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Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CO 442 during Fall 2020 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Here is the notation used in this course.

• χ(G): chromatic number, k vertex coloring

• ∆(G): max degree of vertices

• δ(G): min degree of vertices

• ω(G): max size of a clique

• χ′(G): chromatic index, edge chromatic number, k edge coloring

• α(G): independence number, size of the maximum independent set

• L(G): line graph of G

• χ`(G): list chromatic number

• χ′`(G): list chromatic index

• µ(G): multiplicity of a multigraph G

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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First let’s look at a proof example.

Theorem

Every two longest paths in a connected graph G intersect.

Proof:
Suppose note. That is, there exist two longest paths P1 and P2 of G such that V(P1) ∩ V(P2) = ∅.
For each i ∈ {1, 2}, let vi,1 and vi,2 be the ends of Pi. Since G is connected, there exists a shortest
path P from V(P1) to V(P2). Since P is shortest, we have that |V(Pi)∩V(P)| = 1 for each i ∈ {1, 2}.

For each i ∈ {1, 2}, let ui be the end of P in V(Pi). For each i, j ∈ {1, 2}, let Qi,j be the subpath
of Pi from ui to vi,j. We assume without loss of generality that for each i ∈ {1, 2}, we have that
|E(Qi,1)| ≥ |E(Qi,2)| and hence

|E(Qi,1)| ≥ |E(Pi)|/2.

Let P′ = v1,1Q1,1u1Pu2Q2,1v2,1. Note that P′ is a path in G and

|E(P′)| = |E(Q1,1)|+ |E(P)|+ |E(Q2,1)| ≥ |E(P)|+ |E(P1)| > |E(P1)|.

Hence P′ is a longer path than P1, contradicting that P1 is a longest path.

Things to remember:

1. Correctness

2. Clarity/Precision

3. Ease of Reading



1
Colorings

1.1 Coloring and Brooks’ Theorem

coloring

A coloring of a graph G is an assignment of colors to vertices of G such that no two adjacent
vertices receive the same color.

k-coloring

Let G be a graph. We say φ : V(G)→ [k] is a k-coloring of G if φ(u) 6= φ(v) for every uv ∈ E(G).

Since every graph G has a |V(G)|-coloring, we are interested in the minimum numbers of colors
needed to color G.

chromatic number

The chromatic number of a graph G, denoted χ(G), is the minimum number k such that G has
a k-coloring.

Then why coloring?

• Coloring is a foundational problem in graph labeling, wherein we study functions on V(G)
according to constraints imposed on the graph (e.g. non-adjacent vertices are labeled differently)

• Coloring is a foundational problem in graph decomposition, wherein we seek to decompose
V(G) into certain kinds of subgraphs (e.g. independent sets)

• Applications to maps, scheduling, job processing, frequency assignment (e.g. cell networks)

• Applications to algorithms (e.g. distributed computing)

However, coloring is hard.

A graph being an independent set is by definition equivalent to being 1-colorable.

A graph being bipartite is by definition equivalent to being 2-colorable. (Indeed coloring is a gener-
alization of partite)

4



CHAPTER 1. COLORINGS 5

Proposition 1.1

G is 2-colorable if and only if G does not contain an odd cycle.

Moreover, there exists a poly-time algorithm to decide if G is 2-colorable.

Theorem: Karp (1972)

For each k ≥ 3, deciding if a graph G has a k-coloring is NP-complete.

Indeed, 3-coloring is NP-complete even for planar graphs. Any constant factor approximation is also
NP-complete.

Then what about the bounds on chromatic number?

As mentioned χ(G) ≤ |V(G)|.

Greedy Upper bound: χ(G) ≤ ∆(G) + 1, where ∆(G) denotes the maximum degree of vertices in G.
Why? By a greedy algorithm:

• Order the vertices of G arbitrarily, v1, . . . , v|V(G)|.

• Color the vertices in order avoiding the colors of previously colored neighbors.

• Since each vertex has at most ∆(G) neighbors, there is always at least one color for the current
vertex.

Lower bound: χ(G) ≥ ω(G), where ω(G) denotes the clique number of H, that is the maximum size
of a clique in G.

Can we do better than the greedy upper bound?
No! The bound is tight for complete graphs: ω(Kn) = χ(Kn) = (n− 1) + 1 = ∆(Kn) + 1.

Can we do better if the graph is not complete?
No! The graph could have a component that is complete.

Can we do better if the graph is connected and not complete?
No! The bound is tight for odd cycles: χ(C2k+1) = 3 = 2 + 1 = ∆(C2k+1) + 1.

Can we do better if the graph is connected and neither complete nor an odd cycle? Yes!

Theorem 1.2: Brooks 1941

If G is connected, then χ(G) ≤ ∆(G) if and only if G is neither complete nor an odd cycle.

An Informal Proof of Brooks’ Theorem

How to prove Brook’s Theorem?

Actually there are 8 to 10 distinct ways to prove Brooks’ Theorem. See the nice survey Brooks’ The-
orem and Beyond by Cranston and Rabern from 2014 for more details. Here are some of those meth-
ods: Greedy Coloring, Kempe Chains, List Coloring, Alon-Tarsi Theorem, Kernel Perfection, Potential
Method.

Today we give an informal proof sketch via the Greedy Coloring Method - arguably the most direct,
brute-force of the approaches. (See Diestel for the Kempe Chain proof).

The idea is to try a method (greedy coloring) we know works for a similar problem (∆ + 1-coloring),
and ask under what conditions can we use this to get the desired outcome (a ∆-coloring).
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In the other cases we cannot apply greedy, we instead do reductions: that is, we show how to induc-
tively color or to show that the graph is one of the exceptional outcomes (clique or odd cycle).

Alternatively, we could have built up a suite/library of reductions that work, and then tried to find a
method to deal a finishing blow (i.e. to handle the cases we could not reduce).

First Reduction G has a cutvertex v. Then v separates G into two smaller graphs G1 and G2.

v

G1
G2

φ1(v) = φ2(v)

By minimality of G, Gi has a ∆-coloring φi, i ∈ 1, 2.

This only works if neither graph is K∆+1 or odd cycle when ∆ = 2.

Now permute the colors in φ2 so that φ1(v) = φ2(v). Then φ1 ∪ φ2 yields a ∆-coloring of G, a contra-
diction.

Second Reduction G has a cutset {u, v}.

Try the same trick. Say {u, v} separates G into two smaller graphs G1 and G2. By induction or
minimum counterexample, each of G1, G2 has a ∆-coloring φi, i ∈ 1, 2.

v

G1
G2?

u

If uv ∈ E(G), then we can permute the colorings so that φ1(u) = φ2(u) and φ1(v) = φ2(v).

This fails if uv /∈ E(G). Because we may have u, v colored the same in one coloring and different in
the order and no permuting will fix this! So we can add the edge uv to both G1 and G2!
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v

G1
G2?

u

G2 + uvG1 + uv

u u

v v

Have to show ∆(G1 + uv), ∆(G2 + uv) ≤ ∆(G). We also have to ensure that neither G1 nor G2 is
complete (or odd cycle in ∆(G) = 2 case).

Then we assume G is 3-connected. We now turn to the finishing blow (greedy). The greedy fails when
a vertex has ∆(G) earlier neighbors in the ordering, each with a different color from {1, . . . , ∆(G)}.

· · ·
v∆(G)21

Can we find an ordering where most of the vertices have at most ∆(G)− 1 earlier neighbors? Yes for
all but the last vertex in the ordering! We can fix a root, then take a depth-first search tree ordering
from the root. Reverse it!

2 1

1

2

3 4

5

6
3456

reverse ordering
rootdepth-first

search tree

Now all vertices but the last will be fine in greedy.

If deg(v) ≤ ∆(G) − 1, then we can ensure greedy does not fail at the last vertex v. Otherwise, we
ensure that two of its neighbors x and y are colored the same (and hence there is a color left for v
when it is v’s turn). These two are two non-adjacent neighbors, which guaranteed to exist as G is not
K∆+1.

x

v

y
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We can put x, y first in the ordering to guarantee x and y are colored the same. Then we can color
them as we desire (since non-adjacent), say both with color 1.

x y v

φ(x) = 1 = φ(y)

Use the reverse of a depth-first search tree ordering of G − {x, y} with root v, then we finish the
ordering so every vertex in V(G) \ {x, y, v} has at most ∆(G)− 1 earlier neighbors. Since G− {x, y} is
connected as G is 3-connected, then this ordering exist.

A Formal Proof of Brooks’ Theorem

Let us codify our ordering fact as a proposition.

Proposition 1.3: Ordering Proposition

If G is a connected graph on n vertices and v ∈ V(G), then there exists an ordering v1, . . . , vn = v
of V(G) such that |N(vi) ∩ {vi+1, . . . , vn}| ≥ 1 for all i ∈ [n− 1].

Proof:
Reverse a depth-first search tree ordering from root v. Or more formally:

We proceed by induction on |V(G)|. If |V(G)| = 1, then the ordering v is as desired. So we
assume that |V(G)| ≥ 2. Let G1, . . . , Gk be the components of G− v. As G is connected, there exists
neighbors u1, . . . , uk of v such that ui ∈ V(Gi) for each i ∈ [k]. For each i ∈ [k], there exists by
induction applied to Gi and ui, an ordering σi of V(Gi) as prescribed by the proposition. Let σ be
the ordering of V(G) obtained by concatenating the σi and finally v. Then σ is as desired.

Now we are ready to prove Brooks’ Theorem:

Suppose not. Let G a counterexample with |V(G)| minimized. If ∆(G) ≤ 2, the result is standard. So
we assume that ∆(G) ≥ 3.

Claim 1 There does not exist a cutvertex of G.

Proof:
Suppose not. That is, there exists a cutvertex v of G and two connected subgraphs G1, G2 of G such
that G1 ∩ G2 = {v}, G1 ∪ G2 = G and |V(Gi)| < |V(G)| for each i ∈ [2].

As G1 and G2 are subgraphs of G, we have that ∆(Gi) ≤ ∆(G) for each i ∈ [2]. Moreover, as G
is connected, we have for each i ∈ [2] that degGi

(v) ≥ 1 and hence degGi
(v) ≤ ∆(G)− 1. Hence

Gi 6= K∆(G)+1 for each i ∈ [2]. Thus by the minimality of G, there exist ∆(G)-colorings φi of Gi for
each i ∈ [2].

By permuting the colors of φ2 as necessary, we assume without loss of generality that φ1(v) = φ2(v).
But then φ1 ∪ φ2 is a ∆(G)-coloring of G, a contradiction.

Claim 2 There does not exist a 2-cut of G, or, there exists a vertex v ∈ V(G) with degG(v) ≤ ∆(G)− 1.

Proof:
Suppose not. Now let us suppose there exists a 2-cut {v1, v2} of G and two connected subgraphs
G1, G2 of G such that G1 ∩ G2 = {v1, v2}, G1 ∪ G2 = G and |V(Gi)| < |V(G)| for each i ∈ [2].
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Choose v1, v2, G1, G2 such that neither G1 + v1v2 nor G2 + v1v2 is equal to K∆(G)+1 if possible.

As G is connected and G does not have a cutvertex by Claim 1, we have for all i, j ∈ [2] that
degGi

(vj) ≥ 1 and hence degGi
(vj) ≤ ∆(G)− 1. Thus ∆(Gi + v1v2) ≤ ∆(G) for all i ∈ [2].

Next suppose that there exists i ∈ [2] such that Gi + v1v2 = K∆(G)+1. Without loss of generality, we
assume that i = 1. Let v′1 be the neighbor of v1 in G2 − v2. Let G1 = G1 + v1v′1 and G′2 = G2 \ {v1}.
Now wither degG(v

′
1) ≤ ∆(G)− 1, a contradiction, or we find that G′i + v′1v2 6= K∆(G)+1 for each

i ∈ [2]. But then v′1, v2, G′1, G′2 contradict the choice of v1, v2, G1, G2.

So we assume that G1 + v2v2, G2 + v1v2 6= K∆(G)+1. Thus by the minimality of G, there exist ∆(G)-
colorings φi of Gi for each i ∈ [2]. By permuting the colors of φ2 as necessary, we assume without
loss of generality that φ1(vj) = φ2(vj) for each j ∈ [2]. But then φ2 ∪ φ2 is a ∆(G)-coloring of G, a
contradiction.

Let v ∈ V(G) with degG(v) minimized.

First suppose that degG(v) ≤ ∆(G)− 1. By the Ordering Proposition, there exists an ordering v1, . . . , v
of V(G) such that |N(vi) ∩ {vi+1, . . . , v}| ≥ 1 for all i ∈ [|V(G)| − 1]. Now greedily color V(G) in that
order. This yields a ∆(G)-coloring of G, a contradiction.

So we assume that degG(v) = ∆(G). Since G 6= K∆+1, there exist distinct x, y ∈ N(v) such that xy /∈
E(G). By Claims 1 and 2, it follows that G is 3-connected and hence G − {x, y} is connected. Hence
by the Ordering Proposition, there exists an ordering v1, . . . , v of V(G) − {x, y} such that |N(vi) ∩
{vi+1, . . . , v}| ≥ 1 for all i ∈ [|V(G)| − 3]. Now color x, y with color 1. Then greedily color V(G)−
{x, y} in that order. This yields a ∆(G)-coloring of G, a contradiction.

Beyond Brooks’ Theorem

Can we go further? Can we save more colors? Under what conditions?

Question (ω, ∆, χ paradigm)

What is the maximum chromatic number of graphs with ω(G) ≤ ω and ∆(G) ≤ ∆?

Brooks’ Reformulated

If G is a graph with ∆(G) ≥ 3 and ω(G) ≤ ∆(G), then χ(G) ≤ ∆(G).

Borodin-Kostochka Conjecture (1977)

If G is a graph with ∆(G) ≥ 9 and ω(G) ≤ ∆(G)− 1, then χ(G) ≤ (G)− 1.

Why ∆ ≥ 9?

Let G = C5 � K3. (the blowup of every vertex in C5 to a triangle K3) Then ∆(G) = 8, ω(G) = 6, and
yet χ(G) = 8.

Theorem (Reed 1999)

True for ∆(G) ≥ 1014.
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Reed’s conjecture

Reed’s Conjecture (1998)

χ(G) ≤
⌈

∆(G) + 1 + ω(G)

2

⌉
.

Kt

Kt

KtKt

Kt

5-cycle blowup

∆ = 3t− 1
ω = 2t⌈

1
2
(∆ + 1 + ω)

⌉
=

⌈
5t
2

⌉
α = 2

Theorem (Reed 1998)

The conjecture holds when ∆(G) is sufficiently large and

ω(G) ≥ (1− 7 · 10−7)∆(G).

Corollary (Reed)

There exists ε > 0 such that for every graph G,

χ(G) ≤ (1− ε)(∆(G) + 1) + εω(G).

Reed’s value of ε was 10−8.

Can we improve the ε for large enough ∆? Can we get closer to ε = 1/2?

For Large enough ∆, the following ε suffices:

• 1
320e6 (King and Reed 2012)

• 1
26 (Bonamy, Perrett, Postle 2016+)

• 1
13 (Delcourt and Postle 2017+)

• 1
8.4 (Hurley, de Joannis de Verclos, Kang 2020+)

Large Girth

The girth of a graph G is the length of a shortest cycle in G.

Theorem (Erdős 1959)

∀g, k ≥ 1, there exists graphs of girth at least g and chromatic number at least k.
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Theorem (Frieze and Luczak 1992)

Random d-regular graphs have chromatic number (1− o(1)) d
2 ln d with high probability.

Corollary

∀g, d ≥ 1, there exists a d-regular graph G of girth at least g with

χ(G) ≥ (1− o(1))
d

2 ln d
.

Girth-Five and Triangle-Free

Theorem (Kim 1995)

If G is a graph of girth five, then

χ(G) ≤ (1 + o(1))
∆(G)

ln ∆(G)
.

Theorem (Johansson 1996)

If G is a triangle-free graph, then

χ(G) ≤ O
(

∆(G)

ln ∆(G)

)
.

Theorem (Molloy 2017)

If G is a triangle-free graph, then

χ(G) ≤ (1 + o(1))
∆(G)

ln ∆(G)
.

Small Clique Number

Theorem (Johansson 1999)

For every fixed r: if G is a graph with ω(G) ≤ r, then

χ(G) ≤ O
(

∆(G)

ln ∆(G)
· ln ln ∆(G)

)
.

Theorem (Molloy 2017)

χ(G) ≤ 200 ·ω(G) · ∆(G)

ln ∆(G)
· ln ln ∆(G).

Good for ω(G) ≤ ln ∆(G)
ln ln ∆(G)

. What if ω(G) is larger?
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Question

For k ≥ 2, what value of ω(G) guarantees χ(G) ≤ ∆(G)
k ?

Theorem (Bonamy, Kelly, Nelson, Postle 2018+)

χ(G) ≤ O

(
∆(G) ·

√
ln ω(G)

ln ∆(G)

)
.

Corollary

∀k ≥ 2, if ω(G) ≤ ∆(G)
1

(192k)2 , then

χ(G) ≤ ∆(G)

k
.

Ramsey theory constructions show that we cannot extend this beyond ∆(G)
2

k−1 .

1.2 Edge Coloring

edge coloring

An edge-coloring of a graph G is an assignment of colors to edges of G such that no two incident
edges receive the same color.

k edge coloring

Let G be a graph. We say φ : E(G) → [k] is a k-edge-coloring of G if φ(e) 6= φ( f ) for every
e, f ∈ E(G) with e ∼ f .

Here e ∼ f means e, f share a common endpoint (“are adjacent”) in G.

chromatic index

The chromatic index of a graph G (also known as edge chromatic number), denoted χ′(G), is
the minimum number k such that G has a k-edge-coloring.

line graph

The line graph of a graph G, denoted by L(G), is the graph where V(L(G)) := E(G) and
E(L(G)) := {e f : e, f ∈ E(G), e ∼ f }.

Edge colorings of G are equivalent to vertex colorings of L(G). Hence χ′(G) = χ(L(G)).

What are some natural upper and lower bounds on χ′(G)?
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Proposition 1.4

∆(L(G)) ≤ 2∆(G)− 2

Hence by greedy,
χ′(G) ≤ 2∆(G)− 1

Proposition 1.5

ω(L(G)) ≥ ∆(G)

Hence
χ′(G) ≥ ∆(G)

Moreover, ω(L(G)) = ∆(G) if ∆(G) ≥ 3.

Note that for even cycles, namely Kn, n even, χ′(G) = ∆(G). For odd cycles, we have χ′(G) > ∆(G).

Theorem 1.6: König (1916)

If G is a bipartite graph, then χ′(G) = ∆(G).

Proof (first):
It suffices to prove the theorem when G is ∆(G)-regular since every bipartite graph G is a subgraph
of some ∆(G)-regular graph H.

Prove by induction on ∆(G). If ∆(G) = 0, then the statement holds trivially. So assume ∆(G) ≥ 1.

Let S ⊆ A. By double counting E(G(S, N(S))), it follows that

∆(G)|S| = |E(G(S, N(S)))| ≤ ∆(G)|N(S)|,

and thus |S| ≤ |N(S)|. Hence by Hall’s theorem, there exists a perfect matching M of G.

By induction, G −M has a (∆(G)− 1)-coloring φ. Let φ(e) = ∆(G) for each e ∈ M. Then φ is a
∆(G)-coloring of G as desired.

Kempe chain

Let φ be a partial k-edge-coloring of a graph G. If a, b ∈ [k] and v ∈ V(G), then (a, b)-chain at v
in φ, denoted Pv(a, b, φ) is the maximal path/cycle of a and b colored edges containing v.

switching

The coloring φ′ obtained from switching (aka recoloring) Pv(a, b, φ) is defined as:

• φ′(e) = {a, b} \ φ(e) if e ∈ Pv(a, b, φ), and

• φ′(e) = φ(e) otherwise.
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missing colors

Let φ be a partial k-edge coloring of a graph G.

• A coloring a ∈ [k] is missing at v in φ if a /∈ {φ(e) : e ∼ v}.

• We let φ(v) denote the set of missing colors at v.

Proof (second proof of König):
We proceed by induction on |E(G)|. If E(G) = ∅, there is nothing to show. So we assume that
E(G) 6= ∅.

let e = uv ∈ E(G). By induction, there exists a ∆(G)-edge-coloring of G− e. Let φ be a ∆(G)-edge-
coloring of G− e such that |φ(u) ∩ φ(v) is maximized.

Note that φ(u), φ(v) 6= ∅ since degG−e(u), degG−e(v) ≤ ∆(G)− 1.

If φ(u)∩ φ(v) 6= ∅, then let φ(e) ∈ φ(u)∩ φ(v) and hence φ is a ∆(G)-edge-coloring of G as desired.

Now assume that φ(u) ∩ φ(v) = ∅. Let a ∈ φ(u), b ∈ φ(v). Note that P := Pu(a, b, φ) is a path. If
v ∈ V(P), then it follows that P has even length and hence P + e is an odd cycle in G, contradicting
that G is bipartite.

So we assume that v /∈ V(P). But then switching P yields a coloring φ′ such that b ∈ φ′(u) ∩ φ′(v),
contradicting the choice of φ.

1.2.1 Vizing’s Theorem

Theorem 1.7: Vizing (1964)

If G is a graph, then χ′(G) ≤ ∆(G) + 1.

A graph G is called class 1 if χ′(G) = ∆(G), or class 2 if χ′(G) = ∆(G) + 1. Note that deciding if a
graph is class 1 is NP-complete!

Vizing fan

Suppose that G is a graph, e = v0v1 ∈ E(G), and φ is a partial k-edge-coloring of G− e for some
integer k. We say T = (v0e1v1e2 . . . envn) is a Vizing fan with respect to the edge e, vertex v0
and the coloring φ if

• v0, v1, v2, . . . , vn are all disjoint, and

• ∀j, 1 ≤ j ≤ n, ej = vjv0, and

• ∀j, 2 ≤ j ≤ n, φ
(
ej
)
∈ ⋃i<j φ (vi).

Here is a depiction of Vizing fan.

α1

α2

α3

αn

...

e: uncolored

v0

α1

α2

αn−1

v1

v2

v3

vn
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Idea is no coloring implies disjoint missing colors in Vizing fan.

Lemma 1.8: Disjoint missing colors

Let G be a graph and e = v0v1 ∈ E(G) such that for some integer k ≥ ∆(G) + 1, G − e has a
k-edge-coloring, but G does not.

If φ is a k-edge-coloring of G− e, and T = (v0e1v1e2v2 . . . envn) is a Vizing fan with respect e, v0
and φ, then φ(vi) ∩ φ(vj) = ∅ for all distinct vi, vj ∈ V(T).

Proof:
Suppose not. That is ∃i < j ∈ {0, . . . , n} such that φ(vi) ∩ φ(vj) 6= ∅.

Let φ, T, i, j be chosen such that j is minimized, and subject to that condition, i is minimized. Let
α ∈ φ(vi) ∩ φ(vj). Three cases: i = 0 and j = 1; i = 0 and j > 1; i > 0.

Case 1: i = 0, j = 1.

α

...

v0

v1

v2

v3

vn

α

α

Let φ(e) = α and hence φ is a k-edge-coloring of G, a contradiction.

Case 2: Let β = φ(v0vj). Since T is a Vizing fan, ∃j′ < j such that β ∈ φ(vj′).

...

v0

v1

vj′

vj

vn

α

β
...

...

α

β

...

v0

v1

vj′

vj

vn

β

α
...

...

β

β

T′

Let φ′ be obtained from φ switching Pv0(α, β, φ) = v0vj. Then β ∈ φ′(v0) ∩ φ′(vj′). Now
T′ := T[{v0, . . . , v′j}] and φ′ contradict minimality of T and φ.

Case 3: i > 0. Let β ∈ φ(v0). By minimality of T, β 6= α. Let j′ := i.

(a) v0 /∈ V(Pvi (α, β, φ)).

...

v0

v1

vj′

vj

vn

β
...

...

α

α

. . .β

α

Pvj′ (α, β, φ)

...

v0

v1

vj′

vj

vn

β
...

...

α

β

. . .α

β

Pvj′ (α, β, φ)

switched

T′
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Let φ′ be obtained from φ by switching Pvi (α, β, φ). Then β ∈ φ′(v0) ∩ φ′(vi). Now
T′ := T[{v0, . . . , vi}] and φ′ contradict the minimality of T and φ.

(b) v0 ∈ V(Pvi (α, β, φ)).

...

v0

v1

vj′

vj

vn

β
...

...
α

β

α

Pvj′ (α, β, φ)

α β

β α

β

Pvj (α, β, φ) switched

Let φ′ be obtained from φ by switching Pvj(α, β, φ). Then β ∈ φ′(v0) ∩ φ′(vj). Now
T′ := T[{v0, . . . , vj}] and φ′ contradict he minimality of T and φ.

Now we can take maximum Vizing fan and apply lemma for contradiction.

Proof of Vizing’s Theorem:
Let G be a counterexample with |V(G)| minimized. Hence E(G) 6= ∅. Let e = v0v1 ∈ E(G). By the
minimality of G, G− e has (∆(G) + 1)-edge-coloring φ of G− e.

Let T = (v0e1v1e2v2 . . . envn) be a Vizing fan with respect to e, v0 and φ such that n is maximized.
By lemma, φ(vi) ∩ φ(vj) = ∅ for all distinct i, j ∈ {0, . . . , n}.

Let X :=
⋃

i∈[n] φ(vi). By Lemma, |X| ≥ n. So ∃α ∈ X such that 6 ∃ f = v0vj, j ∈ [n] with φ( f ) = α.
Since α /∈ φ(v0), ∃en+1 = v0vn+1 with φ(en+1) = α. But then T + en+1 is a larger Vizing fan with
respect to e, v0, φ, contradicting the maximality of T.

1.2.2 List Edge Coloring

List Coloring:

• list-assignment L: an assignment of lists L(v) for v ∈ V(G).

• k-list-assignment L: |L(v)| ≥ k for all v ∈ V(G).

• L-coloring: a coloring φ where φ(v) ∈ L(v) for all v ∈ V(G).

• A graph G is k-list-colorable if G has an L-coloring for every k-list-assignment L.

list chromatic number

The list chromatic number, denoted χ`(G), is the minimum k such that G has an L-coloring for
every k-list-assignment L.

Proposition 1.9

For all integer k ≥ 0, there exists a bipartite graph G with χ`(G) = k.

Theorem (Alon 2000)

If G has average degree d, then χ`(G) ≥ Ω(log d).
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For edge-coloring, we have something similar.

list chromatic index

The list chromatic index, denoted χ′`(G), is χ`(L(G)).

List Coloring Conjecture (Various authors, 1970s/80s)

If G is a graph, then χ′`(G) = χ′(G).

Theorem 1.10: Galvin, 1995

If G is a bipartite graph, the χ′`(G) = χ′(G).

Theorem (Kahn, 1996)

If G is a graph, then χ′`(G) = (1 + o(1))χ′(G).

latin square

A latin square is an n by n array such that each of the numbers 1 to n appears exactly once in
each row and exactly once in each column.

Equivalently, a latin square is an n-edge-coloring of Kn,n. Such always exist by König’s theorem which
shows that χ′(Kn,n) = ∆(Kn,n) = n.

Dinitz Conjecture (1978)

Given an n by n array and an assignment of n symbols to each square, there exists a choice
of symbol for each square such that each symbol appears at most once in each row and each
column.

Or equivalently, by Galvin’s Theorem, χ′`(Kn,n) = n.

kernel

A kernel of a digraph D is an independent set U such that every vertex in D \U has an out-
neighbor in U.

D

kernel U

kernel perfect

We say an orientation D of a graph G is kernel perfect if every induced subgraph D′ of D has
a kernel.
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Lemma 1.11: Kernel Perfect Lemma

Let G be a graph and L a list assignment. If G has a kernel perfect orientation D such that
d+(v) < |L(v)| for every v in D, then G has an L-coloring.

Proof:
By induction on |V(G)|. If |V(G)| = 0, we are done.

Let v ∈ V(G), α ∈ L(v) and D′ := G[{u ∈ V(G) : α ∈ L(u)}]. Since D is kernel perfect, D′

has a kernel U. Let φ(u) = α for all u ∈ U, and L′(x) := L(x) \ {α} for all x ∈ G \ U. Now
d+G\U(v) < |L′(v)| for all v ∈ D \U. By induction, G \U has an L′-coloring and hence G has an
L-coloring.

Proof of Galvin’s Theorem:
Let G = (A, B). Let k = χ′(G) = ∆(G). Let φ be a k-edge-coloring of G.

Let D be an orientation of L(G) where e ∼ e′ ∈ E(G) with φ(e) < φ′(e), we orient ee′: e′ → e if
e ∩ e′ ∈ A; e→ e′ if e ∩ e′ ∈ B.

1
2

3

A B

Let e = uv, u ∈ A, v ∈ B. Let φ(e) = i. Then

d+(e) ≤
∣∣{e′ : e′ ∩ e = u, φ

(
e′
)
< φ(e)

}∣∣+ ∣∣{e′ : e′ ∩ e = v, φ
(
e′
)
> φ(e)

}∣∣
≤ (i− 1) + (∆(G)− i) = ∆(G)− 1 = k− 1

Let D′ be an induced subgraph of D. Then D′ has a kernel U, namely a stable matching as
guaranteed by the Stable Marriage Theorem (where v prefers u to u′ if u′v is directed towards uv).
Hence D is kernel perfect. By Kernel Perfect Lemma, L(G) has an L-coloring.

Proof Ideas for Kahn’s Theorem:
Randomly color edges; Uncolor incident edges with same color; iterate; FInish with a well chosen
reserve of colors.

Molly and Reed: χ′`(G) = ∆(G) + O
(
∆(G)1/2 log4 ∆(G)

)
Kahn: Also holds for edge-coloring k-uniform linear hypergraphs. (A hypergraph is linear if any two
vertices are contained in a most one hyperedge.)

1.2.3 Edge Coloring Multigraphs

If G is a multigraph, let χ′(G) denote χ(L(G)). Note that L(G) is well-defined for multigraphs. Also
note that we allow parallel edges but not loops, so that L(G) is simple. We have a trivial bound:

∆(G) ≤ ω(L(G)) ≤ χ′(G) ≤ ∆(L(G)) + 1 ≤ 2∆(G)− 1
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Theorem 1.12: König, 1916

If G is a bipartite multigraph, then χ′(G) = ∆(G).

Same proof works. However, Vizing’s Theorem does not hold.

···

· · ·

···

⌊
∆
2

⌋

⌊
∆
2

⌋

⌈
∆
2

⌉

Theorem 1.13: Shannon, 1949

If G is a multigraph, then χ′(G) ≤
⌊

3∆(G)
2

⌋
.

We can’t do better because it is tight for triangle.

multiplicity

The multiplicity of a multigraph G, denoted µ(G), is the maximum number of pairwise parallel
edges in G.

Theorem 1.14: Vizing, 1964

If G is a multigraph, then χ′(G) ≤ ∆(G) + µ(G).

Proof:
We carry over all definitions to multigraphs: Kempe chains, switching, missing colors, Vizing fan.
Same proof works for disjoint missing color lemma in the context of multigraphs. Then we fix the
finish as follows:

Let k = ∆(G) + µ(G). Let X :=
⋃

i∈[n] φ(vi). By lemma, we have |X| ≥ (k−∆(G))n = µ(G)n. There
are at most µ(G)n− 1 colored edges incident with v0 and another vertex in T. So ∃α ∈ X such that
6 ∃ f = v0vj, j ∈ [n] with φ( f ) = α. Since α /∈ φ(v0), ∃en+1 = v0vn+1 with φ(en+1) = α. But then
T + en+1 is a larger Vizing fan with respect to e, v0 and φ, contradicting the maximality of T.

Proof of Shannon’s Theorem:

We proceed by induction. If µ(G) ≤
⌊

∆(G)
2

⌋
, then desired outcome follows from Vizing’s Theorem

for multigraphs.

So we assume µ(G) > ∆(G)
2 . Let u, v ∈ V(G) such that there exist µ(G) parallel edges with ends

u, v. Let G′ be the multigraph obtained from G by identifying u and v to a new vertex w and
deleting all loop incident with w.
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···
···

µ(G) > ∆
2G

u v

· · ·

· · ·

< ∆− µ < ∆− µ

G′
w

· · ·

· · ·

degG′ (w) ≤ 2(∆− µ) ≤ ∆

Now degG′(w) ≤ 2(∆− µ) ≤ ∆. Hence ∆(G′) ≤ ∆(G). By induction, G′ has a
⌊

3∆(G)
2

⌋
-coloring φ.

Extend φ to G as desired. Note this is possible as

µ(G) + degG′(w) ≤ 2∆− µ(G) ≤
⌊

3∆(G)

2

⌋

Let

p(G) := max
{⌈

2|E(G[X])|
|X| − 1

⌉
| X ⊆ V(G)

}
Note that χ′(G) ≥ p(G).

Goldberg 1979, indep. Seymour 1977

χ′(G) ≤ max{∆(G) + 1, p(G)}

Edmonds (matching polytope theorem) shows that the fractional chromatic index satisfies

χ′f (G) = max{∆(G) + 1, p(G)}.

So the Goldberg-Seymour conjecture is equivalent to saying that χ′(G) = χ′f (G).

Kierstead Path

Suppose G is a graph, e1 = v0v1 ∈ E(G), S is a set of colors, and φ is an S-coloring of G− e1. We
say T = (v0e1v1e2v2 . . . envn) is a Kierstead Path with respect to the edge e1 and the coloring φ
if

• v0, v1, v2, . . . , vn are all disjoint, and

• ∀j, 1 ≤ j ≤ n, ej = vju where u ∈ ⋃i<j{vi} and u = vj−1, and

• ∀j, 2 ≤ j ≤ n, φ(ej) ∈
⋃

i<j φ(vi).

Theorem (Kierstead)

The Disjoint missing colors lemma holds for Kierstead Paths.

Tashkinov Tree

Suppose G is a graph, e1 = v0v1 ∈ E(G), S is a set of colors, and φ is an S-coloring of G− e1. We
say T = (v0e1v1e2v2 . . . envn) is a Tashkinov Tree with respect to the edge e1 and the coloring φ
if

• v0, v1, v2, . . . , vn are all disjoint, and

• ∀j, 1 ≤ j ≤ n, ej = vju where u ∈ ⋃i<j{vi}, and

• ∀j, 2 ≤ j ≤ n, φ(ej) ∈
⋃

i<j φ(vi).
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Theorem (Tashkinov 2000)

The Disjoint missing colors lemma holds for Tashkinov Trees.

As time goes by, we have several upper bounds. The latest is

Theorem (Chen, Gao, Kim, Postle, Shan 2018)

χ′(G) ≤ max
{

∆(G) +
⌈
(∆(G)/2)1/3

⌉
, p(G)

}

1.3 Thomassen’s Theorem

What is the maximum list chromatic number of planar graphs? It is at least 4 since K4 is planar, and
at most 6 since planar graphs are 5-degenerate.

k-degenerate

A graph is k-degenerate if its vertices can be successively deleted so that when deleted, each
has degree at most k. The degeneracy of a graph is the smallest k such that it is k-degenerate.

or

A k-degenerate graph is a graph in which every induced subgraph has a vertex with degree at
most k.

Conjecture (Erdős, Rubin and Taylor 1979)

∃ a planar graph with list chromatic number at least 5.

Theorem (Voigt 1993)

∃ a planar graph with list chromatic number at least 5.

Conjecture (Erdős, Rubin and Taylor 1979)

Every planar graph has list chromatic number at most 5.

Theorem (Thomassen 1994)

Every planar graph has list chromatic number at most 5.

How to prove there exists a 5-list-coloring? Identification and Kempe chains do not work for list
coloring, but we can prove something stronger.
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Theorem 1.15: Thomassen’s Stronger Theorem

Let G be a connected plane graph, C be the boundary walk of the infinite face of G, and P be a
path on at most two vertices in C.

If L is a list assignment of G such that

• |L(p)| = 1 ∀p ∈ V(P),

• |L(v)| ≥ 3 ∀v ∈ V(C) \V(P),

• |L(w)| ≥ 5 ∀w ∈ V(G) \V(C), and

• G[V(P)] has an L-coloring,

then G has an L-coloring.

G

P

p1

p2

precolored L ≥ 5

C : L ≥ 3

Proof:
Let G be a counterexample with |V(G)| minimized. Assume WLOG that |V(P)| = 2. Let P = p1 p2.

Global reduction: cutvertex/chord

Assume G has a cutvertex: G1 ∩ G2 = {v}, G1 ∪ G2 = G. Assume WLOG that V(P) ⊆ V(G1).

G1
G2

v

P

p1

p2 P′
φ φ

By minimality, G1 has an L-coloring φ. By minimality, φ extends to an L-coloring of G2.

Assume G has a chord: G1 ∩ G2 = {uv}, G1 ∪ G2 = G. Assume WLOG V(P) ⊆ V(G1).

G1
G2

v
P

p1

p2

P′

φ φ

u

By minimality, G1 has an L-coloring φ. By minimality, φ extends to an L-coloring of G2.

Local Reduction

Let v 6= p2 be neighbor of p1 in C. Let {c1, c2} ∈ L(v) \ L(p1).
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C

v

P
p1

p2

c1, c2 ∈ L(v) \ L(p1)

G

C

v

P
p1

p2

c1, c2 ∈ L(v) \ L(p1)

G′

v′
×delete

remove c 1, c 2
from lists

L′

Let G′ = G− v, let v′ 6= p1 be the neighbor of v in C and

L′(w) =

{
L(w)\ {c1, c2} w ∈ N(v)\ {v′}
L(w) otherwise

Let C′ be the outer face of G′.

C′

P

p1

p2

G′

v′
in C′ but not C

Since G is 2-connected, G′ is connected. Note that |L′(w)| ≥ 3 ∀w ∈ V(C′) \ V(P) because if
w ∈ N(v) \ {p1, v′}, then w ∈ V(G) \V(C) since C has no chord. |L′(w)| ≥ 5 ∀w ∈ V(G′) \V(C′)
since if w ∈ N(v) \ V(C), then w ∈ V(C′). By minimality of G, ∃L′-coloring φ of G′. Now let
φ(v) ∈ {c1, c2} \ φ(v′).

1.4 Coloring and List Coloring Planar Graphs

In 1852, Guthrie proposed Four Color Conjecture: Every planar graph is 4-colorable. It’s equivalent
formulation: Every bridgeless cubic planar graph is 3-edge colorable. The four color theorem was
proved in 1976 by Kenneth Appel and Wolfgang Haken after many false proofs and counterexam-
ples. Uses the method of discharging to show that every minimum counterexample contains one of
1834 unavoidable configurations. Show that each of these configurations is reducible (i.e. does not
occur in a minimum counterexample). Second shorter proof by Robertson, Sanders, Seymour and
Thomas in 1997 (only 633 configurations). Latter proof verified by formal proof software Coq in 2005.
Interestingly, we can use fewer colors by excluding certain subgraphs.

Grötzsch’s Theorem (1959) states that every triangle-free graph is 3-colorable. This does not extend
to list coloring: Voigt (1995) states that ∃ a planar triangle-free graph that is not 3-list-colorable. In
1995, Thomassen’s theorem states that every planar graph of girth at least five (i.e., no 4 or 4-cycles)
is 3-colorable.

In 1976, Steinberg proposed a conjecture: Every planar graph without 4-cycles or 5-cycles is 3-colorable.
Erdős, in 1991, proposed a question: What is the smallest k such that planar graphs with no cycles
of length 4 to k are 3-colorable? Borodin, Glebov, Raspaud, Salavatipour (2005) showed k = 7 works.
Cohen-Addad, Hebdige, Král’, Li, Salgado (2016) showed Steinberg’s conjecture is false. Dvořák,
Postle, in 2018: planar and no 4 to 8 cycles is 3-list-colorable. But we have more questions on planar
graphs:

• If a theorem guarantees one k-coloring, could we also prove a theorem guaranteeing many k-
colorings?

• If a theorem guarantees one k-coloring, could we also prove a theorem guaranteeing a k-coloring
if we add a few anomalies (e.g. precolored vertices, crossings, etc.)?

Not all planar graphs have (exponentially) many 4-colorings. Repeatedly adding new degree three
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vertices inside facial triangles of K4 has only one 4-coloring up to permutation of colors. However, all
planar graphs have (exponentially) many 5-colorings.

Proposition 1.16

Every graph has at least 2
|V(G)|
χ(G) (χ(G) + 1)-colorings.

Proof:
Take the largest color class in a χ(G)-coloring and recolor any subset with the χ(G) + 1-st color.

These results can extend to list colorings. In 2007, Thomassen proved that If G is a planar graph and L

is a 5-list-assignment of G, then G has at least 2
|V(G)|

9 distinct L-colorings. In 1974, Aksenov proved that
every planar graph with at most 3 triangles is 3-colorable. Havel’s conjecture (1969) which states that
∃D > 0 s.t.: every planar graph where every pair of triangles is at distance ≥ D apart is 3-colorable, is
proved by Dvořák, Král’s and Thomas.

In 1997, Thomassen raised a question: Does ∃D > 0 s.t.: If G is a planar graph and X is a set of vertices
≥ D pairwise far apart, then every 5-coloring of X extends to G?

Proposition (Alberston 1998)

If G is a graph and X is a set of vertices ≥ 4 far apart, then every χ(G) + 1-coloring of X extends
to G.

Proof:
Take a χ(G)-coloring φ of G. Recolor every vertex xi in X to its preferred color ci. Recolor the
neighbors of xi colored ci to color χ(G) + 1. This yields a χ(G) + 1-coloring of G, because N(xi)
are disjoint/non-adjacent as distance ≥ 4.

What about list coloring? By Thomassen’s theorem: planar graphs with at most 2 precolored adjacent
vertices are 5-list-colorable. What if the vertices are pairwise far apart? Alberston’s Conjecture (1998):
∃D > 0 s.t.: every planar graph where every pair of precolored vertices is at distance ≥ D apart is
5-list-colorable, was proved by Dvořák et al. in 2017.

1.5 Discharging

Discharging is a counting method wherein:

• We assign charges to objects (e.g. vertices, edges, faces of a graph) such that the sum of the
charges is negative (resp. positive)

• We redistribute the charge according to a set of discharging rules such that the sum is unchanged

• We derive a contradiction by showing the sum of the new charges is non-negative (resp. non-
positive) given the assumed properties.

We use charges for plane graphs, natural choices come from Euler’s formula. Recall Euler’s formula:

Euler’s formula

If G is a plane graph, then

|V(G)| − |E(G)|+ |F (G)| = 1 + |C (G)|

where F (G) denote the set of faces of G and C (G) denotes the set of components of G.
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1.5.1 Common Discharging Setups for Planar Graphs

Let G be a plane graph. Initial charges:

ch0(v) = deg(v)− 6 ∀v ∈ V(G)

ch0( f ) = 2(| f | − 3) ∀ f ∈ F (G)

Total sum of charges:

∑
v∈V(G)

ch0(v) + ∑
f∈F (G)

ch0( f )

= ∑
v∈V(G)

(deg(v)− 6) + ∑
f∈F (G)

2(| f | − 3)

= ∑
v∈V(G)

deg(v)− 6|V(G)|+ 2 ∑
f∈F (G)

| f | − 6|F (G)|

= 2|E(G)| − 6|V(G)|+ 2(2|E(G)|)− 6|F (G)| by handshaking

= 6(|E(G)| − |V(G)| − |F (G)|)
= −6(1 + |C (G)|) by Euler’s formula

= −12 if connected

1. Vertex-centric Setup

• ch0(v) = deg(v)− 6 ∀v ∈ V(G)

• ch0( f ) = 2(| f | − 3) ∀ f ∈ F (G)

• Sum: −12 if connected

• Good for: unrestricted plane graphs.

2. Face-centric Setup

• ch0(v) = 2(deg(v)− 3) ∀v ∈ V(G)

• ch0( f ) = | f | − 6 ∀ f ∈ F (G)

• Sum: −12 if connected

• Good for: cubic plane graphs

3. Balanced Setup

• ch0(v) = deg(v)− 4 ∀v ∈ V(G)

• ch0( f ) = | f | − 4 ∀ f ∈ F (G)

• Sum: −8 if connected

• Good for: triangle-free plane graphs or restrictions on triangles

A First Example

Some notation:

• k-vertex: degree is k

• k+-vertex: degree is ≥ k

• k−-vertex: degree is ≤ k

• k-face, k+-face, k−-face similar
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Proposition 1.17

Every plane graph with δ(G) ≥ 5 contains a 5-vertex adjacent to a 7−-vertex.

Vertex-centric Setup: ch0(v) = deg(v)− 6, ch0( f ) = 2(| f | − 3), Sum: ≤ −12.

Rule: Every 8+-vertex sends + 1
4 charge to each neighbor.

Let ch denote the final charge after applying rule.

Claim All final charges are nonnegative.

• Faces: ch( f ) = ch0( f ) ≥ 0

• 8+-vertices:

ch(v) ≥ deg(v)− 6− deg(v)
4

=
3 deg(v)− 24

4
≥ 0

since deg(v) ≥ 8.

• 6-vertex, 7-vertex: ch(v) ≥ ch0(v) ≥ 0

• 5-vertex:
ch(v) = −1 +

1
4
(5) ≥ 1

4
> 0

since every neighbor of v is an 8+ vertex and sends + 1
4 to v by Rule.

A Second Example

Proposition 1.18

Every plane graph with δ(G) ≥ 3 contains:

• a 3-vertex incident with a 5−-face, or

• a 5−-vertex incident with a 3-face.

Balanced Setup: ch0(v) = deg(v)− 4, ch0( f ) = | f | − 4, Sum: ≤ −8.

Rules:

1. Every 6+-face sends + 1
3 charge to each incident vertex.

2. Every 6+-vertex sends + 1
3 charge to each incident face.

Let ch denote the final charge after applying both rules.

Claim All final charges are nonnegative.

• 6+-vertices:

ch(v) ≥ deg(v)− 4− deg(v)
3

=
2 deg(v)− 12

3
≥ 0

since deg(v) ≥ 6.

• 4-vertex, 5-vertex: ch(v) ≥ ch0(v) ≥ 0.

• 3-vertex:
ch(v) = −1 +

1
3
(3) = 0

since every face incident with v is a 6+-face and sends + 1
3 to v by Rule 1.

• Symmetric for faces.
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A Final Example

Proposition 1.19

Every plane graph with δ(G) ≥ 3 contains:

• two adjacent 3-faces, or

• a j-face for some 4 ≤ j ≤ 9, or

• a 10-face incident with only 3-vertices.

Here we use Face-centric Setup: ch0(v) = 2(deg(v)− 3), ch0( f ) = | f | − 6.

Rules:

1. Every 10+-face sends +1 to each adjacent 3-face.

2. Every 4+-vertex v sends +1 to each incident 10+-face f where v is contained in a triangle sharing
an edge with f .

Let ch denote the final charge after applying both rules.

Claim All final charges are nonnegative.

• 3-vertices: ch(v) = ch0(v) = 0

• 4+-vertex:

ch(v) ≥ 2(deg(v)− 3)−
⌊

2 deg(v)
3

⌋
=

⌈
4 deg(v)

3

⌉
− 6 ≥ 0

since deg(v) ≥ 4.

• 3-face:
ch( f ) = −3 + (+1)(3) = 0

since every face adjacent to f is a 10+-face which sends +1 to f by Rule 1.

• 10+-faces:

– Loses 1 for every path along its boundary such that neighboring faces are triangles and ends
are degree 3: Loses 1 to each triangle on the path by Rule 1, and Gains 1 for each interior
vertex of path by Rule 2 (since these are 4+-vertices)

– Net loss is at most b | f |2 c

• 11+-face:

ch( f ) ≥ | f | − 6−
⌊
| f |
2

⌋
=

⌈
| f |
2

⌉
− 6 ≥ 0

• 10-face: if ch( f ) < 0, then 5 such paths, implies f incident to only 3-vertices, contradiction.

Corollary 1.20

Every planar graph with no 4 to 9-cycles is 3-colorable.

Proof:
By standard reduction, we may assume G is 2-connected and δ(G) ≥ 3. By proposition, ∃ a 10-face
C incident with only 3-vertices. Delete V(C), color by induction, extend to C. (Works since even
cycles are 2-list-colorable)
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1.6 Surfaces

A surface is a closed, compact, connected, 2-dimensional manifold.

• closed: contains its boundary

• compact: every open cover has a finite subcover

• connected: there exists a path between any two points

• 2-dimensional manifold: each point has a neighborhood that is homeomorphic to R2.

Example:
(2-dimensional) sphere

torus

A

B

A A

B

B

double torus

projective plane

A
A

Klein bottle

1.6.1 Operations

Connected Sum of two surfaces: remove a disk from both surfaces; glue along boundaries of disks.

Σ1

+

Σ2

−→

Adding a Crosscap to a surface: remove a disk and identify antipodal points of its boundary
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Σ

A A

Adding a Handle to a surface: remove two disks and identify their boundaries with same orientation

Σ

A A

Adding a Twisted Handle to a surface: remove two disks and identify their boundaries with opposite
orientation

Σ

A A

Theorem 1.21: Classification to Surfaces Theorem

Every surface is homeomorphic to one of the following:

• Sh: adding h ≥ 0 handles to a sphere

• Nk adding k ≥ 1 crosscaps to a sphere

Equivalently:

• S0 is the sphere,

• Sh (for h ≥ 1) is the connected sum of h tori, and

• Nk is the connected sum of k projected planes.

A surface is orientable if there exists a consistent choice of orientation, non-orientable otherwise.
Informally, a surface is orientable if “whenever you walk around left/right remain the same”.

A closed curve γ in a surface is 2-sided if any small enough strip containing γ has 2 components after
deleting γ. 1-sided if any small enough strip containing γ has only 1 component after deleting γ.
Formally, A surface is orientable if and only if every closed curve is 2-sided.

A closed curve γ in a surface is seperating if the deleting of γ disconnects the surface. It is contractible
if γ can be contracted to a point (or equivalently γ is 2-sided, separating, and at least one side bounds
a disk).
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One last operation (to reduce a surface): Cutting along a Closed Curve: Delete closed curve and add
a disk to each side of the curve (two if 2-sided, one if 1-sided).

Proof Sketch for Classification:
Let Σ be a surface. If every closed curve in Σ is contractible, then Σ is a sphere. So WMA ∃ non-
contractible closed curve γ in Σ. Consider cutting along γ. If γ is separating, then Σ is connected
sum of two smaller surfaces. If 2-sided, non-separating, then Σ is obtained from a smaller surface
by adding a handle. If 1-sided, then Σ is obtained from a smaller surface by adding a crosscap.

Note that adding a crosscap to Sh we get N2h+1. Adding a handle to Nk we get Nk+2. The connected
sum of Sh and Nk is N2h+k. In all cases the result is non-orientable since the existence of a crosscap
disorients the surface. The disorientation turns every handle into a twisted handle (which is equivalent
to adding two crosscaps).

Euler’s formula for Surfaces

The Euler genus g(Σ) of a surface Σ is g(Σ) := 2h + k where h is the number of handles and k is the
number of crosscaps.

Euler’s formula for Surfaces

If G is a graph embedded in a surface Σ, then

|V(G)| − |E(G)|+ |F (G)| = 1 + |C (G)| − g(Σ)

where F (G) denote the set of faces of G and C (G) denotes the set of components of G.

Corollary 1.22

If G is a graph embedded in a surface Σ, then

|E(G)| ≤ 3
(
|V(G)| − 2 + g(Σ)

)

1.6.2 Coloring Graphs on Surfaces

For each surface Σ, what is the maximum chromatic number of graphs embeddable in Σ?

When Σ is the sphere, the answer is 4 by the Four Color Theorem. What about for surfaces of larger
genus?

Theorem (Heawood 1890)

If G is a graph embedded in a surface Σ with g(Σ) ≥ 1, then

χ(G) ≤ 7 +
√

1 + 24g(Σ)
2

The Heawood number of a surface Σ:

H(Σ) :=

⌊
7 +

√
1 + 24g(Σ)

2

⌋

Note that H(S0) = 4, H(N1) = 6, H(S1) = H(N2) = 7
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Lemma 1.23

If G is embeddable in a surface Σ with g(Σ) ≥ 1, then δ(G) ≤ H(Σ)− 1.

Proof:
If g = 1, then e ≤ 3v− 3 and hence δ ≤ 5 = H(N1)− 1. So we assume g ≥ 2. We assume δ ≥ 6,
otherwise nothing to show. By Euler’s formula and handshaking,

δv ≤ 2e ≤ 6v− 12 + 6g =⇒ (δ− 6)v ≤ 6g− 12

Using v ≥ δ + 1 and δ− 6 ≥ 0, we get

(δ− 6)(δ + 1) ≤ 6g− 12 =⇒ δ2 − 5δ + 6− 6g ≤ 0

By Lemma, it follows that a graph embeddable in Σ with g ≥ 1 is (H(Σ)− 1)-degenerate, and hence
H(Σ)-colorable by greedy.

Heawood’s Conjecture (1890)

For all surfaces Σ with g ≥ 1, ∃ a graph G embeddable in Σ with χ(G) = H(Σ).

Franklin (1930) showed it is false for Klein bottle (χ ≤ 6). Ringel and Youngs (1968) showed that it is
true for all other Σ (they showed KH(Σ) embeds for all other Σ)

Modern Paradigm

Modern Paradigm (Thomassen 1990s): Perhaps “most graphs” embeddable on a surface have small
chromatic number (independent of genus)?

Questions

For what k and Σ, are there only finitely many reasons that graphs embeddable in Σ are not
k-colorable?

For what k and Σ, are “locally planar” graphs embedded in Σ k-colorable? We say that a graph
G embedded in a surface S is locally planar if it does not contain short noncontractible cycles.

For what k and Σ, does exist a polynomial-time algorithm to decide if graphs embeddable in Σ
are k-colorable?

k-critical

A graph G is k-critical if G has no (k− 1)-coloring but very proper subgraph of G does.

Dirac (1952) and Albertson and Hutchinson (1978) showed: KH(Σ) is the only H(Σ)-critical graph
embeddable in Σ.

For what k and Σ, do there exist only finitely many k-critical graphs embeddable in Σ?

Yes for k ≥ 8 [Dirac, 1953], k = 7 [Gallai, 1963], k = 6 [Thomassen, 1997]. No for k = 5 and Σ 6= S0
(Thomassen via construction of Fisk)

For what k and Σ does exist w such that all graphs embedded in Σ with edge-width ≥ w are k-
colorable? edge-width of G, ew(G): length of shortest non-contractible cycle.
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Proposition 1.24

For a surface Σ, if finitely many k-critical, then locally planar (k− 1)-colorable.

Proof:
Let L be list of k-critical graphs embedded in Σ. Let w = max{ew(G) : G ∈ L}+ 1. If ew(G) ≥ w,
then 6 ∃H ∈ L with H ⊆ G. Hence G is (k− 1)-colorable.

“Locally planar” graphs in Σ are 5-colorable (by Thomassen). Thomassen (1993) showed ew ≥ 2Ω(g)

suffices. Postle, Thomas (2018) showed ew(G) ≥ Ω(log g) suffices. For Σ 6= S0, there exist graphs of
arbitrarily large edge-width that are not 4-colorable (Thomassen).

For what k and Σ, does exist a polynomial-time algorithm to decide if graphs embeddable in Σ are
k-colorable?

Proposition 1.25

For a surface Σ: if finitely many k-critical, then there exists polytime algorithm to decide (k− 1)-
colorable.

Proof:
Let L be list fo k-critical graphs embedded in Σ. For all H ∈ L: tet if H ⊆ G. If yes for some H,
then return NO; otherwise return YES.

This runs in |V(G)|max{|V(H)|:H∈L} time.

Actually subgraph testing is linear-time on a fixed surface.

For a fixed surface Σ: there exists a linear-time algorithm to decide if a graph embedded in Σ is
5-colorable (by Thomassen). In 2013, Dvořák, Kawarabayashi found that there exists |V(G)|O(g) algo-
rithm to find a 5-coloring if it exists. Postle (2019) found that there exists a linear-time algorithm to
find a 5-coloring if it exists.

For Σ 6= S0, it is an open problem whether there exists a poly-time algorithm to decide if a graph
embedded in Σ is 4-colorable.

What about graphs with larger girth (triangle-free, girth ≥ 5)?

• Finitely many k-critical graphs:

Yes for k ≥ 5, triangle-free (fairly easy).

No for k = 4, triangle-free, Σ 6= S0 (Thomassen).

Yes for k = 4, girth ≥ 5 (Thomassen 2003).

• Triangle-free:

Locally planar triangle-free graphs are 3-colorable if Σ is orientable (Dvořák, Král’ and Thomas
2008-2020+). There exists a polytime algorithm to decide 3-colorable for triangle-free graphs on
any Σ (Dvořák, Král’ and Thomas 2009)

What about list-coloring?

k-list-critical

A graph G is k-list-critical if ther exists a (k− 1)-list-assignment L such that G hsa no L-coloring
but every proper subgraph of G does.

Finitely many k-list-critical graphs: Yes for k ≥ 7, k = 6, k = 5 triangle-free, k = 4, girth ≥ 5.
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Graph minors

2.1 Minors

minor

We say that a graph G has an H minor if a graph is isomorphic to H can be obtained from a
subgraph of G by contracting edges.

Example:

×

model

Let H be a graph with V(H) = {v1, . . . , vt}. A model of H in a graph G is a collection of
vertex-disjoint connected subgraphs H1, . . . , Ht such that ∀i 6= j ∈ [t] with vivj ∈ E(H), Hi is
adjacent to Hj (i.e., there exists an edge with one end in Hi and the other end in Hj).

Example:

H1
H2

H3

v1 v2

v3

It is not hard to see that G has an H minor if and only if there exists a model of H in G.

subdivision

We say that a graph G has a subdivision of H (aka topological minor) if a graph isomorphic to
H can be obtained fro ma subgraph of G by suppressing vertices of degree two.

Equivalently, there exists

33
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• an ordering v1, . . . , v|V(H)| of H,

• distinct vertices u1, . . . , u|V(H)| of G and

• a collection of paths P = {Pij : vivj ∈ E(H)} where Pij has ends ui and uj and V(Pij) ∩
{u1, . . . , u|V(H)|} = {ui, uj} for all i 6= j ∈ [|V(H)|].

Kuratowski’s Theorem (1930)

A graph is planar if and only if it does not contain K5 or K3,3 as a topological minor.

Kuratowski’s Theorem (Equivalent formulation, Wagner 1937)

A graph is planar if and only if it does not contain K5 or K3,3 as a minor.

We say a class of graphs G is minor-closed if ∀G ∈ G and minor H of G, we have that H ∈ G . The
minor-minimal graphs not in G are called the forbidden minors of G (aka Kuratowski set).

For what minor-closed G is the Kuratowski set finite?

What is the structure of graphs with no Kt minor?

Some Minor-Closed Classes

Forests. Forbidden minors: K3.

Outerplanar graphs. A graph is outerplanar if it can be embedded in the plane with all vertices
incident to the infinite face. Forbidden minors: K2,3 and K4.

Projective Planar graphs. Forbidden Minors: 35 (Archdeaon 1981)

Graphs embeddable in a fixed surface Σ. Forbidden Minors: ??

Linkless graphs. A graph G is linkless if G can be embedded in R3 such that no two vertex-disjoint
cycles of G are “linked”. Forbidden Minors (Robertson, Seymour and Thomas 1995): The Petersen
family (7 graphs) which includes the Petersen graph and K6.

linked

Struture for forbidding small complete minors:

• No K1 minor: empty.

• No K2 minor: independent set.

• No K3 minor: forests.

What is the structure of K4-minor-free graphs?

k-sum

A k-sum of two graphs G1 and G2: identify vertices of a Kk in each graph and possibly delete
the overlapping edges.
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• No K2 minor: 0-sum of copies of K1.

• No K3 minor: subgraph of ≤ 1-sum of copies of K2.

Theorem 2.1

If no K4 minor, then has subgraph of ≤ 2-sum of copies of K3.

Proof:
By induction. If G has/is

• a ≤ 1-cut, then G is ≤ 1-sum of G1, G2.

• a 2-cut {u, v}, then G is the 2-sum of G1 + uv, G2 + uv, both of which are minors of G.

• 3-connected, then G contains a K4 minor (i.e., an induced cycle C and 3 paths from a vertex v
not in C to C).

What is the structure of K5-minor-free graphs?

Much more complicated, because it includes all planar graphs. But that’s not all, because it includes
K3,3 and its supergraph V8 (the Möbius ladder on 8 vertices):

V8

Theorem (Wagner 1937)

G has no K5-minor if and only if G can be obtained by ≤ 3-sums of planar graphs and V8.

2.2 Well-Quasi-Ordering

A quasi-ordering is a relation that is both reflexive (x ≤ x) and transitive (x ≤ y, y ≤ z implies x ≤ z).

well-quasi-ordering

A well-quasi-ordering is a quasi-ordering ≤ such that for every infinite sequence x0, x1, . . . there
exists i < j such that xi ≤ xj.

We call (xi, xj) a good pair. We say an infinite sequence is good if it has a good pair, bad otherwise.

We have some basic facts about WQO:

Proposition

A quasi-ordering ≤ on X is a well-quasi-ordering if and only if X contains neither an infinite
antichain nor a strictly decreasing sequence x0 > x1 > . . .
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Corollary

If X is well-quasi-ordered by ≤, then every infinite sequence in X has an infinite increasing
subsequence.

The minor relation is a quasi-ordering on graphs. Wagner’s conjecture (1960s) was then presented as
the theorem:

The Graph Minor Theorem (Robertson and Seymour 1986-2004)

The minor relation is a well-quasi-ordering.

Proof:
Over 20 papers and hundereds of pages!

Corollary

The Kuratwoski set for any minor-closed property is finite.

Theorem (Robertson and Seymour)

There exists a cubic-time algorithm to test if a graph contains a fixed graph H as a minor.

A graph G is knotless if G can be embedded in R3 such that no cycle is “knotted”.

Before the graph minor theorem, it was open whether knotlessness is decidable, i.e. whether any
algorithm exists to decide if a graph is knotless. By the graph minor theorem, the Kuratowski set for
knotlessness is finite and hence there exists a cubic-time algorithm to decide if a graph is knotless.

Proposition 2.2

If X is well-quasi-ordered by ≤, then so is |X|<ω.

Proof:
Suppose not. Choose A0, A1, . . . , An, . . . iteratively where the sequence extends to a bad seqeunce,
and |An| is minimized for each n. For all n, pick an ∈ An and let Bn = An \ {an}. Since X is well-
quasi-ordered, by corollary the sequence (an)n∈N has an infinite increasing subsequence (ani )i∈N.
By minimality of An0 , the sequence A0, . . . , An0−1, Bn0 , Bn1 , Bn2 , . . . is good. Since (An)n∈N is nad,
the good pair is not of the form (Ai, Aj) or (Ai, Bj). Hence it is of the form (Bi, Bj). But then
(Bi ∪ {ai} = Ai), Bj ∪ {aj} = Aj is a good pair, contradiction.

Theorem 2.3: Kruskal 1960

Trees are well-quasi-ordered by the topological minor relation.

More strongly, they are well-quasi-ordered in the rooted sense: Let T, T′ be rooted trees with roots r, r′.
We write T ≤ T′ if there exists an isomorphic φ from a subdivision T to a subtree of T′ that preserves
the tree-order on V(T) associated with T and r. (i.e., if x is a parent of y in T, then φ(x) is a parent of
φ(y) in T′).
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Theorem 2.4

Rooted trees are well-quasi-ordered by ≤.

Proof of Kruskal’s:
Suppose not. Choose T0, T1, . . . , Tn, . . . iteratively where the sequence extends to a bad seqeunce,
and |V(Tn)| is minimized for each n. For all n, let rn be the root of Tn and let An be the set of
components of Tn − rn whose neighbors of rn.

rn

Tn

An

Claim A :=
⋃

n∈N An is well-quasi-ordered.

Proof:
Let (Tk)k∈N be any sequence of trees in A. For all k, let n(k) such that Tk ∈ An(k). Pick k with
smallest n(k). By the minimality of n(k), the sequence

T0, . . . , Tn(k)−1, Tk, Tk+1, Tk+2, . . .

is good. A good pair (T, T′) of the sequence above has no member in T0, . . . , Tn(k)−1 an hence
the sequence (Tk)k∈N is good.

By Subset Lemma, [A]<ω is well-quasi-ordered. Hence the sequence (An)n∈N has a good pair
(Ai, Aj).

ri

Ti

Ai

rj

Tj

Aj

But then (Ti, Tj) is a good pair, a contradiction, where we map φ(ri) to rj and add paths from rj to
the images in Tj of the roots of Ai.

2.3 Tree-Decompositions and Tree-Width

How ‘tree-like’ is a graph?
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tree-decomposition

A tree-decomposition of a graph G is a pair (T, V ) where

• T is a tree,

• V = (Vt)t∈V(T) is a family of vertex sets Vt of G (called the bags of decomposition)

that satisfy:

(T1) V(G) =
⋃

t∈T Vt, and

(T2) ∀e ∈ E(G), ∃t ∈ V(T) such that both ends of e lie in Vt, and

(T3) Vt1 ∩Vt3 ⊆ Vt2 whenever t2 is on the path in T connecting t1 and t3.

tree-decomposition (equivalent definition)

A tree-decomposition of a graph G is a pair (T, V ) where

• T is a tree,

• V = (Vt)t∈V(T) is a family of vertex sets Vt of G (called the bags of decomposition)

that satisfy:

(T1’) ∀v ∈ V(G), the set Tv = {t ∈ T : v ∈ Vt} is a nonempty subtree of T, and

(T2’) ∀e = uv ∈ E(G), Tu ∩ Tv 6= ∅.

Example:

1

2

3

4 5

6

7

8

9

Tree-Decomposition:

1

2

2

3

4 4 5
5

6

7

8

7

8

9

We call the subgraphs G[Vt] the torsos of the composition.
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Example:
1

2

3

4

5

6

Tree-Decomposition:

1

2

3

4

5

64

3

Can we do “better”?

1 3

4

5

4

31

2 4

5

64

Proposition 2.5

If (T, V ) is a tree-decomposition of a graph G and H is a subgraph of G, then

(T, V ′) =
(
Vt ∩V(H)

)
t∈T

is a tree-decomposition of H.

Proof:
Since if (T1’), (T2’) hold for (T, V ), then they hold for (T, V ′), then it follows from alternative
definition, (T, V ′) is a tree-decomposition of H.

Proposition 2.6

If (T, V ) is a tree-decomposition of a graph G and H = (H1, . . . , Ht) is a model of a graph H
in G, then

(T, V ′) =
(
{vi ∈ V(H) : Vt ∩V (Hi) 6= ∅}

)
t∈T

is a tree-decomposition of H.

Proof:
By (T1’) and (T2’), it follows that {vi ∈ V(H) : Vt ∩V (Hi) 6= ∅} is a nonempty subtree of T. Then
(T2’) holds for (T, V ′) since it held for (T, V ).
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width

The width of a tree-decomposition of (T, V ) of a graph G is defined to be

max{|Vt| − 1 : t ∈ T}

tree-width

The tree-width of a graph G, denoted tw(G), is the minimum width over all tree-decompositions
of G.

Note the ‘-1’ is just so that trees have tree-width 1.

Proposition 2.7

If H is a minor of G, then tw(H) ≤ tw(G).

Proof:
Follows from Subgraph/Minor Propositions.

tw(Kn) = n− 1

Proposition 2.8

If G is the k-sum of G1 and G2, then

tw(G) ≤ max{tw(G1), tw(G2)}

Proof:
Put an edge between optimal tree-decompositions of G1 and G2 together at bags containing the
common Kk vertices.

Proposition 2.9

tw(G) ≤ 1 if and only if G is a forest.

Proof:
The forward direction follows since tw(K3) = 2.

The backward direction follows since a forest is a subgraph of ≤ 1-sum of K2’s.

Proposition 2.10

tw(G) ≤ 2 if and only if G has no K4 minor.

Proof:
The forward direction follows since tw(K4) = 3.

The backward direction follows since a K4-minor-free graph is a subgraph of ≤ 2-sum of K3’s.

Theorem (Robertson and Seymour 1990)

For all k > 0, the graphs of tree-width < k are well-quasi-ordered by the minor relation.
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For k = 1, just independent sets. For k = 2, this is Kruskal’s theorem. For k ≥ 3, similar to proof of
Kruskal’s theorem except we have to iteration tw(G)− 1 times.

Many NP-hard problems can be solved in polynomial time on graphs of bounded tree-width via
dynamic programming. For example, deciding k-coloring:

• Root a tree-decomposition (T, V ) of width tw(G) at some vertex r

• Iteratively compute Φ(t) staring from the leaves

• where Φ(t) is the set of k-colorings of G[Vt] that extend toa k-coloring of the subgraph induced
by {Vt′ : t′ is a child of t}

• Return YES if and only if φ(r) 6= ∅.

2.4 Brambles and Grids

When does a graph have large tree-width?

touch

Let G be a graph. Two subsets A, B ⊆ V(G) touch if A ∩ B 6= ∅ or ∃ and edge of G with one
end in A and the other end in B.

bramble

A bramble B in a graph G is a collection of connected subsets of V(G) that are pairwise
touching.

cover of B

A cover of B is a subset X ⊆ V(G) such that X ∩ B 6= ∅ for all B ∈ B.

order of B

The order of B is the minimum size of a cover of B.

Theorem 2.11: Treewidth Duality Theorem (Seymour and Thomas, 1993)

A graph has tree-width < k if and only if it contains no bramble of order > k.

Proof of forward direction:
Let (T, V ) be a tree-decomposition of G of width < k and let B be a bramble. We claim that there
exists a bag that is a cover of B.

Proof:
Suppose not. Orient every edge e = t1t2 of T as follows:

• Since Vt1 ∩Vt2 does not cover B, there exist sets in B disjoint from Vt1 ∩Vt2 .

• Since all such sets mutually touch, there exists a unique component of T − e containing
such sets.

• Orient e toward that component.

Since T is a tree, there exists a sink t of the orientation. Now Vt covers B, contradiction.
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By Claim, every bramble has order ≤ k (the max size of a bag).

Which graphs have large brambles (and hence large tree-width)?

Kn has a bramble of order k (namely B = {{v} : v ∈ V(G)}). What other graphs?

grid

The k× k grid is the graph with vertices [k]2 and edge set{
(i, j)

(
i′, j′

)
:
∣∣i− i′

∣∣+ ∣∣j− j′
∣∣ = 1

}
crosses

The crosses of the grid are the k2 sets

Cij =
{
(i, `) : ` ∈ [k]} ∪ {(`, j), ` ∈ [k]

}

Then B = {Ci,j : i, j ∈ [k]} is a bramble of order k: The Cij are connected and mutually touch; any row
or column covers B; any set of size < k misses both a row and column and hence fails to cover B.

Grid Theorem (Robertson and Seymour 1986)

There exists f (k) such tbat every graph of tree-width at least f (k) contains a k × k grid as a
minor.

The latest result (Chuzhoy and Tan 2019) shows that Ω(k9) suffices.

Corollary 2.12

Let H be a graph. Then the graphs without H as minor have bounded treewidth if and only if
H is planar.

Proof:
If H is nonplanar, then the class of H-minor-free graphs contains all planar graphs, hence all grids,
and hence has unbounded treewidth.

So suppose H is planar. Then H is a minor of some grid. Because we can embed H in plane, and
take superfine grid and ‘snap’ H to grid. By the Grid Theorem, the class of H-minor-free graphs
has bounded tree-width.

The Treewidth Duality Theorem is related to the following game:
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Cops and Robbers

Let G be a graph. There are k cops each of whom at any time are standing on a vertex of G, or
are in a helicopter (i.e., removed from the game). A robber who is infinitely fast and can run at
any time, cannot run through a cop, is always visible to the cops.

The cops win if they land a helicopter on the vertex occupied by the robber. The robber wins if
it eludes capture.

Robber Winning Strategy

A winning robber strategy is (essentially) equivalent to:

haven

Let G be a graph. A haven in G of order k + 1 is a function β which assigns to each subset X of
V(G) of size ≤ k a component G− X such that β(X) touches β(Y) for all X, Y ∈ [V(G)]≤k.

Proposition 2.13

A graph G has a bramble of order k if and only if it has a haven of order k.

Proof:
Suppose B is a bramble of order k. For each X ∈ [V(G)]<k, there exists B ∈ B such that B∩X = ∅.
Let β(X) be the component of G− X containing H. Then β is a haven of order k.

Then we suppose β is a haven of order k. Let B = {β(X) : X ∈ [V(G)]<k}. Then B is a bramble of
order k.

Winning Cop Strategy

A winning cop strategy is (essentially) a search tree T where: each vertex t ∈ V(T) has the position
Vt of the cops, and the robber is in some component of G−Vt. The tree branches then depending on
how the robber moves in response to the cops.

monotonic winning cop strategy

A winning cop strategy is monotonic if whenever a cop leaves a vertex, then no cop ever returns
to that vertex.

What is this equivalent to? Namely that Tv = {t ∈ T : v ∈ Vt} is connected. Note that in order for the
cops to win: every vertex needs to be occupied by a cop at some time, and every edge needs to have
both cops on its ends at some time.

Proposition 2.14

A monotonic winning cop strategy is equivalent to a tree-decomposition of width < k.

Tree-width Duality Theorem (Equivalent Formulation)

k cops have a monotonic winning strategy if and only if they have a winning strategy.

Now let’s prove the backward direction of Treewidth Duality Theorem. Let’s prove some preliminary
lemmas first.
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Lemma 2.15

Let (T, V ) be a tree-decomposition of a graph G. If e ∈ E(T) and T1, T2 are the components of
T − e, then Vt1 ∩Vt2 separates

⋃
t∈T1

Vt from
⋃

t∈T2
Vt.

Proof:
Suppose not. That is, there exists v1v2 ∈ E(G) with v1 ∈

⋃
t∈T1

Vt \ Vt2 and v2 ∈
⋃

t∈T2
Vt \ Vt1 . By

axiom (T2’), there exists t0 ∈ T with {v1, v2} ⊆ Vt0 . WLOG assume t0 ∈ T1. By axiom (T1’), Tv2 is a
subtree. Since v2 ∈ Vt0 ∩

⋃
t∈T2

Vt, we find that v2 ∈ Vt1 ∩Vt2 , a contradiction.

Lemma 2.16

Any set of vertices separating two covers of a bramble also covers that bramble.

Proof:
Since each set in the bramble is connected and meets both covers, it also meets any set separating
those covers.

B-admissible tree-decomposition

Let G be a graph with no bramble of order > k. If B is a bramble of G, then a B-admissible
tree-decomposition is one where any bag of size > k fails to cover B.

Lemma 2.17: Key Lemma

Let G be a graph with no bramble of order > k. For every bramble B of G, there exists a
B-admissible tree-decomposition of G.

When B = ∅, a B-admissible tree-decomposition is simply one of width < k, since every set covers
the empty bramble. Hence the Key Lemma implies the hard direction of the Tree-width Duality
Theorem.

Proof of the Key Lemma:
Suppose not. Let B be a bramble of G such that there does not exist a B-admissible tree-
decomposition of G, and subject to that, |B| is maximized. Such B exists since every bramble
has at most 2|V(G)| sets.

Let X ⊆ V(G) be a cover of B with |X|minimized. Note ` := |X| is the order of B and hence ` ≤ k.
If X = V(G), then the tree-decomposition with X as its only bag is B-admissible, a contradiction.
So we assume X 6= V(G).

Key Claim For all component C of G − X, there exists a B-admissible tree-decomposition of
G[X ∪V(C)] with X as a bag.

The Claim implies the Key Lemma as follows: Identify the tree-decompositions for all the compo-
nents of G− X at the bags equal to X. This is a tree-decomposition of G (as it satisfies the axioms)
and B-admissible (since every bag of size > k fails to vover B), a contradiction.

Now we prove the key claim.

Let C be a fixed component of G− X, H := G[X ∪V(C)], B′ = B ∪ {C}.

Case 1: B′ is not a bramble. Then C fails to touch some element of B, hence Y := V(C) ∪ N(C)
fails to cover B, hence the tree-decomposition of H with bags X and Y is B-admissible as
desired.
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Case 2: B′ is a bramble. Note that C /∈ B since X covers B and C ∩ X = ∅. Hence |B′| > |B|.
By maximality of B, there exists a B′-admissible tree-decomposition (T, V ) of G. Since
(T, V ) is not B-admissible, there exists a bag Vs of size > k that covers B.

By Lemma 2.16, every set separating X and Vs also covers B. Then since X is a minimum
cover of B, every set separating X and Vs has size at least `. By Menger’s Theorem, there
exist ` vertex-disjoint paths P1, . . . , P` from X to Vs. Since (T, V ) is B′-admissible, then
Vs ∩ C = ∅. Hence Pi ∩V(H) = {xi} for all i ∈ [`].

For all i ∈ [`], pick a ti with xi ∈ Vti . Let Qi be the path in T from s to ti. We construct a
new tree-decomposition (T, W ) of H where for each t ∈ T, we let

Wt :=
(
Vt ∩V(H)

)
∪
{

xi : t ∈ V (Qi)
}

This is a tree-decomposition of H since it is the tree-decomposition of H induced by (T, V )
except with some extra vertices in bags, yet Txi is still a subtree since xi ∈ Vti .

Note that Ws = X is a bag of (T, W ). We will show that (T, W ) is a B-admissible as
desired.

Subclaim 1 |Wt| ≤ |Vt| for all t ∈ V(T).

Proof:
Let It = {i ∈ [`] : xi ∈ Wt \Vt}. It follows from Lemma 2.15 that V(Pi) ∩Vt 6= ∅ for all
i ∈ It. Since Pi ∩ (V(H) \ X) = ∅, we find that

|Wt| ≤ |Vt| − |It|+ ∑
i∈I
|V (Pi) ∩Vt| ≤ |Vt|

as claimed.

Subclaim 2 (T, W ) is B-admissible.

Proof:
Suppose not. That is, there exists t ∈ T such that |Wt| > k and Wt covers B. By
Subclaim 1, |Vt| ≥ |Wt| > k. Since (T, V ) is B-admissible, Vt fails to cover B. That is,
there exists B ∈ B such that Vt ∩ B = ∅. Yet Wt ∩ B 6= ∅. Hence there exists i ∈ [`] with
xi ∈ Wt \ Vt and xi ∈ B. Since B is a connected set meeting both Vti and Vs, it follows
from Lemma 2.15 that B ∩Vt 6= ∅, a contradiction.

2.5 The Erdős-Pósa Theorem

Theorem 2.18

Let T be a tree. If F is a family of subtrees of T that pairwise intersect, then
⋂

F∈F V)(F) 6= ∅.

More generally, we have the following:

Theorem 2.19: Helly Property for Trees

Let F be a collection of subtrees of a tree T. For any integer k ≥ 1, either

1. there exist k vertex-disjoint trees in F , or

2. there exists a set X of < k vertices in T that intersects each tree in F .

When does a graph contain k vertex-disjoint cycles?
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Not if it has cycles, but we can delete k− 1 vertices to get a forest. Is this in essence the only reason?

Theorem 2.20: Erdős-Pósa, 1965

For every integer k ≥ 1, there exists f (k) such that every graph G contains

• k vertex-disjoint cycles, or

• X ⊆ V(G) with |X| ≤ f (k) such that G− X is a forest.

Indeed, Erdős and Pósa showed that f (k) = Θ(k log k).

Proposition 2.21

If H is a graph of minimum degree 3 and C is a shortest cycle of G, then |C| ≤ 2 log |V(G)|.

Let rk := log k + log log k + 4 and let sk :=

{
4krk k ≥ 2
1 k = 1

Lemma 2.22

If H is a cubic multigraph with |V(H)| ≥ sk, then H contains k vertex-disjoint cycles.

Proof:
By induction on k. If k = 1, trivial. Assume k ≥ 2.

Let C be a shortest cycle of G. By Proposition 2.21, (or if H is not a graph and hence |C| = 2), then
|C| ≤ 2 log |V(H)|.

Claim H − C contains a subdivision of a cubic multigraph H′ with |V(H′)| ≥ |V(H)| − 2|C|.

Calculations show that |V(H′)| ≥ |V(H)| − 2|C| ≥ sk−1. By induction H′ has k− 1 vertex-disjoint
cycles C1, . . . , Ck−1. Then C, C1, . . . , Ck−1 are k vertex-disjoint cycles of H as desired.

Now let’s prove the claim.

Let m := |E(C, H − C)|. Since H is cubic, then m ≤ |C|. Consider bipartitions (V1, V2) of H
beginnign with V1 := V(C). While H[V2] has a vertex of degree at most 1: move it to V1 (obtainin
a biparititon with strictly fewer crossing edges).

Suppose n moves are done, then |E(V1, V2)| ≤ m− n. Hence H[V2] has min degree ≥ 2 and ≤ m− n
vertices of degree 2. Let H′ be obtained from H[V2] by surpressing vertices of degree 2. Then

|V(H′)| ≥ |V(H)| − |C| − n− (m− n) ≥ |H| − 2|C|

as desired.

Proof of Erdős-Pósa:
Let fk := sk + k− 1. We may asume G has a cycle (as otherwise (2) holds with X = ∅). Let H be
a maximal subgraph of G in which every vertex has degree 2 or 3, and U be the set of degree 3

vertices of H. By Lemma, we may assume |U| < sk (otherwise (1) holds).

Let C be the set of all cycles that avoid U and meet H in exactly one vertex, and Z be the set of
these vertices. For all z ∈ Z, pick a cycle Cz ∈ C that contains z, and C ′ := {Cz : z ∈ Z}.

Let D be the set of 2-regular components of H that avoid Z. Pick xD ∈ V(D) for all D ∈ D . Let
X′ := Z ∪ {xD : D ∈ D}.

Note that C ′ ∪D is a set of vertex-disjoint cycles. If |C ′ ∪D | ≥ k, then (1) holds. So we may assume
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|X′| ≤ |C ′ ∪D | ≤ k− 1.

Let X = X′ ∪U. It suffices to show G− X is a forest. Suppose not. Let C′ be a cycle in G− X. But
then C′ ∩ V(H) 6= ∅, otherwise H ∪ C′ is more maximal, and |V(C′) ∩ V(H)| ≥ 2 as C′ /∈ C . So
there exists an H-path between two vertices of H − X and hence H ∪ P is more maximal.

Erdős-Pósa property

A connected graph H has Erdős-Pósa property if for all k ≥ 1, there exists f (k) such that every
graph G contains

• k vertex-disjoint H-models, or

• X ⊆ V(G) with |X| ≤ f (k) such that G− X is H-minor-free.

Since K3 models are precisely cycles, we have:

Erdős-Pósa Theorem (Equivalent Formulation)

K3 has the Erdős-Pósa property.

Which graphs have the Erdős-Pósa property?

We have the following Corollary of the Grid Theorem:

Corollary 2.23: Robertson and Seymour

H has the Erdős-Pósa property if and only if H is planar.

Proof:
Suppose H is not planar. Let Σ be a surfaceof minimum genus in which H embeds. Then the
arbitrarily fat hexagonal grids G of Σ contain an H model; no two disjoint H models; no set
X ⊆ V(G), |X| ≤ f (k) where G− X has no H model.

Suppose H is planar. Let Hk be the disjoint union of k-copies of H. If G contains Hk s a minor, then
(1) of Erdős-Pósa holds. So we may assume G is Hk-minor-free.

Since Hk is planar, by the Grid Theorem, tw(G) ≤ wHk for some constant wHk . Hence there exists
a tree-decomposition (T, V ) of G of width ≤ wHk .

For every H-model F in G, let TF := {t ∈ T : V(F) ∩ Vt 6= ∅}. Since H is connected, TF is a
subtree of T. Let F := {TF : F is an H model}. If there exist k vertex-disjoint trees in F , the (i)
of Erdős-Pósa holds. Otherwise by General Helly Property Lemma, there exists X′ ⊆ V(T) with
|X′| < k intersecting all subtrees in F . Then X :=

⋃
t∈X′ Vt where |X| ≤ (k− 1) · (wHk + 1) satisfies

(ii) of Erdős-Pósa.

2.6 The Graph Minor Structure Theorem

path-decomposition

A path-decomposition of a graph G is a tree-decomposition (T, V ) where T is a path.
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path-width

The path-width of a graph G, denoted pw(G), is the minimum width of a path-decomposition
of G.

Theorem (Robertson and Seymour)

A graph has large path-width if and only if it contains a large complete binary tree as a minor.

Corollary (Roberston and Seymour)

H-minor-free graphs have bounded path-width if and only if H is a forest.

Now recall the game of cops and robbers. A game with k cops and an invisible robber. Equivalently
cleaning a graph of a “plague” which infects along edges. A monotonic winning cop strategy is
equivalent to a path-decomposition of width k− 1.

Theorem (LaPaugh 1982, Kirousis and Papadimitriou 1986)

k cops have a monotonic winning strategy if and only if they have a winning strategy.

adhesion

Let G be a graph and let (T, V ) be a tree-decomposition of G. For t1t2 ∈ E(T), the adhesion set
for t1 and t2 is Vt1 ∩Vt2 . The adhesion of the decomposition is the maximum size of its adhesion
sets.

torso

For t ∈ V(T), the torso of the decomposition at t is the graph obtained from G[Vt] by addding
complete subgraphs to its adhesion sets.

k-nearly embeddable

A graph H is k-nearly embeddable in a surface Σ if it can be embedded in Σ except for ≤ k
apices (i.e., allowed to delete k vertices), and ≤ k vortices.

Apices

Vortices
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A vortex is a disc that is cut out from Σ such that some of the vertices v1, . . . , vm of G are on the
boundary of the disc and attached is a graph H with a path-decomposition (T, V ) of width at most k
where T = t1 . . . tm is a path, and vi ∈ Vti for all i ∈ [m].

v1

v2

vm

t1 t2 tm

Theorem 2.24: The Graph Minor Structure Theorem (Roberston and Seymour 2003)

For all t ≥ 5, there exists k such that every graph with no Kt minor has a tree-decomposition
whose torsos are k-nearly embeddable in a surface in which Kt does not embed.

Does the converse hold? Not necessarily, but qualitatively. Every graph that has a tree-decomposition
whose torsos are k-nearly embeddable in a surface in which Kt does not embed, does not contain K f (t)
as a minor for some function f (t).

Fix k. let s1, . . . , sk, t1, . . . , tk be vertices in a graph G. When do there exist k internally disjoint paths
from si’s to the ti’s?

The 2 Paths Theorem (Seymour 1980)

There does not exist two disjoint paths from s1 to t1 and s2 to t2 if and only if G can be obtained
from a planar graph H with s1, s2, t1, t2 on the outer face of H in that order via 3-sums with
other graphs.

Theorem (Robertson and Seymour)

For every fixed k, deciding the disjoint paths problems can be done in polynomial time.

Proof Idea:
Case 1: G has bounded tree-width. Use dynamic programming.

Case 2: G has a large grid minor. Delete an ‘irrelevant’ edge in the center of the grid.

Corollary 2.25

For every fixed graph H, deciding if a graph G contains H as a minor can be done in polynomial
time.

Recall the following consequence of the Grid Theorem:

Theorem

If H is planar, then the class of H-minor-free graphs has bounded tree-width.

Corollary

The class of H-minor-free graphs is well-quasi-ordered.
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Theorem 2.26

The set of forbidden minors for the class of graphs embeddable in a surface Σ is finite.

Proof sketch:
Let H0, H1, . . . be the forbidden minors.

Case 1: Infinitely many Hi do not contain a large grid as a minor. Then they have bounded tree-
width and hence are WQO, a contradiction.

Case 2: WLOG H0 contains a large grid as minor. Let e be an edge in the center of the grid. Now
H0 − e embeds in Σ, but then so does H0 (by re-embedding the grid part).

Now go back to the Graph Minor Theorem.

Graph Minor Theorem

Graphs are well-quasi-ordered by the graph minor relation.

Proof Sketch:
Let G0, G1, . . . be a bad sequence.

Case 1: G0 is planar. Then G0-minor-free graphs have bounded tree-width and hence are WQO.

Case 2: G0 is not planar. By the Graph Minor Structure Theorem, G0-minor-free graphs have a tree-
decomposition whose torsos are k-nearly embeddable in a surface in which Kt does not embed.

There exists an infinite subsequence H0, H1, . . . that all embed in the same surface Σ. By induction
on genus of Σ. If Σ = S0, then H0 is planar, done. So Σ 6= S0. Excluding H0 bounds the edge-width
of H1, H2, . . .. Hence they all have bounded non-contractible cycles. Cut along these to get new
graphs.

Case A: cycles are non-separating. Then smaller genus graphs plus bounded apices.

Case B: cycles are separating. Then pairs of smaller genus graphs.

2.7 Connectivity and Minors

Does large average degree force a large complete minor? Kostochka 1982, Thomason 1984 showed
that if G has average degree Ω(t

√
log t), then G contains a Kt minor. Does large average degree force

a large complete subdivision? Bollobás and Thomason (1998) showed that If G has average degree
Ω(t2), then G contains a subdivision of Kt.

Does large average degree force a subgraph of large connectivity? Let the density of a graph G,
denoted d(G) = |E(G)|

|V(G)| .

Theorem 2.27: Mader 1972

If G is a graph d(G) ≥ 2k, G contains a (k + 1)-connected subgraph H with d(H) > d(G)− k.

Proof:
Let γ := d(G) and let H be a subgraph of G such that |V(H)| ≥ 2k, and |E(H)| > γ · (|V(H)| − k),
and subject to that |V(H)| is minimized. Note that H exists since G is a such a graph.

|V(H)| > 2k since otherwise |E(H)| ≤ (2k
2 ) < γ · (2k− k).

Case 1: δ(H) ≤ γ. There exists v ∈ V(H) with dH(v) ≤ γ. Let H′ := H− v. Then |V(H′) ≥ 2k and
|E(H′)| > γ · (|V(H)| − k)− γ, contradicting minimality of H.
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Case 2: δ(H) > γ. Hence |V(H)| ≥ γ, and |E(H)| > γ · |V(H)| − γk ≥ γ · |V(H)| − |V(H)| · k, and
d(H) > γ− k.

It remains to show H is (k + 1)-connected.

Suppose not, then let U1, U2 be a separation of order ≤ k. Let Hi := H[Ui] for all i = 1, 2. Note that
|V(H1)|, |V(H2)| ≥ γ ≥ 2k. By minimality of H, |E(Hi)| ≤ γ · (|V(Hi)| − k). Hence

|E(H)| ≤ |E (H1)|+ |E (H2)|
≤ γ · (|V (H1)|+ |V (H2)| − 2k)
≤ γ · (|V(H)| − k)

a contradiction (we used |V(H1) ∩V(H2)| ≤ k).

Does a graph of huge chromatic number contain a subgraph of large chromatic number and large
connectivity?

Alon, Kleitman, Thomassen, Saks, Seymour (1987): χ ≥ Ω(k3) =⇒ k-conencted subgraph with χ ≥ k.
Girão and Narayanan (2020+): For every positive integer k, if G is a graph with χ(G) ≥ 7k, then G
contains a k-connected subgraph H with χ(H) ≥ χ(G)− 6k.

Fix k. Let s1, . . . , sk, t1, . . . , tk be vertices in a graph G. When do ther exist k internally disjoint paths
from the si’s to the ti’s?

linked

A graph G is k-linked if for any set of vertices s1, . . . , sk, t1, . . . , tk of G, there exist internally
vertex-disjoint paths (Pi : i ∈ [k]) from si to ti.

Clearly k-linked implies k-connected. Does some converse hold? Bollobás and Thomason (1996)
showed that if a graph G is Ω(k)-connected, then G is k-linked. Best bound: 10k by Thomas and
Wollan (2005).

woven

A graph G is (a, b)-woven if for every three sets of vertices R = {r1, . . . , ra}, S = {s1, . . . , sb},
T = {t1, . . . , tb} in V(G), there exists a Ka model in G rooted at R internally vertex-disjoint from
a set of internally vertex-disjoint paths (Pi : i ∈ [k]) from si to ti.

...
...

s1

sb

t1

tb
r1 r2 r3 ra

· · ·

Norin and Song (2019+) showed that if a graph G is Ω(a
√

log a + b)-connected, then G is (a, b)-woven.

When does a graph of density d have a minor of density D?

Obstruction: small graphs |V(G)| < D2

d and disjoint unions of such graphs!
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Theorem: Density Increment

For all s ≥ 1, there exists g(s) such that if G is a graph with d(G) > 0, and we let D = s · d(G),
then G contains at least one of the following:

1. a minor J with d(J) ≥ D, or

2. a subgraph H with |V(H)| ≤ g(s) · D2

d(G)
and d(H) ≥ d(G)

g(s) .

Latest result: Postle (2020+), g(s) = O
(
(1 + log s)6).

Theorem (Kuhn and Osthus 2003)

If G has girth at least five and average degree at least Ω̃(t2/3), then G contains a Kt minor.

Proof:
Let D = Ω(t

√
log t). By Density Increment Theorem, either

1. G contains a minor of density D and hence a Kt minor by Kostochka-Thomason, or

2. there exists a subgraph H of G with |V(H)| ≤ Õ(t4/3) and minimum degree at least Ω̃(t2/3),
a contradiction since H has girth at least 5.

Kuhn and Osthus (2005) showed that if G has no Ks,s subgraph and average degree at least Ω̃(t2(s−1)/(2s−1)),
then G contains a Kt minor.

2.8 Hadwiger’s Conjecture

Hadwiger’s Conjecture (1943)

For all t ≥ 1, every graph with no Kt minor is (t− 1)-colorable.

Hadwiger (1943) and independently Dirac (1952) proved it for t ≤ 4. Wagner (1937) showed that the
t = 5 case is equivalent to the Four Color Theorem, which was proved by Appel and Haken in 1977.
Robertson, Seymour and Thomas (1993) showed that the t = 6 case is also equivalent to 4CT, and
hence true. Open for t ≥ 7.

Theorem (Kostochka 1982, Thomason 1984)

Every graph with no Kt minor is O(t
√

log t)-degenerate and hence O(t
√

log t)-colorable.

Until recently, the only improvements (Thomason 2001, Wood 2013, Kelly and Postle 2019) had been
in the constant factor.

Theorem (Duchet and Meyniel 1982)

For all t ≥ 2, every graph G with no Kt minor has an independent set of size at least |V(G)|
2(t−1) .

Proof:
By induction on t. t = 2 is trivial. We may assume G is connected.

Let A, B be disjoint subsets of V(G) such that A is an independent set, |A| ≥ |B|, and G[A ∪ B] is
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connected, and subject to that |A| is maximized. We may assume |A| ≤ |V(G)|
2(t−1) otherwise we are

done.

Case 1: for all vertex of G′ := G− (A ∪ B) has a neighbor in A ∪ B. Then G′ has no Kt−1 minor. By
induction

α
(
G′
)
≥ |V (G′)|

2(t− 2)
≥
(

1− 1
(t− 1)

)
|V(G)|
2(t− 2)

=
|V(G)|
2(t− 1)

Case 2: Otherwise. There exists u ∈ V(G′), d(u, A ∪ B) = 2. Let v ∈ N(u) ∩ N(A ∪ B). Then
A′ := A ∪ {u}, B′ := B ∪ {v} contradict maximality of A, B.

Reed and Seymour (1998) showed that for all t ≥ 2, every graph G with no Kt minor satisfies χ f (G) ≤
2(t− 1).

A d-defective coloring of a graph G is an improper coloring of G where each color class has maximum
degree at most d.

Edwards, Kang, Kim, Oum, Seymour (2015) showed that for all t > 0, there exists d such that if G has
no Kt minor, then G has a d-defective coloring with t − 1 colors. Defect is O(t2 log t). Improved to
defect t− 2 by van den Heuvel and Wood (2018).

A c-clustered coloring of a graph G is an improper coloring of G where each color class has maximum
component size at most c.

Theorem

For all t ≥ 0, there exists c such that if G has no Kt minor, then G has a c-clustered coloring with
f (t) colors.

Latest result: f (t) = t− 1 (announced by Dvořák and Norin)

To color small graphs, we have corollary (of Duchet-Meyniel): If G is a graph with no Kt minor with
|V(G)| ≤ t · poly(log t), then χ(G) ≤ O(t log log t).

Let f (t) := O((log log t)6). Then we have Corollary (of Density Increment Theorem and Mader’s): for
all k ≥ t, if G is a graph with d(G) ≥ k · f (t) and G contains no Kt minor, then G contains a k-connected
subgraph H with |V(H)| ≤ t · f (t) · log t.

Another corollary: If G is a graph with no Kt minor and χ(G) ≥ k · f (t) + 2t log f (t) + 6t log r, then
G contains r vertex-disjoint k-connected subgraphs H1, . . . , Hr with |V(Hi)| ≤ t · f (t) · log t for every
i ∈ [r].

Then using previous results, we can build a minor when χ = Ω(t(log t)1/4 · f (t)).

chromatic separable

Let s ≥ 0. A graph G is s-chromatic-separable if there exist two vertex-disjoint subgraphs
H1, H2 of G such that for all i = 1, 2, χ(Hi) ≥ χ(G)− s, and that G is s-chromatic-inseparable
otherwise.

Two cases: always separable vs. inseparable.

Lemma (Always Separable Case)

Let s ≥ t. If G is a graph with χ(G) ≥ Ω(s log log t) and every subgraph H of G with χ(H) ≥
χ(G)

2 is s-chromatic-separable, then G contains a Kt minor.
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Lemma (Inseparable Case)

Let s = Ω(t log log t). If G is a s-chromatic-inseparable graph with χ(G) ≥ (t · ( f (t) + log log t)),
then G contains a Kt minor.

Always separable case: recursively build the minor. Build three K2t/3 models and link them.

Inseparable case. Sequentially build the minor. Successively build up a Kt model by adding
√

log t
new vertices (one new column) at a time.

Proof of Main Theorem:
Let s = Ω(t log log t). As χ(G) ≥ Ω(t(log log t)2) ≥ Ω(s log log t), we have by the Always Separable
Case Lemma that there exists a subgraph H of G with χ(H) ≥ χ(G)

2 is s-chromatic-inseparable.

Since χ(H) ≥ Ω(t(log log t)6) ≥ Ω(t · ( f (t) + log log t)), we have by the Inseparable Case Lemma
that H contains a Kt minor.

odd minor

A graph G contains H as an odd minor if a graph isomorphic to H can be obtained from a
subgraph G′ by contracting a set of edges forming a cut in G′.

Odd Hadwiger’s Conjecture (Gerards and Seymour)

For all t ≥ 1, every graph with no odd Kt minor is (t− 1)-colorable.

Geelen, Gerards, Reed, Seymour and Vetta (2008): O(t
√

log t)-colorable. Norin and Song (2019+) -
O(t(log t)β)-colorable for every β > 1

4 . Postle (2020+): O(t(log log t)6)-colorable.

Also we have some generalizations of Hadwiger’s Conjecture for list coloring. Voigt (1993) showed
there exists a planar graph that is not 4-list-colorable (Hence List Hadwiger’s is false). Postle (2020+)
showed O(t(log log t)6)-list-colorable.



3
Extremal Graph Theory

The field of extremal graph theory concerns the following:

• How does the value of a global parameter (e.g. edges, chromatic number) influence the existence
of a local substructure (e.g. complete subgraph, complete minor)?

• (Contrapositive) What is the maximum value of a global parameter (e.g. edges, chromatic num-
ber) when excluding a given substructure (e.g. complete subgraph, complete minor)?

Generally there are two subareas of extremal:

• Sparse - where |E(G)| = Θ(|V(G)|) - e.g., Hadwiger’s conjecture, Kostochka-Thomason, etc.

• Dense - where |E(G)| = Θ(|V(G)|2) - e.g., Turán’s Theorem, Regularity Lemma, etc.

What is the maximum number of edges in a triangle-free graph on n vertices.

Theorem (Mantel 1907)

The maximum number of edges in a triangle-free graph on n vertices is⌈n
2

⌉
·
⌊n

2

⌋

The graphs attaining such a bound for an extremal problem are called the extremal examples for that
problem. What are the extremal examples for this problem? Certainly Kd n

2 e,b n
2 c is one such graph;

and one can prove that is it the only extremal example.

3.1 Turán’s Theorem

What is the maximum number of edges in a Kr-free graph on n vertices?

Theorem (Turán 1941)

The number of edges in a Kr-free graph on n vertices is at most(
1− 1

r− 1

)(
n
2

)

Is this tight? What are the extremal examples?

55
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Turán number

The Turán number of a graph H, denoted ex(n, H), is the maximum number of edges in a
graph on n vertices that does not contain H as a subgraph. An H-free graph on n vertices with
ex(n, H) edges is called extremal for n and H.

Complete (r − 1)-partite graphs would be nice candidates to be extremal for Kr-free. Which such
graphs have the most edges?

Turán graph

The unique complete (r− 1)-partite graphs on n ≥ r− 1 vertices whose partition sets differ by
at most 1 are called Turán graphs. We denote the graph by Tr−1(n) and its number of edges by
tr−1(n).

Theorem 3.1: Turán’s Theorem (1941)

For all integers r, n with r > 1, every Kr-free graph G with n vertices and ex(n, Kr) edges is a
Tr−1(n).

What is tr−1(n)? Let n = (r− 1)m + k where k ∈ {0, . . . , r− 2}. Tr−1(n) has k parts of size m + 1 and
r− 1− k parts of size m. Hence

2|E(G)| = k(m + 1)(n− (m + 1)) + (r− 1− k)m(n−m)

= (k(m + 1) + (r− 1− k)m)(n−m)− k(m + 1)

= n(n−m) + k(m + 1)

≤ n2
(

1− 1
r− 1

)
since n(k + m) + k ≥ n/(r− 1).

Proof (first proof of Turán’s Theorem):
By induction. If n ≤ k− 1, then Tr−1(n) = Kn as desired. So n ≥ r. Since G is an edge-maximal
Kr-free graph, G contains a Kr−1 subgraph K. GK has at most tr−1(n− r + 1) edges by induction.
Each vertex has at most r− 2 neighbors in K since G is Kr-free. Hence

|E(G)| ≤ tr−1(n− r + 1) + (n− r + 1)(r− 2) +
(

r− 1
2

)
= tr−1(n)

The equality follows by removing one vertex from each part of the Turán graph.

Since G is extremal for Kr, equaility holds. Hence every vertex in G− K has exactly r− 2 neighbors
in K. Let V(K) = {x1, . . . , xr−1}. For all i ∈ [r − 1], let Vi := {v ∈ V(G) : vxi /∈ E(G)}. Each Vi
is independent since G is Kr-free. G is (r − 1)-partite since the Vi are independent and partition
V(G). Since Tr−1(n) is the unique (r− 1)-partite graph with n vertices and maximum number of
edges, we have G = Tr−1(n) as desired.

vertex duplication

Let G be a graph. Duplicating a vertex v ∈ V(G) means adding a new vertex v′ adjacent to
exactly the neighbors of v but not v itself.
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Proof (second proof of Turán’s Theorem):
The Turán graph Tk(n) has (uniquely) the most edges among complete k-partite graphs on n ver-
tices. Tr−1(n) has more edges than Tk(n) for all k < r − 1. So if suffices to show G is complete
multipartite.

Suppose not. This means that in G non-adjacency is not an equivalence relation. that is, there exist
y1, x, y2 ∈ V(G) such that y1x, y2x /∈ E(G) and y1y2 ∈ E(G).

Case 1: d(y1) < d(x) or d(y2) > d(x).

y2y1y′1

x
×

WLOG d(y1) > d(x). Let G′ be obtained from G− x by duplicating y1 with a new vertex
y′1. |E(G′)| > |E(G)| since dG′(y′1) = dG(y1) > dG(x). G′ is Kr-free since a Kr, H in G′ must
use y′1, but then H − y′1 + y1 is a Kr in G. Hence G′ contradicts the maximality of G.

Case 2: d(y1) ≤ d(x) and d(y2) ≤ d(x).

y2y1

x′

x

××

x′′

Let G′ be obtained from G− {y1, y2} by duplicating x twice with two new vertices x′, x′′.
Since we delete dG(y1) + dG(y2)− 1 edges and add 2 · dG(x) edges, then |E(G′)| > |E(G)|.
Note that G′ is Kr-free (since a Kr, H in G′ must use exactly one of x′ or x′′, but then
H − x′ + x or H − x′′ + x is a Kr in G). Hence G′ contradicts the maximality of G.

3.2 Ramsey’s Theorem

Can we find order in chaos? Structure where there is none?

What substructures are necessarily present in large enough graphs? Does every large enough graph
contain a large clique or independent set? This question and related ones form a branch of graph
theory called Ramsey Theory.

Theorem (Ramsey 1930)

For all positive integers r, there exists a number n such that every graph G with at least n vertices
contains either a Kr or Kr as an induced subgraph.

Recall Ḡ denote the complement: the complement or inverse of a graph G is a graph H on the same
vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G.

Ramsey number

The Ramsey number of a graph H, denoted R(H), is the minimum integer n such that every
2-coloring of the edges of Kn contains a monochromatic copy of H.
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Ramsey’s Theorem is thus equivalent to the statement that R(Kr) exists for all r as we can simply color
the edges red and the non-edges blue. Furthermore, it follows that R(H) exists for all H (since if we
find a monochromatic K|V(H)|, we find a monochromatic H).

Proof of Ramsey’s Theorem:
For r = 1, trivial. So we assume r ≥ 2. Let n = 22r−3.

We claim that for all i ∈ [2r− 2], there exists Vi ⊆ V(G) and vi ∈ Vi such that

(i) |Vi| = 22r−2−i, and

(ii) Vi ⊆ Vi−1 \ {vi−1} for all i ∈ {2, . . . , 2r− 2}

(iii) vi−1 is adjacent to all vertices in Vi or to no vertex in Vi.

Proof:
By induction on i. For i = 1, let V1 be a subset of V(G) of size 22r−3 and let v1 ∈ V1 arbitrarily.

So we assume i ≥ 2. Then |Vi−1 \ {vi−1}| = 22r−1−i − 1. Hence vi−1 is either adjacent to 22r−2−i

vertices in the set or non-adjacent to 22r−2−i vertices in the set.

v1

V2

v2

V3

v3

Among the 2r− 3 vertices v1, . . . , v2r−3, at least r− 1 vertices satisfy (iii) in the same way. That is,
∃I ⊆ [2r− 3] with |I| = r− 1 such that for all i ∈ I either vi is not adjacent to Vi+1, or vi is adjacent
to all of Vi+1. But then {vi : i ∈ I} ∪ {v2r−2} induces a Kr or Kr in G as desired.

Generalizations of Ramsey’s Theorem

First generalization: c colors instead of two.

Second generalization: hypergraphs instead of graphs.

monochromatic

Let X be a set. We let [X]k denote the set of all k-subsets of X. Given a coloring of [X]k, we say
Y ⊆ X is monochromatic if all elements of [Y]k have the same color.

Theorem 3.2

For all k, c, r ≥ 1, there exists n ≥ k such that every n-set X and c-coloring of [X]k has a
monochromatic r-subset.

We will derive this theorem from a third Generalization: the Infinite Version.

Theorem 3.3: Infinite Ramsey

Let k, c be positive integers and X an infinite set. Then every c-coloring of [X]k contains an
infinite monochromatic subset.

Proof:
By induction on k with c fixed. For k = 1, trivial. So assume k ≥ 2.

We claim that for all i ∈ {0, 1, . . .}, ∃Xi ⊆ X and xi ∈ Xi such that for all i:
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(i) Xi is infinite

(ii) Xi+1 ⊆ Xi \ {xi}

(iii) all k-sets {xi} ∪ Z with Z ∈ [Xi+1]
k−1 have the same color, which we associate with xi.

Proof:
By induction on i. For i = 0, let X0 = X and pick x0 ∈ X0 arbitrarily. So assume i ≥ 1. Construct
a c-coloring of [Xi \ {xi}]k−1 by letting the color of Z be the same as Z ∪ {xi}. By induction on
k, there exists an infinite monochromatic subset Xi+1 as desired.

Since c is finite, one of the c colors is associated with infinitely many xi. These xi form an infinite
monochromatic subset of X as desired.

Now we prove the finite version, Theorem 3.2: compactification.

Proof:
Suppose not. That is, the statement fails for some k, c, r. That is, for all n ≥ k, there exists a c-
coloring of [n]k with no monochromatic r-subset. Call such colorings bad. Let Vn be the set of all
bad colorings of [n]k. Note for g ∈ Vn, the restriction f (g) of g to [n− 1]k is also bad.

We claim that ∃gk, gk+1, . . . such that gn ∈ Vn and f (gn) = gn−1 for all n > k.

Proof:
We prove this with the stronger assumption that gn extends to infinitely many elements of⋃

i≥n Vi.

By induction on n. For n = k, trivial. So assume n > k. Since gn−1 extends to infinitely many
elements, ∃gn ∈ Vn

Define a c-coloring g of [{0, 1, . . .}]k by letting g(Y) := gmax Y(Y). Now g is a bad-coloring contra-
dicting Infinite Ramsey since every r-set S is contained in [max S].

3.3 The Regularity Lemma

What substructures are necessarily present in large enough graphs? Regularity Lemma states that:
Every large enough graph is approximately a random blowup of some fixed weighted graph.

density of the pair (X, Y)

Let G be a graph and X, Y disjoint subsets of V(G). We denote by ‖X, Y‖ the number of X − Y
edges. The density of the pair (X, Y) is

d(X, Y) :=
‖X, Y‖
|X| · |Y|

epsilon-regular

Let G be a graph and A, B disjoint subsets of V(G). We say the pair (A, B) is ε-regular if all
X ⊆ A, B ⊆ Y with |X| ≥ ε|A| and |Y| ≥ ε|B| satisfy

|d(X, Y)− d(A, B)| ≤ ε
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epsilon-regular partition

Let G be a graph. A partition {V0, V1, . . . , Vk} is an ε-regular partition if

(i) |V0| ≤ ε|V(G)|, and

(ii) |V1| = · · · = |Vk|, and

(iii) all but at most εk2 of the pairs (Vi, Vj) with i < j ∈ [k] are ε-regular.

We call V0 the exception set.

Thus the partition is equitable (except for the exceptional set) and all but a small proportion of the
pairs are ε-regular (though each pair may have a different density).

Regularity Lemma (Szemerédi 1976)

For every ε > 0 and integer m ≥ 1, there exists an integer M such that every graph with at least
m vertices admits an ε-regular partition {V0, V1, . . . , Vk} with m ≤ k ≤ M.

Note:
V1 = V(G) is an ε-regular partition for every ε. Yet Vi = {vi} where V(G) = {v1, v2, . . . , v|V(G)|}
is also ε-regular for every ε. Hence the beauty of the Regularity Lemma is that we can find an
ε-regular partition with at least m parts, and at most M parts where M depends only on m and ε.

Let’s first have an overview of the proof: we define a potential function on partitions of V(G) that
is a quadratoc measurement of the densities of the pairs. If at least εk2 pairs are not ε-regular, then
we refine the partition further increasing the density by a fixed constant. (e.g., 12 + 32 > 22 + 22;
(d− ε)2 + (d + ε)2 ≥ 2d2 + 2ε2). The potential belongs to [0, 1] and hence this refinement happens only
a fixed number of times. Thus the final number of parts depends only on the starting number of parts
(m) and ε.

Quadratic Measurement

Let G be a graph. For disjoint sets A, B of V(G) we define

q(A, B) :=
|A||B|
|V(G)|2 · d(A, B)2

For partitions A of A and B of B we set

q(A , B) := ∑
A′∈A ,B′∈B

q
(

A′, B′
)

For a partition P = {V1, . . . , Vk} of V(G), we set

q(P) := ∑
i<j

q(Vi, Vj)

Now we deal with exceptional sets. Note that we only use exceptional sets to enforce that the partition
is equitable.
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Quadratic Measurement cont’d

For a partition P = {V0, V1, . . . , Vk} of V(G) with exceptional set V0, we set

q(P) := q(P̃),

where
P̃ := {V1, . . . , Vk} ∪

{
{v} : v ∈ V0

}
,

that is the partition where we make each vertex in the exceptional set its own singleton part.

Proposition 3.4

q(P) ∈ [0, 1].

Proof:
Certainly q(P) ≥ 0 since q is always nonnegative. And

q(P) = ∑
i<j

q
(
Vi, Vj

)
= ∑

i<j

|Vi|
∣∣Vj
∣∣

|V(G)|2 · d
(
Vi, Vj

)2

≤ 1
|V(G)|2 ·∑i<j

|Vi|
∣∣Vj
∣∣

= 1

Lemma 3.5

If C is a partition of C and D is a partition of D, then q(C , D) ≥ q(C, D).

Proof:
Cauchy-Schwarz.

Corollary 3.6

If P ′ is a partition of V(G) that refines a partition P , then q(P ′) ≥ q(P).

Proof:
Apply lemma to each refined pair.

Lemma 3.7

If (C, D) is not an ε-regular pair, then there exist partitions C = {C1, C2} and D = {D1, D2}
such that

q(C , D) ≥ q(C, D) + ε4 · |C||D||V(G)|2

Proof:
Let C1, D1 be a pair that witness irregularity. That is

|C1| ≥ ε|C|, |D1| ≥ ε|D| and |d (C1, D1)− d(C, D)| > ε
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Calculate (e.g., (d + ε)2ε2 +
(

d− ε3

1−ε2

)2
(1− ε2) ≥ d2 + ε4).

Lemma 3.8

If P is not an ε-regular partition and has k parts, then ther exists a partition P ′ on at most k · 4k

parts such that q(P ′) ≥ q(P) + ε5

2 .

Proof:
There are at least εk2 irregular pairs. Refine each irregular pair by previous lemma. Note that we
do this simultaneously for all such pairs, so each part may be divided into 2k smaller part (times 2

for each such pair it is in).

Calculate (e.g., +ε4 · 1
k2 · εk2 = ε5; 1/2 comes from trash). Make equitable (sets of size n/(k4k)).

Now we are ready to prove the regularity lemma:

Proof:
Start with an arbitrary partition into m equitable parts plus remainder. Apply previous lemma at
most 2

ε5 times. Since q(P) cannot be greater than 1, this terminates with an ε-regular partition. The
final number of parts depends only on m and ε.

3.4 Erdős-Stone Theorem

Recall Turán’s theorem. For every graph H, what is ex(n, H)?

Let Ks∗r denote the complete r-partite graph with s vertices in every part (equivalently this is Tr(rs)).

Theorem (Erdős and Stone 1946)

For all integers r ≥ 2, s ≥ 1 and every γ > 0, there exists an integer n0 such that every graph
with n ≥ n0 vertices and at least tr−1(n) + γ · n2 edges contains Ks∗r as a subgraph.

Corollary (Erdős and Simonovits 1966)

For every graph H with at least one edges,

ex(n, H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n
2

)

Proof:
Let r := χ(H). But then H is not a subgraph of Tr−1(n) for all n. Hence ex(n, H) ≥ tr−1(n). On the
other hand, H is a subgraph of Ks∗r where s = |V(H)|. Hence

ex(n, H) ≤ ex(n, Ks∗r) = tr−1(n) + o(n2)

Our proof of the Erdős-Stone theorem will not be the original but rather an easy application of a
version of a corollary of the Regularity Lemma called the Blow-Up Lemma.
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regularity graph

Let G be a graph with an ε-partition {V0, V1, . . . , Vk} where V0 is exceptional and |V1| = · · · =
|Vk| = `. The regularity graph R of G with parameters ε, ` and d ∈ [0, 1] is the graph where
V(R) := {V1, . . . , Vk}, E(R) :=

{
ViVj :

(
Vi, Vj

)
is an ε-regular pair of density ≥ d

}
.

If R is a regularity graph, we let Rs denote the s-blowup of R i.e., where each vertex Vi is replaced by
a set of Vs

i of s vertices, and every edge is replaced by a complete bipartite graph.

Blow-Up Lemma

For all d ∈ [0, 1], ∆ ≥ 1, there exists ε0 > 0 such that if

• G is a graph, and

• R is a regularity graph of G with parameters ε, `, d, and

• H is a subgraph of Rs with ∆(H) ≤ ∆,

then H is a subgraph of G provided ε ≤ ε0 and ` ≥ 2s/d∆.

Let G be a graph and Y ⊆ V(G). We let

Nk(Y) := {v ∈ V(G) : |N(v) ∩Y| ≥ k}

Lemma 3.9: ε-regular pair lemma

Let (A, B) be an ε-regular pair of density d. If Y ⊆ B with |Y| ≥ ε|B|, then∣∣A \ N(d−ε)|Y|(Y)
∣∣ < ε|A|

Proof:
Let X := A \ N(d−ε)|Y|(Y). Then ‖X, Y‖ < |X| · (d− ε)|Y|. Hence d(X, Y) < d− ε = d(A, B)− ε.
Since (A, B) is ε-regular and |Y| ≥ ε|B|, we find that |X| < ε|A|.

Now we prove blow-up lemma.

Proof of Blow-Up Lemma:
Choose ε0 < d small enough so that

(d− ε0)
∆ − ∆ε0 ≥

1
2

d∆

Let V(H) =
{

v1, . . . , v|V(H)|
}

and let r(i) be such that vi ∈ Vs
r(i) in Rs.

We claim that for all i ∈ {0, . . . , |V(H)}, there exist distinct u1, . . . , ui ∈ V(G) and Ti
j ⊆ Vr(j) for all

j > i such that

(i) H[{v1, . . . , vi}] ⊆ G[{u1, . . . , ui}], and

(ii) Ti
j ⊆

⋂
vk∈NH(vj):k∈[i] N(uk), and

(iii) |Ti
j | ≥ (d− ε)|NH(vj)∩{v1,...,vi}||Vr(j)|.

Blow-Up Lemma now follows from Claim with i = |V(H)|. Now we prove the claim.
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By induction on i. For i = 0, T0
j = Vr(j) works. So we may assume i > 0. Pick ui in

Si := Ti−1
i

⋂
vj∈NH(vi):j>i

N
(d−ε)|Ti−1

j |
(
Ti−1

j
)

This only works since

|Si| ≥
(
(d− ε0)

∆ − ∆ε0

)
|Vr(i)| ≥

1
2

d∆` ≥ s,

and there are at most s− 1 ui in Vr(i). Hence (i) holds.

Set Ti
j :=

{
Ti−1

j ∩ NG(ui) if vivj ∈ E(H)

Ti−1
j otherwise

Hence (ii) holds.

Since ui ∈ N
(d−ε)|Ti−1

j |(T
i−1
j ) for all j > i with vj ∈ NH(vi), we find that

• |Ti
j | ≥ (d− ε)|Ti−1

j | for all such j,

• |Ti
j | = |T

i−1
j | for all other j.

Hence (iii) holds as desired.

Now we prove the Erdős-Stone Theorem.

Proofof Erdős-Stone Theorem:
Let d := γ, ∆ = ∆(Ks∗r) and choose ε small enough and ` ≥ 2s/d∆ large enough (possible since n
is large). Let R be a regularity graph of G with k parts and parameter ε, ` and d.

Case 1: R contains Kr. Then by Blow-Up Lemma G contains H := Ks∗r.

Case 2: R does not contain Kr. By Turán’s Theorem, |E(R)| ≤ tr−1(k) ≤ (1− 1
r−1 )(

k
2). But then

|E(G)| is at most (letting n = |V(G)|)

|E(R)|`2 + εn2 + εk2`2 + d
(

k
2

)
`2 ≤ tr−1(n) + γn2

a contradiction (where we added the trash, irregular pairs and low density pairs).

An interesting consequence of the proof of the Blow-Up Lemma is: generally there is not just one copy
of H in G but rather Ω(|V(G)||V(H)|) copies of H in G.

Removal Lemma

For all ε > 0, there exists δ(ε, H) > 0 such that if a graph G has at most δ|V(G)||V(H)| copies of
H, then G can be made H-free by removing at most ε|V(G)|2 edges.

Proof Sketch:
We may assume regularity graph R is H-free by proof of Blow-Up Lemma. Then make G H-free
by removing the edges from trash, irregular pairs and low density pairs.



4
Probabilistic Method

4.1 More on Ramsey Numbers

Ramsey number

The Ramsey number of a graph H, denoted R(H), is the minimum integer n such that every
2-coloring of the edges of Kn contains a monochromatic copy of H.

Ramsey number

The Ramsey number of graphs G and H, denoted R(G, H), is the minimum integer n such that
every 2-coloring of the edges of Kn contains a red copy of G or a blue copy of H.

We let R(k) := R(Kk) and R(k, `) := R(Kk, K`).

We have bounds for small numbers:

• R(2) = 2

• R(3) = 6

• R(4) = 18

• 42 ≤ R(5) ≤ 48

• 102 ≤ R(6) ≤ 165

4.1.1 Upper bounds

Theorem 4.1: Erdős and Szekeres 1960

R(k, `) ≤ R(k− 1, `) + R(k, `− 1)

Proof:
Majority argument

65
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Corollary 4.2

R(k, `) ≤
(

k + `− 2
k− 1

)

Corollary 4.3

R(k) ≤ (1 + o(1))
4k−1
√

πk

Theorem (Conlon 2009)

R(k) ≤ k−c log k/ log log k · 4k

Theorem (Sah 2020+)

R(k) ≤ k−c log k · 4k

Still no change in the base of the exponent from 4.

4.1.2 Lower bounds

Theorem (Erdős 1947)

R(k) ≥ (1− o(1))
√

2k
e

2k/2

Still no change in the base of the exponent from
√

2.

G(n, p)

G(n, p) is the random graph on n vertices where every edge is present independently with
probability p.

Lemma 4.4

Pr[Gn,p contains a Kk] ≤
(

n
k

)
p(

k
2)

Proof (Erdős):

The probability that a fixed set U of k vertices is a Kk is exactly ∏e∈(U
2 )

p = p(
k
2) since the edges are

present with probability p.

By the union bound, the probability that Gn,p contains a Kk is at most the sum over the probabilities
that a fixed U is a Kk.

Since there are (n
k) choices for U, the lemma holds as desired.

Similarly we have
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Lemma 4.5

Pr[Gn,p contains an induced Kk] ≤
(

n
k

)
(1− p)(

k
2)

Proof:
Let n = (1− o(1)) k√

2e
2k/2 and p = 1/2. Then

(
n
k

)(
1
2

)(k
2)

≈
(ne

k

)k
2−k(k−1)/2

=
(
(1− o(1))2(k−1)/2

)k
2−k(k−1)/2

= (1− o(1))k <
1
2

By union bound,

Pr[Gn,p contains a Kk or an induced Kk] <
1
2
+

1
2
= 1

Thus there exists some graph on n vertices with no Kk or induced Kk.

Theorem (Chvátal, Rödl, Szemerédi, Totter 1983)

For all ∆ ≥ 1, there exists c > 0 such that every graph with ∆(H) ≤ ∆ satisfies R(H) ≤ c|V(H)|.

Proof Sketch:
Apply Regularity Lemma with m large enough, ε small enough to obtain a regularity partition
(V0, V1, . . . , Vk).

Let R be the regularity graph whose edges are the ε-regular pairs.

Since there are at most εk2 irregular pairs and ε is small enough, then by Turán’s Theorem, R
contains a KR(∆+1), call it H.

Consider a 2-coloring of the edges of H: red if density ≥ 1/2 and blue if density < 1/2.

By Ramsey’s Theorem, there exists a monochromatic K∆+1 subgraph of H, call it K.

Case 1: K is colored red. By Blow-Up Lemma, G contains a copy of H.

Case 2: K is colored blue. By Blow-Up Lemma, the complement of G contains a copy of H.

4.2 Large Girth, Large Chromatic Number

Do there exist triangle-free graphs of arbitrarily large chromatic number?

Yes. (Tutte 1947, Zykov 1949, Mycielski 1955)

Mycielski construction

Let G be a graph on n vertices and let V(G) = {v1, . . . , vn}. The Mycielski graph of G is the
graph G′ with

V(G′) := V(G) ∪ {v′1, . . . , v′n} ∪ {v0}
E(G′) := E(G) ∪ {v′ivj : vivj ∈ E(G)} ∪ {v0v′i : i ∈ [n]}

Let G = C5. Then Mycielski graph G′ of G is:
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v1

v2

v3v4

v5

v′1

v′2

v′3v′4

v′5

v0

Note that if G is triangle-free, then so is G′. Moreover, χ(G′) = χ(G) + 1.

Proof:
Let φ be a χ(G)-coloring of G′. WLOG φ(v0) = χ(G).

So φ(v′i) ∈ [χ(G)− 1] for all i ∈ [n].

Let

φ′(vi) =

{
φ(v′i) if φ(vi) = χ(G)

φ(vi) otherwise

Then φ′ is a (χ(G)− 1)-coloring of G, a contradiction.

Do there exist graphs of arbitrarily large girth and large chromatic number?

Yes by Erdős using the probabilistic method.

Theorem (Erdős 1959)

For all r ≥ 1, there exists a graph of girth ≥ 4 and chromatic number ≥ r.

Lovász (1968) gave the first explicit constructions.

4.2.1 Basic probability

Now it’s time to review some basic probability theory...
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Union bound:

Pr[A1 ∪ A2 ∪ · · · ∪ Ak] ≤
k

∑
i=1

Pr(Ai)

expectation

If X is a random real-valued valued variable with finite support, then the expec-
tation of X is

E[X] := ∑
i

i · Pr[X = i]

Linearity of expectation: If X =
r
∑

i=1
Xi, then

E[X] =
r

∑
i=1

E[Xi]

Markov’s Inequality: If X ≥ 0, then for any a > 0

Pr[X ≥ a] ≤ E[X]

a

Proof:
Since X ≥ 0,

E[X] = ∑
i

i · Pr[X = i]

≥ ∑
i≥a

i · Pr[X = i]

≥ a ·∑
i≥a

Pr[X = i]

= a · Pr[X ≥ a]

4.2.2 Random graphs

G(n, p)

G(n, p) is the random graph on n vertices where every edge is present independently with
probability p.

Lemma

Pr[ω(Gn,p) ≥ k] ≤
(

n
k

)
p(

k
2)
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Lemma

Pr[α(Gn,p) ≥ k] ≤
(

n
k

)
(1− p)(

k
2)

Lemma

If p ≥ 4 ln n
k and k ≥ 2, then

Pr[α(Gn,p) ≥ k] ≤ 1
n

Proof:
Note that (1− p) ≤ e−p for all p, and ep(k−1) ≥ epk/2 ≥ n2. By lemma, we have

Pr[α(Gn,p) ≥ k] ≤
(

n
k

)
(1− p)(

k
2)

≤ nke−p(k
2)

=

(
n

ep(k−1)

)k

≤ 1
n

Let #C`(G) denote the number of cycles of length ` in a graph G. Let (n)` := n(n− 1) · · · (n− `+ 1).

Lemma

E[#C`(Gn,p)] =
(n)`
2`

p`

Proof:
Let v1, v2, . . . , v` be a sequence in V(G) of length `. Pr[v1 . . . v` is a cycle] = p`. There are (n)` such
sequences whie each cycle corresponds to exactly 2` of these sequences.

Corollary

If p ≤ n
1
2`−1, then E[#C`(Gn,p)] ≤

√
n.

Proof:
By Lemma, E[#C`(Gn,p)] =

(n)`
2` p` ≤ (np)` ≤ n1/2.

Let #C≤`(G) denote the number of cycles of length ≤ ` in G.

Corollary

If p = n
1
2`−1, then

Pr[#C≤`(Gn,p) ≥
n
2
] ≤ 2`√

n

Proof:
Markov’s Inequality.
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There is no p that will give us that both:

• Pr[χ(Gn,p) ≤ r] < 1/2 and

• Pr[Gn,p does not have girth at least r] < 1/2.

Instead we use a method called alteration: where in we deterministically alter a random outcome so
as to obtain the desired object (graph).

Proof of Erdős’ Theorem:
Let ` := r− 1 and p := n

1
2`−1. By cycle lemma, Pr[#C≤`(Gn,p) ≥ n

2 ] ≤
2`√

n .

Let k := n
2r . Note k ≥ 2 and p ≥ 4 ln n

k if n is large enough. By independence number lemma,
Pr[α(Gn,p) ≥ k] ≤ 1

n . Since n is large enough, 2`
n + 1

n < 1.

Hence there exists a graph G on n vertices with α(G) ≤ n
2r , and at most n/2 cycles of length < r.

For each cycle C of length < r, choose xC ∈ V(C).

Let X :=
⋃

C{xC} and G′ := G− X. Then G′ has girth at least r. NOte |V(G′)| ≥ n/2 and thus

α
(
G′
)
≤ α(G) ≤ n

2r
≤ |V (G′)|

r

Hence χ(G′) ≥ r as desired.



5
Flows

5.1 Flows

If G is a graph let ~E(G) := {(e, x, y) : e = xy ∈ E(G)} denote the set of directed edges of G.

H-circulation

If G is a graph and H is a finite Abelian group, then an H-circulation is a function f : ~E(G)→ H
such that

• f
(
(e, x, y)

)
= − f

(
(e, y, x)

)
for all (e, x, y) ∈ ~E(G), and

• ∑
e=xy∼x

f
(
(e, x, y)

)
= 0 for all x ∈ V(G).

The second condition is called Kirchoff’s law.

nowhere-zero

An H-circulation f is called nowhere-zero if f
(
(e, x, y)

)
6= 0 for all (e, x, y) ∈ ~E(G). We call such

an H-circulation an H-flow.

If X, Y ⊆ V(G), we let ~E(X, Y) := {(e, x, y) : x ∈ X, y ∈ Y} and f (X, Y) = ∑
(e,x,y)∈~E(X,Y)

f
(
(e, x, y)

)
.

Hence Kirchoff’s law is equivalent to f (x, V(G)) = 0 for all x ∈ V(G).

Proposition 5.1

If f is an H-circulation of G and X ⊆ V(G), then f (X, X) = 0 and f (X, V(G)) = 0.

Proof:
f (X, X) = 0 since count edges both directions, f (X, V(G)) = 0 by Kirchoff’s law.

PG(H)

If G is a graph and H is a group, we let PG(H) denote the number of H-flows of G.

72
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Theorem 5.2: Tutte (1954), flow polynomial

For any graph G, there exists a polynomial PG(x) such that for any finite Abelian group H,
PG(H) = PG(|H|).

Corollary 5.3

For any graph G and group H, the number of H-flows of G depends only on |H|.

In particular, if an H-flow of G exists for any finite Abeliean group of order k, it exists for all of them.

Lemma 5.4: Contraction-Deletion

Let G be a graph. If e ∈ E(G) is not a loop, then PG(H) = PG/e(H)− PG−e(H).

Proof:
Let f (G, H) denote the set of H-flows of G. It suffices to prove that f (G/e, H) is in bijection with
f (G, H) ∪ f (G− e, H).

Let e = uv. Consider an H-flow of G/e.

u v

e1
1

1

1

2
2

2

1
1

1

2

1

2

2
uv( )

−a = +3

−a = +3a = −3

Then there is a unique value for e such that the result is an H-circulation (i.e. satisfies Kirchoff’s
law).

Namely f (e, u, v) := − ∑
e′=uv′ :v′ 6=v

f (e′, u, v′). If f (e, u, v) = 0, then f is an H-flow of G − e. If

f (e, u, v) 6= 0, then f is an H-flow of G. This proves the lemma.

Now we prove the flow polynomial theorem.

Proof:
By induction on |E(G)|.

If there exists e ∈ E(G) that is not a loop, then by Deletion-Contraction lemma

PG(H) = PG/e(H)− PG−e(H)

By induction, there exists polynomials PG/e(|H|) and PG−e(|H|) with the desired property. Hence
PG(|H|) := PG/e(|H|)− PG−e(|H|) is the desired polynomial.

So we may assume every e ∈ E(G) is a loop.

a1

a2
a3

a4

a5

a6

Any assignment of nonzero values (in H) to ~E(G) is an H-flow of G. So PG(H) = (|H| − 1)|E(G)|

and so is a polynomial in |H| as desired.
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k-flow

Let k ≥ 2 be an integer. A k-flow is a function f : ~E(G)→ {1, . . . , k− 1} such that

• f
(
(e, x, y)

)
= − f

(
(e, y, x)

)
for all (e, x, y) ∈ ~E(G), and

• ∑
e=xy∼x

f
(
(e, x, y)

)
= 0 for all x ∈ V(G).

Are these related to Zk-flows?

1
1

1

1 11

1
1

2

1 12

Z3-flow 3-flowvs.

Theorem 5.5: Tutte (1950), k-flows and Zk-flows

Let k ≥ 2 be an integer. A graph G has a Zk flow if and only if it has a k-flow.

One direction is obvious: k-flow =⇒ Zk-flow. It’s hard to prove the converse: If there exists an
assignment of values in [k− 1] to E(G) such that the sum at every vertex is 0(modk), then there exists
such an assignment where the sum at every vertex is actually 0.

Proof:
Let f be a Zk-flow of G such that ∑

v∈V(G)
| f (v, V(G))| is minimized.

Case 1: f (v, V(G)) = 0 for all v ∈ V(G). Then f is a k-flow as desired.

Case 2: there exists v ∈ V(G) such that f (v, V(G)) > 0. Let X be the set of vertices reachable from
v by directed (positive) paths. We claim that there exists x ∈ X such that f (x, V(G)) < 0.

X v
y

z
e

Proof:
Suppose not. Hence f (X, V(G)) > 0; yet f (X, X) = 0 Thus

f (X, V(G) \ X) = f (X, V(G))− f (X, X) > 0

So there exists (e, y, z) ∈ ~E(X, V(G) \ X) such that f
(
(e, y, z)

)
> 0. But then z is reachable from

v by a directed path, a contradiction.

Let P = w0 . . . wm be the directed path from w0 = v to wm = x.
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w0 = v w1 w2 wm−1 wm = x

a1 a2 am

w0 = v w1 w2 wm−1 wm = x

a1−k a2−k am−k

w0 = v w1 w2 wm−1 wm = x

k−a1 k−a2 k−am

Now construct a new k-flow f ′ by assigning

f ′ (wiwi+1, wi, wi+1) := f (wiwi+1, wi, wi+1)− k

Then

f ′(wi, V(G)) =


f (w0, V(G))− k i = 0
f (wi, V(G)) 1 ≤ i ≤ k− 1
f (wm, V(G)) + k i = m

Hence f ′ is a Zk-flow such that

∑
u∈V(G)

| f ′(u, V(G)) < ∑
u∈V(G)

| f (u, V(G))|

contradicting the minimality of f .

Theorem (Tutte 1954)

A graph has an H-flow if and only if it has an H′-flow for all groups H′ of order |H|.

Theorem (Tutte 1950)

A graph G has a Zk-flow if and only if it has a k-flow.

Note that if a graph has a k-flow then it has a k′-flow for all k′ ≥ k.

flow number

The flow number of a graph G, denoted ϕ(G), is the minimum number k such that G has a
k-flow.

Note that if a graph has a bridge (cut-edge), it admits no flows.

5.2 Small flows

Theorem 5.6

A graph has a 2-flow if and only if all its degrees are even.

Proof:
By Tutte, a graph has a 2-flow if and only if it has a Z2-flow. A vertex satisfies Kirchoff’s law for a
Z2-flow if and only if it has even degree.
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1

1

even

1

1

odd

1

Theorem 5.7

The cubic graph has a 3-flow if and only if it is bipartite.

Proof:
A degree 3 vertex satisfies Kirchoff’s law for a Z3-flow if and only if all its incident edges have the
same value.

1

1

1

2

1

1

2

1

2

2

2

2

There are two such nonzero values in Z3: 1 and 2. Hence if a cubic graph has a Z3-flow, then G is
bipartite.

Conversely if G = (A, B) is bipartite, direct edges from A to B with value 1.

Theorem 5.8: Jaeger (1979)

Every 4-edge connected graph has a 4-flow.

Proof:
By Tutte, it suffices to construct a Z2 ×Z2-flow.

Since G is 4-edge-connected, by a Theorem of Nash-Williams, there exist two edge-disjoint spanning
trees T1, T2 of G. For all e /∈ E(T1), flow value of (1, 0) on its fundamental cycle Ce,T1 . Let

F :=
{

e′ ∈ E (T1) : ∑
e/∈E(T1)

fCe,T1
(e′) = (0, 0)

}
For all e′ ∈ F, flow value of (0, 1) on its fundamental cycle Ce′ ,T2

.

Theorem 5.9

A graph has a 4-flow if and only if it is the union of two even subgraphs.

Proof:
It follows since by Tutte G has 4-flow if and only if it has a Z2 ×Z2-flow.
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Theorem 5.10

A cubic graph has a 4-flow if and only if it is 3-edge-colorable.

Proof:
A degree 3 vertex satisfies Kirchoff’s law for a Z2 × Z2 if and only if its incident edges have
different values. Namely (1, 0), (0, 1), and (1, 1) (three different colors).

5.3 Flow-Coloring Duality

planar dual

Let G be a plane graph. Then the dual of G, denoted by G∗, is the plane graph where

• V(G∗) = F(G),

• E(G∗) = { f f ′ : ∃e ∈ E(G) s.t. f ∼ e ∼ f ′},

• F(G∗) = V(G).

Theorem 5.11: Tutte (1954)

If G is a plane graph, then χ(G) = ϕ(G∗).

It suffices to prove for connected graphs.

From coloring to flows

Let φ be a k-coloring of G. Define f on E(G∗) by letting f (e∗) := φ(u)− φ(v), where u is the left end
of e as viewed from the direction of e∗.

u v

φ(u) φ(v)

f1

f2

e∗

Note | f (e∗)| ≤ k− 1 since φ(u), φ(v) ∈ [k]. As φ is a coloring, g is nowhere-zero.

We claim f satisfies Kirchoff’s law.

Proof:
Let v ∈ V(G∗), i.e., v is a face of G. Let w1w2 . . . wm be the boundary walk of v in G.

w1
w2

w3wm

v
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Then
∑

e∗∼v
f (e∗) =

(
φ(w1)− φ(w2)

)
+
(
φ(w2)− φ(w3)

)
+ · · ·

(
φ(wm)− φ(w1)

)
= 0

From flows to colorings

Let f be a k-flow of G∗. Let v ∈ V(G) and T a spanning tree of G. Let φ(v) := 1. Now invert the
previous procedure to define a color for each vertex in V(G).

1 2

3
1

2 3

2

4

Namely by using the values of f (e∗) for each edge e ∈ E(T).

We claim that φ is a coloring. Namely for all e = xy ∈ E(G), φ(x) 6= φ(y).

Proof:
If e ∈ E(T), this follows since f is nowhere-zero.

If e = xy /∈ E(T), consider the fundamental cycle Ce. Now Ce corresponds to a cut (X, V(G) \ X)
of G∗. But then

0 = f (X, V(G) \ X) = f (e∗) + ∑
e′∈Ce\{e}

f
(
(e′)∗

)
= f (e∗) + φ(x)− φ(y)

Since f (e∗) 6= 0, φ(x) 6= φ(y).

Then we have planar coloring theorems, flow version.

Dual of Four Color Theorem

Every bridgeless planar graph has a 4-flow.

Dual of Grötzsch’s Theorem

Every planar 4-edge-connected graph has 3-flow.

Could these flow theorems hold for general graphs?

Note the Petersen graph has no 4-flow but does have a 5-flow.

Tutte’s Flow Conjectures:

• 5-flow Conjecture (Tutte 1954): Every bridgeless has a 5-flow.

• 4-Flow Conjecture (Tutte 1966): Every bridgeless Petersen-minor-free graph has a 4-flow.

• 3-Flow Conjecture (Tutte 1972): Every 4-edge-connected graph has a 3-flow.
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5-Flow Conjecture

Theorem (Jaeger 1979)

Every bridgeless graph has an 8-flow.

The proof constructs a Z2 ×Z2 ×Z2-flow.

Theorem (Seymour 1981)

Every bridgeless graph has a 6-flow.

The proof constructs a Z2 ×Z3-flow.

4-Flow Conjecture

For planar graphs, 4-Flow Conjecture is equivalent to the Four Color Theorem.

Theorem (Roberston,Sanders, Seymour, Thomas 1998-2020+)

True for cubic graphs.

Note even this generalizes the Four Color Theorem.

3-Flow Conjecture

Kochol (2001) equivalent to prove for 5-edge-connected graphs.

Theorem (Thomassen 2012)

Every 8-edge-connected graph has a 3-flow.

Theorem (Lovász, Thomassen, Wu and Zhang 2013)

Every 6-edge-connected graph has a 3-flow.
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