Fields and Galois Theory

PMATH 348

Prof. Yu-Ru Liu

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of PMATH 348 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface	1
1 Introduction	3

Introduction

Missed first 15 minutes...

Quadratic eqns, Cubic eqns ...

Two main steps of Galois Theory

- 1. link a root of a quintic eqn, say α to $\mathbb{Q}(\alpha)$ the smallest field containing \mathbb{Q} and α .
 - $\mathbb{Q}(\alpha)$ is a field so it has more structures to be played with than α .
 - However, our knowledge about $\mathbb{Q}(\alpha)$ is still too little to answer the question¹. For example, we do not know how many intermediate filed E between \mathbb{Q} and $\mathbb{Q}(\alpha)$, i.e. $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(\alpha)$. Note that

2. Link the field $\mathbb{Q}(\alpha)$ to a group. More precisely, we associate to field extension $\mathbb{Q}(\alpha)/\mathbb{Q}$ to the group

$$\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha)) = \{\phi = \mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha) \text{ is an isomorphism and } \phi|_{\mathbb{Q}} = 1_{\mathbb{Q}}\}$$

• It can be shown that if α is 'good', say algebraic. $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$ is finite.

¹ is raised in first 15 mins...

- If α is 'very good' say constructible², the order of $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$ is in certain forms.
- Moreover, there is 1-1 correspondence between the intermediate fields $\mathbb{Q}(\alpha)/\mathbb{Q}$ and the subgroups of $\mathrm{Aut}_{\mathbb{Q}}(\mathbb{Q}(\alpha))$.

Galois Theory the interplay between fields and groups.

 $^{^2 {\}rm formal~defn~later}$