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1
Combinatorial games

1.1 Impartial games

• http://web.mit.edu/sp.268/www/nim.pdf

• https://ivv5hpp.uni-muenster.de/u/baysm/teaching/3u03/notes/14-games.pdf

Example: Game of Nim
We are given a collection of piles of chips. Two players play alternatively. On a player’s turn, they
remove at least 1 chip from a pile. First player who cannot move loses the game.

For example, we have three piles with 1, 1, 2 chips. Is there a winning strategy? In this case, there
is one for the first player: Player I (p1) removes the pile of 2 chips. This forces p2 to move a pile of
1 chip. p1 removes the last chip. p2 has no move and loses the game. In this case, p1 has a winning
strategy, so this is a winning game or winning position.

Now let’s look at another example with two piles of 5 chips each. Regardless of what p1 does, p2

can make the same move on the other pile. p1 loses. If p1 loses regardless of their move (i.e., p2

has a winning strategy), then this is a losing game or losing position.

What if we have two piles have unequal sizes? say 5, 7. p1 moves to equalize the chip count
(remove 2 from the pile of 7). p2 then loses, this is a winning game.

Lemma 1.1

In instances of Nim with two piles of n, m chips, it is a winning game if and only if m 6= n.

Solving Nim with only two piles is easy, but what about games with more than two piles? This is
more complicated.

Nim is an example of an impartial game. Conditions required for an impartial game:

1. There are 2 players, player I and player II.

2. There are several positions, with a starting position.

3. A player performs one of a set of allowable moves, which depends only on the current position,
and not on the player whose turn it is. (“impartial”) Each possible move generates an option.

4. The players move alternately.

5. There is complete information.
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6. There are no chance moves.

7. The first player with no available move loses.

8. The rules guarantee that games end.

Example: Not an impartial game
Tic-tac-toe: violates 7.

Chess: violates 3, since players can only move their own pieces.

Monopoly: violates 6. Poker: violates 5.

Example:
Let G = (1, 1, 2) be a Nim game. There are 4 possible moves (hence 4 possible options):

G = (1, 1, 2)

H1 = (1, 1, 1)

H2 = (1, 1, 0)

H3 = (0, 1, 2)

H4 = (1, 0, 2)

Each option is by itself
another game of Nim

Note:
We can define an impartial game by its position and options recursively.

simpler game

A game H that is reachable from game G by a sequence of allowable moves is simpler than G.

Other impartial games:

1. Subtraction game: We have one pile of n chips. A valid move is taking away 1, 2, or 3 chips. The
first player who cannot move loses.

2. Rook game: We have an m× n chess board, and a rook in position (i, j). A valid move is moving
the rook any number of spaces left or up. The first player who cannot move loses.

R

3. Green hackenbush game: We have a graph and the floor. The graph is attached to the floor at
some vertices. A move consists of removing an edge of the graph, and any part of the graph not
connected to the floor is removed. The first player who cannot move loses.
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×

Spoiler A main result we will prove is that all impartial games are essentially like a Nim game.

Lemma 1.2

In any impartial game G, either player I or player II has a winning strategy.

Proof:
We prove by induction on the simplicity of G. If G has no allowable moves, then p1 loses, so p2

has a winning strategy. Assume G has allowable moves and the lemma holds for games simpler
than G. Among all options of G, if p1 has a winning strategy in one of them, then p1 moves to that
option and wins. Otherwise, p2 has a winning strategy for all options. So regardless of p1’s move,
p2 wins.

So every impartial game is either a winning game (p1 has a winning strategy) or a losing game (p2

has a winning strategy).

Example: Nim

5 7 winning game (Lemma 1.1)

winning
move

losing
game 5 5 5 6 2 7

. . . non-winning moves

5 5 losing game

all options are winning games =⇒ p2 wins

4 5 3 5 5 4

· · ·

5 3

· · ·

Note:
We assume players play perfectly. If there is a winning move, then they will take it.
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1.2 Equivalent games

game sums

Let G and and H be two games with options G1, . . . , Gm and H1, . . . , Hn respectively. We define
G + H as the games with options

G1 + H, . . . , Gm + H, G + H1, . . . , G + Hn.

Example:
We denote ∗n to be a game of Nim with one pile of n chips. Then ∗1 + ∗1 + ∗2 is the game with 3

piles of 1, 1, 2 chips.

Example:
If we denote #2 to be the subtraction game with n chips, then ∗5 + #7 is a game where a move
consists of either removing at least 1 chip from the pile of 5 (Nim game), or removing 1, 2 or 3

chips from the pile of 7 (subtraction game).

Lemma 1.3

Let G be the set of all impartial games. Then for all G, H, J ∈ G,

1. G + H ∈ G (closure)

2. (G + H) + J = G + (H + J) (associative)

3. There exists an identity 0 ∈ G (game with no options) where G + 0 = 0 + G = G

4. G + H = H + G (symmetric)

Note:
This is an abelian group except the inverse element.

equivalent game

Two games G, H are equivalent if for any game J, G + J and H + J have the same outcome (i.e.,
either both are winning games, or both are losing games).

Notation: G ≡ H.

Example:
∗3 ≡ ∗3 since ∗3 + J is the same game as ∗3 + J for any J, so they have the same outcome.

∗3 6≡ ∗4 since ∗3 + ∗3 is a losing game, but ∗4 + ∗3 is a winning game from Lemma 1.1.

Lemma 1.4

∗n ≡ ∗m if and only if n = m.
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Lemma 1.5

The relation ≡ is an equivalence relation. That is, for all G, H, K ∈ G,

1. G ≡ G (reflexive)

2. G ≡ G if and only if H ≡ G (symmetric)

3. If G ≡ H and H ≡ K, then G ≡ K (transitive).

Exercise:
Prove that if G ≡ H, then G + J ≡ H + J for any game J.

Note that the definition above only says they have the same outcome. To prove that they are
equivalent, one needs to add another game on both sides to show they have the same outcome.

Nim with one pile ∗n is a losing game if and only if n = 0.

Theorem 1.6

G is a losing game if and only if G ≡ ∗0.

Proof:
⇐ If G ≡ ∗0, then G + ∗0 has the same outcome as ∗0 + ∗0. But ∗0 is a losing game, so G is a

losing game.

⇒ Suppose J is a losing game. (We want to show G ≡ ∗0, meaning G + J and ∗0 + J ≡ J have
the same outcome.)

1. Suppose J is a losing game. (We want to show that G + J is a losing game.)

We will prove “If G and J are losing games, then G + J is a losing game” by induction
on the simplicity of G + J. When G + J has no options, then G, J both have no options,
so G, J, G + J are all losing games.

Suppose G + J has some options. Then p1 makes a move on G or J. WLOG say p1 makes
a move in G, and results in G′ + J. Since G is a losing game, G′ is a winning game. So
p2 makes a winning move from G′ to G′′, and this results in G′′ + J. Then G′′ is a losing
game, so by induction, G′′ + J is a losing game for p1. So p1 loses, and G + J is a losing
game.

2. Suppose J is a winning game. Then J has a winning move to J′. So p1 moves from G + J
to G + J′. Now both G, J′ are losing games, so by case 1, G + J′ is a losing game. So p2

loses, meaning p1 wins, so G + J is a winning game.

Corollary 1.7

If G is a losing game, then J and J + G have the same outcome for any game J.

Proof:
Since G is a losing game, G ≡ ∗0 by Theorem 1.6. Then J + G ≡ J + ∗0 ≡ J (previous exercise +
Lemma 1.3). So J and G + J have the same outcome.

Example:

1. Recall ∗5+ ∗5 and ∗7+ ∗7 are losing games. Then Corollary 1.7 says ∗5+ ∗5+ ∗7+ ∗7 is also
a losing game. (p1 moves in either ∗5 + ∗5 or ∗7 + ∗7. Then p2 makes a winning move from
the same part, equalizing piles.)
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2. ∗1 + ∗1 + ∗2︸ ︷︷ ︸
winning

+ ∗5 + ∗5︸ ︷︷ ︸
losing

. Corollary 1.7 implies this is a winning game.

(p1 makes a winning move in ∗1 + ∗1 + ∗2, therefore we have ∗1 + ∗1︸ ︷︷ ︸
losing

+ ∗5 + ∗5︸ ︷︷ ︸
losing

. p2 loses.)

Lemma 1.8: Copycat principle

For any game G, G + G ≡ ∗0.

Proof:
Induction on the simplicity of G. When G has no options, G + G has no options, so G + G ≡ ∗0 by
Theorem 1.6. Suppose G has options, and WLOG suppose p1 moves from G + G to G′ + G. Then
p2 can move to G′ + G′. By induction, G′ + G′ ≡ ∗0, so it is a losing game for p1. Therefore, G + G
is a losing game, and G + G ≡ ∗0.

Lemma 1.9

G ≡ H if and only if G + H ≡ ∗0.

Proof:
⇒ From G ≡ H, we add H to both sides to get G + H ≡ H + H ≡ ∗0 by the copycat principle.

⇐ From G + H ≡ ∗0, we add H to both sides to get G + H + H ≡ ∗0+ H ≡ H. But G + G + G ≡
G + ∗0 ≡ G by the copycat principle. So G ≡ H.

Example:
∗1 + ∗2 + ∗3 is a losing game, so ∗1 + ∗2 + ∗3 ≡ ∗0. By Lemma 1.9, ∗1 + ∗2 ≡ ∗3, or ∗1 + ∗3 ≡ ∗2.

Another way to prove game equivalence is by showing that they have equivalent options.

Lemma 1.10

If the options of G are equivalent to options of H, then G ≡ H. (More precisely: There is a
bijection between options of G and H where paired options are equivalent.)

Proof:
It suffices to show that G + H ≡ ∗0 by Lemma 1.9, i.e., G + H is a losing game. This is true when
G, H both have no options. Suppose G, H have options, and suppose WLOG p1 moves to G′H. By
assumption, there exists an options of H, say H′, such that H′ ≡ G′. So p2 can move to G′ + H′.
Since G′ ≡ H′, G′ + H′ ≡ ∗0 by Lemma 1.9. So G′ + H′ is a losing game for p1. Hence G + H is a
losing game.

Example:
We can show ∗1 + ∗2 ≡ ∗3 using Lemma 1.10.

∗1 + ∗2

∗2

∗1

∗1 + ∗1

∗2

∗1

∗0

∗3

Note:
The converse is false.
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1.3 Nim and nimbers

Goal Show that every Nim game is equivalent to a Nim game with a single pile.

nimber

If G is a game such that G ≡ ∗n for some n, then n is the nimber of G.

Example:
Any losing game has nimber 0 by Theorem 1.6.

Exercise:
Show that the notion of a nimber is well-defined. That is it is not possible for a game to have more
than one nimber.

Theorem 1.11

Suppose n = 2a1 + 2a2 + . . . where a1 > a2 > . . ., then ∗n ≡ ∗2a1 + ∗2a2 + . . ..

Example:
11 = 23 + 21 + 20, 13 = 23 + 22 + 20. Using this theorem, ∗11 ≡ ∗23 + ∗21 + ∗20 and ∗13 ≡
∗23 + ∗22 + ∗20. Then

∗11 + ∗13 ≡ (∗23 + ∗21 + ∗20) + (∗23 + ∗22 + ∗20)

≡ (∗23 + ∗23) + ∗22 + ∗21 + (∗20 + ∗20) by assoc’y and commu’y

≡ ∗0 + ∗22 + ∗21 + ∗0 by copycat principle

≡ ∗22 + ∗21

≡ ∗(22 + 21)

≡ ∗6

So the nimber of ∗11 + ∗13 is 6.

In general, how can we find the nimber for ∗b1 + ∗b2 + . . . + ∗bn? Look for binary expansions of each
bi. Copycat principle cancels any pair of identical powers of 2. So we look for powers of 2’s that appear
in odd number of expansions of the bi’s.

Use binary numbers: 11 in binary is 1011, 13 in binary is 1101. Take the XOR operation. We do normal
addition except we do not carry over.

1011

⊕ 1101

0110

and 0110 is 6. So 11⊕ 13 = 6.

Example:
Consider ∗25 + ∗21 + ∗11. In binary they are 11001, 10101, 01011.

11001

10101

⊕ 01011

00111

and 00111 is 7. So ∗25 + ∗21 + ∗11 ≡ ∗7. (The nimber is 7)

Corollary 1.12

∗b1 + ∗b2 + . . . + ∗bn ≡ ∗(b1 ⊕ b2 ⊕ . . .⊕ bn).
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This shows that every Nim game has a nimber.

Winning strategy for Nim

Example:
∗11 + ∗13 ≡ ∗6. This is a winning game. How to find a winning move? Want to move a game
equivalent to ∗0. Add ∗6 to both sides: ∗11 + ∗13 + ∗6 ≡ ∗6 + ∗6 ≡ ∗0 (copycat principle).

Consider ∗11 + (∗13 + ∗6). We see 13⊕ 6 = 11. So this is equivalent to ∗11 + ∗11, a losing game.
Winning move: remove 2 chips from the pile of 13.

Example:
∗25 + ∗13 + ∗11 ≡ ∗7. Add ∗7 to both sides. Consider ∗25 + (∗21 + ∗7) + ∗11. We see 21⊕ 7 = 18,
so this is equivalent to ∗25 + ∗18 + ∗11. Winning move: remove 3 chips from the pile of 21.

Why did we pair ∗7 with ∗21 instead of ∗25 or ∗11? 25⊕ 7 = 31, 11⊕ 7 = 12. This means that we
are adding 6 chips to 25, or adding 1 chip to 11. Not allowed in Nim.

Lemma 1.13

If ∗b1 + . . . + ∗bn ≡ ∗s where s > 0, then there exists some bi where bi ⊕ s < bi.

Idea: Look for the largest power of 2 in s.

∗25 + ∗21 + ∗11 ≡ ∗7
1 1 0 0 1
1 0 1 0 1
0 1 0 1 1⊕
0 0 1 1 1

25
21
11
7

↑
4
↑
2
↑
1 ← 4 > 2 + 1

⊕ reduces 21

⊕ increases 25 or 11

25⊕ 7 or 11⊕ 7: 4 is added
21⊕ 7: 4 is subtracted from 21

Proof:
Suppose s = 2a1 + 2a2 + . . . where a1 > a2 > . . .. Then 2a1 appears in the binary expansions of
b1, . . . , bn an odd number of times. Let bi be one of them. Suppose ∗bi + ∗s ≡ ∗t for some t. Since
2a1 is in the binary expansions of bi and s, 2a1 is not in the binary expansion of t. For 2a2 , 2a3 , . . . , at
worse none of them are in the binary expansion of bi, so all of them are in the binary expansion of
t. So

t ≤ bi − 2a1 + 2a2 + 2a3 + . . . < bi since 2a1 > 2a2 + 2a3 + . . .

Finding winning moves in a winning Nim game: Say a game has nimber s. Look at the largest power
of 2 in the binary expansion of s. Pair it up with any pile ∗bi containing this power of 2. Then
s⊕ bi < bi. So a winning move is taking away bi − (s⊕ bi) chips from the pile ∗bi.

Now we wish to prove Theorem 1.11. The proof uses the following lemma:

Lemma 1.14

Let 0 ≤ p, q < 2a, and suppose Theorem 1.11 hold for all values less than 2a. Then p⊕ q < 2a.

Illustration for the proof of Theorem 1.11. Consider ∗7. 7 = 4 + 2 + 1. Want to prove ∗7 ≡ ∗4 + ∗2 + ∗1︸ ︷︷ ︸
≡∗3 by induction

Options of ∗7: ∗0, ∗1, . . . , ∗6

Options of ∗4 + ∗3: (1) Move on ∗4 (2) Move on ∗3
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∗0 + ∗3 ≡ ∗3
∗1 + ∗3 ≡ ∗2
∗2 + ∗3 ≡ ∗1
∗3 + ∗3 ≡ ∗0

distinct

< 4 < 4⇒ < 4 by Lemma 1.14

(1) (2) ∗4 + ∗2 ≡ ∗6
∗4 + ∗1 ≡ ∗5
∗4 + ∗0 ≡ ∗4

binary expansion do not have 4

each power of 2 appears at most once
⇒ apply induction

Proof of Theorem 1.11:
We prove by induction on n.

When n = 1, n = 20 and ∗1 ≡ ∗20. Suppose n = 2a1 + 2a2 + . . . where a1 > a2 > . . .. Let
q = n− 2a1 = 2a2 + 2a3 + . . ..

If q = 0, then n = 2a1 , so ∗n ≡ 2a1 .

Assume q ≥ 1. Since q < n, by induction, ∗q ≡ ∗2a2 + ∗2a3 + . . .. It remains to show that ∗n ≡
∗2a1 + ∗q. The options of ∗n are ∗0, ∗1, . . . , ∗(n− 1). The options of ∗2a1 + ∗q can be partitioned
into 2 types.

1. Consider options of the form ∗i + ∗q where 0 ≤ i < 2a1 . Since i, q < n, by induction,
the theorem holds for i, q. So ∗i, ∗q are equivalent to sums of Nim piles by their binary
expansions. Using arguments from Corollary 1.12, ∗i + ∗q ≡ ∗ri where ri = i ⊕ q. Since
i, q < 2a1 , ri < 2a1 by Lemma 1.14. So 0 ≤ r0, r1, . . . r2a1−1 < 2a1 .

(We now show that these ri’s are distinct.) Suppose ri = rj for some i, j. Then ∗ri ≡ ∗rj, so
∗i + ∗q ≡ ∗j + ∗q. Adding ∗q on both sides, we get ∗i ≡ ∗j (copycat principle), so i = j. So
the ri’s are distinct.

Also there are 2a1 of these ri’s, and there are 2a1 possible values (0 to 2a1 − 1). By Pigeonhole
principle, for each 0 ≤ j ≤ 2a1 − 1, there is one ri with ri = j. So the options of this type are
equivalent to {∗0, ∗1, . . . , ∗(2a1 − 1)}.

2. Consider options of the form ∗2a1 + ∗i where 0 ≤ i < q. Suppose i = 2b1 + 2b2 + . . . where
b1 > b2 > . . .. Then no bi is equal to a1 since i < q = 2a2 + . . .. So 2a1 + 2b1 + . . . is a sum of
distinct powers of 2. Then

∗2a1 + ∗i ≡ ∗2a1 + ∗2b2 + . . . by applying induction on i

≡ ∗(2a1 + 2b1 + 2b2 + . . .) by applying induction on 2a1 + i

≡ ∗(2a1 + i)

Since 0 ≤ i < q, the options of this type are equivalent to
{∗2a1 , ∗(2a1 + 1), . . . , (2a1 + q− 1)︸ ︷︷ ︸

n−1

}.

Combining the two types of options, we see that the options of ∗2a1 + ∗q are equivalent to the
options of ∗n. So ∗2a1 + ∗q ≡ ∗n.

1.4 Sprague-Grundy theorem

So far: All Nim games are equivalent to a Nim game of a single pile. Goal: Extend this to all impartial
games.

Poker nim

Being equivalent does not mean that they play the same way.
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Example:
∗11 + ∗13 ≡ ∗6.

We move to ∗11 + ∗11 ≡ ∗0 by removing 2 chips from ∗13. RHS remove 6 chips.

There are other moves, say we move to ∗11 + ∗8 ≡ ∗15. We remove 5 chips from ∗13. RHS adding
9 chips.

Or, starting with ∗11 + ∗11 ≡ ∗0, any move on ∗11 + ∗11 will increase ∗0.

A variation on Nim: Poker nim consists of a regular Nim game plus a bag of B chips. We now allow
regular Nim moves and adding B′ ≤ B chips to one pile. Example: ∗3 + ∗4→ ∗53 + ∗4.

How does this change the game of Nim?

Nothing. Say we face a losing game, so any regular Nim move would lead to a loss. In poker nim, we
now add some chips to one pile. The opposing player will simply remove the chips we placed, and
nothing changed.

When we say that a game is equivalent to a Nim game with one pile, it is actually a game is equivalent
to a Nim game with one pile, it is actually a game of poker nim with one pile.

Mex

Suppose a game G has options equivalent to ∗0, ∗1, ∗2, ∗5, ∗10, ∗25. We claim that G is equivalent to
∗3. The options of ∗3, which are ∗0, ∗1, ∗2, are all available. If we add chips to ∗3, then the opposing
player can remove them to get back to ∗3. How do we get 3?

mex(S)

Given a set of non-negative integers S, mex(S) is the smallest non-negative integer not in S.
“minimum excluded integer”

Example:
mex({0, 1, 2, 5, 15, 25}) = 3.

The mex function is the critical link between any impartial games and Nim games.

Theorem 1.15

Let G be an impartial game, and let S be the set of integers n such that there exists an option of
G equivalent to ∗n. Then G ≡ ∗(mex(S)).

Example:

∗1 + ∗1 + ∗2 ∗1 + ∗1 ≡ ∗0

∗1 + ∗2 ≡ ∗3

∗1 + ∗1 + ∗1 ≡ ∗1

By theorem, ∗1 + ∗1 + ∗2 ≡ ∗(mex({0, 1, 3})) ≡ ∗2.

Exercise:
A game cannot be equivalent to one of its options.
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Proof of Theorem 1.15:
Let m = mex(S). It suffices to show that G + ∗m ≡ ∗0.

1. Suppose we move to G + ∗m′ where m′ < m. Since m = mex(S), there exists an option G′

of G such that G′ ≡ ∗m′. p2 moves to G′ + ∗m′, which is a losing game since G′ ≡ ∗m′. So
G + ∗m is a losing game for p1, and G + ∗m ≡ ∗0.

2. Suppose we move to G′ + ∗m, where G′ is an option of G. Then G′ ≡ ∗k for some k ∈ S.
So G′ + ∗m ≡ ∗k + ∗m 6≡ ∗0 since k 6= mex(S). So G′ + ∗m is a winning game for p2. Then
G + ∗m is a losing game for p1, so G + ∗m ≡ ∗0.

Theorem 1.16: Sprague-Grundy Theorem

Any impartial game G is equivalent to a poker nim game ∗n for some n.

Proof (slightly sketchy):
If G has no options, then G ≡ ∗0. Suppose G has options G1, . . . , Gk. By induction, Gi ≡ ∗ni for
some ni. By Theorem 1.15, G ≡ ∗(mex({n1, . . . , nk})).

So any impartial game has a nimber.

Finding nimbers is recursive: Games with no options have nimber 0. Move backwords and use mex to
determine other nimbers.

Example: Rock game

∗0 ∗1 ∗2 ∗3 ∗4
∗1 ∗0 ∗3 ∗2 ∗5
∗2 ∗3 ∗0 ∗1 ∗6
∗3 ∗2 ∗1 ∗0 R

(4, 5)

← ∗7

54321

4

3

2

1

Winning move: move to (4, 4), an options with nimber 0.

This is like a 2-pile Nim game.

Example: Subtraction game (remove 1,2, or 3 chips)
Let sn be the nimber of a subtraction game with n chips. Then sn = mex({sn−1, sn−2, sn−3}) (if they
exist)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
sn 0 1 2 3 0 1 2 3 0 1 2 3 0 . . .

Losing game if and only if n ≡ 0 mod 4. When n 6≡ 0 mod 4, the winning move is remove just
enough chips to the next multiple of 4.

Example:
Subtraction game with removing 2, 5, or 6 chips Then sn = mex({sn−2, sn−5, sn−6}) (if they exist)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
sn 0 0 1 1 0 2 1 3 0 2 1 0 0 1 1 . . .

repeats (not proved here)

Losing game if and only if n ≡ 0, 1, 4, 8 mod 11. Winning move from 9: move to 4.
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Example: Combining games
Let G be the rook game at (4, 2). Let H be the second subtraction with n = 7.

Then G ≡ ∗2, H ≡ ∗3, so G + H ≡ ∗2 + ∗3 ≡ ∗1. Winning game.

Winning move:

• From H, 3⊕ 1 = 2. Move to ∗2. Remove 2 chips in the subtraction game.

• From G, 2⊕ 1 = 3. Move to ∗3. Move to (4, 1) or (3, 2).



2
Strategic games

Example: Prisoner’s dilemma
Game show version: 2 players won $10,000. They each need to make a final decision: “share” or
“steal”.

• If both pick “share”, then they each win $5,000.

• If one picks “steal” and the other picks “share”, then the one who picks “steal” gets $10,000,
the other gets nothing.

• If both pick “steal”, then they both get a consolation price with $10.

How would players behave? The benefit a player receives is dependent on their own decision and the
decisions of other players.

strategic game

A strategic game is defined by specifying a set N = {1, . . . , n} of players, and for each player i ∈
N, then there is a set of possible strategies si to play, and a utility function: ui : s1× · · ·× sn → R.

Example:
With prisoner’s dilemma above, s1 = s2 = {share,steal}. Samples of the utility functions: u1(share,share) =
5000, u2(steal,share) = 0. We can summarize the utility functions in a payoff table.

PII
share steal

PI
share 5k, 5k 0, 10k
steal 10k, 0 10, 10

Each cell records the utilities of PI, PII in this order given the strategies played in that row (PI) and
column (PII).

Assumptions about strategic games;

1. All players are rational and selfish (want to maximize their own utility).

2. All players have knowledge of all game parameters.

3. All players move simultaneously.

4. Player i plays a strategy si ∈ Si, this forms a strategy profile s = (s1, . . . , sn) ∈ S1 × · · · × Sn.
Player i earns ui(s).

15
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Given a strategic game, what are we looking for? One answer is we want to know how are the players
expected to behave?

Resolving prisoner’s dilemma

Recall the payoff table from a previous example. What would a rational and selfish player choose to
play?

1. If you know that the other player chooses to “share”, then choosing “share” gives 5k, choosing
“steal” gives 10k. Steal is better.

2. If you know that the other player chooses “steal”, then choosing “share” gives 0, choosing “steal”
gives 10. Steal is better.

In both cases, it is better to steal than to share. So we expect both players to choose “steal”.

This is an example of a strictly dominating strategy: regardless of how other players behave, this
strategy gives the best utility over all other possible strategies. If a strictly dominating strategy exists,
then we expect the players to play it.

In this case, playing a strictly dominating strategy “steal” yields very little benefit. They could get
more if there is some cooperation (both share). So even though we expect strictly dominating strategy
is played, it might not have the best “social welfare” (the overall utility of the players).

2.1 Nash equilibrium

There are many games with “no” strictly dominating strategies.

Example: Bach or Stravinsky?
Two players want to go to a concert. Player I likes Bach, player II likes Stravinsky, but they both
prefer to be with each other. Payoff table:

PII
Bach Stravinsky

PI
Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

No strict dominating strategy exists.

What do we expect to happen? If both choose “Bach”, then there is no reason for one player to
switch their strategy (which gives utility 0). Similar if both choose “Stravinsky”.

These are steady states, which we call Nash equilibria: a strategy profile where no player is incen-
tivized to change strategy.

Mixed strategies

There are many games with no Nash equilibria.

Example: Rock paper scissors
R beats S, S beats P, P beats R. Utility 1 if they win, -1 if they lose, 0 if they tie.

PII
R P S

PI
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

“No” NE exist: regardless what they play, someone is incentivized to switch strategy so that they
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win.

How would we expect players to play this? Randomly, probability 1
3 each. This is a mixed strategy.

IT is also a NE, there is no incentive to change to a different probability distribution.

Nash’s Theorem

Every strategic game with finite number of strategies has a Nash equilibrium (could be mixed
strategies).

Notation

Recall: Strategic game is defined by

• Players N = {1, . . . , n}.

• Strategy set Si for player i.

• Utility for player i: ui : s1× · · · sn → R. A strategy profile is a vector s = (s1, . . . , sn) ∈ S1× · · · Sn
which records what the players played.

Let S = S1 × Sn be the set of all strategy profiles. We will often compare the utilities of a player’s
strategies when we fix the strategies of the remaining players. Let S−i be the set of all strategy profiles
of all players except player i (we drop Si from the cartesian product S1 × · · · Sn). If s ∈ S, then the
profile obtained from s by dropping si is denoted s−i ∈ S−i. If player i switches their strategy from si
to s′i, then the new strategy profile is denoted (s′i, s−i) ∈ S.

Nash equilibrium

A strategy profile s∗ ∈ S is a Nash equilibrium if ui(s∗) ≥ ui(s′i, s∗−i) for all s′i ∈ Si and for all
i ∈ N.

Example: Prisoner’s dilemma
PII

share steal

PI
share 5k, 5k 0, 10k
steal 10k, 0 10, 10

Let s∗ = (steal, steal).

From PI: u1(s∗) = 10, u1(share
s′1

, steal
s′−1

) = 0 < u1(s∗).

Similar for PII. So s∗ is a NE.

Example: Guess 2/3 average game
3 players, a positive integer k. Each player simultaneously pick an integer from {1, . . . , k}, produc-
ing the strategy profile s = (s1, s2, s3). There is $1 which is split among all players whose choices
are closest to 2

3 of the 3 numbers. Other players get $0.

If s = (5, 2, 4), then the average is 11
3 , and 2

3 average is 22
9 = 2 + 4

9 . p2 is the closest, so u2(s) =

1, u1(s) = u3(s) = 0. Is s a NE? No. If p1 switches to 2, the u1(2, s−1) = u1(2, 2, 4) = 1
2 . ( 2

3 average
is 16

9 , closer to 2 than 4).

Is there a NE? Idea: Lowering the guess generally pulls the 2
3 average closer. Try (1, 1, 1). If a player

switches to t ≥ 2, then the 2
3 average is 4+2t

9 = 4
9 + 2

9 t, which is closer to 1 than t. (1, 1, 1) is the
only NE of this game.
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2.1.1 Best response function

For a NE, a player does not want to switch. If you fix the strategies of the remaining players, then you
play a strategy that maximizes utility for yourself, i.e., it is a “best response” to the fixed strategies.

best response function

Player i’s best response function for s−i ∈ S−i is given by

Bi(s−i) = {s′i ∈ Si : ui(s′i, s−i)︸ ︷︷ ︸
utility of a

best response

≥ ui(si, s−i)︸ ︷︷ ︸
utility of all possible

responses to s−i

∀si ∈ Si}.

Example: Prisoner’s dilemma
B1(share) = {steal}, B1(steal) = {steal}.

Example: 2/3 average game

B1(5, 5) = {1, 2, 3, 4} u1(x, 5, 5) =


1 x < 5 best response
1/3 x = 5
0 x > 5

If s∗ is a NE, then each player i must have played a best response to s∗−i. Changing s∗i cannot increase
utility for i. Converse is also true.

Lemma 2.1

s∗ ∈ S is a Nash equilibrium if and only if s∗i ∈ Bi(s∗−i) for all i ∈ N.

This lemma helps us find NE by looking for strategies in the BRF.

Example:
PII

share steal

PI
share 5k, 5k 0, 10k◦

steal 10k∗, 0 10
∗, 10

◦ These are best responses to

each other. So this is a NE

B1(share) = {steal} B1(steal) = {steal} ∗
B2(share) = {steal} B2(steal) = {steal} ◦

Example: Arbitrary game
PII

X Y Z

PI
A 1, 2

◦
2
∗, 1 1

∗, 0

B 2
∗, 1
◦

0, 1
◦

0, 0

C 0, 1 0, 0 1
∗, 2
◦

B1(X) = {B} B1(Y) = {A} B1(Z) = {A, C} ∗
B2(A) = {X} B2(B) = {X, Y} B2(C) = {Z} ◦

NE are (B, X) and (C, Z), as they are best responses to each other. The rest are not NE as one is not
a best response to the other.
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2.2 Cournot’s oligopoly model

We have a set N = {1, . . . , n} of n firms producing a single type of goods sold on the common market.
Each firm i needs to decide the number of units of goods qi to produce. (variables)

Production cost is Ci(qi) where Ci is a given increasing function.

Given a strategy profile q = (q1, . . . , qn), a unit of the goods sell for the price of P(q), where P is a
given non-increasing function on ∑i qi (more goods in the market = low price)

The utility of firm i in the strategy profile q is ui(q) = qiP(q)
revenue for

selling qi units

− ci(qi)

production cost

Szidarovszky and Yakowitz proved that a Nash equilibrium always exists under some continuity and
differentiability assumptions on P, C.

Special case: linear costs and prices

Suppose we assume Ci(qi) = cqi, ∀i ∈ N (the cost is linear, same unit cost c for all firms). P(q) =
max{0, α−∑j qj} (prices starts at α, decreases 1 for each unit produced, min price 0) where 0 < c < α.

Utility is

ui(q) = qiP(q)− Ci (qi) =

{
qi(α− c−∑j qj) α−∑j qj ≥ 0
−cqi α−∑j qj < 0

When is it possible to make a profit? When α− c−∑j qj > 0. Separate qi from the sum: α− c− qi −
∑i 6=j qj > 0. So qi < α− c−∑j 6=i qj. Does not make sense for qi if RHS ≤ 0, so assume RHS > 0.

The utility is qi(α− c− qi − ∑j 6=i qj). Treating qi as the variable, this utility is maximized when qi =
(α− c−∑j 6=i qj)/2. So the best response function for firm i given the production of other firms q−i is

Bi (q−i) =

{ {
(α− c−∑j 6=i qj)/2

}
α− c−∑j qj > 0

{0} otherwise

Two-firm case

Suppose we simplify to 2 firms. Suppose q∗ = (q∗1 , q∗2) is a Nash equilibrium. By Lemma 2.1, a player’s
choice must be the best response to the other player’s choice. So q∗1 ∈ B1(q∗2) and q∗2 ∈ B2(q∗1).

Verify that we may assume q∗1 , q∗2 > 0. Then q∗1 = (α− c− q∗2)/2 and q∗2 = (α− c− q∗1)/2.

Solving this gives q∗1 = q∗2 = (α − c)/3. This is the amount we expect each firm to produce at
equilibrium.

Price at equilibrium: P(q∗) = α− q∗1 − q∗2 = α− 2
3
(α− c) =

α

3
+

2c
3

.

Profit at equilibrium: ui(q∗) = q∗i (α− c− q∗1 − q∗2) = (α− c)2/9.

Note:

1. Suppose the two firms can collude, and together they produce Q units total. Total profit is
Q(α − c − Q), which is maximized at Q = (α − c)/2. The profit is

(
α−c

2
) (

α− c− α−c
2
)
=

(α− c)2/4. Each firm gets (α−c)2

8 > (α−c)2

9 .

2. In the general case with n firms, if q∗ is a NE, then q∗i = (α − c − ∑j 6=i q∗j )/2. Solving this
system gives q∗j = α−c

n+1 . Price is

P (q∗) = α−∑
j

q∗j = α− n
n + 1

(α− c) =
1

n + 1
α +

n
n + 1

c

As n → ∞, P(q∗) → c. As more firms are involved, the expected market price gets closer to
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the production cost.

2.3 Dominance

2.3.1 Strict dominance

strict dominance

For two strategies s(1)i , s(2)i ∈ Si for player i, we say that s(1)i strictly dominates s(2)i if for all

s−i ∈ S−i, ui(s
(1)
i , s−i) > ui(s

(2)
i , s−i).

If there exists a strategy that strictly dominates si, then si is strictly dominated.

If si strictly dominates all strategies s′i ∈ Si \ {si}, then si is a strictly dominating strategy.

In prisoner’s dilemma, “steal” is a strictly dominating strategy for both players.

Lemma 2.2

If si ∈ Si is a strictly dominating strategy for player i and s∗ ∈ S is a NE, then s∗i = si.

In any NE, the strictly dominating strategy is played whenever it exists. A game is easy to play if such
a strategy exists.

Now we look at strictly dominated strategies.

Example:
X Y Z

A 4, 2 1, 3 2, 1

B 2, 3 0, 1 3, 1

Z is strictly dominated by X since u2(A, X) > u2(A, Z) and u2(B, X) > u2(B, Z)

Z is a strictly dominated strategy: There is no reason to play it.

Lemma 2.3

IF s∗ ∈ S is a NE, then s∗i is not strictly dominated for any i ∈ N.

Iterated elimination of strictly dominated strategies (IESDS)

Example:

X Y Z
A 4, 2 1, 3 2, 1

B 2, 3 0, 1 3, 1

X Y
A 4, 2 1, 3

B 2, 3 0, 1

X Y
A 4, 2 1, 3

Y
A 1, 3

Z is strictly dom-
inated, so it will
not appear in
any NE.

B is strictly
dominated.
(Notice this
was not the
case before)

X is strictly
dominated.

NE?

eliminate Z eliminate B eliminate X

IESDS: Repeatedly eliminate strictly dominated strategies until we have only one strategy profile. We
claim that if this works, then the surviving profile is the unique NE of the game.
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Example: Facility location game

A B C D E F

Two firms are each given a permit to open one store in one of 6 towns along a high way. Firm I
can open in A, C or E, firm II can open in B, D or F. Assume towns are equally spaced and equally
populated. Customers in a town will go to the closest store. Where to open stores?

Firm II
B D F

Firm I
A 1, 5 2, 4 3, 3

C 4, 2 3, 3 4, 2

E 3, 3 2, 4 5, 1

Firm I, A is strictly dominated by C.
Firm II, F is strictly dominated by D.
Eliminate these two strategies.

Firm II
B D

Firm I
C 4, 2 3, 3

E 3, 3 2, 4

Firm I, E is strictly dominated by C.
Firm II, B is strictly dominated by D.
Eliminate these two strategies.

Firm II
D

Firm I C 3, 3

(C, D) is a NE.

Note: Extend this to 1000 towns with alternating options. The two ends are strictly dominated by
the centre towns. Eliminate them to get 998 towns. Repeat. End with the two towns in the centre
as NE.

Results in IESDS

Theorem 2.4

Suppose G is a strategic game. If IESDS ends with only one strategy profile s∗, then s∗ is the
unique Nash equilibrium of G.

This is a consequence of the following result.

Theorem 2.5

Let H be a strategic game where si is a strictly dominated strategy for player i. Let G′ be
obtained from G by removing si from Si. Then s∗ is a Nash equilibrium of G if and only if s∗ is
a Nash equilibrium of G′.

Proof Sketch:
Suppose s∗ is a NE of G. Since si is strictly dominated, it cannot appear in s∗ (Lemma 2.3). So s∗

is a valid strategy profile in G′. If s∗ is not a NE of G′, then a player can deviate to get a higher
utility. However, all strategies in G′ are available in G, so such a player can do it in G as well. This
contradicts s∗ is a NE of G.

Suppose s∗ is a NE of G′. Suppose s∗ is not a NE of G. Then a player can deviate to get a higher
utility. This can be replicated in G′ (which results in a contradiction) unless it is player i switching
to strategy si (the only strategy in G not in G′). Then player i could switch to the strategy that
strictly dominates si (available in G′) to get a higher utility in G′, contradicting s∗ is a NE in G′.
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2.3.2 Weak dominance

weak dominance

For two strategies s(1)i , s(2)i ∈ Si for player i, we say that s(1)i weakly dominates s(2)i if for all

s−i ∈ S−i, ui(s
(1)
i , s−i) ≥ ui(s

(2)
i , s−i), and this inequality is strict for at least one s−i ∈ S−i.

If some strategy weakly dominates si, then si is weakly dominated.

If si weakly dominates all strategies s′i ∈ Si \ {si}, then si is a weakly dominating strategy.

Example:
PII

X Y Z

PI
A 3, 3 1, 1 4, 1

B 2, 1 0, 1 3, 1

Z is weakly dominated by X, u2(A, X) > u2(A, Z) and u2(B, X) ≥ u2(B, Z). Z is not weakly
dominated by Y, no strict inequality.

Iterated elimination of weakly dominated strategies (IEWDS)

Remove weakly dominated strategies until there is only one strategy profile.

Example:
Z and Y are weakly dominated by X above. Eliminating them gives

X
A 3, 3

B 2, 1

A weakly dominates B. X
A 3, 3

(A, X) is a NE.

Theorem 2.6

Suppose G is a strategy game. If IEWDS ends with only one strategy profile s∗, then s∗ is a
Nash equilibrium of G.

Note:
Compared with Theorem 2.4, here we can no longer claim that the NE is unique. A different
sequence of eliminations can result in a different NE.

Exercise:
X Y Z

A 1, 1 1, 0 2, 1

B 1, 1 0, 0 0, 0

C 0, 0 0, 0 1, 1

Show that two different applications of IEWDS here could end with two different profiles.

Key difference Unlike strictly dominated strategies, weakly dominated strategies can appear in a
NE.

Some NE cannot found through IEWDS, e.g., Bach or Stravinsky has no weakly dominated strategies.

Just like strictly dominating strategies, weakly dominating strategies are good to play.



CHAPTER 2. STRATEGIC GAMES 23

Lemma 2.7

If for all players i, s∗i is a weakly dominating strategy, then s∗ is a Nash equilibrium.

2.4 Auctions

Set up of an auction: A seller puts one item up for an auction. Potential buyers put in bids to buy the
item. Seller decides who wins (usually highest bidder) and the prices they pay.

Typical auction: Open bid auction. Buyers bid repeatedly until no one else bids. Highest bid wins and
pays their bid price. Another type: Closed bid auctions. Each buyer submits one secret bid to the
seller. (Easier to analyze).

First price auction: Highest bid wins, winner pays their bid. For example, 3 bidders: 150, 100, 200 ,
pays 200. Does this simulate an open auction? No, in the open auction setting, the winner will bid
slightly over 150 and win, so they pay ∼150.

Second price auction: Highest bid wins, winner pays 2nd highest bid. For example, 3 bidders: 150, 100,
200 , pays 150. We will analyze second price closed bid auction.

Set up

We have buyers N = {1, . . . , n}. Buyer i thinks the item has value vi “valuation”. Suppose
buyer i submits the bid bi, giving strategy profile b = (b1, . . . , bn). The winner is the buyer who
submits the highest bid, pays price equal to the second highest bid. If there is a tie, then the
winner is the buyer with the lowest index i among all tied buyers.

Given a strategy profile b, the utility for buyer i is

ui(b) =

{
vi −maxj 6=i bj i wins in b
0 otherwise

Suppose your valuation of the item is 100. Would you bid anything other than 100?

(1) Say your bid wins

(2) Say your bid loses

24 69 75 100

win

pay 75, utility 25

loses, utility 0 still wins, pay 75, utility 25

24 69 75 100

lose

utility 0

still loses, utility 0

121

wins, pay 121,
utility -21

utility does not
increase if you
bid anything else

Theorem 2.8

In the second price auction, vi is a weakly dominating strategy for player i ∈ N.

Proof:
We first show that ui(vi, b−i) ≥ ui(bi, b−i) for all bi ∈ Si and b−i ∈ S−i. 2 cases.

1. vi is a winning bid in (vi, b−i). Let bj be the second highest bid (could equal vi). The utility
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for player i is ui(vi, b−i) = vi − bj ≥ 0. Suppose player i changes their bid to bi.

If bi > bj or (bi = bj and i < j), then bi is still the winning bid in (bj, b−i). Payment is bj, so
utility remains the same. Otherwise, bi is a losing bid, so the utility is 0, which is at most
ui(bi, b−i).

So ui(vi, b−i) ≥ ui(bi, b−i) for any bi.

2. vi is a losing bid in (vi, b−i). Let bj be the winning bid (so bj ≥ bi). The utility for player i is
ui(vi, b−i) = 0. Suppose player i changes their bid to bi.

If bi < bj or (bi = bj and i > j), then bi is still a losing bid in (bi, b−i). Utility is still 0.
Otherwise, bi is a winning bid, with payment bj. The utility is ui(bi, b−i) = vi − bj ≤ 0 (since
bj ≥ vi). So ui(vi, b−i) ≥ ui(bi, b−i) for any bi.

In both cases, bidding vi gives the highest utility among all possible bids of player i.

We still need to show that for all bi 6= vi, there exists s−i ∈ S−i such that ui(vi, b−i) > ui(vi, b−i).
Two cases:

1. Suppose bi < vi. Let k be in bi < k < vi. Set bj = k for all j 6= i.

When vi is played against b−i, player i wins (vi > k) and pays k. Utility ui(vi, b−i) = vi − k >
0. When bi is played against b−i, player i loses (bi < k) and utility ui(bi, b−i) = 0. So
ui(vi, b−i) > ui(bi, b−i).

2. Suppose bi > vi. Let k be in vi < k < bi. Set bj = k for all j 6= i.

When vi is played against b−i, player i loses (vi < k) and utility ui(vi, b−i) = 0. When bi
is played against b−i, player i wins (bi > k) and pays k. Utility ui(bi, b−i) = vi − k < 0. So
ui(vi, b−i) > ui(bi, b−i).

Therefore, playing vi is a weakly dominating strategy.

Note:
The way we play this game does not depend on knowing how other players value the item. So it is
easy to play: simply bid your valuation.

Exercise:
Suppose buyer 1 has highest valuation v1, and buyer 2 has second highest valuation v2, then
(v2, v1, 0, 0, . . . , 0) is a NE.

2.5 Mixed strategies

Example: Matching pennies
Two players each has a penny. They simultaneously show heads or tails. If they match, then player
I gains the penny from player II. If they don’t match, then player II gets the penny from player I.

PII
H T

PI
H 1, -1 -1, 1

T -1, 1 1, -1

There’s no Nash equilibrium here (in the way NE has been described so far). Allow players to play
this probabilistically. For example, PI might play H 1

3 of the time, and play T 2
3 of the time. PII

might play 3
4 on H, 1

4 on T.

Is there an equilibrium here? If p1 plays 1
3 H, 2

3 T, then p2 wants to play H more often than T. Then
p1 wants to play H more often than T. Then p2 wants to play T more often than H, . . . etc. Seems
that it is stable only if both players play 1

2 H, 1
2 T.
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mixed strategy

A mixed strategy for player i is a vector xi ∈ R
si
+ such that ∑s∈Si

xi
s = 1. The set of all mixed

strategies for player i is denoted ∆i.

mixed strategy profile

A mixed strategy profile is a vector x = (x1, . . . , xn) where xi ∈ ∆i is a mixed strategy for player
i. The set of all mixed strategy profiles is denoted ∆ = ∆1× · · · ×∆n. The mixed strategy profile
with player i removed is x−i ∈ ∆−i.

Note:
• If we play a strategy with probability 1, then it is a pure strategy (this is the way we play

previously).

• As convention for this course, we use s’s to represent pure strategies, x’s to represent mixed
strategies.

Example:
In matching pennies, if we order the pure strategies in the order H, T, then we had

x1 = (x1
H , x1

T) =

(
1
3

,
2
3

)
, x2 = (x2

H , x2
T) =

(
3
4

,
1
4

)
as mixed strategies. The strategy profile is x = (x1, x2) =

(
( 1

3 , 2
3 ), (

3
4 , 1

4 )
)

.

Why mixed strategies?

1. Introduce unpredictability in games that are played repeatedly. Examples: In penalty kicks,
you do not always kick to the same side; in politics, you do not always want to make major
announcements on Tuesdays. Then the oppositions and preempt you on their announcements
on Mondays.

2. Think of a player as representing a population, with probability of a strategy being proportional
to the portion of the population who prefer it. Example: Say 55% like donkeys and 45% like
elephants, perhaps there will be more donkeys in zoos.

Utility

We will use expected value as utility.

Example:
PII

H T

PI
H 1, -1 -1, 1

T -1, 1 1, -1

x1 =

(
1
3

,
2
3

)
, x2 =

(
3
4

,
1
4

)
Two cases for p1:

1. If p1 plays H as pure strategy, then 3
4

chance we get 1, 1
4 chance we get −1. We

expect to get 3
4 · 1 +

1
4 · (−1) = 1

2 .

2. If p1 plays T as pure strategy, then 3
4

chance we get −1, 1
4 chance we get 1. We

expect to get 3
4 · (−1) + 1

4 · 1 = − 1
2 .

Overall, p1 plays H 1
3 of the time and T 2

3 of the time. So the expected utility is 1
3 · (

1
2 ) +

2
3 · (−

1
2 ) =

− 1
6 .
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expected utility of a pure strategy

We are given a strategy profile x = (x1, . . . , xn) ∈ ∆. The expected utility of a pure strategy
si ∈ Si for player i is

ui(si, x−i) = ∑
s−i∈S−i

ui(si, s−i)︸ ︷︷ ︸
utility of
playing si

∏
j 6=i

xj
sj︸ ︷︷ ︸

probability that
the remaining

players play s−i

where ui(si, x−i) is the utility from the pure strategy game.

expected utility

The expected utility of player i in x is

ui(x) = ∑
si∈Si

xi
si︸︷︷︸

prob. that
pi plays si

ui(si, x−i)︸ ︷︷ ︸
utility pi gets
for playing si

Example:

For matching pennies above, u1(H, x2) = 1
2 , u1(T, x2) = − 1

2 , u1(x) = − 1
6

Example:
Suppose 3 players each make a choice between A and B. A $1 prize is split among players who
pick the majority choice. Suppose x1 = (p, 1− p), x2 = ( 1

2 , 1
2 ), x3 = ( 2

5 , 3
5 ). What is the expected

utility for p1?

When p1 plays A, there are 4 cases:

1. u1(A, A, A) = 1
3 . The probability that this happens is x2

A · x3
A = ( 1

2 )(
2
5 ) =

1
5 .

2. u1(A, A, B) = 1
2 . The probability that this happens is x2

A · x3
B = ( 1

2 )(
3
5 ) =

3
10 .

3. u1(A, B, A) = 1
2 . The probability that this happens is x2

B · x3
A = ( 1

2 )(
2
5 ) =

1
5 .

4. u1(A, B, B) = 0. Does not matter.

Utility for playing A is u1(A, x−1) = ( 1
5 )(

1
3 ) + ( 3

10 )(
1
2 ) + ( 1

5 )(
1
2 ) + 0 = 19

60

And u1(B, x−1) = 7
20 . Then expected utility for p1 is u1(x) = p · 19

60 + (1− p) 7
20 = 7

20 −
1

15 p.

It would make sense to pick p = 0, so p1 always plays B. (p3 is more likely to pick B, letting us
form a majority more often.)

2.5.1 Mixed equilibria

mixed Nash equilibrium

A mixed strategy profile x̄ ∈ ∆ is a mixed Nash equilibrium if for each player i ∈ N, ui(x̄) ≥
ui(xi, x̄−i) for all xi ∈ ∆i.

We often omit the word “mixed”, so it is also a Nash equilibrium.
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best response function

Given a profile x̄−i ∈ ∆−i, the best response function for player i, Bi(x̄−i), is the set of all mixed
strategies of player i that have maximum utility against x̄−i, i.e.,

Bi(x̄−i) =
{

x̄i ∈ ∆i : ui(x̄i, x̄−i) ≥ ui(xi, x̄−i) ∀xi ∈ ∆i
}

Proposition 2.9

x̄ = (x̄1, . . . , x̄n) ∈ ∆ is a Nash equilibrium if and only if x̄i ∈ Bi(x̄−i) for all i ∈ N.

Example: Matching pennies
PII

H T

PI
H 1, -1 -1, 1

T -1, 1 1, -1

Suppose x1 = (p, 1− p) and x2 = (q, 1− q).

For p1, the expected utility for playing H is q · 1 + (1− q) · (−1) = 2q − 1. The expected utility
for playing T is q · (−1) + (1 − q) · 1 = 1 − 2q. Utility for p1 is p(2q − 1) + (1 − p)(1 − 2q) =
p(−2 + 4q) + (1− 2q).

Given q, which p maximizes this utility? 1− 2q is constant, so we maximize p(−2 + 4q). 3 cases:

1. If q < 1
2 , then −2 + 4q < 0. So we maximize with p = 0.

2. If q = 1
2 , then −2 + 4q = 0. Then any p maximizes it, so p ∈ [0, 1].

3. If q > 1
2 , then −2 + 4q > 0. Maximize with p = 1.

BRF for p1:

B1(x2) =


{(0, 1)} q < 1

2

{(p, 1− p) : p ∈ [0, 1]} q = 1
2

{(1, 0)} q > 1
2

Similarly, for p2, the utility is q(2− 4p) + (2p− 1). Divide cases with p = 1
2 . Then

B2(x1) =


{(1, 0)} p < 1

2

{(q, 1− q) : q ∈ [0, 1]} p = 1
2

{(0, 1)} p > 1
2

We look for p, q such that x1, x2 are best responses to each other. Draw B1, B2 on a “graph”.

1

1

p = 1
2 , q = 1

2

B1

B2
p

q
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The intersection is where they are best responses simultaneously, hence a Nash equilibrium. x1 =
(1/2, 1/2), x2 = (1/2, 1/2) and (x1, x2) is a NE.

Example: Bach or Stravinsky
PII

B S

PI
B 2, 1 0, 0

S 0, 0 1, 2

Suppose x1 = (p, 1− p), x2 = (q, 1− q). We have

B1(x2) =


{(0, 1)} q < 1

3

{(p, 1− p) : p ∈ [0, 1]} q = 1
3

{(1, 0)} q > 1
3

B2(x1) =


{(0, 1)} p < 2

3

{(q, 1− q) : q ∈ [0, 1]} p = 2
3

{(1, 0)} p > 2
3

1

1

p = 2
3 , q = 1

3

B1

B2
p

q

p = q = 0

p = q = 1

3 NE: 2 pure strategies ((0, 1), (0, 1)) and ((1, 0), (1, 0)). 1 mixed strategy (( 2
3 , 1

3 ), (
1
3 , 2

3 ))

2.5.2 Support characterization

Suppose x̄−i is fixed. Which xi ∈ ∆i maximizes ui(xi, x̄−i)? Write a LP:

max ∑
x∈Si

xi
sui(s, x̄−i)

s.t. ∑
s∈Si

xi
s = 1

xi ≥ 0

(P)

Variables: xi
s for each s ∈ Si. What is the dual? One dual variable y.

min y
s.t. y ≥ ui(s, x̄−i) for all s ∈ Si

(D)

(P) is feasible (set xi to be any probability distribution). (D) is feasible (set y to be max value of
ui(s, x̄−i)). Therefore, (P) and (D) both have optimal solutions, and their optimal values are equal.

(D) is easy to solve: y = maxs∈Si ui(s, x̄−i), maximum utility when pure strategies are played against
x̄−i. (P) also has optimal value y. So the maximum utility of all mixed strategies is equal to the max
utility of pure strategies.

Complementary slackness conditions: xi
s = 0 or y = ui(s, x̄−i) for all s ∈ Si. Equivalently, xi

s > 0
implies y = ui(s, x̄−i). Translation: only pure strategies with maximum utility could have positive
probabilities in a best response.
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Theorem 2.10: Support characterization

Given x̄−i ∈ ∆−i, a mixed strategy xi ∈ Bi(x̄−i) if and only if xi
s > 0 implies s ∈ Si is a pure

strategy of maximum utility against x̄−i.

support

For a mixed strategy xi ∈ ∆i, the support is the set of strategies with positive probability in xi.

Rephrasing of Theorem 2.10: xi is in the BRF if and only if the support of xi are strategies with
maximum utility.

Example: Bach or Stravinsky
PII

B S

PI
B 2, 1 0, 0

S 0, 0 1, 2

Suppose p2 plays x2 = (q, 1 − q). The utilities of p1 using pure strategies are: u1(B, x2) = 2q,
u1(S, x2) = 1− q. Depending on q, the strategies with maximum utility are different.

1. If 2q < 1− q, then q < 1
3 , and B is not in the support and gets probability 0. BRF {(0, 1)}.

2. If 2q = 1− q, then q = 1
3 , and both B, S could be in the support. Any combination works, so

BRF {(p, 1− p) : p ∈ [0, 1]}.

3. If 2q > 1− q, then q > 1
3 , and S is not in the support. BRF {(1, 0)}.

This matches the BRF we calculated previously.

Example:

Consider a 2-player game with this payoff table. Suppose p2 plays x2 = (0, 1
3 , 2

3 ). What is B1(x2)?

D E F
A 2, 2 3, 3 1, 1

B 3, 1 0, 4 2, 1

C 3, 4 5, 1 0, 7

u1(A, x2) = 0 +
1
3
· 3 + 2

3
· 1 =

5
3

u1(B, x2) = 0 + 0 +
2
3
· 2 =

4
3

u1(C, x2) = 0 +
1
3
· 5 + 0 =

5
3

By support characterization, x1
B = 0. Any distribution over x1

A and x1
C works.

So B1(x2) = {(p, 0, 1− p) : p ∈ [0, 1]}.

The maximum utility for p1 is p · 5
3 + (1− p) · 5

3 = 5
3 , which is equal to the max utility for a pure

strategy.

Any strategy in B1(x2) maximizes utility for p1. Which of these maximizes utility for p2? This will
give a NE.

Suppose x1 = (p, 0, 1− p). Calculate the utilities for p2: u2(D, x1) = 4− 2p, u2(E, x1) = 1 + 2p,
u2(F, x1) = 7− 6p. If x2 = (0, 1

3 , 2
3 ) is in the best response, then E, F must have maximum utility.

1 + 2p = 7− 6p, so p = 3
4 . Utility for E, F is 5

2 . Utility for D is also 5
2 , so indeed E, F have max

utility. (So does D, but this is fine.)

So x1 = ( 3
4 , 0, 1

4 ) and x2 = (0, 1
3 , 2

3 ) are in the best responses for each other, and (x1, x2) is a NE.
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Note:
One “algorithm” for finding NE is by looking at possible combinations of the supports for each
player. In example above, if we ask “suppose support for p1 is {A, C} and support for p2 is {E, F}”
then we can use support characterization to find a NE or prove that none exist for these supports.

Problem: There are exponentially many support sets each player (∼ 2k if there are k pure strategies).
Not practical.

Exercise:
Show that in the game of rock paper scissors, both players playing ( 1

3 , 1
3 , 1

3 ) is the only Nash equi-
librium.

2.6 Voting game

Downs paradox Voting has costs. The probability that one vote is a decisive vote is very small. Costs
outweigh benefits.

Expectation: People don’t vote. Reality: people do vote.

Model for voter participation

Suppose there are two candidates A, B, and the number of supporters are a, b, respectively.

WLOG, assume a ≥ b. Each person can choose to “vote” or “abstain”. If they vote, then they
incur a cost of c where 0 < c < 1. Regardless voting or abstaining, each person gets a payoff of
2 if their supporting candidate wins, 1 for a tie, 0 for a loss.

Pure NE

Suppose a = b = 1.

PII (B)
A V

PI (A)
A 1, 1 0, 2-c
V 2-c, 0 1-c, 1-c

It’s like prisoner’s dilemma: both players vote, get lower utility than both players abstain.

Now suppose a = b ≥ 2. 4 cases:

1. Everyone votes. There is a tie, everyone has utility 1− c, switching gives 0. NE

2. Not everyone votes, and there is a tie. One who abstains can vote, 1→ 2− c > 1. Not NE

3. One candidate wins by 1 vote. One who abstains for the losing candidate can vote, 0→ 1− c > 0.
Not NE

4. One candidate wins by at least 2 votes. One who votes for the winning candidate can abstain,
2− c→ 2. Not NE

In a close election, we expect more people to vote.

Exercise:
Show that when a > b, there is no pure Nash equilibrium.

Mixed NE

Then we consider mixed Nash equilibrium: one possible scenario for a mixed NE.

Suppose a > b. Among all A supporters, b of them will vote and a− b of them will abstain. Suppose
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every B supporter will vote with the same probability p. So the best that B can do is a tie. It is easy to
check that p = 0 or p = 1 is not a NE. Assume p ∈ (0, 1).

Consider a B supporter. If they abstain, then B cannot win. So utility of “abstain” as pure strategy is
0. If they vote, then B ties only if all other B supporters vote (utility 1− c), otherwise B loses (utility
−c). Expected utility of “vote” as pure strategy is

pb−1︸︷︷︸
b−1 vote

(1− c)︸ ︷︷ ︸
utility
of a tie

+ (1− pb−1)︸ ︷︷ ︸
not all

b−1 vote

(−c)︸ ︷︷ ︸
utility of

a loss

= pb−1 − c

When is it possible that this is in a NE? p ∈ (0, 1), so both strategies have positive probabilities. To be
in the best response, support characterization implies the two utilities are equal. So 0 = pb−1 − c, or

p = c
1

b−1 .

Given this p, are A supporters incentivized to change their mixed strategies? Currently, all of them
are playing pure strategies. In order to switch, the utility of switching to the other pure strategy must
be greater.

1. Consider an A who abstained. Expected utility is pb︸︷︷︸
b vote

· 1︸︷︷︸
utility
of a tie

+ (1− pb)︸ ︷︷ ︸
<b vote

· 2︸︷︷︸
utility of

a win

= 2− pb

Expected utility of voting is 2− c (A guaranteed to win). 2− c = 2− pb−1 ≤ 2− pb (0 < p < 1)

Switching to a pure strategy does not increase utility. So switching to any mixed strategy does
not increase utility. No reason to switch.

2. Consider an A supporter who voted. Expected utility is pb(1− c)︸ ︷︷ ︸
tie

+ (1− pb)(2− c)︸ ︷︷ ︸
win

= 2− pb − c

If they abstain. . .

• A loses if all B supporters vote;

• A ties if b− 1 B supporters vote, 1 abstain;

• A wins otherwise.

Utility of abstaining is

pb · 0 + b

choices of
who abstains

· pb−1

b− 1 votes

· (1− p)

1 abstain

· 1 + (1− pb − b · pb−1 · (1− p))︸ ︷︷ ︸
remaining probability

·2 = 2− 2pb − bpb−1(1− p)

and we know: 2− pb − c ≥ 2− 2pb − bpb−1(1− p). No reason to switch.

When p = c
1

b−1 , this is a mixed NE.

Q What happens to voter participation as cost increase?

If c increase, then p increase, so more voters will vote.

2.7 Two-player zero-sum game

zero-sum

A strategic game is a zero-sum game if for all strategy profiles s ∈ S, ∑i∈N ui(s) = 0.

Examples: Matching pennies and rock paper scissors.
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For a two-player zero-sum game, let s1 = {1, . . . , m} and s2 = {1, . . . , n}. Define such a game with a
payoff matrix A ∈ Rm×n where u1(i, j) = Aij and u2(i, j) = −Aij.

Example:
PII

1 2 3

PI
1 3 5 -2

= A
2 -5 7 1

payoff for PI

PII
1 2 3

PI
1 -3 -5 2

= −A
2 5 -7 -1

payoff for PII

Note:
For a mixed strategy profile x = (x1, x2), u1(x1, x2) = −u2(x1, x2).

We use min-max argument for finding a NE: Given a strategy that we play, the opposing player will
maximize their utility, which maximizes our utility. Knowing how they would play, what can we do
to maximize our own utility?

Player I’s perspective: Suppose player I plays x1. They expect player II to play from their best response.

PII’s expected utility for playing pure strategy j is
−(x1)T A·j (A·j is the j-th column of A)

Utility of PII’s best response is equal to the maxi-
mum of these values,

max
j∈{1,...,n}

−(x1)T A·j = − min
j∈{1,...,n}

(x1)T A·j

So utility for PI is min
j∈{1,...,n}

(x1)T A·j

PI wants to maximize this:

max min
j∈{1,...,n}

(x1)T A·j

s.t.
m

∑
i=1

x1
i = 1

x1 ≥ 0

which is not an LP. So we turn it into

max u1

s.t. u1 ≤ (x1)T A·j ∀j ∈ {1, . . . , n}
m

∑
i=1

x1
i = 1

x1 ≥ 0

Example:
Expected utilities for PII’s 3 strategies are

u2(1, x1) = −3x1
1 + 5x1

2,

u2(2, x1) = −5x1
1 − 7x1

2,

u2(3, x1) = 2x1
1 − x1

2

Look for

max{−3x1
1 + 5x1

2,−5x1
1 − 7x1

2, 2x1
1 − x1

2}
=min{3x1

1 − 5x1
2, 5x1

1 + 7x1
2,−2x1

1 + x1
2}

max u1

s.t. u1 ≤ 3x1
1 − 5x1

2

u1 ≤ 5x1
1 + 7x1

2

u1 ≤ −2x1
1 + x1

2

x1
1 + x1

2 = 1

x1 ≥ 0
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Player II’s perspective: Suppose PII plays x2. Then PI will play from their best response.

Utility of PI’s best response is max
i∈{1,...,m}

−(x2)T Ai·

where Ai· is the i-th row of A.

PII’s utility is − max
i∈{1,...,m}

(x2)T Ai·

Maximizing this is equivalent to minimizing
max

i∈{1,...,m}
(x2)T Ai·

PI wants to maximize this:

min max
i∈{1,...,m}

(x2)T Ai·

s.t.
n

∑
i=1

x2
j = 1

x2 ≥ 0

which is not an LP. So we turn it into

min u2

s.t. (x2)T Ai· ≤ u2 ∀i ∈ {1, . . . , m}
n

∑
i=1

x2
j = 1

x2 ≥ 0

Example:
PI’s best response has utility

max{3x2
1 + 5x2

2 − 2x2
3,−5x2

1 + 7x2
2 + x2

3}

Thus

min u2

s.t. 3x2
1 + 5x2

2 − 2x2
3 ≤ u2

−5x2
1 + 7x2

2 + x2
3 ≤ u2

x2
1 + x2

2 + x2
3 = 1

x2 ≥ 0

Exercise:
The LPs for player I and player II are duals of each other.

Both LPs are feasible (take x1, x2 to be any probability distribution, u1, u2 as max/min values).

So both have optimal solutions with the same objective value. (Note: obj value of PI’s LP is the utility
of PI, so the obj value of PII’s LP is the negative of the utility of PII.) The optimal solutions are best
responses to each other, so they form a NE. Solve this using simplex (a modified version of simplex is
provably polynomial time).

Theorem 2.11

Assume finite pure strategies, any two-player zero-sum game has a mixed Nash equilibrium,
and this can be efficiently computed.

Example:
For our 2 LPs above, an optimal solution is

PI: x1
1 = 6

11 , x1
2 = 5

11 , u1 = − 7
11 (u1 is the utility of PI)

PII: x2
1 = 3

11 , x2
2 = 0, x2

3 = 8
11 , u2 = − 7

11 (−u2 is the utility of PII)

Note:
Computing NE in general is difficult. Even in the 3-player zero-sum game or 2-player general-sum
game, no polynomial time algorithm is known.
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2.8 Nash’s theorem

Theorem 2.12: Nash

Every strategies game with finitely many players and pure strategies has a Nash equilibrium.

2.8.1 Brouwer’s fixed point theorem

Brouwer

Let X be a convex and compact set in a finite-dimensional Euclidean space, and let f : X → X
be a continuous function. Then there exists x0 ∈ S such that f (x0) = x0 (“fixed point”)

Example:
Let X = [0, 1]. Consider any continuous function f : [0, 1]→ [0, 1].

1

1

f (x) = x

x

f (x)

The graph of f will always intersect f (x) = x, producing a fixed point. This is a consequence of
the intermediate value theorem (apply to f (x)− x)

Terminology from the theorem:

• We will think of an Euclidean space as Rn with the standard dot product, which defines how we
measure distance and angle.

• A set is convex if for any two points in the set, the line segment joining them is also in the set.

Precise definition: S is convex if for all u, v ∈ S, λu + (1− λ)v ∈ S for all λ ∈ [0, 1].

Note: The convex combination of any set of points is convex.

S = {λ1v1 + . . . + λnvn : λ1, . . . , λn ≥ 0, λ1 + . . . + λn = 1}

• A set is compact if it is closed and bounded1.

Note:
This is a deep theorem from analysis. We will not prove it here, though there are many fascinating
proofs of it (suggestion: look into the combinatorial proof using Sperner’s Lemma). None of the
proofs are constructive: we know that a fixed point exists, but the proofs do not tell us how to find
one.

Illustrations

1. Print a world map and place it on your desk. This is a continuous mapping from the surface of
Earth to the part of the surface occupied by the map on your desk. The theorem implies there is
a fixed point: some point on the map is directly on top of the point it represents on your desk.

2. Take a cup of tea and stir it. Let it settle. Then some part of the liquid is in the same spot before
the stir.

1This is not true in general, but it works for a subset of Rn by The Heine–Borel Theorem. See more in lec 13 and 20 in
https://notes.sibeliusp.com/pdfs/1201/amath331.pdf

https://notes.sibeliusp.com/pdfs/1201/amath331.pdf
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Relation to strategic games

We want to use Brouwer’s fixed point theorem when X is the set of all mixed strategy profiles of a
finite strategic game. Need to verify that ∆ is convex and compact.

Start with just one player i and their set of mixed strategies ∆i. If the set of pure strategies is {1, . . . , k},
then ∆i = {(xi

1, . . . , xi
k) : xi

j ≥ 0, xi
1 + . . . + xi

k = 1}

1

1

1

1

∆i

xi
1

xi
2

1

xi
1

xi
3

xi
2

k = 2 : ∆i = {(p, 1− p) : p ∈ [0, 1]} k = 3 : ∆i = {(p, q, r) : p + q + r = 1, 0 ≤ p, q, r ≤ 1}

In the case of k = 3, it is a triangle, that’s why we call it ∆. We can see (without proof) that ∆i

is compact: it is closed and any 2 points have distance at most 1. ∆i is convex: it is the convex
combination of the standard basis vectors e1, . . . , ek. (An element of ∆i has the form xi

1e1 + . . . + xi
kek

where xi
1 + . . . + xi

k = 1, xi
j ≥ 0.) These e1, . . . , ek are the pure strategies of player i.

The set of all strategy profiles is ∆ = ∆1 × · · ·∆n. We can “pretend” that this is a set in R|S1|+···+|Sn |. It
is still compact (a result, Tychonoff’s Theorem, from analysis is that the cartesian product of compact
sets is compact). It is also convex. So we can use ∆ as the set in Brouwer’s fixed point theorem. Now
we need to find a continuous function f : ∆→ ∆ that relates fixed points to mixed Nash equilibria.

Given a strategy profile x = (x1, . . . , xn), a player i will look at possibly switching to a pure strategy to
gain utility against x−i. If pure strategy s improves utility, then player i wants to shift the probability
distribution so that s receives higher probability. The function will take x, and map it to another
strategy profile where each player improves their utility.

Example: Rock paper scissors
R

P S

R

P S

R

P S

R

P S

PI PII PI PII

Suppose both play rock as a pure strategy.
They can increase utility by moving toward paper.

Suppose PI plays rock, PII plays paper. PII
cannot improve utility by moving to paper
or scissors. PI will move more towards
scissors than paper.

What is the meaning of a fixed point? No player can improve their utility. So it must be a Nash
equilibrium.
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Defining the function

First define Φ which records the improvement of a player in switching to a pure strategy. Given
strategy profile x ∈ ∆, a player i, and a pure strategy s ∈ Si, define Φi

s(x) = max{0, ui(s, x−i)− ui(x)}.
If playing s increases utility for player i, then Φi

s(x) represents this increase. Otherwise Φi
s(x) = 0.

For player i and strategies s where Φi
s(x) > 0, we want to increase probability on s. We want to replace

xi
s by xi

s + Φi
s(x). But the sum of probabilities is greater than 1. We can normalize this by dividing by

∑s′∈Si
(xi

s′ + Φi
s′(x)) = 1 + ∑s′∈Si

Φi
s′(x)

We define f : ∆→ ∆ by f (x) = x̄ where for each player i and strategy s ∈ Si, x̄i
s =

xi
s + Φi

s

1 + ∑s′∈Si
Φi

s′(x)
We can verify that f (x) ∈ ∆.

Example:
In rock paper scissors where PI plays rock and PII plays paper, the strategy profile is x = ((1, 0, 0), (0, 1, 0)).
For PII, Φ2

s (x) = 0 for each s ∈ {R, P, S}. For PI, Φ1
R(x) = 0, Φ1

P(x) = 1, Φ1
S(x) = 2. So the new

strategy for PI is

x̄1
R =

1 + 0
1 + 3

=
1
4

, x̄1
P =

0 + 1
1 + 3

=
1
4

, x̄1
S =

0 + 2
1 + 3

=
1
2

.

Thus, f (x) =
(
( 1

4 , 1
4 , 1

2 ), (0, 1, 0)
)

.

2.8.2 Completing the proof of Nash’s theorem

Given x ∈ ∆, consider Φ and f : ∆ → ∆ defined above. We see that f is continuous since Φ is
continuous. By Brouwer’s fixed point theorem, there exists x̂ ∈ ∆ such that f (x̂) = x̂. We prove that x̂
is a NE by showing x̂i ∈ Bi(x̂−i).

For player i, let s ∈ Si be a pure strategy such that x̂i
s > 0 and ui(s, x̂−i) ≤ ui(x̂). (Exercise: show such

s exists.) Then Φi
s(x̂) = 0. Since x̂ is a fixed point, x̂i

s = ( f (x̂))i
s = x̂i

s/(1 + ∑s′∈Si
Φi

s′(x̂)). Since x̂i
s > 0,

the denominator must be 1. So ∑s′∈Si
Φi

s′(x̂) = 0. But Φ is non-negative, so Φi
s′(x̂) = 0 for all s′ ∈ Si.

This means that ui(s′, x̂−i) ≤ ui(x̂) for all s′ ∈ Si. So playing x̂i gives the highest utility against x̂−i, so
x̂i ∈ Bi(x̂−i). Since this holds for all players, x̂ is a Nash equilibrium.

Note:
This proves that a NE always exists, but the proof does not show us how to find such a NE, as it
depends on Brouwer’s fixed point theorem.



3
Cooperative games

3.1 Introduction

There are games where group of players can work together to obtain higher utility.

Example: Ice cream
Alice, Bob, Carol want to buy ice cream. Three sizes: 1L, 1.5L, 2L with costs $6, $9, $11 respectively.
A has $3, B has $4, C has $5. On their own, they cannot buy any. But if they pool money together,
they can get some ice cream. (e.g. B + C can buy 1.5L)

cooperative game

A cooperative game is given by a set of players N and a characteristic function v : 2N → R that
assigns a value v(S) to each coalition S ⊆ N of players. We use (N, V) to represent this game.
The set N is the grand coalition.

Example:
In the ice cream game, N = {A, B, C}, and v is defined by

S ∅, {A}, {B}, {C} {A, B} {A, C} {B, C} {A, B, C}
v(S) 0 1 1 1.5 2

General assumptions: v(∅) = 0, v(S) ≥ 0 for all S ⊆ N.

Example: 101-member parliament
A country has a 101-member parliament. There are 4 parties A, B, C, D with 40, 22, 30, 9 members,
respectively. They need to decide how to spend a $1 billion windfall, they need to form a majority
to spend it. Thus N = {A, B, C, D} and

v(S) =

{
109 parties in S have ≥ 51 members
0 otherwise

Example: matching game
In a matching game, we are given a graph G = (V, E) and edge weights ω : E → R. The players
are the vertices, V = N. The weight of an edge represents the benefits if two vertex players work
together. For any subset S ⊆ N, the value is the maximum weight of a matching using vertices in
S.

37
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value 15

Outcomes of cooperative games

Outcomes of Strategic games: Strategy profiles (pure or mixed). Which strategy is played by each
player?

Outcomes of Cooperative games:

1. Divide the players into groups, we call them coalitions. “coalition structure”

Each coalition will generate their assigned value.

2. Distribute the value that each coalition generates among its members. “payoff vector”

coalition structure

Given a cooperative (N, v), a coalition structure is a partition π of N, i.e., π = (C1, . . . , Ck)
where each Ci ⊆ N, Ci ∩ Cj = ∅ whenever i 6= j, and C1 ∪ · · · ∪ Ck = N.

payoff vector

A payoff vector is a vector x ∈ Rn such that x ≥ 0 and

∑
i∈Cj

xi ≤ v(Cj)

for all j = 1, . . . , k.

Notation: For any T ⊆ N, x(T) = ∑i∈T xi. So the inequality here is x(Cj) ≤ v(Cj).

efficient outcome

An outcome consists of (π, x). Such an outcome is efficient if x(Cj) = v(Cj) for all j.

Example:
An outcome of the ice cream game is (π, x) where π = ({A, B}, {C}), and xA = xB = 0.5, xC = 0.
This outcome is efficient: v({A, B}) = 1 = xA + xB, v({C}) = 0 = xC.

Some classes of games

1. Monotone games: S ⊆ T =⇒ v(S) ≤ v(T). “more games produce more value”

2. Superadditive games: for disjoint S, T, v(S) + v(T) ≤ v(S ∪ T).

“forming coalitions is always better”

Superadditive =⇒ monotone, converse is not true.
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We usually only consider the grand coalition: π = (N).

3. Convex games: for any S, T, v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T). (supermodularity inequality)

Convexity =⇒ superadditivity, converse is not true.

Proposition 3.1

A game (N, v) is convex if and only if for every S, T where S ⊆ T ⊆ N and for every player
i ∈ N \ T,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S)

“A player is more useful in larger coalitions”

3.2 Shapley values

Two desirable properties of an outcome in cooperative games:

1. Fairness. The payoff vector should reflect the contribution of the players to their coalitions.

2. Stability. We want to incentivize the players to stay in their assigned coalition in the coalition
structure.

Shapley values deal with the fairness of the payoff vector. Assume players form the grand coalition.
(If not, look at individual coalitions separately.)

How to quantify a player’s contribution?

Idea 1: Compare the value of the coalition before and after joins it.

Example: Ice cream game. The contribution of A is v({A, B, C})− v({B, C}) = 0.5

Problem: The sum of the payoffs may exceed the value of coalition x(N) > v(N).

Idea 2: Fix a sequence of players, and see their contribution sequentially.

Example: Use sequence A, B, C. v({A}) = 0, so A contributes 0. v({A, B}) = 1, so B con-
tributes 1. v({A, B, C}) = 2, so C contributes 1. This is efficient, x(N) = v(N).

Problem: Different orderings produce different results.

Shapley’s idea: Look at all possible orderings of players, average a player’s contributions.

SN

A permutation of N has the form σ = (σ1, . . . , σn) where each σi is a distinct element of N. The
element σi is at the i-th position of σ. The set of all permutations of N is denoted SN .

marginal contribution

Given a permutation σ ∈ SN , the marginal contribution of player σi is

∆σ(σi) = v({σ1, . . . , σi})− v({σ1, . . . , σi−1})
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Shapley value

The Shapley value of player i is

ϕi =
1
n! ∑

σ∈SN

∆σ(i)

Example:
In the ice cream game, N = {A, B, C}, and there are 6 permutations:

σ1 = (A, B, C), σ2 = (A, C, B), σ3 = (B, A, C),

σ4 = (B, C, A), σ5 = (C, A, B), σ6 = (C, B, A)

We calculate the marginal contribution of A in each of the permutations:

∆σ1(A) = v({A})− v(∅) = 0

∆σ2(A) = v({A})− v(∅) = 0

∆σ3(A) = v({B, A})− v({B}) = 1

∆σ4(A) = v({B, C, A})− v({B, C}) = 0.5

∆σ5(A) = v({C, A})− v({C}) = 1

∆σ6(A) = v({C, B, A})− v({C, B}) = 0.5

So the Shapley value for A is ϕA = 1
6 (0 + 0 + 1 + 0.5 + 1 + 0.5) = 1

2

Other Shapley values; ϕB = ϕC = 3
4

4 good properties of Shapley values

1. Efficiency: it distributes v(N) to all players.

Proposition 3.2

∑
i∈N

ϕi = v(N)

Proof:
For any σ ∈ SN , the sum of all marginal contributions is

∑
i∈N

∆σ(i) =
n

∑
i=1

∆σ(σi) since permutation is a bijection

= [v({σ1})− v(∅)] + [v({σ1, σ2})− v({σ1})] + · · ·+ [v({σ1, . . . , σn})− v(σ1, . . . , σn−1)]

= v({σ1, . . . , σn})− v(∅)

= v(N)

So the sum of Shapley values is

∑
i∈N

ϕi = ∑
i∈N

1
n! ∑

σ∈SN

∆σ(i) =
1
n! ∑

σ∈SN

∑
i∈N

∆σ(i) =
1
n! ∑

σ∈SN

v(N)=

|SN | = n!

1
n!
(n!)v(N) = v(N)

2. Symmetric.
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symmetric players

Two players i, j are symmetric if v(C ∪ {i}) = v(C ∪ {j}) ∀C ⊆ N \ {i, j}. (they contribute to
coalitions equally)

Example:
In the ice cream game, B, C are symmetric. v(∅ ∪ {B}) = v(∅ ∪ {C}) = 0, v({A} ∪ {B}) =
v({A} ∪ {C}) = 1.

Proposition 3.3

If i, j are symmetric players, then ϕi = ϕj.

i j

j i

...

SN swap i, j

j i

i j

...

SN

calculate marg cont
of i here

calculate marg cont
of j here=

Proof:
Define f : SN → SN where f (σ) is obtained from σ by swapping i and j. This is a bijection f−1 = f .
We claim ∆σ(i) = ∆ f (σ)(j). Two cases:

• Suppose i precedes j in σ. Let C be all elements preceding i. In f (σ), C is also the elements
preceding j. So

∆σ(i) = v(C ∪ {i})− v(C) and ∆ f (σ)(j) = v(C ∪ {j})− v(C)

Since C ⊆ N \ {i, j} and i, j are symmetric, v(C ∪ {i}) = v(C ∪ {j}). So ∆σ(i) = ∆ f (σ)(j).

• Suppose j precedes i in σ. Let C be all elements preceding i except j. In f (σ), C is also the
elements that precedes j except i. So

∆σ(i) = v(C ∪ {j} ∪ {i})− v(C ∪ {j}) and ∆ f (σ)(j) = v(C ∪ {i} ∪ {j})− v(C ∪ {i})

Since C ⊆ N \ {i, j} and i, j are symmetric, v(C ∪ {j}) = v(C ∪ {i}), so ∆σ(i) = ∆( f (σ))(j).

Therefore,

ϕi =
1
n! ∑

σ∈SN

∆σ(i)=

from above

1
n! ∑

σ∈SN

∆ f (σ) j=

since f is a bijection

1
n! ∑

σ∈SN

∆σ(j) = ϕ(j)

Example: Unanimity Game

Suppose |N| = n and v(S) =

{
1 S = N
0 otherwise

Any pair of players is symmetric, so ϕi = ϕj for any i, j. Since ϕ is efficient, the sum is v(N) = 1.
So ϕi =

1
n for each i ∈ N.
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3. Dummy player.

dummy player

i is a dummy player if v(S ∪ {i}) = v(S), ∀S ⊆ N \ {i}. The player does not contribute to any
coalition.

Example: 101-seat parliament
A, B, C, D with 40, 22, 30, 9 seats. Party D is a dummy player: no combination of A, B, C exists
where it is not a majority, but adding 9 gives a majority.

Proposition 3.4

If i is a dummy player, then ϕi = 0.

Proof:
For any σ ∈ SN , say i is at the j-th position (σj = i), the marginal contribution of i is ∆σ(i) =
v({σ1, . . . , σj−1, i})− v({σ1, . . . , σj−1}) = 0 by definition of a dummy player. So

ϕi =
1
n! ∑

σ∈SN

∆σ(i) = 0

Note:
The converse is not true. If a game is monotone, then the converse is true.

4. Additivity: Suppose there are multiple games with the same set of players. We add the values
together to get a new game. Then the Shapley values are also added together.

Proposition 3.5

Let (N, v1), (N, v2) be two cooperative games. Define v3(S) = v1(S) + v2(S), ∀S ⊆ N. Let ϕ
j
i be

the Shapley values of player i in (N, vj), j = 1, 2, 3. Then ϕ3
i = ϕ1

i + ϕ2
i for all i.

Summary The Shapley values satisfy 4 good properties: efficiency, symmetric, dummy player, addi-
tivity. Deep result: The Shapley value function is the only one that satisfies all 4 properties. (If f is a
function that maps (N, v) to a real vector Rn and all properties hold, then f gives the Shapley values.)

3.3 The core

Stability: Given an outcome, what would be a reason that players want to deviate from it? A group of
players could generate more value than what they are receiving. x(C) < v(C)

core

The core of a cooperative game (N, v) consists of all outcomes (π, x) such that x(C) ≥ v(C) for
all C ⊆ N.

Example: Ice cream game
Consider (π, x) with π = ({A, B}, {C}) and xA = 0.5, xB = 0.5, xC = 0. If C joins with {A, B}, then
they produce value 2, while currently their combined payoffs is 1. Better if they form {A, B, C}, not
in the core.
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Same reasoning gives π = (N) if (π, x) is in the core. If xA = 2, xB = xC = 0, then {B, C} can get
more value. If xA = 0, xB = xC = 1, then (π, x) is in the core. This satisfies these inequalities:

xA + xB + xC ≥ 2, xA + xB ≥ 1, xA + xC ≥ 1, xB + xC ≥ 1.5, xA ≥ 0, xB ≥ 0, xC ≥ 0

Properties of the outcomes in the core

1. They are efficient within the coalition structure.

Proposition 3.6

If (π, x) is in the core, then x(C) = v(C) for each C ∈ π.

Proof:
Let C ∈ π. By the definition of the core, x(C) ≥ v(C). Since (π, x) is a valid outcome, x(C) ≤ v(C).
Therefore, x(C) = v(C) for all C ∈ π.

2. The coalition structure generates the maximum amount of total value among all outcomes. “social welfare”

v(π)

v(π) = ∑
C∈π

v(C)

Proposition 3.7

If (π, x) is in the core, then v(π) ≥ v(π′) for all partitions π′ of N.

Proof:
v(π) = ∑

C∈π

v(C)=

By Proposition 3.6

∑
C∈π

x(C)=

Since π is a
partition of N

∑
i∈N

xi =

Since π′ is a
partition of N

∑
C′∈π′

x(C′)≥

Since (π, x)
is in the core

∑
C′∈π′

v(C′) = v(π′)

Note:
This proposition only says that coalition structures that maximize total value are eligible to be in
the core. It does not mean that there exists an outcome in the core with this structure.

Games with empty cores

Example: 3-player majority game

N = {1, 2, 3}, v(S) =

{
1 |S| ≥ 2
0 otherwise

We claim that no outcome is in the core. Suppose (π, x) is in the core. Then x1 + x2 + x3 ≥
1, x1, x2, x3 ≥ 0. So xi ≥ 1

3 for some i. The value of any coalition structure is at most 1, so
x1 + x2 + x3 ≤ 1. This means x(N \ {i}) ≤ 2

3 . However, v(N \ {i}) = 1 > x(N \ {i}). This
contradicts the assumption that (π, x) is in the core, which implies core is empty.

Main question: which games have non-empty cores?

3.3.1 Cores of superadditive games

Goal: Determine when a superadditive game has a non-empty core. We can narrow the search: we
only need to consider outcomes that form the grand coalition.
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Proposition 3.8

Let (N, v) be a superaddtive game. If (π, x) is in the core, then ((N), x) is in the core.

Proof:
We need to prove: the core conditions holds, and ((N), x) is a valid outcome.

Since (π, x) is in the core, x(C) ≥ v(C) for all C ⊆ N. This still holds for ((N), x).

To show that ((N), x) is a valid outcome, we need to show that x(N) ≤ v(N).

x(N)=

Since π is a
partition of N

∑
C∈π

x(C)≤

Since (π, x) is
a valid outcome

∑
C∈π

v(C)≤

Superadditivity

v(N)

Example: Unanimity game

v(S) =

{
1 S = N
0 otherwise

To determine if the core is non-empty, we only need to consider ((N), x). x satisfies ∑i∈N xi = 1
(Proposition 3.6) and ∑i∈S xi ≥ 0 for all S ⊆ N. e.g., xi =

1
n , ∀i, or x1 = 1, xi = 0 if i 6= 1.

Characterizing superaddtive games with non-empty cores

Given an outcome ((N), x), what must x satisfy to be in the core? We claim that x must be in the set

C = {x ∈ RN : x(N) = v(N)

Proposition 3.6

, x(C) ≥ v(C)

Definition of the core

∀C ⊆ N}

Example: Ice cream game

C =



x ∈ RN :

xA + xB + xC = 2,

xA ≥ 0,

xB ≥ 0,

xC ≥ 0,

xA + xB ≥ 1,

xA + xC ≥ 1,

xB + xC ≥ 1.5,

xA + xB + xC ≥ 2


Now C is the intersection of halfspaces, so it is a polyhedron. Mini-result: (N, v) has a non-empty core
if and only if C is non-empty.

We can solve the problem of “is C non-empty” using a linear program.

Let (P) be the following LP:

min x(N)

s.t. x(C) ≥ v(C) ∀C ⊆ N

Take the dual (D):

max ∑
C⊆N

yCv(C)

s.t. ∑
C⊆N,i∈C

yC = 1 ∀i ∈ N

y ≥ 0
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Example:

min xA +xB +xC
s.t. xA ≥ 0

xB ≥ 0
xC ≥ 0

xA +xB ≥ 1
xA +xC ≥ 1

xB +xC ≥ 1.5
xA +xB +xC ≥ 2

Rationale: (P) is feasible (take large x), and
x(N) ≥ v(N) is a constraint, so (P) is bounded.
=⇒ (P) has an optimal solution. If optimal
value is v(N), then we have optimal solution x
with x(N) = v(N) and x(C) ≥ v(C), ∀C ⊆ B, so
x ∈ C.

max yAB +yAC +1.5yBC +2yABC

s.t. yA +yAB +yAC +yABC = 1

yB +yAB +yAC +yABC = 1

yC +yAC +yBC +yABC = 1

y ≥ 0

(P) has an optimal value v(N) ⇔ (D) has opti-
mal value v(N) ⇔ ∑C⊆N yCv(C) ≤ v(N) for all
feasible y.

(Subtle pt: Is it possible that ∑
C⊆N

yCv(C) < v(N)

for all y?)

What is the meaning of the dual?

1. Feasible solution: ∑
C⊆N,i∈C

yC = 1.

Example:

yAB = yC = 1

({A, B}, {C})

or yABC = 1

({A, B, C})

or yAB = yBC = yAC = 1
2

“fractional” partition
A works for

{A, B} 1/2 the time,
{A, C} 1/2 the time,
=⇒ Total 1 for A

A feasible solution y is a generalized coalition structure. yC represents the fraction of time each
member will contribute to C, with a total time of 1 from each player. Any such feasible y is called
a balancing weight.

2. Objective. ∑
C⊆N

yCv(C) ≤ v(N).

Example:
yABv({A, B}) + yCv({C}) ≤ 2

v({A, B}) + v({C})

value of the coalition
structure ({A, B}, {C})

≤ 2

value of the grand
coalition (N)

By Proposition 3.7, maximize social welfare.

Then ∑C⊆N yCv(C) is the total value of the fractional partition represented by y. Then inequality
∑C⊆N yCv(C) ≤ v(N) means the value of the grand coalition is maximum over the values of any
fractional partition. This generates Proposition 3.7.

A game that satisfies this inequality for all balancing weight y is called a balanced game.

Theorem 3.9: Bondareva-Shapley

A superadditive game has a non-empty core if and only if it is balanced.
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Game with non-empty cores

In superadditive games with non-empty cores, there is always an outcome in the core with the grand
coalition. This is not necessarily the case for cooperative games in general.

Example:

Let N = {1, 2, 3, 4}, v(S) =

{
2 |S| ≥ 2
0 otherwise

By Proposition 3.7, coalition structure in the core has highest value. v(N) = 2. But v({1, 2}, {3, 4}) =
4. So the grand coalition cannot be in any outcome of the core. The core is non-empty: π =
({1, 2}, {3, 4}) with x = (1, 1, 1, 1) is in the core.

Checking if the core is non-empty cannot be reduced to checking only the grand coalition. But we can
relate this to superadditive games.

superadditive cover

For any cooperative game (N, v), its superadditive cover is (N, v∗) where, for each S ⊆ N,

v∗(S) = max{v(π) : π is a partition of S}

Example:

The superaddtive cover for example above is (N, v∗) where v∗(S) =


4 |S| = 4
2 |S| = 2, 3
0 |S| = 0, 1

For example,

v∗({1, 2, 3}) = max{v({1, 2, 3}), v({1}, {2, 3}), v({2}, {1, 3}), v({3}, {1, 2}), v({1}, {2}, {3})} = 2

Then we can prove that superadditive cover is superaddtive.

Proposition 3.10

A cooperative game (N, v) has a non-empty core if and only if its superaddtive cover (N, v∗)
has a non-empty core.

Example:
Check that ((N), (1, 1, 1, 1)) is in the core of (N, v∗) above.

Proof:
(⇒) Let (π, x) be in the core of (N, v).

Note that by Proposition 3.7, v(π) has the maximum value among all partitions of N. So by
the definition of superadditive cover, v∗(N) = v(π).

1.
v∗(N) = v(π) = ∑

C∈π

v(C)=

Proposition 3.6
(π, x) is in the core

∑
C∈π

x(C)=

Since π is a
partition of N

∑
i∈N

xi = x(N)

2. Let C ⊆ N. Suppose v∗(C) = v(π′) for some partition π′ of C. Then

v∗(C) = v(π′) = ∑
C′∈π′

v(C′)≤

(π, x) is
in the core

∑
C′∈π′

x(C′)=

Since π′ is a
partition of C

x(C)

So ((N), x) is in the core of (N, v∗).
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(⇐) Since (N, v∗) is superadditive, there exists a payoff vector x such that ((N), x) is in the core
Proposition 3.8. By the definition of the superadditive cover, v∗(N) = v(π) for some partition
π of N.

1. It is a valid outcome, v(C) ≥ x(C) for all C ∈ π; and

2. core condition is satisfied, v(C) ≤ x(C) for all C ⊆ N. We leave the proof of them as
exercises.

Corollary 3.11

A cooperative game has a non-empty core if and only if its superadditive cover is balanced.

Proof:
Combine the Bondareva-Shapley theorem with Proposition 3.10.

3.3.2 Cores of convex games

Example: Bankruptcy game
Bob the Banker is bankrupt. He owes three people money, $100, $200, $300 each. Bob only has
$200. How should Bob’s money be divided? $50, $50, $100? $0, $0, $200? which ones are stable?

General model: Bob has $M, he owes money to n people N, amounts owed are d ∈ RN . Assume
0 ≤ M ≤ ∑i∈N di.

Cooperative game: (N, v) where v(S) = max{0, M−∑i∈N\S di} for each S ⊆ N.

Meaning: Players are taking a pessimistic view, v(S) is the amount left if the remaining players take
what they owed.

With numbers above, M = 200, d = (100, 200, 300). Examples of values: v({2, 3}) = 200− d1 =
100, v({1, 2}) = 0.

Exercise:
Show that is a convex game.

Proposition 3.12

Convex games have non-empty cores.

Idea: The marginal contributions of the players in any permutation form the payoff vector in the core.

Proof:
Since convex games are superadditive, it suffices to find x such that ((N), x) is in the core (Propo-
sition 3.8). Let σ ∈ SN . WLOG, assume σ = (1, 2, . . . , n). Define x by xi = ∆σ(i).

1. In the proof of Proposition 3.2, x(N) = ∑n
i=1 ∆σ(i) = v(N).

2. Let C ⊆ N. Suppose C = {i1, . . . , ik} where i1 < · · · < ik.

For any ij, the “equivalent convex condition” implies

v
({

1, . . . , ij
})
− v

({
1, . . . , ij − 1

})
≥ v

({
i1, . . . , ij

})
− v

({
i1, . . . , ij−1

})
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So

x(C) =
k

∑
j=1

∆σ

(
ij
)

=
k

∑
j=1

(
v
({

1, . . . , ij
})
− v

({
1, . . . , ij − 1

}))
≥

k

∑
j=1

(
v
({

i1, . . . , ij
})
− v

({
i1, . . . , ij − 1

}))
= v ({i1, . . . , ik})− v(∅)

= v(C)

Note:
Any vector of marginal contributions is in the core with the grand coalition. The set of all vectors
in the core is C, which is a polyhedron, which is convex. The vector of Shapley values ϕ is a convex
combinations of the marginal contributions, so it is also in the core.

Stronger result: C is precisely equal to the convex combinations of all marginal contribution vectors.
(We will not prove this)

Example: Bankruptcy game

Shapley values: (33 + 1
3 , 83 + 1

3 , 83 + 1
3 ). This is in the core with the grand coalition. Order the

players σ = (3, 2, 1), the marginal contributions (100, 100, 0) is also in the core.

3.4 Matching games

Recall that matching game consists of a graph G, the players are the vertices N = V(G), and non-
negative weights w. The value v(S) of S ⊆ N is the maximum weight of a matching using vertices in
S. Notation: For a matching M, w(M) is the total edge weight of the matching.

Example:

a b

d c

3

2 7

6

5

4

v({a, b}) = 3, v({a, b, c}) = 6, v({a, b, c, d}) = 10

We interpret the weight of and edge as the value generated by the two players on both sides when they
work together. This game is superadditive (check), so we only need to consider the grand coalition
when determining if has a non-empty core. Recall: ((N), x) is in the core if and only if x ∈ C where

C = {x ∈ RN : x(N) = v(N), x(C) ≥ v(C), ∀C ⊆ N}

There are exponentially many inequalities. We can make a simplification: Define

C′ = {x ∈ RN : x(N) = v(N), xu + xv ≥ wuv ∀uv ∈ E(G), x ≥ 0}
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Proposition 3.13

C = C′

Proof:
If x ∈ C, then x satisfies all constrains in C′ (take C = {u, v} for each uv ∈ E(G); take C = {v} to
get x ≥ 0). So C ⊆ C′.

C

M

Let x ∈ C′. Then x(N) = v(N). Let C ⊆ N, and let M be a maximum weight matching in C. Then

x(C) ≥ ∑
uv∈M

xu + xv since M is a matching, and let M be a maximum weight matching in C

≥ ∑
uv∈M

wuv since x ∈ C′

= w(M) = v(C)

Example:

a b

d c

3

2 7

6

5

4

1 4

3 2

in the core with grand coalition

maximum matching

Check: xa + xb = 5 ≥ 3 = wab

xb + xc = 6 ≥ 6 = wbc

...

Observations: The edges in the maximum matching are “efficient” (xu + xv = wuv) for all uv ∈ M.

Example:

a

b c

2

2

3

xa

xb0

v({a, b, c} = 3

If ((N), x) is in the core, then xa + xc = 3. This implies that xb = 0 because

x(N) = v(N). At least one of xa, xc is at most 1.5. Say it is xa.

Then xa + xb ≤ 1.5, contradicting xa + xb ≥ 2, =⇒ the core is empty.

LP formulation

We can determine if C′ is non-empty by solving the following LP:
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min x(N)
s.t. xu + xv ≥ wuv ∀uv ∈ E(G)

x ≥ 0
(P)

C′ is non-empty if and only if (P) has optimal
value v(N).

max ∑
uv∈E(G)

wuvyuv

s.t. ∑
{uv:uv∈E(G)}

yuv ≤ 1 ∀u ∈ N

y ≥ 0

(D)

C′ is non-empty if and only if (D) has optimal
value v(N).

Example:
min xa + xb + xc + xd

s.t. xa + xb ≥ 3
xa + xc ≥ 2
xa + xd ≥ 4
...
x ≥ 0

max 3yab + 2yac + 4yad + . . .

s.t. yab + yac + yad ≤ 1
...

y ≥ 0

Meaning of y: If y is integral, then its values are 0 or 1. For each vertex, the number of incident edges
with value 1 is at most 1. So the edges with value 1 form a matching. Maximizing integral solutions
will give us the weight of a max matching, which is v(N). But y could be fractional. So feasible
solutions to (D) are generalized matchings.

a

b c

2

2

3
1
2

1
2

1
2

fractional “matching”

max matching, v(N) = 3

sum of weights of the fractional soln is 1
2 · 2 +

1
2 · 2 +

1
2 · 3 = 7

2 > 3
⇒ optimal value of (D) 6= v(N)⇒ empty core

As long as no fractional matching has weight higher than v(N), then v(N) is the optimal value
achieved by a maximum matching.

Proposition 3.14

The core of the matching game is non-empty if and only if (D) has an integral optimal solution.

Proof:
It suffices to prove that (P) has optimal value v(N) if and only if (D) has an integral optimal
solution.

(⇒) Suppose (P) has optimal value v(N). Suppose v(N) = w(M) for some maximum matching
M. Define y ∈ RE(G) by

ye =

{
1 e ∈ M
0 e /∈ M

∀e ∈ E(G)

Then y is feasible for (D) (since M is matching) with objective value w(M) = v(N). By weak
duality, y is optimal for (D), and it is an integral optimal solution.

(⇐) Suppose y is an integral optimal solution for (D). Let M′ = {e ∈ E(G) : ye = 1}. Then M′ is
a matching with optimal value w(M′). Since y is optimal, M′ must be a maximum matching.
So w(M′) = v(N). So (P) has optimal value v(N).
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Note:
When the graph is bipartite, (D) always has an integral optimal solution. Hence the core is non-
empty. For general graphs, there is an efficient algorithm to determine if (D) has an integral optimal
solution.

3.5 Network bargaining game

Two-player bargaining

Alice and Bob are negotiating over how to split $1 M. They can only take the money if both agree on
how to split.

A B

1M0.5M 0.5M

natural outcome

A B

1M
C Doffers α offers β

Suppose there are outside options: Carol offers α to Alice if they work together, Dan offers β to Bob if
they work together.

A B

1M
C Doffers

0.4M
offers
0.7M

A B

1M
C Doffers

0.4M
offers
0.2M

will work with D,
unless he gets ≥ 0.7M

⇓
A gets ≤ 0.3M,
so A would work
with C

wants at least
0.4M to work
with B

wants at least
0.2M to work
with A

Negotiation between A, B
breaks down. This happens
if α + β > 1M

There are 0.4M left. Split then equally.
⇒ A gets 0.6M, B gets 0.4M

Nash’s bargaining solution: Players A, B try to split w, each has outside options α, β respectively. If
α + β > w, then no split is possible. Otherwise, xA = α + w−α−β

2 , xB = β + w−α−β
2 .

Network bargaining

Given a graph G, the players are the vertices N = V(G). Each edge e has weight we ≥ 0. Which paris
form? How do they split their value?

Example:

a b c

d

e

0 1

1
2

1
2

0

1 1

1

1

5 players negotiating. Who has more negotiating power?
One possible result with partners ∼ and payoffs �
Player b has the most powerful position.
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An outcome of the network bargaining game consists of a matching M an a payoff vector x ∈ RN such
that

xu + xv = wuv for all uv ∈ M, xv = 0 if v is not matched by M, x ≥ 0

The stability of an outcome depends on the outside options of the players.

outside option

For an outcome (M, x) and a player u, the outside option of u is

αu = max({0} ∪ {wuv − xv : uv ∈ E \M})

This is the maximum value that u can get by defecting from their current partner in M. No need to
defect if αu ≤ xu.

stable outcome

An outcome (M, x) is stable if αu ≤ xu for all u ∈ N.

Example:

a b c

d

e

0 1

1
2

1
2

0

1 1

1

1

αa = 0

αe= 0

αd= max{1− 1} = 0

αc=max{1− 1}= 0

αb = max{1− 0, 1− 1
2 } = 1

This is a stable outcome

To be stable, for each edge uv, xu ≥ αu ≥ wuv − xv. So xu + xv ≥ wuv. This is in C′ from the matching
game.

Proposition 3.15

A stable outcome exists in a networking bargaining game if and only if the corresponding
matching game has a non-empty core.

Example:

3 4
7

2 5

0 0

3 4

10

Find x in the core of the matching game. Need maximum matching.
Use LP to solve for x (or try values). xu + xv ≥ wuv ∀uv ∈ E(G)
Check: This is stable.
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Recall in a stable outcome, xu ≥ αu. A stable outcome might not reflect real life experimental results.

Example:

This is a stable outcome. In experiments,
b and c tend to get more than a and d.

1 1 1
a b c d

1
2

1
2

1
2

1
2

αa = 0 αb = 1
2 αc =

1
2 αd = 0

Idea from Nash’s bargaining solution: In a matched pair, each player take at least their outside option and
split the rest. In other words, after deducting their outside options, they are equal.

balanced outcome

An outcome (M, x) is balanced if xu − αu = xv − αv ≥ 0 for all uv ∈ M.

Example:

This is a balanced outcome.a b c d

1
3

1
3

2
3

2
3

αa = 0 αb = 1
3 αc =

1
3 αd = 0

1 1 1

Example:

Balanced.
Player b is in a more powerful position.

a b

d

c

1
4

1
2

1
2

3
4

αa = 0 αb = 1
2

αd = 1
4

αc =
1
4

1

1

1

1

Summary of results

Theorem 3.16

A network bargaining game has a balanced outcome if and only if it has a stable outcome.

Note:
It is not hard to prove that balanced outcomes are stable.

inessential vertex

A vertex v in a graph G is inessential if there exists a maximum matching in G that does not
use v.



CHAPTER 3. COOPERATIVE GAMES 54

Example:

inessential Maximum matching has size 2.
By symmetry, every vertex is
inessential.

Theorem 3.17: Kleinberg, Tardos

In a graph G with weight 1 for each edge, the following are equivalent:

1. There is a stable outcome.

2. There is a balanced outcome.

3. No two inessential vertices are adjacent.

Example:
inessential

adjacent

No balanced outcomes exist Balanced outcomes exist

Aside: The set of inessential vertices is the set D in the Gallai-Edmonds structure theorem. (3) means
D is independent.

For general weights. . .

Theorem 3.18: Kleinberg, Tardos

If a network bargaining game has a balanced outcome, then the balanced outcome must use the
maximum weight matching, and there exists a polynomial time algorithm for finding a balanced
outcome.

Note:
Maximum weight matching might not be a matching with maximum number of edges.

1 1

1

11

1 100

max weight matching

max size matching

−→ has a balanced outcome
1 1

1

11

1

100

50 50

0

0

00

0

0

α = 1

α = 0



4
Mechanism Design

Mechanism design: We want to design games so that players are incentivized to achieve certain overall
goals.

Example:

1. Elections: If more people prefer A over B, then A should win.

2. Auctions: The player who values the item the most should win. Or, maximize revenue for the
seller.

3. Sports tournaments: best team should win, teams play the best they can.

Problem: Players look after themselves, will find loop holes and advantages to avoid playing as the
game designer intended.

Main question: How to set rules so that players who play for themselves will also achieve these global
goals?

4.1 Ideal auctions

In an auction, the auctioneer is selling something. players bid on the item. Auctioneer need to decide
the rules for two things: 1. who wins what item; 2. who pays what amount.

Second price auction: 1. Player who bids most wins; 2. Winner pays 2nd highest bid.

Nice properties of second-price auctions:

• Recall: A player bidding their valuation is a dominant strategy. “Truthful bidding.” This is
easy to play: even without knowing everyone else’s valuation, bidding one’s own valuation will
maximize utility. (As an exercise, truthful bidding is not a dominant strategy for the first-price
auction.)

• If players give truthful bids. then their utility is never negative. (This is not true for “all-pay”
auction, where every player pays regardless if they win or lose.)

dominant-strategy incentive-compatible

An auction is dominant-strategy incentive-compatible(DSIC) if truthful bidding is a dominant
strategy, and yields non-negative utility.

55
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Note:
Dominant strategy here means “weakly dominant” except we don’t require a case that decrease
utility.

Having DSIC is not good enough. For example, an auction where we give the item for free to player 1

is DSIC. We need an overall goal: the item should go to the player with the highest valuation. Recall
the “social welfare” is the sum total of values received by all players.

For one-item auction, only one player receives the item. If player i wins the auction, then they receive
value vi (their valuation). Remaining players receive nothing. So the social welfare is vi.

To maximize social welfare in this case, we make sure that the player with the highest valuation wins.
This is easy if players bid truthfully.

welfare-maximizing

An auction is welfare-maximizing if truthful bidding results in maximum social welfare.

Last good property: second-price auction is easy to run. We can quickly determine the highest bidder
and the 2nd highest bid.

ideal auction

An auction is ideal if

1. It is DSIC;

2. It is welfare-maximizing; and

3. It can be implemented efficiently.

Theorem 4.1

The second-price auction is ideal.

Result from the future: This is the only single-item auction that is ideal.

4.2 Sponsored search auctions

Search engines may show ads as the first entries of a search result. Selecting which ads wo show their
order of placement is done through auctions.

slot 1 α1

slot 1
α2

slot 3 α3

CTR

...

>
>
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Model

Suppose there are k ≥ 1 slots for sponsored links on a search results page. There are advertisers
N bidding for these slots with related keywords. The slots have different “values”: top ones
tend to get clicked more often. “click through rate” CTR. For each slot j, let αj ∈ [0, 1] be the
probability that a user clicks on an ad at slot j.

Assumption 1: α1 ≥ α2 ≥ α3 ≥ · · ·

Assumption 2: CTR is independent of the quality of the ad.

We are looking for ideal auctions: DSIC, welfare-maximizing, efficient. Need to determine who wins
what, and who pays what. General approach:

1. Assume truthful bidding, how can we assign the items that is welfare-maximizing and efficient?

2. Given the way we assign items, how can we set prices so that it is DSIC?

Social welfare

We want to maximize the overall value for the players. What is the value to a player? Each player i
has a valuation vi of how much on their ad is worth. If they are assigned a slot with CTR xi, then their
expected value is vixi. Social welfare is ∑i∈N vixi.

Example:
2 slots, 3 players. CTR: α1 = 0.7, α2 = 0.5. Player valuations: v1 = 10, v2 = 9, v3 = 2. If we assign
slot 1 to player 3 and slot 2 to player 1, then the social welfare is 10 · 0.5 + 0 + 2 · 0.7 = 6.4

What is a rule that maximizes social welfare? Assign slot 1 to the player with the highest valuation,
slot 2 to the 2nd highest, ets. This can be efficiently implemented. This resolves (1) above.

Note:
Efficiency is critical. Lots of sponsored search auctions tun at the same time. Has to be almost
instantaneous.

Payment rule

We want a payment rule that is DSIC, so players are incentivized to bid truthfully. This requires
Myerson’s Lemma.

Aside: Consider the generalized second-price auction. The player who wins the j-th slot will pay the
(j + 1)-st highest bid times their CTR αj. This is not DSIC.

In our example above, player 1 gets CTR α1, and gets value v1α1 = 7. Their payment is v2α1 =
6.3. Utility = 0.7. If player 1 bids 8 instead, then they get CTR α2, value v1α2 = 5. Their
payment is v3α2 = 1. Utility = 4. Truthful bidding is not a dominant strategy.

4.3 Myerson’s Lemma

Myerson’s Lemma characterizes auctions that have DSIC payment rule, and gives a formula for the
payment rule. First need an abstraction of the auction model.
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single-parameter environment

In a single-parameter environment, we are given

• a set of players N;

• a private valuation vi ≥ 0 for each i ∈ N, which is player i’s valuation for one unit of
goods; and

• a set X ⊆ RN of vectors (x1, . . . , xn) that describe feasible allocations, i.e., xi is the amount
of goods given to player i.

Note:
This is “single-parameter” since each player has only one piece of private information.

Example:
In a single-item auction, X is the set of all standard basis vectors in Rn (n-tuples with one 1 and
n− 1 0’s). In the sponsored search auction, X is the set of vectors where for each slot j, at most one
i ∈ N satisfies xi = αj, 0 otherwise.

We are interested in mechanisms in this environment, i.e., rules of the auction. Let B ⊆ RN be the set
of all possible player bids.

direct revelation mechanism

Given a single-parameter environment, a direct revelation mechanism. . .

• collects bids b ∈ B from all players;

• choose a feasible allocation x(b) ∈ X based on the bids; and

• choose a payment p(b) ∈ RN where player i pays pi(b).

We call x : B→ X an allocation rule, and p : B→ RN a payment rule. The utility of player i is
ui(b) = vixi(b)− pi(b).

As part of the DSIC condition, we assume 0 ≤ pi(b) ≤ vixi(b), i.e., truthful bidding will result in
non-negative utility.

Example:
For the second-price auction,

xi(b) =

{
1 bi is max in b
0 otherwise

pi(b) =

{
maxj 6=i bj bi is max in b
0 otherwise

Two terms for an allocation rule

1. An allocation rule x : B → X is implementable if there exists a payment rule p : B → RN

such that (x, p) is DSIC. The single-item auction where we give the item to the highest bidder is
implementable, by using the second-price rule as payment.

2. An allocation rule x : B → X is monotone if ∀i ∈ N and ∀b−i ∈ B−i, xi(z, b−i) ≥ xi(y, b−i)
whenever z ≥ y. Translation: The higher you bid, the more you get. For single-item auctions,
highest bid wins is monotone, but second highest bid wins is not monotone (you can lose things
by bidding higher).
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Theorem 4.2: Myerson’s Lemma

For a single parameter environment, an allocation rule x : B → X is implementable if and only
if x is monotone. Moreover, given a monotone allocation rule x : B → X, there exists a unique
payment rule p : B→ RN such that (x, p) is DSIC and pi(b) = 0 whenever bi = 0.

Lemma 4.3

If an allocation rule x : B→ X is implementable, then x is monotone.

Proof:
Suppose x is implementable. Then there exists a payment rule p : B→ Rn such that (x, p) is DSIC.

Fix a player i ∈ N, and bids b−i ∈ B−i. We use x(y), p(y) to represent xi(y, b−i) and pi(y, b−i). Want
to prove: if y ≥ z, then x(y) ≥ x(z). Assume y ≥ z.

Key observation: the rules (x, p) are defined independent of the players’ valuations.

1. (x, p) is DSIC if player i’s valuation is y. So utility of bidding y ≥ utility of bidding z, which
implies

y · x(y)− p(y) ≥ y · x(z)− p(z)

2. (x, p) is DSIC if player i’s valuation is z, which implies

z · x(z)− p(z) ≥ z · x(y)− p(y)

Rearranging the inequalities to get

z(x(y)− x(z)) ≤ p(y)− p(z) ≤ y(x(y)− x(z))

which is called the payment sandwich.

Since y ≥ z ≥ 0, we get x(y)− x(z) ≥ 0. So x(y) ≥ x(z).

For the converse, we will only prove the case where x is piecewise constant.

Approach: Assume x is monotone and (x, p) is DSIC. Derive that p is unique with pi(b) = 0 whenever
bi = 0. Then prove that using this particular p, (x, p) is indeed DSIC.

We will now describe a generic x that is monotone and piecewise constant. There are jump points
x̄1 < x̄2 < · · · < z̄q such that x is constant in the intervals [0, z̄1], (z̄1, z̄2], . . . (z̄q−1, z̄q], (z̄q, ∞). Define hj
to be the jump at z̄j. (i.e., hj = lim

w→z̄+j
x(w)− x(z̄j))

z

x(z)

z1 z2 z3

h1

h2

h3
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Lemma 4.4

If x is monotone and piecewise constant, and (x, p) is DSIC with pi(b) = 0 whenever bi = 0,
then p is unique.

Proof:
We first show that p is also piecewise constant. (If z is inside an interval, then p′(z) = 0.)

Assume y > z. Suppose z ∈ (z̄j, z̄j+1) for some j. We assume DSIC, so the payment sandwich
applies. Divide by y− z to get

z · x(y)− x(z)
y− z

≤ p(y)− p(z)
y− z

≤ y · x(y)− x(z)
y− z

Take the limit as y→ z+. Then

lim
y→z+

x(y)− x(z)
y− z

= x′(z) = 0

since x is constant at z. So both ends of inequalities approach 0. By Squeeze Theorem,

lim
y→z+

p(y)− p(z)
y− z

= p′(z) = 0

So p is piecewise constant with jumps at z̄1, . . . , z̄q. Let z = z̄j for some j. Look at the payment
sandwich:

lim
y→z+

y(x(y)− x(z)) = z · hj, lim
y→z+

z(x(y)− x(z)) = z · hj

By Squeeze Theorem,
lim

y→z+
p(y)− p(z) = z · hj = z̄jhj

So the payment jump at z̄j is z̄jhj.

By assumption, p(0) = 0, so this uniquely defines the function p: If j is then largest index where

z ≥ z̄j, the p(z) = pi(z, b−i) =
j

∑
k=1

z̄khk.

z

x(z)

z1 z2

h1

h2

z

p(z) = z1h1 + z2h2

Visualization: The payment is the area to the “left” of x.

Lemma 4.5

The payment rule p from Lemma 4.4 is DSIC.
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Proof by picture:

z

x(z)

vi
value received

payment

utility

z

x(z)

vi

value received

payment utility

z

x(z)

vi
value received

payment

utility = A− B

1. Bidding their valuation 2. Underbid 3. Overbid

bi bi

A

B

The utilities for (2) and (3) are at most the utility of (1). Utility of (1) is non-negative. Hence
DSIC.

Applying Myerson’s Lemma

Recall: Payment rule: pi(z, b−i) =
j

∑
k=1

z̄khk.

1. Single item auction

Let x be the allocation rule that gives the item to the higher bidder (with a consisting tie-breaking
rule). This is monotone. Consider a player i and bids b−i ∈ B−i. Let B = max

j 6=i
bj.

z

x(z)

payment

◦, • may switch depenfing on
the tie-breaking rule

The allocation function for player i:

B

There is one jump at z = B. When bi > B, player i wins,
and the payment is B · 1 = B. This is the second-price rule,
and it is unique assuming bi = 0 implies pi = 0.

2. Sponsored search auction

k slots with CTR α1 ≥ α2 ≥ · · · ≥ αk. Our allocation function x assigns αj to the j-th highest bidder.
This is monotone. Apply Myerson’s lemma for the payment rule.

Consider a player i and bids b−i ∈ B−i. Assume b1 ≥ b2 ≥ · · · ≥ bk and we ignore the remaining bid.

Player i gets αk if bk < bi ≤ bk−1, αk−1 if bk−1 < bi ≤ bk−2, . . .

The height of each jump is αj−1 − αj. Using the formula,
pi(z) = ∑

{j:bj<z}
bj(αj − αj+1), where we are using αk+1 = 0

This is the unique DSIC payment rule.

bi

payment

bk bk−1 bk−2

αk

αk−1

αk−2
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Example:
2 slots α1 = 0.7, α2 = 0.5. 3 bidders: v1 = 10, v2 = 9, v3 = 2.

10

2 9

0.7

0.5

9 · (0.2) = 1.8

2 · (0.5) = 1

9

2

0.7

0.5

2 · (0.5) = 1

10

Allocation for player 1: Payment = 2.8 Allocation for player 2: Payment = 1

4.4 Knapsack auction

Recall that an ideal auction is (1) DSIC (2) welfare-maximizing (3) efficient. We consider an auction
that cannot be ideal.

Example:
We are managing advertising slots for a TV station. We have T seconds to fill and there are potential
advisers N. Advertiser i has an ad of length ti and gets value of vi. We run an auction to determine
whose ads to air.

T = 10 x = (1, 1, 0, 0) Social welfare 20 + 56 = 76

i = 1 i = 2t1 = 2 t2 = 7

v1 = 20 v2 = 56

i = 3 t3 = 3

v3 = 21

i = 4 t4 = 5

v4 = 25

The set of feasible allocations: X =

{
x ∈ {0, 1}N : ∑

i∈N
tixi ≤ T

}
. Social welfare is ∑

i∈N
vixi

To maximize social welfare, we need max{vTx : x ∈ X}.

Recall the first stage of designing this auction is to assume players bid truthfully and find an allocation
rule that is welfare-maximizing. Then Myerson’s Lemma gives us a payment rule that is DSIC.

The problem is that maximizing social welfare here is equivalent to the knapsack problem, which is
NP-hard, so it is not possible to find an optimal solution efficiently (unless P = NP). Thus we cannot
fulfill (2) and (3) of ideal auction simultaneously.

The solution is to relax (2) or (3). We should not give up (3) because we want this to be practical and
run in real time. So we need to give up on (2). Instead of finding a welfare-maximizing allocation
exactly, we will find an approximation that is “close” to the maximum while keeping efficiency. My-
erson’s Lemma does not require social welfare maximization so as long as our approximation is good
enough and monotone we can apply Myerson’s Lemma to get a DSIC payment rule with respect to
our approximation.

Goal: Approximate the welfare-maximizing function for the knapsack auction.

Aside: Typically with approximation algorithms, we want some performance guarantee. “The solution
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produced by the algorithm must be at least this close to the theoretical optimal.”

Example:
i 1 2 3 4
ti 2 7 3 5
vi 20 56 21 25

vi/ti 10 8 7 5

T = 10

Idea: we have limited space, so we want to fill in each unit with as much value as possible⇒ Calculate
value density. Higher density should give better value. We sort items in non-increasing value density,
i.e., v1

t1
≥ v2

t2
≥ · · · ≥ vn

tn

First try: Pick items 1, 2, . . . until we cannot put the next one in the knapsack. Consider the example
above, we pick 1 and 2. t1 + t2 = 9 ≤ 10, no room for 3. Total value 76. Is this a good approximation?
No, there are cases where the solution produced is very bad...

Example:
2 players, v1 = t1 = 1, v2 = T − 1, t2 = T.

1 has higher density than 2. If we pick 1, then we do not have room for 2. Algorithm value 1.
However, obviously picking 2 is optimal with optimal value T − 1. Our solution is 1

T−1 of the
optimal.

Better idea: Suppose we stop at item i above. Check the value of item i + 1. If vi+1 > v1 + · · ·+ vi,
then we will say that i + 1 is the only winner. (Assumption: ti ≤ T for all i)

Example:
Consider 2-player example above. Stop at i = 1. We see v2 > v1, so we pick v2 instead.

Algorithm 1: Full approximation algorithm

Assumption: N = {1, . . . , n} with v1
t1
≥ v2

t2
≥ · · · vn

tn

1 Find i such that it is the largest index with t1 + · · ·+ ti ≤ T
2 If v1 + · · ·+ vi ≥ vi+1, then {1, . . . , i} are the winners. Otherwise, {i + 1} is the only winner.

Suppose APX is the value of the winners produced by the approximation algorithm, OPT is the actual
optimal value.

Theorem 4.6

APX ≥ 1
2

OPT

The solution produced by the approximation algorithm is guaranteed to be at least halfway to
the optimal.

Proof:
A welfare-maximizing solution is optimal for this integer program:

max{ vTx

sum of
values

: tTx ≤ T

items fit
into the

knapsack

, xi ∈ {0, 1}

pick 0 or 1

of each item

∀i} (IP)

Its LP relaxation:
max{vTx : tTx ≤ T, xi ∈ [0, 1] ∀i} (LP)

Solutions of it can be fractional.
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Let i be the largest index with t1 + · · ·+ ti ≤ T. Consider the solution x where

x1 = · · · = xi = 1, xi+1 =
T − t1 − · · · − ti

ti+1
, xi+1 = · · · = xn = 0

Idea: Fill in the remaining space with a fraction of item i + 1. In the example above, we have
x1 = 1, x2 = 1, x3 = 1

3 , x4 = 0

As we have completely filled in the knapsack with the highest-density items, x is optimal, which
can be proved using duality.

Suppose optimal value of (LP) is v∗ (obtained by x). Since (LP) is relaxation of (IP), OPT ≤ v∗. We
want to prove APX ≥ v∗

2 .

Let S = {1, . . . , i}. We see that v∗ ≤ v1 + · · ·+ vi + vi+1 = v(S) + vi+1. Two cases:

1. If v(S) ≥ vi+1, then the algorithm picks S, so APX = v(S). Then

v∗ ≤ v(S) + vi+1 ≤ v(S) + v(S) = 2 APX

2. If v(S) < vi+1, then the algorithm picks {i + 1}, so APX = vi+1. Then

v∗ ≤ v(S) + vi+1 < 2vi+1 = 2 APX

So APX ≥ v∗
2 ≥

1
2 OPT.

Exercise:
Prove that the allocation rule derived from the approximation algorithm is monotone.

Myerson’s lemma gives a payment rule for our allocation. A player either wins or not, so the allocation
functions looks like:

1

x(z)

z
bj

Say this is for player j, and jump occurs at b̄j.
The payment for winning is then b̄j.

How to find b̄j? Maybe binary search, or use some logic.

Example:

i 1 2 3 4
ti 2 7 3 5
vi 20 56 21 25

vi/ti 10 8 7 5

T = 10

Approximation algorithm picks 1 and 2 as winners.
What is the payment for player 2? The allocation is
monotone, so to find b̄2, we need to lower v2 until
the approximation algorithm does not pick player 2.

As long as v2
t2
≥ 7, the algorithm will pick 2.

So player 2 can go as low as 49.

What happens if v2 goes below 49? Say it has value density ≥ 5. The approximation algorithm will
pick 1 and 3 with combined value 41, then look at v2. If v2 > 41, then the algorithm will still pick
2. If v2 ≤ 41, then the algorithm will stick with 1, 3. So b̄2 = 41, and the payment is 41.
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4.5 Voting mechanism

Voting
mechanism

result. Represents the will of the people.

votes

If there are 2 candidates, this is easy: decide on the majority. Reflects the preferences of the people.

Condorcet’s paradox

3 candidates a, b, c.

3 voters: voter 1: a >1 b >1 c

voter 2: b >2 c >2 a

voter 3: c >3 a >3 b

A majority of voters prefer a over b, b over c, c over a, which implies a > b > c > a, not possible.

If we only choose 1 candidate, then a majority wants a different one.

This could lead to “strategic voting”: a voter may be incentivized to not vote for their preferred
candidate.

Example: a, b are front runners, more prefer a over b. A group of voters prefer c, who has no chance of
winning. But they would rather b win than a, so they vote for b instead.

Problem: The usual voting mechanism does not incentivize voters to vote truthfully. So the votes that
are submitted do not represent the will of the people.

This principle of voting makes an election more of a game of skill than a real test of the
wishes of the electors. (Charles Hodgson)

Question: Is there a voting mechanism where truthful voting is a dominant strategy?

Answer: No, if we want our voting mechanism to have obvious good properties.

Social welfare and social choice

Set up

Candidates A, voters {1, . . . , n}. Let L be the set of all total ordersa on A. Each voter ii has a
total order of preferences <i∈ L. a <i b means voter i prefers b over a.

A collection of all voter preferences (<1, . . . ,<n) ∈ Ln.

aantisymmetric: a 6= b⇒ a > b ∨ b > a. transitive: a > b ∧ b > c⇒ a > c

Given a collection of voter preferences (how voters would vote), there are 2 outcomes that may be
generated by a voting mechanism:

1. A social welfare function will output another total order on A that represents “society’s prefer-
ence.” F : Ln → L.

2. A social choice function will output one candidate from A that represents “society’s choice.”



CHAPTER 4. MECHANISM DESIGN 66

F : Ln → A.

Properties of a social welfare function

Let F : Ln → L, (<1, . . . ,<n) ∈ Ln. Suppose F(<1, . . . ,<n) =<.

Good property 1: Unanimity. If every voter prefers a over b, then the society prefers a over b. (If
b <i a ∀i ∈ N, then b < a in F.)

Good property 2: Independence of irrelevant alternatives (IIA). The society’s preference between two
candidates should only depend on the individual votes’ preference of these two candidates, not on
others.

Suppose (<1, . . . ,<n), (<′1, . . . ,<′n) ∈ Ln, F(<1, . . . ,<n) =<, F(<′1, . . . ,<′n) =<′. For two candidates
a, b ∈ A, a <i b ⇔ a <′i b for each i ∈ N (the relative rank of a, b doesn’t change between <i and <′i)
implies a < b⇔ a <′ b (the relative rank of a < b for F does not change from < to <′)

Flawed illustration of IIA: Suppose you can choose between studying game theory and cryptography.
Of course you would choose game theory. Now you have the additional option of studying Galois
theory, and you decide to study cryptography instead. Should not happen.

Bad property: Dictatorship. The society’s preferences completely agrees with one particular voter’s
preferences in all cases. For all (<1, . . . ,<n) ∈ Ln, F(<1, . . . ,<n) =<i.

Arrow’s impossibility theorem

Theorem 4.7: Arrow’s impossibility theorem

Every social welfare function over a set of at least 3 candidates that satisfies unanimity and IIA
is a dictatorship.

If we want the good properties, we must also have the bad property. No way to design a good voting
mechanism.

Proof sketch:
Suppose F : Ln → L satisfies unanimity and IIA.

1. We prove that given a candidate b, if each voter ranks b at the top or bottom of their list, then
F also ranks b at the top or the bottom. Suppose otherwise, and there exist a, c ∈ A such that
F ranks c < b < a.

b

a
c

b

c
a

b

a
c

b

c
a

b

c
a

· · ·

1 2 3 4 n

a

c
b

F

Move c just
above a

b

a
c

b

c
a

b

a
c

b

c
a

b

c
a

· · ·

1 2 3 4 n

a

c
b

F

Relative rankings of a, b do not change. By IIA, relative rankings of a, b do not change in F.
Similar for the relative rankings of b, c. So F keeps a > v > c in the new preferences. But c is
higher than a in all voters’ lists, so by unanimity, c > a in F. Contradicts transitivity.

2. Find a potential voter that can be a dictator. Take an arbitrary voter preference P ∈ Ln. Create
a sequence of preferences P0, P1, . . . , Pn by first moving b to the bottom, then move b to the
top one voter one at a time.
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· · ·

1 2 n
b

F

b b b

· · ·

1 2 n

Unanimity

b

b b

· · ·

1 2 n· · · · · · · · ·

b b

b

· · ·

1 2 n· · ·

b b b

· · ·

1 2 n· · ·

· · ·

b

F

Unanimity

F ranks b at top or bottom

F must switch from bottom to top at some point, say the first time Pi−1 → Pi

b

F

b b b

· · ·

1 2 i− 1

b b

i n

· · ·

b

F

b b b

· · ·

1 2 i− 1

b

b

i n

· · ·

Pi−1 Pi

Possible dictator voter i:

3. Let a, c be two candidates other than b. (They exist since there are at least 3 candidates.) We
will show that F agrees with voter i on the relative ranking of a, c. WLOG voter i ranks a
above c in the original P. Create a new voter reference P∗ from Pi by moving a to the top of
the list for voter i.

a
c

a
c

c
a

b

a

1 i n 1

a

b

F

· · · · · ·

P

b

a

2

· · ·

b

i− 1

b

i

a
c
· · ·

a

n
b

b

c

1

c

b

F

b

c

2

· · ·

b

i− 1

b

i

a
c
· · · c

n
b

b

a

1

a

b

F

b

c

2

· · ·

b

i− 1

b

i

a

c
· · ·

a

n
b

c a

c

c

Pi−1 Pi P∗

Note: Between P and P∗, the relative rankings of a, c do not change. By IIA, F ranks a, c the
same in P and P∗.

Goal: F ranks a above c in P∗ (agreeing with voter i).

Compare Pi−1 and P∗. The relative rankings of a, b do not change. By IIA, F ranks a, b the
same in Pi−1 and P∗, F ranks b at the bottom in Pi−1, so a > b for both Pi−1 and P∗.

Compare Pi and P∗. The relative rankings of b, c do not change. By IIA, F ranks b, c the same
in Pi and P∗. F ranks b at the top in Pi, so b > c for both Pi and P∗.

By transitivity, F ranks a > c, which matches the ranking for voter i.

So F agrees with voter i on the relative rankings of any two candidates other than b.

4. Let d be any candidate other than b. We will show that F agrees with voter i on b, d. There
exists candidate e that is not b, d (recall we have ≥ 3 candidates).

Run the arguments from (2) and (3) with e instead of b. This gives us a voter j such that F
agrees with voter j for any two candidates that are not e. We show that i = j.

Suppose otherwise. Say j < i. Consider Pi−1. F ranks b at the bottom, so d > b. For voter j, d
is lower that b. And F must agree with voter j in all cases not involving e. So F ranks b > d.
This contradicts antisymmetric property of F.
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b

F

b b

· · ·

1 i− 1

b b

i n

· · ·

b

j

d
· · ·

b
d

Suppose j > i. Consider Pi. F ranks b > d. But voter j ranks d over b. And F agrees with
voter j. So d > b for F, contradiction.

d

F

b b

· · ·

1 i− 1

b

b

i n

· · ·

b
j

d
· · ·

b

d

So i = j.

F agrees with voter i on the relative rankings of any two candidates. Hence voter i is a dictator.

Gibbard–Satterthwaite theorem

A social choice function f : Ln → A selects one candidate to represent the preferences of the voters.
Just like social welfare functions, there cannot be a social choice function with good properties without
the bad.

Good property: Strategy-proof. A voter cannot change the society’s choice to something they like better
by changing their preferences. We say that f can be strategically manipulated by voter i if there exist
a, b ∈ A, (<1, . . . ,<n) ∈ Ln and <′i∈ L such that

• a <i b (voter i prefers b over a),

• f (<1, . . . ,<i, . . . ,<n) = a (society picks a),

• and f (<1, . . . ,<′i, . . . ,<n) = b (society picks the one voter i likes better when they change their
vote).

We say f is strategy-proof if f cannot be strategically manipulated.

Note:
A strategy-proof voting mechanism will ensure that voters vote truthfully, so truthful voting is a
dominant strategy.

Bad property: Dictatorship. There exists a voter i such that f will always choose the candidate at the
top of voter i’s list.

Theorem 4.8: Gibbard–Satterthwaite

Any strategy-proof social choice function onto a set of at least 3 candidates is a dictatorship.

Proof (Main idea):
Assume f : Ln → A is strategy proof. Construct a social welfare function F : Ln → L as follows.
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· · ·

1 2 n

a

· · ·

b

b

a
a

b

· · ·

1 2 n

a

· · ·

b
b
a

a
b

Arbitrary voter preference.
For some a, b ∈ A, move
them to the top of the list.

One can show that f will pick either a or b. If f picks a, then set a > b in F. Otherwise, set b > a.
Do this for all pairs a, b, and we have constructed F.

Need to show: F is a total order, i.e., antisymmetric (easy) and transitive (hard). Then F satisfies
unanimity and IIA (not hard). Since there are at least 3 candidates, Arrow’s impossibility theorem
implies that F is a dictatorship. The dictator for F is also the dictator for f .

Mechanism design for voting seems to be all bad news. Research has been done to find “escape routes”
to find strategy-proof mechanisms without the bad consequences. Examples:

1. Restrict voter preferences in some way.

2. Introduce money into a voter’s utility (similar to mechanism design for auctions).
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