0 0
0 1 0 1 0 0 1


above the line: I1; below: I2. A is TU.

A =


1 1 0
1 0 −1
0 −1 0
0 0 1


Line 1 and line 3: I1; Line 2 and 4: I2. A is TU.

Proof:
Suppose Lemma is False. Let M be a minimal counterexample, i.e.,

• M is not TU,

• M satisfies conditions of Lemma,

• Any submatrix of M is TU.

Then M itself is a square matrix with det(M) 6∈ {−1, 0, 1} and all its submatrix
have det ∈ {−1, 0, 1}.

If M has ≤ 1 nonzero in a column, then M is obtained by adding a column with
at most 1 nonzero to a TU matrix =⇒ M is TU (By Lemma 3.11).

64 CHAPTER 3. INTEGER PROGRAMMING

Thus, we may assume all columns of M has exactly two nonzero elements.

M =

− MT
1 −

...
− MT

m −


Consider: ∑

i∈I1

Mi −
∑
i∈I2

Mi = 0

since i) and ii) hold. Then this means {Mi}mi=1 are not linearly independent,
which implies det(M) = 0.

Example:

Given G = (V,E) undirected simple graph.

G is bipartite if V = V1∪̇V2︸ ︷︷ ︸
disjoint union

and ∀u, v ∈ E has u ∈ V1, v ∈ V2.

M ⊆ E is a matching if |M ∩ δ(v)| ≤ 1,∀v ∈ V where δ(v) := {e ∈ E :
v is an endpoint of e}.

Given G bipartite. Goal: Find max carnality matching.

Let xe ∈ {0, 1} and xe =

{
1, if e ∈M
0, if e 6∈M

.

max
∑

e∈E xe
↓

s.t.

∑
e∈δ(v) xe ≤ 1, ∀c ∈ V

x ∈ {0, 1}E
(1)

Let’s now take a look at example.

1

2

3

4

5

3.3. SUFFICIENT CONDITION FOR TU 65

x =
(
x13 x14 x15 x23 x24 x25

)T
max

(
1 1 1 1 1 1

)
x

↓

s.t.


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

x ≤


1
1
1
1
1


1
2
3
4
5

vertex

x ∈ {0, 1}E

In general:

• I1 → constraints correspond to V1

• I2 → constraints correspond to V2

If we look at a column xuv, it will have a 1 in row of u a 1 in row of v, 0 everywhere
else.

→ Bipartite =⇒ Lemma is satisfied =⇒ (1) can be solved via LP.

Let (2) be LP relaxation of (1) without xe ≤ 1, ∀e ∈ E, otherwise the first
constraint is violated.

max
∑

e∈E xe
↓

s.t.

∑
e∈δ(v) xe ≤ 1, ∀c ∈ V

x ≥ 0

(2)

Let us write the dual of (2)

min
∑

v∈V yv
↓

s.t.
yu + yv ≥ 1, ∀uv ∈ E
y ≥ 0

(3)

and add integral constraints,

min
∑

v∈V yv
↓

s.t.
yu + yv ≥ 1, ∀uv ∈ E
y ∈ {0, 1}V

(4)

Let zi be the optimal value for (i) then

z1 ≤ z2 = z3 ≤ z4

G bipartite =⇒
z1 = z2

z3 = z4

Vertex Cover: such that ∀e ∈ E, |e ∩ U | ≥ 1. Problem: Finding smallest
vertex cover.

66 CHAPTER 3. INTEGER PROGRAMMING

König’s Theorem

In bipartite graph G, size of largest matching = size of smallest vertex
cover.

Example:

Consider a directed graph D = (V,A).

Incidence matrix of D has one row per vertex, one column per arc.

For v ∈ V , (w, y) ∈ A, then ave =


−1, if v = w

1, if v = y

0, otherwise

1

2

3

4

1
2
3
4


−1 −1 0 0
1 0 1 −1
0 1 −1 0
0 0 0 1


I1 = everything, I2 = ∅ =⇒ Matrix is TU

Max Flow: Given D = (V,A), s, t ∈ V (s 6= t). An s-t flow is a nonnegative
vector x ∈ RA, where∑

e∈δ−(v)

xe −
∑

e∈δ+(v)

xe = 0, ∀v ∈ V \ {s, t}

where

δ−(S) =

{
(u, v) ∈ A :

u 6∈ S
v ∈ S

}
and δ+(S) =

{
(u, v) ∈ A :

u ∈ S
v 6∈ S

}

δ−(S) δ+(S)

S

3.3. SUFFICIENT CONDITION FOR TU 67

∑
e∈δ−(v)

xe

v

∑
e∈δ+(v)

xe

Goal: Find a flow maximizing
∑

e∈δ+(S)

xe

s t

4
2

4

2 2

3
1

3

also 0 ≤ xe ≤ ce,∀e ∈ A where ce is some capacity constraint.

TU =⇒ max flow is integral if ce ∈ Z,∀e ∈ A.

Theorem 3.13

An m × n integral matrix A is TU iff for every subset R ⊆ {1, . . . ,m}, there
exists a partition of R into R1, R2 (that is, R1 ∪ R2 = R and R1 ∩ R2 = ∅)
such that ∑

i∈R1

aij −
∑
i∈R2

aij ∈ {−1, 0, 1},∀j = 1, . . . , n

Note
Careful that in the previous result that we had seen, we just needed to partition
the original rows into two such sets.

This result says that if I pick ANY SUBSET of rows, I must be able to do the
same.

Skipped branch-and-bound, Minimum Cost Perfect Matching in Bipartite Graphs...
due to one week suspension

This page intentionally left blank

4
Nonlinear Programming

The general form: Let f, g1, . . . , gm : Rm → R.

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

(NLP)

Note that this is minimization problem with “≤” constraints.

Example: Linear Programs

f(x) := cTx and gi(x) := aTi x− bi. These give us

min cTx
s.t. aTi x ≤ bi, ∀i = 1, . . . ,m

Example: Binary integer program

Let f(x) := cTx, g1(x) := x1(1− x1) and g2(x) := −x1(1− x1). These give us

min cTx
s.t. x1(1− x1) = 0

where the constraint is equivalent to x1 ∈ {0, 1}. Extend it to

min cTx
↓

s.t.
Ax ≤ b
x ∈ {0, 1}n

69

70 CHAPTER 4. NONLINEAR PROGRAMMING

4.1 Convex functions

convex functions

Let S ⊆ Rn be a convex set. The function f : S → Rn is a convex function if
∀x, y ∈ S,∀λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Example:

Here we let S = R.

f(x)

x
x y

f(x)
f(y)

f(λx+ (1− λ)y)

λf(x) + (1− λ)f(y)

Convex
function

f(x)

x
x y

f(x) f(y)

f(λx+ (1− λ)y)

λf(x) + (1− λ)f(y)

NOT a
Convex
function

A convex NLP is one of the form:

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

(CVX)

where f, g1, . . . , gm: Rn → R are convex functions.

Note
It is important that constraints are ≤ and that the objective is a minimization
problem.

4.2. GRADIENTS & HESSIAN 71

Proposition 4.1

If g : Rn → R is a convex function, then S = {x ∈ Rn : g(x) ≤ 0} is a convex
set.

Proof:
Let x, y ∈ S, i.e., g(x) ≤ 0, g(y) ≤ 0. Now we want to prove λx+ (1− λ)y ∈ S.

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) since g is a convex function

≤ 0

where the last ineq is from
g(x) ≤ 0, λ ≥ 0

g(y) ≤ 0, (1− λ) ≥ 0
.

This implies λx+ (1− λ)y ∈ S, ∀λ ∈ [0, 1].

epigraph

epi(f) = {(x, y) : y ≥ f(x)}

f is convex ⇐⇒ epi(f) is convex.

4.2 Gradients & Hessian

Let f : Rn → R be a twice differentiable function.

The gradient of f at x is the vector

∇f(x) =


∂f
∂x1
...
∂f
∂xn



72 CHAPTER 4. NONLINEAR PROGRAMMING

The Hessian of f at x is the n× n symmetric matrix

∇2f(x)

where the element is defined as[
∇2f(x)

]
ij

=
∂2f

∂xi∂xi

Example:

f(x) = x21x2 + 2x1 + 3. Then

∇f(x) =

(
2x1x2 + 2

x21

)
and ∇2f(x) =

(
2x2 2x1
2x1 0

)
Now looking at 1-D convex functions, two key properties stand out:

f(
x)

x

f(x)

x

• second derivative is
≥ 0 (at any point x)

• value of f is above
tangent line at x

Translating:

• f ′′(x) ≥ 0,∀x

• f(x) ≥ f(x) + f ′(x)(x− x), ∀x, x

Theorem 4.2

Let S ⊆ R be a convex set. Let S → R be twice differentiable. TFAE:

a) f is convex on S

b) f(x) ≥ f(x) + f ′(x)(x− x), ∀x, x ∈ S

c) (f ′(x)− f ′(x))(x− x) ≥ 0, ∀x, x ∈ S

d) f ′′(x) ≥ 0, ∀x ∈ S.

What is the generalization of b), c), d) to f : Rn → R?

4.2. GRADIENTS & HESSIAN 73

b): f(x) ≥ f(x) +∇f(x)T (x− x), ∀x, x ∈ S.

c): (∇f(x)−∇f(x))T (x− x) ≥ 0, ∀x, x ∈ S.

d): ∇2f(x) is Positive Semidefinite (PSD), ∀x ∈ S.

Note
A symmetric n× n matrix Q is said to be positive semidefinite if ∀y ∈ Rn,

yTQy ≥ 0

Denoted as Q � 0.

Q is said to be positive definite (PD) if ∀y ∈ Rn, y 6= 0,

yTQy > 0

Denoted as Q � 0.

Theorem 4.3

Let S ⊆ Rn be a convex set. Let f : Rn → R be a continuous twice differen-
tiable function. TFAE:

a) f is convex on S

b) f(x) ≥ f(x) +∇f(x)T (x− x), ∀x, x ∈ S

c) (∇f(x)−∇f(x))T (x− x) ≥ 0, ∀x, x ∈ S

d) ∇2f(x) � 0, ∀x ∈ S.

Example:

f(x) = ‖x‖2 =
n∑
j=1

x2j

∇f(x) =

2x1
...

2xn

 and ∇2f(x) = 2I

Now
yT∇2f(x)y = 2yT Iy = 2yTy = 2‖y‖2 ≥ 0

=⇒ ∇2f(x) � 0,∀x =⇒ f(x) is convex.

Example:

f(x) = 1
2
xTxQx+ dTx+ p where Q is PSD.

f(x) =
n∑
j=1

x2j
2
gjj +

1

2

n∑
i=1

∑
j>i

2xixjqij +
n∑
j=1

xjdj + p

74 CHAPTER 4. NONLINEAR PROGRAMMING

∇f(x) =

2x1
2
q11 +

n∑
j=2

xjqij + d1

...

 =


n∑
j=1

xjqij + d1

...

 = Qx+ d

∇2f(x) = Q � 0 =⇒ f is convex.

4.3 Local vs. Global optimality

Consider an NLP
min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

(NLP)

Let S be its feasible region. x∗ ∈ S is said to be a local optimum if ∃R > 0 so
that

f(x∗) ≤ f(x), ∀x ∈ B(x∗, R) ∩ S.
x∗ is said to be a global optimum if

f(x∗) ≤ f(x), ∀x ∈ S.

local
opt.

()

global
opt.

Proposition 4.4

If (NLP) is a convex program, then

x∗ is a local optimum ⇐⇒ x∗ is a global optimum.

Proof:
(⇐) Trivial.

(⇒) Suppose x∗ is a local optimum. But suppose ∃x ∈ S: f(x∗) > f(x).

Consider x(λ) = λx+ (1− λ)x∗.

Since (NLP) is a convex program, S is a convex set, therefore x(λ) ∈ S,∀λ ∈
[0, 1]. Since f is a convex function, we have

f(x(λ)) = f(λx+ (1− λ)x∗) ≤ λf(x) + (1− λ)f(x∗)

Also, for any λ > 0, we have λf(x) < λf(x∗). Therefore,

f(x(λ)) < λf(x∗) + (1− λ)f(x∗) = f(x∗), ∀λ ∈ (0, 1]

4.3. LOCAL VS. GLOBAL OPTIMALITY 75

Therefore, ∀R > 0,∃λ such that x(λ) ∈ B(x∗, R) ∩ S. Contradicts local
optimality of x∗.

()

xx∗ x(λ)

Note
This does not require differentiability.

4.3.1 Characterizing Optimality

The previous proposition suggests that only local information is needed for deter-
mining optimality.

Can we characterize optimality based on local info?

Proposition 4.5

Consider a convex optimization problem where f is differentiable. Let S be
the feasible set. The x∗ is global optimal iff

∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ S.

Proof:
(⇐) From convexity of f

f(x) ≥ f(x∗) +∇f(x∗)T (x− x∗)︸ ︷︷ ︸
≥0

≥ f(x∗), ∀x ∈ S

(⇒) Sketch idea:

Suppose ∃x ∈ S : ∇f(x∗)T < 0

Define g(λ) := f(λx+ (1− λ)x∗)

Can be argued that g′(0) = ∇f(x∗)T (x− x∗) < 0.

For small λ, g(λ) < g(0) = f(x∗). Therefore, x∗ is not optimal.

76 CHAPTER 4. NONLINEAR PROGRAMMING

x x∗

Intuition Going from x∗ in the direction towards another x feasible takes us in
the opposite direction that we want to go (opposite to the gradient).

−∇f (x∗)x∗x

Corollary 4.6

If f : Rn → R is convex, differentiable then x∗ is optimal to

min f(x)
s.t. x ∈ Rn

iff ∇f(x∗) = 0.

Proof:
(⇐) Follows from previous proposition.

(⇒) Suppose ∇f(x∗) 6= 0. Let y = −∇f(x∗) + x∗.

∇f(x∗)T (y − x∗) = −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)‖2 ≤ 0

=⇒ x∗ is not optimal from previous proposition.

4.4. LAGRANGIAN DUALITY 77

4.4 Lagrangian Duality

Consider a general NLP

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

(NLP)

(that is NOT necessarily convex)

Lagrangian

The Lagrangian of (NLP) is the following function L : Rn × Rm → R,

L(x, λ) := f(x) +
m∑
i=1

λigi(x)

λi are called Lagrangian multipliers associated to gi constraints.

Intuitively, we associate a penalty term λi that would steer us away from points
with gi � 0, if we try to minimize L(x, λ). We can restate the previous result as a
generalization of LP weak duality.

Proposition 4.7

If x ∈ S and λ ≥ 0, then L(x, λ) ≤ f(x).

Proof:

L(x, λ) = f(x) +

≤0︷ ︸︸ ︷
m∑
i=1

λi︸︷︷︸
≥0

gi(x)︸︷︷︸
≤0

≤ f(x)

Now let `(λ) = min
x∈Rn

L(x, λ).

It follows that, ∀λ ≥ 0, `(λ) ≤ z∗ where x∗ is optimal value of (NLP).

Thus we get a lower bound for any λ ≥ 0.

As in LP duality, we are interested in the best possible lower bound.

So we want

max `(λ)
s.t. λ ≥ 0

(LD)

This is called the Lagrangian dual problem.

78 CHAPTER 4. NONLINEAR PROGRAMMING

Proposition 4.8: Weak duality

If x ∈ S and λ ≥ 0, then `(λ) ≤ f(x).

Example:

min cTx
s.t. Ax ≤ b ⇐⇒ Ax− b ≤ 0

Then f(x) = cTx, gi(x) = aTi x− bi, ∀i = 1, . . .m

L(x, λ) = f(x) +
m∑
i=1

λigi(x)

= cTx+
m∑
i=1

λi(a
T
i x− bi)

=

(
cT +

m∑
i=1

λia
T
i

)
x−

m∑
i=1

λibi

Then
`(λ) = min

x∈Rn
L(x, λ)

=
min (cT +

∑m
i=1 λia

T
i)x−

∑m
i=1 λibi

s.t. x ∈ Rn

=

{
−∞, if

(
cT +

∑m
i=1 λia

T
i

)
6= 0

−
∑m

i=1 λibi, if
(
cT +

∑m
i=1 λia

T
i

)
= 0

Then

max `(λ)
↓
s.t. λ ≥ 0

=

max −
∑m

i=1 λibi
↓

s.t.
cT +

∑m
i=1 λia

T
i = 0

λ ≥ 0

y=−λ
=

max bTy
↓

s.t.
yTA = cT

y ≤ 0

Example:

min (x1 − 1)2 + (x2 − 1)2

↓

s.t.
x1 + 2x2 − 1 ≤ 0
2x1 + x2 − 1 ≤ 0

L(x, λ) = (x1 − 1)2 + (x2 − 1)2 + λ1(x1 + 2x2 − 1) + λ2(2x1 + x2 − 1)

Check: L(x, λ) is a convex function (for a fixed λ it is a convex function of x)

Now for `(λ) = minx∈Rn L(x, λ) is achieved when ∇xL(x, λ) = 0

(
2(x1 − 1) + λ1 + 2λ2
2(x2 − 1) + 2λ1 + λ2

)
=

(
0

0

)
=⇒

x∗1 =
−λ1 − 2λ2

2
+ 1

x∗2 =
−2λ1 − λ2

2
+ 1

4.5. KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS 79

L(x∗, λ) =

(
−λ1 − 2λ2

2

)2

+

(
−2λ1 − λ2

2

)2

+ λ1

(
−λ1 − 2λ2

2
+ 1− 2λ1 − λ2 + 2− 1

)
+ λ2

(
−λ1 − 2λ2 + 2 +

(−2λ1 − λ2)
2

+ 1− 1

)
= −1.25λ21 − 1.25λ22 − 2λ1λ2 + 2λ1 + 2λ2

=: `(λ)

max `(λ)
s.t. λ ≥ 0

=
max L(x∗, λ)
s.t. λ ≥ 0

If we set ∇λL(x∗, λ) = 0, we get λ∗ =

(
4

9
,
4

9

)
with objective value

`(λ∗) = −2.5×
(

4

9

)2

− 2

(
4

9

)2

+ 4× 4

9
=

8

9

And note that x∗ =

(
1

3
,
1

3

)
gives f(x∗) =

8

9
, which gives optimal solution.

4.5 Karush-Kuhn-Tucker Optimality Conditions

Lagrangean dual for problems with equality constraints

For problems of the form,

min f(x)
↓

s.t.
gi(x) ≤ 0, ∀i = 1, . . . ,m
hi(x) = 0, ∀i = 1, . . . , p

(NLP)

We can define

L(x, λ, ν) = f(x) +
m∑
i=1

λigi(x) +

p∑
i=1

νihi(x)

Here the Lagrangean dual:

max `(λ, ν)
s.t. λ ≥ 0, ν ∈ Rp

where `(λ, ν) = min
x∈Rn

L(x, λ, ν). Weak duality still holds for λ ≥ 0, ν ∈ Rp.

Note
If f, gi are convex, ∀i = 1, . . . ,m and hi(x) are affine functions, then (NLP) is a
convex program.

Note
Weak Duality holds regardless if gi, hi are convex.

80 CHAPTER 4. NONLINEAR PROGRAMMING

Example: Least square solutions of linear equations

Suppose we want to find, out of all possible solutions to Ax = b, the one with
smallest norm.

min xTx
s.t. Ax = b

Lagrangian: L(x, ν) = xTx+ νT (Ax− b).

Then `(ν) = min
x∈Rn

L(x, ν).

∇xL(x, ν) = 0 =⇒ 2x+ ATν = 0 =⇒ x = −A
Tν

2

=⇒ `(ν) =
νTAATν

4
− νTAATν

2
− bTν

= −ν
TAATν

4
− bTν

≤ min xTx
s.t. Ax = b

When does Strong Duality Hold?

This is hard to characterize in general, but there are some easily checkable sufficient
conditions.

Let
min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

(CVX)

where f, gi are convex ∀i = 1, . . . ,m.

Slater’s Condition

∃x : gi(x) < 0, ∀i = 1, . . . ,m.

That is, there exists a point in the relative interior of the feasible region.

Theorem 4.9

If Slater’s condition holds for (CVX), then ∃λ∗ ≥ 0 such that

`(λ∗) = min
x∈Rn

L(x, λ∗) =
min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

Recall that this was
abuse of notation and
it is not clear that

∃x∗ achieving inf.

i.e.,

max
λ≥0

`(λ) =
min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

and the max is attained at λ∗.

For example: min{e−x : −x ≤ 0} = 0, but 6 ∃x∗ : e−x
∗

= 0.

4.5. KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS 81

Proof:
SKIPPED.

To derive optimality conditions, suppose we have λ∗, x∗ opti. for dual/primal.

`(λ∗) = min
x∈Rn

f(x) +
m∑
i=1

λ∗i gi(x) ≤ f(x∗) +
m∑
i=1

λ∗i gi(x
∗) ≤

λ∗ ≥ 0, gi(x
∗) ≤ 0

f(x∗)

Now if we want strong duality to hold, i.e., we want `(λ∗) = f(x∗) then all above
inequalities must hold at equality.

The first inequality holding as equality implies x∗ is a minimizer of L(x, λ∗) for all
x ∈ Rn.

L(x, λ) = f(x)+
m∑
i=1

λigi(x) =⇒ ∇xL(x∗, λ∗) = 0 =⇒ ∇f(x∗)+
m∑
i=1

λ∗i∇gi(x∗) = 0

The second inequality holding as equality means a complementary slackness-type
condition, i.e., λ∗i gi(x

∗) = 0 ⇐⇒ λ∗i = 0 or gi(x
∗) = 0.

Formally, these are the so-called Karush-Kuhn-Tucker (KKT) optimality con-
ditions:

KKT conditions

i) gi(x
∗) ≤ 0, ∀i = 1, . . . ,m

ii) λ∗ ≥ 0

iii) λ∗i gi(x
∗) = 0, ∀i = 1, . . . ,m

iv) ∇f(x∗) +
∑m

i=1 λ
∗
i gi(x

∗) = 0

Theorem 4.10: Necessary opt. conditions

Consider
min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

(NLP)

where f, gi are differentiable, ∀i = 1, . . . ,m.

If x∗, λ∗ are optimal to the (NLP) and its Lagrangean dual, respectively, such
that f(x∗) = L(x∗, λ∗) = `(λ∗), then KKT conditions hold.

Proof:
Follows from above discussion.

Theorem 4.11: Sufficient opt. conditions

Assume that, in addition, the functions gi are convex, ∀i = 1, . . . ,m, f is
convex. Then if x∗, λ∗ satisfy KKT conditions, x∗, λ∗ are optimal for (NLP)

82 CHAPTER 4. NONLINEAR PROGRAMMING

and its Lagrangean dual, and f(x∗) = `(λ∗) = L(x∗, λ∗).

Proof:
Follows similar to necessity proof, using the fact that L(x, λ) is a convex function
and thus ∇xL(x∗, λ∗) = 0 =⇒ x∗ is a minimizer of L(x, λ∗) over x ∈ Rn.

Note
For problems of the form:

min f(x)
↓

s.t.
gi(x) ≤, ∀i = 1, . . . ,m
hi(x) = 0, ∀i = 1, . . . , p

(NLP-EQ)

the KKT conditions are:

KKT

i) gi(x
∗) ≤ 0, ∀i = 1, . . . ,m

ii) hi(x
∗) = 0, ∀i = 1, . . . , p

iii) λ∗ ≥ 0

iv) λ∗i gi(x
∗) = 0, ∀i = 1, . . . ,m

v) ∇f(x∗) +
∑m

i=1 λ
∗
i gi(x

∗) +
∑p

i=1 νi∇hi(x∗) = 0

With equality constraint:

• If x∗ opt for (NLP-EQ), (λ∗, ν∗) opt for its lag. dual and f(x∗) = `(λ∗, ν∗)
then KKT holds.

• If f, g1, . . . , gm are convex and h1, . . . , hp are affine functions, then x∗, λ∗, ν∗

satisfying KKT =⇒ x∗ opt for (NLP-EQ), λ∗, ν∗ opt for its Lag. dual and
f(x∗) = `(λ∗, ν∗).

Where is Slater’s condition needed in convex programs?

Example:

min x
s.t. x2 ≤ 0

is a convex program with unique feasible solution x = 0 =⇒ Slater’s condition
does not hold.

Now x = 0 is optimal. But ∇f(x∗) +
∑m

i=1 λi∇gi(x∗) = 1 + 0 = 1 6= 0.

4.5. KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS 83

Note

L(x, λ) = x+ λx2 and

`(λ) = min
x∈R

x+ λx2 =

{
−∞, if λ = 0

− 1
2λ
, if λ > 0

This problem violates Slater’s condition and 6 ∃x∗, λ∗ achieving strong duality.

Example:

min x2 + 1
s.t. (x− 2)(x− 4) ≤ 0

is a convex program (CHECK) and Slater’s condition holds. (x = 3 satisfies it).
Let us try and find KKT points.

∇f(x) = 2x, ∇g1(x) = 2x− 6, ∇f(x) + λ1∇g1(x) = 2x+ (2x− 6) = 0

• λ1 = 2x
6−2x

• λ1(x− 2)(x− 4)

=⇒

x = 2, λ1 = 2

x = 4, λ1 = −2 7

λ = 0
(i.e., x = 0), but

then (x− 2)(x− 4) = 8 > 0
7

Thus point x = 2, λ1 = 2 satisfies KKT =⇒ primal/dual optimal.

When does primal admit an opt. sol?

If feasible region is closed and bounded and f is continuous, then primal has optimal
solution.

Coerciveness

f is coercive if {x : f(x) ≤ α} is bounded ∀α ∈ R.

Lemma 4.12

TFAE

a) f is coercive

b) f(x)→∞ as ‖x‖ → ∞

Proof:
SKIPPED.

84 CHAPTER 4. NONLINEAR PROGRAMMING

Convex & Not coerciveCoercive & Not convex

Coercive & Convex

Theorem 4.13

If S → Rn is nonempty and closed, f : Rn → R is continuous and coercive,
then

min f(x)
s.t. x ∈ S

has a minimizer.

Proof:
SKIPPED.

4.6 Summary of NLP results

min f(x)
s.t. gi(x) ≤ 0, ∀i = 1, . . . ,m

Generic NLP Generic & diff. Convex Convex & diff.

Weak duality. λ feas.
dual, x feas. primal.
=⇒ `(λ) ≤ f(x)

3 3 3 3

Slater =⇒ ∃ sol. dual
matching the inf of pri-
mal

7 7 3 3

If ∃ opt. sol to primal
& Dual w/ equal values
=⇒ KKT holds

7 3 7 3

If x, λ satisfy KKT
=⇒ f(x∗) = `(λ∗)

7 7 7 3

4.7. ALGORITHMS FOR CONVEX NLPS 85

4.7 Algorithms for convex NLPs

Unconstrained case
min f0(x)
s.t. x ∈ Rn

f0 convex, differentiable.

Assumption Opt. Sol exists. → Goal: find x∗ so that ∇f0(x∗) = 0

4.7.1 Descent methods for unconstrained

Iterative methods that start from a feasible point x0 and move from xk to
xk+1 ← xk + tkdk for some search direction dk ∈ Rm, step length tk ∈ R+.

Want: f0(x
k+1) < f0(x

k).

Now if we move from x to y then d = y − x.

Now if ∇f(xk)T (y − xk) ≥ 0,∀y =⇒ xk optimal.
So goal is to pick descent d : ∇f(xk)Td < 0.

Algorithm 7: General Descent Method

1 x0 ∈ Rn

2 while STOPPING CRITERION NOT SATISFIED do
3 Find descent direction dk

4 Choose step size tk

5 xk+1 ← xk + tkdk

Choosing a step size Several options exist. Here are two common.

a) Exact line search: Solve the 1-D convex minimization problem

t = argmin
s≥0

{
f0(x

k + sdk)
}

b) Backtracking

Algorithm 8: Backtracking

1 Let α ∈ (0, 0.5) and β ∈ (0, 1)
2 t← 1
3 while f0(x

k + tdk) > f0(x
k) + αt∇f0(xk)Tdk do

4 t← βt

86 CHAPTER 4. NONLINEAR PROGRAMMING

Note for t small

f(xk + tdk) ≈ f(xk) + t∇f(xk)Tdk < f(xk) + tα∇f(xk)Tdk < f(xk)

So the method terminates with the desired t.

Choosing a descent direction

a) gradient descent dk = −∇f(xk)

Note
Using exact line search, or backtracking

f(xk)− p∗ ≤ ck(f(x0)− p∗)

where p∗ is opt. value and c is a constant in (0, 1). (we will not prove this)

b) Newton method

If ∇2f0(x) is positive definite, λk = −∇2f0(x
k)−1∇f0(xk)

Note

∇f0(xk)Tdk = −∇f0(xk)T∇2f0(x
k)−1∇f0(xk) < 0

Remark:

M is positive definite =⇒ M is invertible and M−1 is positive definite

→ Faster convergence

These are just two examples. There are lots of other variations/methods, each with
pros/cons.

4.7.2 Methods for constrained problems

Consider

z∗ =
min f0(x)
s.t. fi(x) ≤ 0, ∀i = 1, . . . ,m

(CVX)

where fi are convex, twice differentiable, ∀i = 0, . . . ,m

Assumptions

• ∃ an opt. sol. to (CVX)

• Slater’s condition holds

Idea (CVX) is equivalent to:

min f0(x) +
m∑
i=1

I−(fi(x))

4.7. ALGORITHMS FOR CONVEX NLPS 87

where Ii : R→ R ∪ {∞}

I−(u) =

{
0, u ≤ 0

+∞, u > 0

Problem I− is non differentiable & highly intractable.

Consider

−
(

1

ζ

)
log(−u), for ζ > 0

which is a convex function (check!)

−1

u

y
ζ = 0.5
ζ = 1
ζ = 2

This function tries to approximate I−, but has the advantage of being differentiable
& convex. → Solve unconstrained min:

min f0(x) +
m∑
i=1

−
(

1

ζ

)
log(−fi(x))

Solving this problem for ζ > 0 ensures that we get a feasible point since obj, fct.
goes to +∞ as we approach fi(x) = 0.

Note
Unconstrained method can be made to work over the domain of the function.

Define φ(x) := −
∑m

i=1 log(−fi(x)) which is called the log-barrier function.

We will solve min ζf0(x) + φ(x) for increasing values of ζ.

Note
In principle, one can just solve min ζf0(x) + φ(x) for one vert large ζ. → Com-
putationally is bad → Numerical issues!

Note
We are using the scaled version of the objective function, for later convenience.

88 CHAPTER 4. NONLINEAR PROGRAMMING

Algorithm 9: Barrier Method

1 Let x0 be such that fi(x
0) < 0, ∀i = 1, . . . ,m

2 Let ζ0 > 0. µ > 1, ε > 0
3 k ← 1
4 while Stopping criterion not satisfied do
5 Let x∗(ζk)← argmin ζkf0(x) + φ(x) // can be computed by descent

method starting at xk−1

6 xk ← x∗(ζ)
7 ζk ← µζk−1

Central path

Consider, for ζ > 0.

x∗(ζ)← argmin ζf0(x) + φ(x)

We call the set of points x∗(ζ) : ζ > 0 the central path.

Intuition As ζ → 0, it starts becoming more important to be as far away from
fi(x) = 0 as possible. So points tend to go towards the “center” of feasible region.

As ζ → ∞, it starts becoming more important to minimize f0 and x∗(ζ) tends to
get closer to opt. sol.

−c

x∗

x
∗ (0.

1)

x
∗ (2

)

x∗(10)

What are properties of x∗(ζ)?

• fi(x∗(ζ)) < 0, ∀i = 1, . . . ,m

• ζ∇f0(x∗(ζ)) +∇φ(x∗(ζ)) = 0

⇐⇒ ζ∇f0(x∗(ζ)) +
m∑
i=1

1

−fi(x∗(ζ))
∇fi(x∗(ζ)) = 0

Now define λ∗i (ζ) = − 1

ζfi(x∗(ζ))
, ∀i = 1, . . . ,m

4.7. ALGORITHMS FOR CONVEX NLPS 89

Note λ∗(ζ) ≥ 0. Then

∇f0(x∗(ζ)) +
m∑
i=1

λ∗i (ζ)∇fi(x∗(ζ)) = 0

=⇒ x∗(ζ) is a minimizer of L(x, λ∗(ζ)) = f0(x) +
∑m

i=1 λ
∗
i (ζ)fi(x)

=⇒ g(λ∗(ζ)) = f0(x
∗(ζ))− m

ζ

In other words: f0(x
∗(ζ))− g(λ∗(ζ)) =

m

ζ
and since g(λ∗) ≤ z∗

=⇒ f(x∗(ζ))− z∗ ≤ f(x∗(ζ))− g(λ∗(ζ)) =
m

ζ

i.e., x∗(ζ) is not too far from optimal and as ζ →∞, x∗(ζ) converges to the optimal
solution.

Interpretation as KKT

Note that x∗(ζ) and λ∗(ζ) satisfy:

i) fi(x
∗(ζ)) ≤ 0, ∀i = 1, . . . ,m

ii) λ∗(ζ) ≥ 0

iii) −λ∗i (ζ)fi(x
∗(ζ)) = 1

ζ
, ∀i = 1, . . . ,m

iv) ∇f0(x∗(ζ)) +
∑m

i=1 λ
∗
i (ζ)∇fi(x∗(ζ)) = 0

which are almost KKT conditions and as ζ →∞, become KKT.

Note
• This method can be adapted to deal with affine constraints Ax = b.

• It can be used for LPs. In particular, it performs reasonably well, outper-
forming simplex in dense LPs.

• Drawback
→ Does not give BFS. (Bad for cutting plane)
→ Gives usually dense solutions.

This page intentionally left blank

5
Conic Optimization

Let K be a closed convex cone. We will consider the following optimization problem

min cTx
↓

s.t.
Ax = b
x ∈ K

(Con)

Sometimes also represented as:

min cTx
↓

s.t.
Ax = b
x �K 0

It is trivial to see (Con) is a convex optimization problem, i.e., the feasible region is
convex and also the objective function.

Now for K = {x : x ≥ 0}, i.e., non-negative orthant1 (Con) is just LP.

Other cones:

• Second-order cone: K =
{
x : x1 ≥

√
x22 + . . .+ x2n

}

x1

x2

x3

1From wiki: In geometry, an orthant or hyperoctant is the analogue in n-dimensional Euclidean
space of a quadrant in the plane or an octant in three dimensions.

91

92 CHAPTER 5. CONIC OPTIMIZATION

(Con) is called Second-Order cone program.

• Semidefinite cone.

Let M(x) be the symmetric k× k matrix whose upper triangular submatrix is
x1 x2 . . . xk

xk+1 . . . x2k−1
. . .

...
xn


K = {x : M(x) is PSD} i.e., yTM(x)y ≥ 0,∀y ∈ Rk

→ This assumes n has a certain dimension, w.r.t. k.
(Con) is called a semi-definite program.

Example:

min 2x1 + x2 + x3
↓

s.t.
x1 + x2 + x3 = 1
x ≥ 0

(LP)

min 2x1 + x2 + x3
↓

s.t.
x1 + x2 + x3 = 1

x1 ≥
√
x22 + x23

(SOCP)

min 2x1 + x2 + x3
↓

s.t.
x1 + x2 + x3 = 1(
x1 x2
x2 x3

)
� 0

(SDP)

Dual cone

Given K ⊆ Rn, a closed convex cone. The dual cone is

K∗ := {y ∈ Rn : yTx ≥ 0,∀x ∈ K}

Note
All cones mentioned above are self dual, i.e., K = K∗. (we will not prove this)

5.1 Lagrangian

Lagrangian: L(x, y, µ) = cTxyT (b− Ax)− µTx

g(y, µ) = min
x
L(x, y, µ) =

{
yT b, if c− ATy − µ = 0

−∞, otherwise

5.2. CONNECTIONS TO IP 93

Now, ∀y ∈ Rm, ∀µ ∈ K∗, x feasible for (Con).

g(y, µ) ≤ cTx+ yT (b− Ax)− µTx ≤

Weak duality

cTx

Lagrange dual:

max
y,M∈K∗

g(y, µ) =
max yT b
s.t. µ = c− ATy

µ ∈ K∗
⇔ max yT b

s.t. c− ATy ∈ K∗ (D)

Note that writing KKT using L(x, y, µ), we get:

i) x ∈ K,Ax = b Primal feas.

ii) µ ∈ K∗ Dual feas.

iii) µTx = 0 Complementary slackness ⇐⇒ (c− ATy)Tx = 0

iv) ∇xL(x, y, µ) = 0 ⇐⇒ cT − yTA− µT = 0 ⇐⇒ µ = c− ATy Dual feas.

Theorem 5.1

Let

z∗ =
min cTx
s.t. Ax = b

x ∈ K
, d∗ =

max bTy
s.t. c− ATy ∈ K∗

then d∗ ≤ z∗ and if both are strictly feasible, then:

• d∗ = z∗ and both values are attained.

• (x, y) are primal/dual opt ⇐⇒ KKT conditions hold.

Proof:
SKIPPED.

Note
Strict feasible:

• Primal: ∃x : Ax = b, x ∈ int(K)

• Dual: ∃y : c− ATy ∈ int(K∗)

This is yet another way to generalize LPs. Leads to algorithms to solve (Con).

5.2 Connections to IP

SDP relaxations of some IPs.

94 CHAPTER 5. CONIC OPTIMIZATION

5.2.1 Max-cut problem

Give G = (V,E), ce,∀e ∈ E. Find ∅ 6= S (V maximizing
∑

e∈δ(S) ce.

S

δ(S)

We can formulate as:

max
∑

e∈E cexe
↓

s.t.

yu + yv ≤ 2− xuv, ∀uv ∈ E
(1− yu) + (1− yv) ≤ 2− xuv, ∀uv ∈ E
yv ∈ {0, 1}, ∀v ∈ E
xe ∈ {0, 1}, ∀e ∈ E

Above, yv =

{
1 represents v ∈ S
0 represents v 6∈ S

and xe = 1 ⇐⇒ e ∈ δ(S)

Alternative:

yv =

{
1, if v ∈ S
−1, if v 6∈ S

Then
yuyv = −1 =⇒ uv ∈ δ(S)

yuyv = 1 =⇒ uv 6∈ δ(S)∑
e∈δ(S)

ce =
∑
u,v∈V
u6=v

1− yuyv
2

· cuv

So to get max-cut, it suffices to solve

min
∑

u,v∈V
u6=v

yuyvcuv

s.t. yu ∈ {−1, 1}, ∀u ∈ V

Defining cuu = 0, we get
min

∑
u,v∈V yuyvcuv

s.t. y2u = 1, ∀u ∈ V
This is NP-Hard to solve, but we can relax asa follows:

Consider Y = yyT ∈ Rv×v.

5.2. CONNECTIONS TO IP 95

Note Yuu = y2u and Yuv = yuyv. And note ∀w ∈ Rv,

wTY w = (wTy)(yTw) = (wTy)2 ≥ 0 =⇒ Y � 0

So we can write equivalently.

min
∑

u∈V
∑

v∈V cuvxuv
s.t. xuu = 1, ∀u ∈ V

xuv = xvu, ∀u, v ∈ V xuv


v

u � 0

{
xuv = yuyv, ∀u, v ∈ V
yv ∈ {−1, 1}

Eliminating the last two constraints gives an SDP which is a relaxation → gives a
lower bound for MAX-CUT.

Note
Geomans & Williamson gave an SDP-based randomized that gives the best ap-
prox. alg. for Max-Cut (≈ 0.87)

→ gives rise to alternative approaches to solve NP-Hard optimization problems.

	Preface
	Info
	Introduction
	Linear Optimization
	Determining Feasibility
	Fourier-Motzkin Elimination
	Certifying Optimality
	Possible Outcomes
	Duals of generic LPs
	Cheat Sheet

	Other interpretations of dual
	Complementary Slackness
	Geometric Interpretation of C.S.

	Geometry of Polyhedra
	Simplex Algorithm
	Canonical Form
	Iteration of simplex
	Mechanics of Simplex
	Two Stage Simplex

	Ellipsoid Algorithm
	Ellipsoid

	Grötchel-Lovász-Schrijver (GLS)
	3 problems
	Consequence of GLS

	Integer Programming
	Cutting Plane Algorithm
	Total Unimodularity
	Sufficient condition for TU

	Nonlinear Programming
	Convex functions
	Gradients & Hessian
	Local vs. Global optimality
	Characterizing Optimality

	Lagrangian Duality
	Karush-Kuhn-Tucker Optimality Conditions
	Summary of NLP results
	Algorithms for convex NLPs
	Descent methods for unconstrained
	Methods for constrained problems

	Conic Optimization
	Lagrangian
	Connections to IP
	Max-cut problem

