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1
Introduction: Formulations, fundamental back-
ground and definitions

Let f : Rn ! R , g : Rn ! Rm, h : Rn ! R p all continuous.

inf f (x)
s.t. g(x) � 0

h(x) = 0
(P)

S :=
�

x 2 Rn : g(x) � 0, h(x) = 0
	

is called the feasible solution set of (P), equivalently feasible region of (P).

Definition 1: global minimizer

x̄ 2 Rn is a global minimizer of (P) if x 2 S and f (x) � f ( x̄) for all x 2 S.

Sometimes we simply say x̄ is a minimizer of (P).

Definition 2: local minimizer

x̄ 2 Rn is a local minimizer of (P) if x̄ 2 S and there exists a neighborhood U of x̄ such that

f (x) � f ( x̄) 8x 2 S \ U

x̄ 2 Rn is a strict local minimizer of (P) if x̄ 2 S and there exists a neighborhood U of x̄ such
that

f (x) > f ( x̄) 8x 2 (S \ U) n f x̄g

x̄ 2 Rn is an isolated local minimizer of (P), if x̄ 2 S and there exists a neighborhood U of x̄
such that x̄ is the only local minimizer of (P) in (S \ U).

continuous optimization problem

A continuous optimization problem is a problem of optimizing (minimizing or maximizing)
a continuous function of finitely many real variables subject to finitely many equations and
inequalities on continuous functions of these variables.

What kind of problems can be formulated as Continuous Optimization problems? Almost everything.

3



CHAPTER 1. INTRODUCTION 4

Example 3: Fermat’s Last Theorem
“There do not exist positive integers x, y, z and an integer n � 3 such that xn + yn = zn.”

Consider

inf f (x) :=
�

xx4
1 + xx4

2 � xx4
3

� 2
+

4
å

i= 1

�
sin(p xi)

� 2

s.t. g1(x) := 1 � x1 � 0

g2(x) := 1 � x2 � 0

g3(x) := 1 � x3 � 0

g4(x) := 3 � x4 � 0

(P)

The optimal objective value of (P) is zero and attained if and only if FLT is false.

We can show that (P) has a sequence of feasible solutions f x(k)g such that f (x(k) ) & 0. Since
f (x) � 0 for all x 2 R4, the optimal value of (P) is zero.

FLT is true if and only if (P) does not attain its optimal value (of zero).

Even when the number of variables in a continuous optimization problem is very small (e.g., 4) the
optimization problem may be notoriously hard. Even discrete structures can be formulated in our
framework. sin(p x1) = 0 () x1 2 Z . In Example 3, we have functions that are “highly nonlinear”.

Example 4: Combinatorial Optimization, 0,1 Integer Programming
Let m, n be positive integers, A 2 Rm� n, b 2 Rm, c 2 Rn be given. Consider the 0,1 Integer
Programming problem.

min cTx
s.t. Ax � b

x 2 f 0, 1gn
(IP)

The first condition can be written as

g(x) := Ax � b � 0.

The second condition can be written as

xj(xj � 1) = 0 8j 2 [n] $ h(x) = 0

Our continuous optimization problem is only mildly nonlinear.

Some conclusions from Example 3 and 4
Continuous Optimization problems acn be very hard even when the number of variables and con-
straints are both small, the nonlinearity in f , g, h is very mild.

To successfully solve Continuous Optimization Problems, we must study the problem class at hand,
discover special properties and structures and then exploit these special properties & structures.

1.1 Conic Form

Definition 5: cone

A set K � Rn is a cone if 8x 2 K, 8k 2 R+ , l x 2 K.
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Definition 6: convex

A set S � Rn is convex if for every pair of points in S, the line segment joining them lies entirely
in S.

That is S is convex if 8u, v 2 S, 8l 2 [0, 1], [l u + ( 1 � l )v] 2 S.

Definition 7: convex cone

A set K � Rn is a convex cone if it is convex and is a cone.

Let g : Rn ! Rm, f : Rn ! R be continuous functions. Consider

inf f (x)
s.t. g(x) � K 0

where K � Rm is a convex cone and for every u, v 2 Rm, u � K v means (u � v) 2 K.

This is at least as general as our original (P). Consider R p 3 K := Rm
+ � f 0g . . .

1.2 Derivatives

Definition 8: directional derivative

The directional derivative of f : Rn ! R at x̄ 2 Rn along the direction d 2 Rn is

f 0( x̄; d) := lim
a& 0

f ( x̄ + ad) � f ( x̄)
a

(Gâteaux (directional) derivative)

Exercise:
What is the directional derivative of f : Rn ! R , f (x) := kxk¥ , for every x̄, d 2 Rn?

Definition 9: differentiable

f : Rn ! Rm is differentiable at x̄ 2 Rn if 9A : Rn ! Rm, linear, such that

lim
h! 0

(h2Rn)

 f ( x̄ + h) � [ f ( x̄) + A (h)]


khk
= 0

Such A is called the derivative of f at x̄ and is denoted by D f ( x̄) or f 0( x̄) (matrix representation of
D f ( x̄)). We will also use r f ( x̄) := [ f 0(x)]T .

Suppose f : E1 ! E2, we have

D f ( x̄) 2 L (E1, E2), D f : E1 ! L (E1, E2)
D2 f ( x̄) 2 L (E1, L (E1, E2)) , D2 f : E1 ! L (E1, L (E1, E2))

If f : Rn ! R , then Dk f ( x̄)[h(1) , h(2) , . . . , h(k) ] : kth differential (derivative) along the directions
h(1) , h(2) , . . . , h(k) 2 Rn.



CHAPTER 1. INTRODUCTION 6

Theorem 10: Taylor’s Theorem

Let U � Rn be open, f : U ! R be a Cr function on U. Let x, d 2 Rn. If x, (x + d), and the line
segment joining x and (x + d) lie in U, then there exists z 2 (x, x + d) such that

f (x + d) = f (x) +
r� 1

å
k= 1

1
k!

Dk f (x) [d, d, . . . , d]
| {z }

k-times

+
1
r!

Dr f (z) [d, d, . . . , d]
| {z }

r-times

Definition 11: contraction mapping

Let U � Rn be a closed set. f : U ! U is called a contraction mapping if there exists l 2 [0, 1)
such that

k f (x) � f (y)k � l kx � yk 8x, y 2 U

1.3 Fixed Point

Theorem 12: Banach Fixed Point Theorem (1922)

Let U � Rn be a closed set and let f : U ! U be a contraction mapping, then

(i) (Existence and uniqueness of solution - fixed point)

the mapping f has a unique fixed point x̄ 2 U.

(ii) (Algorithm and convergence)

For all x(0) 2 U, the sequence f x(k)g generated by x(k+ 1) := f
�

x(k)
�

, k 2 f 0, 1, 2, . . .g (fixed
point iteration) converges to x̄. In particular,

kx(k) � x̄k � l kkx(0) � x̄k 8k 2 f 0, 1, 2, . . .g

Proof:
Suppose U � Rn is a nonempty closed set, and f : U ! U is a contraction mapping with l 2 [0, 1).

Let x(k+ 1) := f
�

x(k)
�

for all k 2 Z + . Then for all k 2 Z + ,

kx(k+ 1) � x(k)k = k f (x(k) ) � f (x(k� 1) )k � l kx(k) � x(k� 1)k

By induction on k, . . . we obtain

kx(k) � x(k� 1)k � l kkx(1) � x(0)k 8k 2 Z + (� )

8m 2 Z ++ , 8k 2 Z ++ ,
 x(m+ k) � x(m)  =

 x(m+ k) � x(m+ k� 1) + x(m+ k� 1) � x(m+ k� 2) + � � � + x(m+ 1) � x(m) 

�
k

å
i= 1

 x(m+ i) � x(m+ i� 1)  4 -ineq

� ( l m+ k� 1 + l m+ k� 2 + � � � + l m)
 x(1) � x(0)  by ( � )

= l m(1 + l + l 2 + � � � + l k� 1)
 x(1) � x(0) 

=
l m(1 � l k)

1 � l
 x(1) � x(0) 

�
l m

1 � l
 x(1) � x(0)  ! 0 as m ! + ¥ (independent of k)
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Therefore f x(k)g os a Cauchy sequence and hence it converges. Let x̄ be its limit. x̄ 2 U (U is
closed).

8k 2 Z + , we have
 f ( x̄) � x̄

 �
 f ( x̄) � x(k)  +

 x(k) � x̄
 � l

 x̄ � x(k� 1) 
| {z }

! 0

+
 x(k) � x̄


| {z }

! 0

As k ! + ¥ , RHS ! 0. Thus f ( x̄) = x̄. This proves the existence. Now we prove the uniqueness.

Suppose 9x̄, ȳ 2 U such that f ( x̄) = x̄ and f ( ȳ) = ȳ. Then

kx̄ � ȳk = k f ( x̄) � f ( ȳ)k � l kx̄ � ȳk =) (1 � l )kx̄ � ȳk = 0 =)
l 2 [0,1)

x̄ = ȳ

Now that we have established existence and uniqueness of jbarx, for a proof of convergence rate
claim, we proceed as in the beginning of the proof. However, we use x̄.

 x(1) � x̄
 =

 f (x(0) ) � f ( x̄)
 � l

 x(0) � x̄
 =)

 x(2) � x̄
 � l 2 x(0) � x̄



By induction on k, we have

 x(k) � x̄
 � l k  x(0) � x̄

 8k 2 Z k

as desired.

Theorem 13: Brouwer’s Fixed Point Theorem (1910)

Let U � Rn be a nonempty, compact and convex set; let f : U ! U continuous such that
f (U) = U. Then there exists x̄ 2 U such that f ( x̄) = x̄.

See the application in https://n.sibp.ro/co/456 .

Theorem 14: Kakutani’s Fixed Point Theorem (1941)

Let U � Rn be a nonempty, compact convex set and f : U ! 2U be a set valued map on U. If

Graph( f ) :=
n

(x
v) 2 U � U : v 2 f (x)

o
is closed and f (x) is nonempty and convex for every

x 2 U, then there exists x̄ 2 U such that x̄ 2 f ( x̄).

Theorem 15: Borsuk-Ulam Theorem (1930-1933)

Let f : f x 2 Rn+ 1 : kxk2 = 1g ! Rn be continuous. Then there exists x̄ 2 Rn+ 1 such that
kx̄k2 = 1 and f ( x̄) = f ( � x̄).

Example:
Let n := 2. Assuming temperature and barometric air pressure are continuous functions on the
Earth’s surface, and Earth’s surface is homeomorphic to a sphere, there always exists an antipodal
pair of points on Earth with the same temperature & the same air pressure.

1.4 Other

Sn := n � n symmetric matrices with real entries.

https://n.sibp.ro/co/456
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Theorem 16: Spectral Decomposition Theorem

For every A 2 Sn, there exists Q 2 Rn� n orthogonal (QTQ = I) such that A = QDQT , where
D 2 Rn� n is a diagonal matrix.

In the above theorem, the diagonal matrix D contains all eigenvalues of A, and the columns of Q are
the corresponding eigenvectors of A.

Definition 17: positive definite

A 2 Rn� n is positive semidefinite if hT Ah � 0 for all h 2 Rn; such A is positive definite if
hT Ah > 0 for all h 2 Rn n f 0g.

If A 2 Rn� n is skew-symmetric (A = � AT), then hT Ah = ( hT Ah)T = � hT Ah = 0 for all h 2 Rn.
Therefore, such A is positive semidefinite but not positive definite.

Sn
+ := positive semidefinite matrices in Sn,

Sn
++ := positive definite matrices in Sn.

In fact, Sn
++ = int(Sn

+ ).

Theorem 18: Choleski Decomposition Theorem

Let A 2 Sn, then

(a) A is positive semidefinite if and only if there exists L 2 Rn� n lower triangular such that
A = LLT ;

(b) A is positive definite if and only if there exists L 2 Rn� n lower triangular and nonsingular
such that A = LLT .

Note that Taylor’s Theorem (Theorem 10) cannot be completely generalized to functions f : Rn ! Rm

with m � 2, even for r = 1. However, we have

Theorem 19

Let U � Rn be an open set and f : U ! Rm be a C1 on U. Suppose for x̄, d 2 Rn, [x̄, x̄ + d] � U.
Then

f ( x̄ + d) � f ( x̄) =
Z 1

0
D f ( x̄ + ad)d (¶a)

A consequence of this result is obtained when D f ( �) is Lipschitz continuous on U (in a neighborhood
of [x̄, x̄ + d] suffices). Let L denote the Lipschitz constant. Then

 D f (x) � D f (y)
 � Lkx � yk 8x, y 2 U

Then we have
 f ( x̄ + d) � f ( x̄) � D f ( x̄)d


2 =


Z 1

0

�
D f ( x̄ + ad) � D f ( x̄)

�
d (¶a)


2

�
Z 1

0

 D f ( x̄ � ad) � D f ( x̄)


2

operator

2-norm

� kdk 2

2-norm

on Rn

(¶a) see aside

�
Z 1

0
Lkdk2 � kdk2a(¶a)

=
1
2

Lkdk2
2
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So, if kdk2 < e, then this error in this first-order estimate of f ( x̄ + d) is bounded above by 1
2 Le2.

Aside:

Let h :=
Z 1

0

�
D f ( x̄ + ad) � D f ( x̄)

�
d (¶a), then

khk2
2 = hTh = hT

Z 1

0

�
D f ( x̄ + ad) � D f ( x̄)

�
d (¶a)

=
Z 1

0
hT �

D f ( x̄ + ad) � D f ( x̄)
�
d (¶a)

�
Z 1

0
khk2

 �
D f ( x̄ + ad) � D f ( x̄)

�
d


2(¶a) Cauchy-Schwarz

=) k hk2 �
Z 1

0


�
D f ( x̄ + ad) � D f ( x̄)

�
d


2
(¶a)

Note that we may replace f in Theorem 19 by D f r( �) (assuming f 2 Cr+ 1) and apply the same rea-
soning. Indeed, Theorem 19 can be very useful in the design and analysis of continuous optimization
algorithms.

Theorem 20: Inverse Function Theorem

Let U � Rn be open, f : U ! Rn be C1, x̄ 2 U, det(r f ( x̄)) 6= 0. Then there exists an open
neighborhood V of x̄ in U and an open neighborhood W of f ( x̄) such that

• f (V) = W,

• f has a local C1 inverse f � 1 : W ! V,

• 8y 2 W, with x = f � 1(y), we have D f � 1(y) =
�
D f (x)

� � 1.

In the above, if f is Cr, then there exists such an f � 1 2 Cr. Theorem 20 can be proved by utilizing
Theorem 12 (in showing that the inverse is well-defined, i.e., one-to-one).

Theorem 21: Implicit Function Theorem

Let h : Rn ! R p, h 2 C1 in a neighborhood of x̄ 2 Rn where h( x̄) = 0. Suppose h0( x̄) has full
row rank (rank(h0( x̄)) = p � n). Define a partition [BjN] of columns of h0( x̄):

h0 = :
�

h0
B( x̄)

2 R p� p,
nonsingular,

partition

jh0
N( x̄)

�

x̄ and x with respect to the same [BjN]. Then there exist neighborhoods UB of x̄B and UN of x̄N
and a C1 function f : UN ! UB such that

• f ( x̄N) = x̄B,

• h( xB
xN

) = 0 () xB = f (xN) for all xB 2 UB, xN 2 UN .

Moreover, f 0(xN) = � [h0
B( x̄)] � 1h0

N( x̄).

Recall the very special case (e.g., equality constraints in an LP problem): A 2 R p� n, rank(A) = p
given

min cTx
s.t. Ax = b

x � 0
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h(x) := Ax � b =) h0(x) = A

x̄B = A� 1
B b � A� 1

B AN x̄N

xB = A� 1
B b � A� 1

B AN xN

f (xN) := A� 1
B b � A� 1

B AN xN

In this setting UB := R p, UN := Rn� p.

Lemma 22: Chain Rule

Let U � Rn, V � Rm be both open sets. f1 : U ! Rm, f2 : V ! R p be differentiable on U and V
respectively such that f1(U) � V. Then ( f2 � f1) is differentiable on U and

D( f2 � f1)( x̄) = D f2( f1( x̄)) � D f ( x̄) 8x̄ 2 U

Example: Line search, directional derivative
Suppose f : Rn ! R is differentiable on Rn. Also, given are a current point x̄ 2 Rn and a “search
direction” d 2 Rn. We define f : R ! R by f (a) := f ( x̄ + ad). Then f 0(a) = hr f ( x̄ + ad), di . If f
is C2, then f 00(a) = dTr 2 f ( x̄ + ad)d. Note f 0(0) = hr f ( x̄), di , f 00(0) = dTr 2 f ( x̄)d.

Corollary 23

Suppose h and x̄ are as in Theorem 21 (Implicit Function Theorem). Also assume Z 2 Rn� p

(q � n � p) such that h0( x̄)Z = 0. Then there exists a neighborhood U of 0 2 Rq and a C1

function t : U ! Rn such that

• t(0) = 0,

• t0(0) = 0,

• h
�

x̄ + ZdZ + t(dZ)
�

= 0 for all dZ 2 U.

So the function t gives us a way of moving away from x̄ (a solution of h(x) = 0) in a way that keeps
feasible with respect to h(x) = 0.

Proof:

Let h, x̄ and Z be as in the assumptions. Using the partition [BjN], define z = :
�

zB
zN

�
(recall

h0( x̄) = [ h0
B( x̄) jh0

N( x̄)]). Let U :=
�

dZ 2 Rq : ( x̄N + ZNdZ) 2 UN

neighborhood
of xN from
Theorem 21

	
. Define t by

tN(dZ) := 0

tB(dZ) := f ( x̄N + ZNdZ) � x̄B � ZBdZ

Thus,

h
�

x̄ + ZdZ + t(dZ)
�

= h
�

x̄B + ZBdZ + f ( x̄N + ZNdZ) � x̄B � zBdZ
x̄N + ZNdZ + 0

�
= h

�
fN( x̄N + ZNdZ)

x̄N + ZNdZ

�
=

By Theorem 21

0

Also,
t(0) = f ( x̄N) � x̄B = 0, t0

N(0) = 0

t0
B(0) =

Chain rule (Lemma 22)

f 0( x̄N)ZN � ZB = � [h0
B( x̄)] � 1h0

N( x̄)ZN � ZB = [ h0
B( x̄)] � 1 [� h0

N( x̄)ZN � h0
B( x̄)ZN ]

| {z }
= � h0( x̄)Z= 0

= 0

What does the size of the neighborhood depend on?
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Note in LPs t(dZ) := 0 for all dZ 2 Rq.

Corollary 24

Assume h and x̄ are as described in Theorem 21. Let d 2 Rn such that h0( x̄)d = 0. Then there
exists l̄ > 0 and a C1 arc (directed curve) t̂ with properties:

8
><

>:

t̂(0) = x̄
h
�
t̂( l )

�
= 0 8l 2 [0, l̄ )

t̂0(0) = d

Proof:
In the statement of Corollary 23, plug in Z := d and then using the resulting t,

t̂( l ) := x̄ + l

dZ

d

Z

+ t( l )

f x : h(x) = 0g
x̄

t̂( l )

h( x̄) = 0

d

How applicable are the Theorems 20, 21 and their Corollaries?

Let h : Rn ! R p, where p � n. Call x̄ 2 Rn regular if rank(h0( x̄)) = p; call ȳ 2 R p a regular value if
8x 2 h� 1( ȳ) are regular.

ȳy = ȳ

h(x) x1

x2

y

Union of these curves is the set h� 1( ȳ).

If h is affine, then h(x) = Ax � b for some given A 2 R p� n, b 2 R p. Let ȳ 2 R p be given. Then
h� 1( ȳ) = f x 2 Rn : Ax = ȳ + bg.
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Theorem 25: Sard’s Theorem, Morse-Sard Theorem

Let h : Rn ! R p, where p � n, h 2 Cr with r � n � p + 1. Then the p-dimensional Lebesgue
measure of f y 2 R p : y is not a regular valueg is zero.

Morse (1939) proved the p = 1 case, Sard (1942) proved the generalization above. Smale (1965) proved
an infinite dimensional version.



2
Unconstrained Continuous Optimization

f : Rn ! R , g : Rn ! Rm, h : Rn ! R p.

inf f (x)
s.t. g(x) � 0

h(x) = 0
(P)

S := f x 2 Rn : g(x) � 0, h(x) = 0g. Here, we assume S = Rn.

Theorem 26: First-order necessary conditions

Let f : Rn ! R be C1 and S = Rn. Then, x̄ 2 Rn is a local minimizer for (P) =) f 0( x̄) = 0.

x̄ is a stationary point of f .

Proof:
Suppose f : Rn ! R is C1, S = Rn, and x̄ 2 Rn is a local minimizer for (P). For the sake of
seeking a contradiction, suppose f 0( x̄) 6= 0. Then, there exists d 2 Rn such that hf 0( x̄), di < 0
(e.g., let A 2 Sn

++ , and set d := � A f 0( x̄)). Consider f : R ! R , f (a) := f ( x̄ + ad). Then,
f 0(0) = hf 0( x̄), di < 0. Thus, for all sufficiently small, positive a, f ( x̄ + ad) < f ( x̄). Therefore, x̄ is
not a local minimizer for (P).

Optimality conditions are widely used in algorithm design. E.g., for many software kr f (x(k) )k < e is
a part of the stopping criteria.

Definition 27

d 2 Rn is a decent direction for f at x̄ 2 Rn, if hf 0( x̄), di < 0.

d 2 Rn is an improving direction for f at x̄, if f ( x̄ + ad) < f ( x̄) 8a > 0 and sufficiently small.

Theorem 28: Second-order necessary conditions

Let f : Rn ! R be C2 and S = Rn. If x̄ 2 Rn a local minimizer for (P), then f 0( x̄) = 0 and
r 2 f ( x̄) 2 Sn

+ .

Proof:
Suppose x̄ is a local minimizer for (P). Since f is C2 by Theorem 27, f 0( x̄) = 0. Suppose for the
sake of contradiction that r 2 f ( x̄) /2 Sn

+ . Since f 2 C2, r 2 f ( x̄) 2 Sn. Therefore, there exists d 2 Rn

13
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such that dTr 2 f ( x̄)d < 0. Define f : R ! R by f (a) := f ( x̄ + ad). Then f 0(0) = hr f ( x̄), di = 0,
f 00(0) = dTr 2 f ( x̄)d < 0. Therefore, for all e > 0 and sufficiently small f ( x̄ + ed) < f ( x̄) which
contradicts the fact that x̄ is a local minimizer for (P).

Definition 29: direction of negative curvature

d 2 Rn is called a direction of negative curvature for f at x̄ if dTr 2 f ( x̄)d < 0.

Theorem 30: Taylor’s Theorem - implicit remainder version

Let U � Rn be open, f : U ! R be Cr on U. Let x̄, d 2 Rn, assume [x̄, x̄ + d] � U. Then,

f ( x̄ + d) = f ( x̄) +
r

å
k= 1

1
k!

Dk f ( x̄)[d, . . . , d| {z }
k-times

] + R( x̄, d),

where R( x̄, �) : Rn ! R such that

lim
h! 0

R( x̄, h)
khkr = 0.

Theorem 31: Second order sufficient conditions

Let f : Rn ! R , f 2 C2, S = Rn. Let x̄ 2 Rn. If f 0( x̄) = 0 and r 2 f ( x̄) 2 Sn
++ , then x̄ is a strict

local minimizer for (P).

Proof:
Let x̄ 2 Rn such that f 0( x̄) = 0 and r 2 f ( x̄) 2 Sn

++ ,

d

l n(r 2 f ( x̄))

:= minf dTr 2 f ( x̄)d : kdk2 = 1g > 0

By Theorem 30, for all d 2 Rn, kdk2 = 1, and a > 0 and small enough, we have

f ( x̄ + ad) = f ( x̄) + ahr f ( x̄), di
| {z }

= 0

+
a2

2
dTr 2 f ( x̄)d + o(a2) � f ( x̄) +

d
2

a2 + o(a2)

Choose a neighborhood U of x̄ such that d
2 a2 > jo(a2) j. Then for all x 2 U n f x̄g, f (x) > f ( x̄).

Therefore, x̄ is a strict local minimizer for (P).

How applicable is this last theorem?

Proposition 32

Let f : Rn ! R be C2 and consider f̃ (x) := f (x) + cTx, where c 2 Rn is given. Then for almost
all c 2 Rn, f̃ ( x̄) = 0 =) r 2 f ( x̄) is nonsingular.

Proof:
Apply Sard’s Theorem (Theorem 25) to g(x) := f 0(x), with r := 1 and p := n.

What if f has some nice structure, can we say more?
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Definition 33: convex function

f : Rn ! R [ f + ¥ g is convex if epi( f ) :=
��

m
x

�
2 R � Rn : f (x) � m

�
is convex.

Here epi( f ) denotes the epi graph of f .

Theorem 34

Let f : Rn ! R be a convex function and S := Rn. Then every local minimizer of (P) is a global
minimizer of (P). If in addition, f is differentiable on Rn, then every stationary point of f is a
global minimizer of (P).

2.1 Affine Subspace Constraints

One of the most popular form of continuous optimization problems is

inf f (x)
s.t. Ax = b

where A 2 R p� n, b 2 R p are given.

At a first glance (and strictly speaking), (P) does not belong to the class of unconstrained continuous
optimization problems. We may assume rank(A) = p; otherwise

• we easily prove Ax = b has no solution, which implies (P) is infeasible, or

• we easily find all redundant equations and x̄ 2 Rn such that Ax̄ = b.

So, rank(A) = p. Find a basis B of A and form the partitions

[AB jAN ] := A,
�

xB
xN

�
:= x.

Then,
Ax = b () xB = A� 1

B b � A� 1
B AN xN .

Therefore, for every x 2 S,

f (x) = f
�

A� 1
B b � A� 1

B AN xN
xN

�
.

We define f̃ : Rn� p ! R by

f̃ (xN) := f
�

A� 1
B b � A� 1

B AN xN
xN

�
.

Thus (P) is equivalent to
inf

x2Rn� p
f̃ (x) (P̃)

and we can start any algorithm from any starting point x(0) 2 Rn� p.

Another equivalent approach:

Let x̄ 2 S (i.e., Ax̄ = b). Then, S = f x̄ + u : u 2 Null(A)g.

Let columns of Z 2 Rn� (n� p) form a basis for Null(A). Then (P) is also equivalent to

inf
v2Rn� p

f̂ (v),

where f̂ : Rn� p ! R is defined as f̂ (v) := f ( x̄ + Zv).
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In applications, with either of these two approaches, we must be very careful about exploiting sparsity
as well as making sure we can efficiently and accurately evaluate all ingredients of the algorithms we
choose to use on such problems.

2.2 Applications

Some other ways of dealing with constrained optimization problems using unconstrained optimization
algorithms: Form the Lagrangian for (P):

L (x, v) := f (x) + vT(b � Ax),

where v 2 R p represents the Lagrange multipliers (dual variables corresponding to the constraints).

Use a penalty function (penalizing any violation of the constraints):

r (x, h) := f (x) + hkAx � bkg
b ,

where b, g 2 R suitably defined, h 2 R++ a penalty parameter.

In compressed sensing and related applications, one seeks a solution of

inf
�

f (x) + hkxk0 : Ax = b
	

,

where kxk0 := number of nonzero entries of x. As an approximation, many researches and practition-
ers work with

inf
�

f (x) + h1kxk1 + h2kAx = bkg
2
	

,

where h1, h2, g 2 R , usually fixed.

We can generalize such approaches to matrix variables. Very many interesting applications in Machine
Learning, AI and modern Data Science. In many of these applications, we want to find a low-rank
solution.

Example:
minf rank(X) : A(X) = bg, where A : Rm� n ! R p linear, b 2 R p, both A, b are given.

2.3 Prototype low-rank approximation problem

Given A 2 Rm� n
+ (both m and n are huge). We want to find matrices U 2 Rm� k

+ , V 2 Rn� k
+ such that

A = UVT and k is as small as possible.

If we do not require U and V to be nonnegative, the problem is solved by Singular Value Decomposi-
tion (SVD) and optimal k is the rank of A.

A = Q1DQT
2 where Q1 2 Rm� m, Q2 2 Rn� n are orthogonal and D 2 Rm� n diagonal. Let’s assume

m � n, then

D =

2

6664

s1(A) 0 0 . . . 0
s2(A) 0 . . . 0

. . .
...

0 sm(A) 0 . . . 0

3

7775

where s1(A) � s2(A) � � � � � sm(A) � 0 are the singular values of A.

Theorem 35

Every A � Rm� n has a SVD.

Requiring U, V to be nonnegative, makes the problem hard. Let p be an upper bound on k (taking p
as (mn + 1) suffices, but in practice, better guesses can help). Suppose our guess for the minimum
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nonnegative rank of A is p. Then let U 2 Rm� p and V 2 Rn� p denote the variable matrices and
consider

inf f (U, V) := h1kA � UVTk + h2kU� k + h3kV� k,

where h1, h2, h3 2 R+ are parameters that we can fix, and U� denotes the Rm� p matrix with only
negative entries of U.

2.4 Classical Algorithmic Approaches

I. Search direction + line-search strategies

Pick a search direction d(k) , pick a step-size ak > 0. x(k+ 1) := x(k) + akd(k) . Repeat.

• d(k) := �r f (x(k) ) steepest-descent direction

• any d(k) with hr f (x(k) ), d(k) i < 0

• d(k) := �
�

r 2 f (x(k) )

Assuming r 2 f (x(k) ) 2 Sn
++

� � 1r f (x(k) ) Newton direction

For convex optimization problems and also near local minimizers of nonconvex problems, we
want ak � 1 with this direction ! superlinear or quadratic convergence

Exact Line-Search Find a > 0 such that f (a) := f (x(k) + ad(k) ) is minimized. Typically not practical.

Inexact Line-Search Armijo-Goldstein (1966-67) conditions (or Wolfe (1969) conditions):
Choose a > 0 so that

f (x(k) + ad(k) ) � f (x(k) ) + c1 � ahr f (x(k) ), d(k) i

(sufficiently good rate for the decrease in the objective function) and “curvature condition”

hr f (x(k) + ad(k) ), d(k) i � c2hr f (x(k) ), d(k) i

(step size should not be too small) where constants c1, c2 satisfy 0 < c1 < c2 < 1.

Strong Wolfe Conditions

f (x(k) + ad(k) ) � f (x(k) ) + c1 � ahr f (x(k) ), d(k) i

and
j hr f (x(k) + ad(k) ), d(k) i

The second conditions disallows
this being too large and positive

j � c2jhr f (x(k) ), d(k) ij

Lemma 36

Let f : Rn ! R be C1, and d 2 Rn be a descent direction at x̄ 2 Rn for f . Suppose f is bounded
from below on the rayf x̄ + ad : a 2 R+ g. Then 80 < c1 < c2 < 1, there exists step lengths a > 0
satisfying Armijo-Goldstein-Wolfe as well as Strong Wolfe conditions.

With f (a) := f ( x̄ + ad), 0 < c1 < c2 < 1, choose a > 0 such that

Armijo-Goldstein-Wolfe

(
f (a) � f (0) + c1af 0(0)
f 0(a) � c2f 0(0)

Strong Wolfe

(
f (a) � f (0) + c1af 0(0)
jf 0(a) j � c2jf 0(0) j
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O
a

slope = c1 f 0(0)

slope = c2 f 0(0)

ok for A-G-W conditions

f (a)

Proof of Lemma 36:
Suppose the stated assumptions hold. We adopt the above mentioned notion with f . Then f (a)
is bounded from below on f a 2 R : a � 0g. Since c1 2 (0, 1) and f 0(0) = hr f ( x̄), di < 0 (d is a
descent direction for f ), the ray f f (0) + ( c1 � f 0(0))a : a � 0g is unbounded below and therefore,
intersects the graph of f at least once for a > 0. Let ā > 0 denote the smallest value of a for which
the ray intersects the graph of f . Then,

f (ā) = f (0) + āc1f 0(0) (� )

Thus, the first condition of A-G-W holds on (0, ā].

By the Mean Value Theorem, there exists â 2 (0, ā) such that f (ā) � f (0) = āf 0(â). Therefore,

f (ā) � f (0)
( � )
= āf 0(â)

( � )
= āc1f 0(0) >

c2 > c1, f 0(0) < 0

c2āf 0(0).

Thus, A-G-W conditions strictly hold at â. Since f 0(â) < 0, Strong Wolfe conditions also hold at â
as well as in a sufficiently small neighborhood of â.

In the textbook, Backtracking line search.

II. Trust-Region Strategies

Use the information gathered about f so far and construct an approximation (“model”) mk of the
function f . Then solve

min mk(d)
s.t. d 2 Trust Region (around x(k) )

x(k) 2 Rn is our current iterate. Let Bk denote r 2 f (x(k) ) or an approximation of it. Choose dk > 0, and
solve

min mk(d) := f (x(k) ) + hr f (x(k) ), di + 1
2 dT Bkd

s.t. kdk2 � dk

Let d̄ denote an optimal solution of this trust-region subproblem. If x(k) + d̄ satisfies certain criteria,
then set x(k+ 1) := x(k) + d̄; otherwise either modify dk, or the step size, . . .

Depending on how well we did with the latest dk choose a suitable value for dk+ 1 and repeat. (size of
the Trust-Region is being adjusted.)
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2.5 Convergence Properties of Descent Algorithms

Let f : Rn ! R . For every b 2 R ,
f x 2 Rn : f (x) � bg

is called a sublevel set of f (some literature use level set).

f x 2 Rn : f (x) = bg

is called a level set of f (some also call it a contour of f )

Consider a descent algorithm: Start with x(0) 2 Rn, at each iteration k, choose d(k) 2 Rn such that
hr f (x(k) ), d(k) i < 0 and choose ak > 0, x(k+ 1) := x(k) + akd(k) .

Recall the geometric fact: 8u, v 2 Rn,

hu, vi = kuk2 � kvk2 cos q

where q := angle between u and v.

Define qk := arccos
�

�


r f (x(k) , d(k) )

�

kr f (x(k) )k2 � kd(k)k2

�

minimizer of f

x(k)

∇ f
(
x(k))

−∇ f
(
x(k))

d(k)

θk
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Theorem 37: Zoutendijk (1970), Wolfe (1969)

Let f : Rn ! R be a bounded from below, x(0) 2 Rn, and f be C1 on

N := nbhdf x 2 Rn : f (x) � f (x(0) )g.

Assume r f is Lipschitz continuous on N with Lipschitz constant L 2 R++ . Then, every descent
algorithm following Armijo-Goldstein-Wolfe conditions for stepsize selection satisfies:

¥

å
k= 0

cos2 qk
 r f (x(k) )

 2
2 < ¥ .

Proof:
Suppose the assumptions in the statement hold. For every iteration k, due to the second A-G-W
condition, we have



r f (x(k+ 1) ), d(k) � � c2



r f (x(k) ), d(k) � , which implies



r f (x(k+ 1) ) � r f (x(k) ), d(k) � � (c2 � 1)



r f (x(k) ), d(k) � (?)

Due to the fact that we are working with a descent algorithm (


r f (x(k) ), d(k) � < 0 for all k) and

the first condition of A-G-W, f x(k)g � N. Since r f is Lipschitz continuous on N with Lipschitz
constant L,



r f (x(k+ 1) ), d(k) � �

Cauchy-Schwarz

 r f (x(k+ 1) ) � r f (x(k) )


2kd(k)k2 �

r f 2 Lip(L)

akLkd(k)k2 (� )

By (?) and (� ), we have

ak �
(c2 � 1)



r f (x(k) ), d(k) �

Lkd(k)k2
2

Substituting this lower bound on ak into the first A-G-W condition, we obtain

f (x(k) + akd(k) ) � f (x(k) ) �
c1(c2 � 1)



r f (x(k) ), d(k) �

Lkd(k)k2
2

() f (x(k+ 1) ) � f (x(k) ) �
�

c1(1 � c2)
L

�
cos2 qkkr f (x(k) )k2

2

Applying the above to pairs of consecutive iterates, we obtain:

f (x(k+ 1) ) � f (x(0) ) �
c1(1 � c2)

L

k

å
‘ = 0

cos2 q‘ kr f (x( ‘ ) )k2
2

Since f is bounded from below,
�

f (x(0) ) � f (x(k) )
�

is bounded from above, and

c1(1 � c2)
L

¥

å
k= 0

cos2 qkkr f (x(k) )k2
2 < + ¥

A consequence of Theorem 37:

¥

å
k= 0

cos2 qkkr f (x(k) )k2
2 < + ¥ =) cos2 qkkr f (x(k) )k2

2 ! 0 as k ! + ¥

Therefore, if cos2 qk � d > 0 for all k 2 Z + , then lim
k! + ¥

kr f (x(k) )k2 ! 0. In some places, including the

textbook, this criterion is used to conclude that Steepest-Descent Algorithm is “globally convergent”.
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What if

x(k) x(k+ 1)

i.e., what if kr f (x(k) )k < 10� 8 but (even assuming convexity of f etc.) the unique minimizer x̄ is far
away from x(k)?

2.6 A General Conversation about Convergence

Example:

f : R ! R , f (x) := 1
4 x4 � 5x. Then f is convex, global minimizer is unique and attained at x̄ := 3

p
5

which is irrational (even though the data � Z ��� )

Thus we cannot expect finite algorithms in the worst-case. We will generate a sequence x(1) , x(2) , . . ..
We will hope fore conclusions like:

• For every x(0) , x(k) ! x̄ a global minimizer.

• For every x(0) , x(k) ! x̄ a local minimizer.

• For every x(0) , all limit points of f x(k)g are global (local) minimizers, or f (x(k) ) ! � ¥ .

• For every x(0) , all limit points of f x(k)g satisfy second-order necessary conditions.

• For every x(0) , all limit points of f x(k)g satisfy first-order necessary conditions.

• For every x(0) , lim
k! + ¥

kr f (x(k) )k = 0.

Locally, replace “every x(0) 2 R” by “every x(0) 2 B( x̄, h) := f x 2 Rn : kx � x̄k2 < hg,” and hope that
the 2nd-order sufficient conditions hold.

How fast? ek := kx(k) � x̄k.

Example:

ek := ( 0.1)k ! 10� 1, 10� 2, . . . linear convergence

ek := ( 0.9)k ! 0.9, 0.081, 0.729, . . . linear convergence

ek := ( 0.1)2k
! (10) � 2, (10) � 4, (10) � 8, . . . quadratic convergence

ek := ( 0.9)2k
! 0.81, 0.65, 0.43, 0.185, 0.034, 10� 3, . . . quadratic convergence

ek := ( 0.1)3k
! . . . cubic convergence
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Definition 38

If ek & 0 and ek+ 1 � b(ek) p for some constants p � 1 and b (b < 1 if p = 1) and for all
sufficiently large k, then we say ek ! 0 with Q-order (at least) p. If ek & 0 and ek+ 1

ek
! 0 (as

k ! + ¥ ) then the convergence is Q-superlinear.

Q-linear := Q-order 1, Q-quadratic := Q-order 2

Example:

e :k=
� 1

l
� k, k 2 Z ++ . Then ek & 0, Q-superlinearly, but it does not have Q-order p > 1.

Given a sequence f ekg � R+ , let hi := supf ek : k � ig. Then lim sup
k! + ¥

f ekg := lim i ! ¥ f hig.

Definition 39

If ek & 0 and lim sup
k! + ¥

�
e1/qk

k
	

< 1 for all 0 < q < p, p > 1, then ek ! 0 with R-order (at least) p.

This is the same as lim sup
k! + ¥

� 1
qk ln(ek)

	
< 0

Proposition 40

(i) If x(k) ! x̄ with Q-order p (R-order p), so does f x(k+ ‘ )g for every fixed ‘ 2 Z + .

(ii) If ek & 0 with Q-order p and 0 < hk � ek for 8k 2 Z ++ , then hk & 0 with R-order p.

Fast Local Convergence of Newton’s Method

This goes back at least to Kantorovich (Nobel Prize in Economics for his work on “the theory of
optimal allocation of resources”, 1975). In addition to his foundational work on the convergence
theory of Newton’s Method, Kantorovich also made significant contributions to functional analysis
and operator theory.

Lemma 41

Let A, B 2 Rn� n, A nonsingular, kA� 1k2 � g and kA � Bk2 � 1
3g . Then B is nonsingular and

kB� 1k2 � 3g
2 .

kA� 1k2 � g () dist(A, singular matrices) � 1
g

Proof:
Suppose A, B 2 Rn satisfy the assumptions. Note that

B = A � (A � B) = A[I � A� 1(A � B)],

and
kA� 1(A � B)k2 � k A� 1k2kA � Bk2 � g �

1
3g

=
1
3

.

If C 2 Rn� n nonsingular such that kCk2 � 1
3 , then ( I � C) is invertible and

( I � C) � 1 = I + C + C2 + � � � =
¥

å
k= 0

Ck.
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This implies

k( I � C) � 1k2 �
¥

å
k= 0

�
1
3

� k
=

1
2/3

=
3
2

.

Thus, with C := A� 1(A � B), (then B = A( I � C)) B is invertible. B� 1 = ( I � C) � 1 A� 1 and

kB� 1k2 � k ( I � C) � 1k2 � kA� 1k2 �
3
2

g.

Lemma 42

Let g : Rn ! Rm, g 2 C1 and r g 2 Lip(L) on some open and convex set D � Rn. Then

kg(y) � g(x) � r g(x)( y � x)k2 �
L
2

ky � xk2
2,

8x, y 2 D.

Proof:
We already proved this as a part of our discussion following Theorem 19.

Newton’s Method: x(0) 2 Rn, f : Rn ! R , f 2 C2.

8k 2 Z + :

(
d(k) := �

�
r 2 f (x(k) )

� � 1r f (x(k) )

x(k+ 1) := x(k) + d(k)

Theorem 43

Let f : Rn ! R , f 2 C2, x(0) 2 Rn, L � 1. Assume r f ( x̄) = 0, r 2 f ( x̄) is nonsingular,
r 2 f 2 Lip(L) in an open neighborhood of x̄. Then there exists an open neighborhood N1 of x̄
such that for all x(0) 2 N1, Newton’s Method converges to x̄ linearly and the method is locally
Q-quadratically convergence (there exists an open neighborhood N2 � N1 of x̄ such that

8x(0) 2 N2, kx(k+ 1) � x̄k2 � constant � kx(k) � x̄k2
2,

8k 2 Z + ). Moreover, kr f (x(k) )k also converges to zero in N1, locally Q-quadratically

(8x(0) 2 N2, kr f (x(k+ 1) )k2 � constant � kr f (x(k) )k2
2, 8k 2 Z + ).

Proof:
Suppose the assumptions hold.

Let g :=
 �

r 2 f ( x̄)
� � 1

2. Choose h > 0 such that with B := B( x̄, h) := f x 2 Rn : kx � x̄k2 < hg,
r 2 f 2 Lip(L) on B and h � 1

3gL . Then for all x 2 B ,

 r 2 f (x) � r 2 f ( x̄)


2 � Lkx � x̄k2 < Lh �
1

3g
(} )

Therefore, by lemma 41 (with A := r 2 f ( x̄), B := r 2 f (x), x 2 B), r 2 f (x) is nonsingular 8x 2 B ;
thus, Newton’s Method is well-defined for f x(k)g � B .

We will prove the theorem by induction on the iteration number k.
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Let x(0) 2 B (in general, x(k) 2 B), then

 x(k+ 1) � x̄


2 =
 x(k) �

�
r 2 f (x(k) )

� � 1r f (x(k) ) � x̄


2

=
 �

r 2 f (x(k) )
� � 1 �

�
0

r f ( x̄)

� r f (x(k) ) � r 2 f (x(k) )( x̄ � x(k) )
� 

2

�
 �

r 2 f (x(k) )
� � 1

2

 r f ( x̄) � r f (x(k) ) � r 2 f (x(k) )( x̄ � x(k) )


2

�
3g
2

�
L
2

 x(k) � x̄
 2

2 by (} ) and Lemma 41, Lemma 42

=
3gL

4

 x(k) � x̄
 2

2 by induction on k, we get quadratic convergence

Also, if x(k) 2 B , then

 x(k+ 1) � x̄


2 �
3gL

4
�

1
3gL

 x(k) � x̄


2 =
1
4

 x(k) � x̄


2

which is linear convergence.

Next, let d := x(k+ 1) � x(k) . Then

kr f (x(k+ 1) )k2 =
 r f (x(k+ 1) ) � r f (x(k) ) � r 2 f (x(k) )d


2

�
L
2

kdk2
2 Lemma 42

=
L
2

 �
r 2 f (x(k) )

� � 1r f (x(k) )
 2

2 (| )

�
L
2

 �
r 2 f (x(k) )

� � 1 2
2

 r f (x(k) )
 2

2

�
9g2L

8

 r f (x(k) )
 2

2 by x(k) 2 B , (| ) and Lemma 41

Now, we have all the ingredients for an induction proof. We proved

“8x(0) 2 B , kx(1) � x̄k2 � 1
4 kx(0) � x̄k2; so, x(1) 2 B , and kx(1) � x̄k2 � 3gL

4 kx(0) � x̄k2
2, and

kr f (x(1) )k2 � 9g2L
8 kr f (x(0) )k2

2.”

By induction on k, we establish the desired inequalities on x(k) . For the gradient, from (| ),

kr f (x(k+ 1) )k2 �
L
2

 �
r 2 f (x(k) )

� � 1r f (x(k) )
 2

2

=
L
2

 x(k+ 1) � x(k) 
2 �

 �
r 2 f (x(k) )

� � 1r f (x(k) )


2

�
L
2

�
2

3gL
�

3g
2

 r f (x(k) )


2 x(k) , x(k+ 1) 2 B , Lemma 41

=
1
2

 r f (x(k) )


2

Therefore, for every x(0) 2 B ,
 x(k) � x̄

 ! 0, Q-linearly, and locally Q-quadratically r f (x(k) )
 ! 0, Q-linearly, and locally Q-quadratically

This proof also applies to the problem of solving systems of nonlinear equations.

g : Rn ! Rn, g 2 C1 on open and convex set D � Rn. 9x̄ 2 D such that g( x̄) = 0, r g( x̄) is nonsingular,
r g 2 Lip(L) on D. Let x(0) 2 N � D,

x(k+ 1) := x(k) � [r g(x(k) )] � 1g(x(k) ) 8k 2 Z + .
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Potential Problems with Newton’s Method

(I) Fails if r 2 f (x(k) ) is singular (or very ill-conditioned)

(II) x(k+ 1) is not the minimizer of the local quadratic model f̃ for f if r 2 f (x(k) ) is not positive
definite.

(III) Not globally convergent in general.

(IV) May not even provide descent in general.

Possible Remedies:

• To address (I) & (II) modify r 2 f (x(k) ), if necessary, to a “nearby” symmetric positive definite
matrix Bk. (do this in an efficient & numerically stable way.)

• Together with the above remedy, use A-G-W or Strong Wolfe based line searches to address (III)
& (IV).

Still there are some disadvantages:

(i) We must evaluate Hessians at every iteration,

(ii) We must solve n � n linear systems of equations in every iteration.

For some problems evaluating the Hessian is very little extra work compared to f , r f . Also, in some
cases Automatic Differentiation via a small number of r f ( �) evaluations suffice. (Chapter 8 of the
textbook)

2.7 Quasi-Newton Methods

Consider Bk 2 Sn
++ , then � B� 1

k r f (x(k) ) is a descent direction for f at x(k) . Consider a quadratic model
of f (near x(k) ):

f̃ (d) := f (x(k) ) + hr f (x(k) ), di +
1
2

dT Bkd.

Since Bk 2 Sn
++ , f̃ has a unique global minimizer at d̄ = � B� 1

k r f (x(k) ). Now we can do a line search
and find x(k+ 1) , then we have f (x(k+ 1) ) and r f (x(k+ 1) ). How do we find Bk+ 1?

Wish List for Bk+ 1

Bk+ 1 2 Sn
++ . Bk+ 1 should incorporate newly discovered information about r 2 f .

s(k) := x(k+ 1) � x(k) (primal step at iteration k)

y(k) := r f (x(k+ 1) ) � r f (x(k) ) (dual step at iteration k)

Magical solution: BFGS

Bk+ 1 := B �
1

sT Bs
BssT B +

1
yTs

yyT

| {z }
we dropped the iteration number k

Note:
By Theorem 19, we have

y(k) =
� Z 1

0
r 2 f

�
x(k) � as(k) � ¶a

�
s(k)

i.e., y(k) tells us the behavior of the “average” Hessian (along the line segment [x(k) , x(k+ 1) ]) on the
subspace spanf s(k)g. So, we want Bk+ 1 2 Rn� n such that y(k) = Bk+ 1s(k) which is secant equation.
By enforcing this equation on Bk+ 1, we can incorporate new “secant” information about r 2 f .
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Example:
Consider n := 1.

x(k)

x(k+ 1)

r f
�
x(k) �

r f
�
x(k+ 1) �

r f (x)

x

s(k)

y(k)

If Bk+ 1 � 0 satisfies the secant equation, then hy(k) , s(k) i = hBk+ 1s(k) , s(k) i > 0 since s(k) 6= 0, Bk+ 1 � 0.
Notice that hy(k) , s(k) i is positively proportional to:

hy(k) , d(k) i = hr f (x(k+ 1) ), d(k) i � hr f (x(k) ), d(k) i = f 0(ak) � f 0(0) >

If we use A-G-W
or Strong Wolfe

based line-search

0

The condition hy(k) , s(k) i > 0 is called the curvature condition.

How do we ensure Bk+ 1 is close to Bk?

Solve the optimization problem
min kB � HkF

s.t. Bs = y, B 2 Rn� n (P1)

for a fixed H 2 Rn� n, e.g., H := Bk, and fixed y, s 2 Rn.

Here,

kAkF

Frobenius norm

:=
� n

å
i= 1

n

å
j= 1

A2
ij

� 1/2

=
�
Tr(AT A)

� 1/2 =
�
vec(A)T vec(A)

� 1/2

(P1) always has a unique solution B̄. Z = B̄ � H. Note B̄s = y () B̄s � Hs = y � Hs = : r.

With this change of variable and definitions, (P1) is equivalent to

min kZkF
s.t. Zs = r

(P2)

Suppose s 6= 0 (i.e., we moved!). Let Q 2 Rn� n be orthogonal such that Qs = be1, b 6= 0. Z̃ := ZQT .
Then (P2) is equivalent to

min kZ̃kF
s.t. Z̃e1 = 1

b r (P3)

which implies
Z̃ =

h
1
b r 0 0 � � � 0

i

Using our definitions, we compute

Z = Z̃Q =
1
b

reT
1 Q =

1
b2 rsTQTQ =

1
b2 rsT

Zs = r =)
1
b2 r(sTs) = r =)

unless r = 0 in
which Z = 0

sT = b2

Therefore, the unique optimal solution of (P1) is

Z =
rsT

sTs
=

1
sTs

(y � Hs)sT
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Theorem 44: Broyden (1965)

Let s, y 2 Rn, s 6= 0, H 2 Rn� n be given. Then the unique optimal solution of (P1) is

B := H +
1

sTs
(y � Hs)sT

Good Broyden

.

Setting v := HTy and B := H +
1

vTs
(y � Hs) vT

Bad Broyden

leads to “Broyden’s Second Method”

Let us modify problem (P1) by requiring B 2 Sn (and H 2 Sn in the data). Consider

min kB � HkF
s.t. Bs = y

B = BT

B 2 Rn� n

Theorem 45: Powell (1970)

The unique optimal solution (s 6= 0) of the above problem is given by

B := H +
1

sTs

h
(y � Hs)sT + s(y � Hs)T � (y � Hs)sssT

i
.

In the formula above, B may not be positive definite even if the curvature condition is satisfied (yTs > 0)
and H is symmetric positive definite.

We want B to be symmetric, positive definite, provided H � 0 and yT > 0. We consider solving

min
 W1/2(B � H)W1/2


F

s.t. Bs = y
B 2 Sn

(PW)

where

W :=
� Z 1

0
r 2 f

�
x(k) + takd(k) � ¶t

� � 1

,

but any W 2 Sn
++ satisfying Wy(k) = s(k) works.

Theorem 45

For every H 2 Sn
++ , y, s 2 Rn such that yTs > 0 and W 2 Sn

++ such that Wy(k) = s(k) , the unique
solution of (PW) is

B :=
�

I �
ysT

yTs

�
H

�
I �

syT

yTs

�

This is called the Davidon–Fletcher–Powell update.

+
yyT

yTs
.

Moreover, B 2 Sn
++ .

Note that

B� 1 =

Sherman-Morrison-Woodbury
Formula applied to the above

H� 1 �
H� 1yyT H� 1

yT H� 1y
+

ssT

yTs
DFP for the Hessian inverse

Next, consider
min kW � 1/2(B � H� 1)W � 1/2kF

s.t. By = s
B 2 Sn

(PBFGS
W )
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Theorem 46

For every H 2 Sn
++ , y, s 2 Rn such that yTs > 0 and W 2 Sn

++ such that Wy(k) = s(k) , the unique
solution of (PBFGS

W ) is

B :=
�

I �
syT

yTs

�
H

�
I �

ysT

yTs

�

Broyden–Fletcher–Goldfarb–Shanno formula for approximation Hessian inverse

+
ssT

yTs
.

Moreover, B 2 Sn
++ .

To approximate the Hessian we invert the above formula and obtain (in terms of H as an approxima-
tion to the Hessian):

H �
HssT H
sT Hs

+
yyT

yTs

In practice, this is most successful with updating its Choleski decomposition.

Summary of DFP, BFGS

P := f B 2 Sn : Bs = y, B � 0g
D := f B 2 Sn : By = s, B � 0g

With

W :=
� Z 1

0
r 2 f

�
x(k) + takd(k) � ¶t

� � 1

,

DFP: Solve
min

 W1/2(B � H)W1/2


F
s.t. Bs = y

B 2 Sn

BFGS: Solve
min kW � 1/2(B � H� 1)W � 1/2kF

s.t. By = s
B 2 Sn

then the inverse of the solution is the BFGS estimate of the Hessian r 2 f .

P and D are convex sets. U 2 P () U� 1 2 D .

Therefore, 8U 2 P, 8V 2 D , 8l 2 [0, 1], [l U + ( 1 � l )V � 1] 2 P and [l U� 1 + ( 1 � l )V] 2 D .

Broyden’s convex class:
n

l BDFP + ( 1 � l )BBFGS : l 2 [0, 1]
o

2.7.1 Convergence Results

(I) Global

(a) Powell (1972): If f is strictly convex ( f is convex and f ( l u + ( 1 � l )v) < l f (u) + ( 1 � l )v, for
all l 2 (0, 1) and u 6= v), f x 2 Rn : f (x) � f (x(0) )g is compact, f 2 C2, and exact line search is
used then quasi-Newton method based on DFP converges.

(b) Dixon (1972): If exact line search is used then DPF, BFGS (and many others) all give identical
sequence of iterates f x(k)g for the same (x(0) , B0).

(c) Powell (1976): Same assumptions on f as in (a), but line-search satisfying A-G-W conditions
imply global convergence of BFGS.
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(d) Byrd, Nocedal and Yuan (1987): Result of (c) holds for all Broyden’s convex class, except for DFP�
i.e., l 2 [0, 1)

�
.

It seems that DFP is worse than BFGS in practice (with inexact line search).

(II) Local Convergence

Assume f 2 C2, x(k) ! x̄, r f (x(k) ) ! 0, r 2 f ( x̄) 2 Sn
++ .

(a) Powell (1971): with exact line search, DFP, BFGS both attain Q-superlinear convergence.

(b) Broyden, Dennis, Moré (1973): If we use ak := 1 for all k 2 Z + and for suitably small e > 0, d > 0,
we have kx(0) � x̄k � e and kB0 � r 2 f ( x̄)k � d, then x(k) ! x̄ Q-superlinearly.

(c) Powell (1976): Assumptions as in I (c), BFGS with ak := 1 chosen whenever possible (i.e., when-
ever ak := 1 satisfies A-G-W conditions), attains Q-superlinear convergence (note: no assump-
tions on B0)

(d) Byrd Nocedal and Yuan (1987): II (c) applies to every update in Broyden’s COnvex Class, except
DFP

2.7.2 Implementation of Quasi-Newton Methods

The most popular and the most successful (generally speaking) quasi-Newton algorithms belong to
the class of Limited Memory BFGS (L-BFGS): only keep the most recent r updates

(s(k� r) , y(k� r) ), (s(k� r+ 1) , y(k� r+ 1) ), . . . , (s(k) , y(k) ).

Typically r 2 f 10, 11, . . . , 20g.

Implementing L-BFGS is relatively straightforward by utilizing the formula from Theorem 46.

Suppose for the current estimate of the Hessian, H, we have a Choleski decomposition: H = LLT ,
where L is lower triangular. We would like a Choleski decomposition of BBFGS.

Lemma 47

Let H 2 Sn
++ , y, s 2 Rn such that yTs > 0. Also let L 2 Rn� n, lower triangular satisfy LLT = H.

Then,

BBFGS =
�

L +
(y � bHs)sT L

bsT Hs

��
LT +

LTs(y � bHs)T

bsT Hs

�
,

where b :=
r

yTs
sT Hs

.

Proof:
Computation.

So B is written as (L + uvT)( LT + vuT) which is not a Choleski decomposition. However, one can
recover a Choleski factorization L̄L̄T of B as follows:

Remark:
For every orthogonal matrix Q 2 Rn� n, B = ( L + uvT)QTQ(LT + vuT).

We will use a sequence of orthogonal matrices on LT + vuT . First, forces on vuT .

Using Given’s Rotations

James Wallace Givens Jr. (1958)
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For 8a, b 2 R , 9q 2 [0, 2p ) such that
�

cos q sin q
� sin q cos q

� �
a
b

�
=

�
�
0

�

2

6666666666664

1
. . . 0

. . .
. . .

1

0 c s
� s c

3

7777777777775

orthogonal

v =

2

6666666666664

�
�
...
...
...
�
0

3

7777777777775

Then, 2

666666666664

1
. . . 0

. . .
1

c s

0 � s c
1

3

777777777775

2

6666666666664

�
�
...
...
...
�
0

3

7777777777775

=

2

66666666664

�
�
...
...
�
0
0

3

77777777775

...

We find Q1 2 Rn� n orthogonal such that

Upper Hessenberg

Q1
�

LT + vuT �
=

2

666664

�
0 �
... 0

. . .
0 � � � 0 �

3

777775
+

2

666664

�
0
...
0
0

3

777775

�
uT �

=

2

666664

� � � � � � � � �
�
0 �
... 0

. . .
0 � � � 0 �

3

777775

Next we apply (n � 1) special orthogonal matrices (Givens’ Rotations), to zero-out the nonzeros below
the diagonal.
2

6666666666664

c s

� s c 0
1

.. .
. . .

0 1
1

3

7777777777775

, then

2

666666666664

1

c s 0
� s c

1
. . .

0 1
1

3

777777777775

. . .

! Orthogonal matrix Q2 2 Rn� n such that (Q2Q1)( LT + vuT) = : L̄T

Choleski factor of BTotal work: O(n2) arithmetic operations.
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2.8 Conjugate Gradient Methods

Let C � Rn be a convex set. Note that every C2 function f : C ! R with r 2 f (x) � 0 for all x 2 C, is
strictly convex on C.

On strictly convex quadratic functions f : Rn ! R ( f (x) := g + cTx + 1
2 xT Hx, with g 2 R , c 2 Rn, H 2

Sn
++ given), BFGS and many other Quasi-Newton Methods require at most n iterations (with exact line

search).

Special case: f (x) := g + cTx + 1
2 xT Dx, D is diagonal and positive definite. In this case, the problem

inf
x2Rn

f (x) is separable. Coordinate Descent solves this problem in n iterations.

Now, consider an arbitrary H 2 Sn
++ , with f (x) := g + cTx + 1

2 xT Hx. Let Q 2 Rn� n be orthogonal
such that H = QDQT , where D 2 Rn� n is diagonal and positive definite (Theorem 16, Spectral
Decomposition Theorem).

Then upon defining v := QTx, we have

f (x) = g + cTx +
1
2

xTQDQTx = g + cTQv +
1
2

vT Dv.

Thus, Coordinate Descent is the same as a search along the columns of Q in the x-space (if we are told
ahead of time what the eigenvectors are).

This also shows how Coordinate Descent might suffer, if we do not have the “right basis”.

Definition 48: H-conjugate

Let H 2 Sn
++ . Then, u, v 2 Rn are called H-conjugate if uT Hv = 0.

Observation 49
If we have n, H-conjugate non-zero vectors, search along them sequentially will minimize f (x) :=
cTx + xT Hx, where H 2 Sn

++ .

Lemma 50

Let H 2 Sn
++ , suppose d(1) , . . . , d(k) 2 Rn n f 0g are pairwise H-conjugate. Then f d(1) , . . . , d(k)g

is linearly independent.

Proof:
Let H and d(1) , . . . , d(k) be as in the statement of the lemma. Then, H1/2d(1) , . . . , H1/2d(k) 2 Rn n
f 0g since d(1) , . . . , d(k) 2 Rn n f 0g and H1/2 is nonsingular. Moreover, H1/2d(1) , . . . , H1/2d(k) are
pairwise orthogonal (since they are H-conjugates), therefore, they are linearly independent. Thus
under a change of basis with H� 1/2, we see that f d(1) , . . . , d(k)g is linearly independent.

Theorem 51

Let c 2 Rn, H 2 Sn
++ be given. Define f : Rn ! R by f (x) := cTx + 1

2 xT Hx. Further assume
d(0) , d(1) , . . . , d(n� 1) 2 Rn n f 0g are pairwise H-conjugate, Let

D :=
h
d(0) d(1) . . . d(n� 1)

i
2 Rn� n.

Then D is nonsingular and with f̂ (y) := f (x(0) + Dy) for any x(0) 2 Rn, f̂ is separable.
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Proof:
Suppose c, H, f , D, x(0) , f̂ are as described in the statement of the theorem. Then, D is nonsingular,
by Lemma 50. Moreover,

f̂ (y) = cTx(0) + cT Dy +
1
2

�
x(0) + Dy

� T H
�
x(0) + Dy

�

=
�

cTx(0) +
1
2

x(0) T
Hx(0)

�
+

�
DTc + DT Hx(0) � Ty +

1
2

yT(DT HD)y

(ij)th entry of (DT HD) = hd(i) , Hd( j) i =

(
0 if i 6= j
> 0 if i = j

Therefore, f̂ is separable.

Corollary 52

Let f , d(0) , d(1) , . . . , d(n� 1) be as above. IF we start with an arbitrary x(0) 2 Rn and successively
search along the directions d(0) , d(1) , . . . , d(n� 1) using exact line searches to get x(1) , x(2) , . . . , x(n) ,
then x( j) minimizes f on the affine space

�
x(0) +

j� 1

å
i= 0

mid(i) : mi 2 R
�

8j 2 f 1, . . . , ng

and x(n) is the global minimizer of f .

Proof:
Follows from the last theorem.

Conjugate Gradient Algorithm

Let f be as above, assume x(0) 2 Rn is given. d(0) := �r f (x(0) ).

Iteration k: (we have x(k) and d(k) )

If r f (x(k) ) = 0, set x(k+ 1) := x(k)

else x(k+ 1) := x(k) + ak

obtained by exact line search

d(k) , d(k+ 1) := �r f (x(k+ 1) ) + bkd(k) , where bk :=
hr f (x(k+ 1) ), Hd(k) i

hd(k) , Hd(k) i
.

Theorem 53

In the above algorithm, d(0) , d(1) , . . . , d(n� 1) are pairwise H-conjugate and x(n) is the global
minimizer of f .

Proof:
If r f (x(0) ) = 0, then there is nothing left to prove. So we may assume d(0) 6= 0. Proof is by
induction on the iterate number k. Assume that d(0) , d(1) , . . . , d(k) are all nonzero and pairwise
H-conjugate. We will prove that

• either “r f (x(k+ 1) ) = 0” ! then, we are done!

• or “d(0) , d(1) , . . . , d(k+ 1) are all nonzero and pairwise H-conjugate” ! this will finish the proof.

Thus, we may assume r f (x(k+ 1) ) 6= 0. Then, by Corollary 52, x(k+ 1) minimizes f on the set
n

x(0) +
k
å

i= 0
mid(i) : m2 Rk+ 1

o
. Then hr f (x(k+ 1) ), d( j) i = 0 8j 2 f 0, 1, . . . , kg.
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Since hr f (x(k+ 1) ), d(k) i = 0, d(k+ 1) = �r f (x(k+ 1) ) + bkd(k) 6= 0.

Next, we prove hd(k+ 1) , Hd( j) i = 0 8j 2 f 0, 1, . . . , kg. By definition of bk,

hd(k+ 1) , Hd(k) i = h�r f (x(k+ 1) ) + bkd(k) , Hd(k) i = 0.

Consider d( j) , j 2 f 0, 1, . . . , k � 1g. x( j+ 1) = x( j) + ajd( j) , and aj > 0 since

hr f (x( j) ), d( j) i = hr f (x( j) ), �r f (x( j) ) + bj� 1d ( j � 1)

d� 1 := 0
b� 1 := 0

i =

We used hr f (x( j) ), d( j� 1) i = 0 by Corollary 52.

�
 r f (x( j) )

 2
2 < 0

So, Hd( j) =
1
aj

H[x( j+ 1) � x( j) ] =
1
aj

[r f (x( j+ 1) ) � r f (x( j+ 1) ) � r f (x( j) )].

Since r f (x( j+ 1) ) 2 spanf d( j) , d( j+ 1)g and r f (x( j) ) 2 spanf d( j� 1) , d( j)g, we have
Hd( j) 2 spanf d( j� 1) , d( j) , d( j+ 1)g ( � ). Then

hd(k+ 1) , Hd( j) i = h�r f (x(k+ 1) ) + bkd(k) , Hd( j) i =

by induction hypothesis

h�r f (x(k+ 1) ), Hd( j) i =

( � ) and, r f (x(k+ 1) )
is orthogonal to

all previous d( j) ’s.

0

This finishes the inductive step.

Note the relationships with Gram-Schmidt orthogonalization/conjugation and the appearance of Krylov
subspaces.

What if f is not quadratic?

“Nonlinear Conjugate Gradient”

We can apply the algorithm to an arbitrary C1 function f using, y(k) := r f (x(k+ 1) ) � r f (x(k) ):

bk :=

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

D
r f (x(k+ 1) ), y(k)

E

D
d(k) , y(k)

E Sorensen-Wolfe (SW)
Hestenes-Stiefel

D
r f (x(k+ 1) ), r f (x(k+ 1) )

E

D
r f (x(k) ), r f (x(k) )

E Fletcher-Reeves

D
r f (x(k+ 1) ), y(k)

E

D
r f (x(k) ), r f (x(k) )

E Polak-Reibiére

Still, we have to do exact (or almost exact) line search. Quadratic or cubic splines are used in applica-
tions. All of the above choices for bk become the same on quadratic functions. Performance depends
on the spectral structure of r 2 f (x(k) ), including distribution of its eigenvalues. Hager & Zhang (2005)
use

bk+ 1 :=
�

y(k) � 2
ky(k)k2

2

hd(k) , y(k) i
d(k) ,

r f (x(k+ 1) )
hd(k) , y(k) i

�
= SW + 2

ky(k)k2
2


d(k) , y(k) �


d(k) , r f (x(k+ 1) )

�

2.8.1 Preconditioned Conjugate Gradient

Let L be lower triangular such that LLT � r 2 f (x(k) ) (e.g., “approximate” possible “incomplete”
Choleski decomposition). Then apply Conjugate Gradient Algorithm to f̃ (x) := f (L� T x̃| {z }

:= x

) =)

r f̃ ( x̃) = L� 1r f (L� T x̃).

Conjugate Gradient Algorithms are related to “Memoryless BFGS”. CGAs can be even slower than
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Steepest-Descent. Even on strongly convex functions they are not “optimal algorithms” with respect
to the worst-case behaviour (Nemirovskii & Yudin (1980)).



3
Constrained Optimization

f : Rn ! R , g : Rn ! Rm, h : Rn ! R p, all assumed to be C1.

inf f (x)
s.t. g(x) � 0

h(x) = 0
(P)

S := f x 2 Rn : g(x) � 0, h(x) = 0g. For x̄ 2 S, J( x̄) := f i : gi( x̄) = 0

active constraints at x̄
tight constraints at x̄

g

J := J( x̄), then gJ is the corresponding “subfunction”.

d 2 Rn is a feasible direction for (P) at x̄, if 9ā > 0 such that ( x̄ + ad) 2 S 8a 2 [0, ā).

Lemma 54

If d 2 Rn is a feasible direction for (P) at x̄, then hr gi( x̄), di � 0 8i 2 J and h0( x̄)d = 0.

Recall: Corollary 24.

Lemma 55

Let x̄ 2 S such that h0( x̄) has rank p, and d 2 Rn satisfies g0
J( x̄)d < 0 and h0( x̄)d = 0. Then

9ā > 0 and a C1 arc t̂ : [0, ā) ! Rn such that
8
><

>:

t̂(0) = x̄
t̂0(0) = d
t̂(a) 2 S 8a 2 [0, ā)

Proof Sketch:
Apply Corollary 24, to determine ā > 0 (and to prove its existence) note that 8i 2 [m] n J, gi( x̄) < 0
(by definition of J = J( x̄)).

35
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Corollary 56

If x̄ 2 S is a local minimizer of (P) and h0( x̄) has rank p, then @d 2 Rn satisfying

8
><

>:

hr gi( x̄), di < 0 8i 2 J( x̄)
h0( x̄)d = 0
hr f ( x̄), di < 0

If such a direction d 2 Rn existed, then by Lemma 55 we would have feasible solutions along the C1

arc t̂(a) for a 2 [0, ā) that are better than x̄, contradicting the fact that x̄ is a local minimizer for (P).

Lemma 57: a theorem of the alternative-Farkas-type

Let A 2 Rn� q, B 2 Rn� r. Then exactly one of the following two systems has a solution:

(I) ATd < 0, BTd = 0

(II) Au + Bv = 0, u � 0, u 6= 0.

Proof:
Suppose (I) has a solution d̄ 2 Rn and (II) has a solution (ū, v̄) 2 Rq � R r. Then,

0 = Aū + Bv̄ =) 0 = d̄T A|{z}
< 0T

ū

� 0
6= 0

+ d̄T B|{z}
= 0T

v̄ < 0,

a contradiction.

Suppose (II) does not have a solution. Consider the LP

max 1Tu
s.t. Au + Bv = 0

u � 0
(LP)

which is the dual of
min 0Td

s.t. ATd � 1
BTd = 0

(LD)

(LD) is equivalent to: minf 0Td : ATd � � 1, BTd = 0g. Since (II) has no solution and ū := 0, v̄ := 0
give a feasible solution of (LP) with objective value zero, optimal objective value of (LP) is zero. By
Strong Duality Theorem of linear programming, (LD) has an optimal solution d̄. Therefore, system
(I) has a solution.

We used:

Theorem 58: Strong Duality Theorem of Linear Programming

Let (LP) be a linear programming problem, and let (LD) be its dual. If (LP) has an optimal
solution then so does its dual (LD); moreover, in this case, the optimal objective values of (LP)
and (LD) are the same.
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Theorem 59: Karush (1939), Fritz John (1948)

Suppose x̄ 2 S is a local minimizer for (P). Then 9l̄ 2 R+ , ū 2 Rm
+ , v̄ 2 R p,

0

@
l̄
ū
v̄

1

A 6= 0 such that

l̄ r f ( x̄) +
m

å
i= 1

ūir gi( x̄) +
p

å
i= 1

v̄ir fi( x̄) = 0,

m

å
i= 1

ūi � gi( x̄) = 0. ( )

Since ū � 0 and g( x̄) � 0, ( ) is equivalent to 8i 2 [m], either gi( x̄) = 0 or ūi = 0 (possible both).
Complementary Slackness conditions, or Complementarity Conditions.

Proof:
Suppose x̄ 2 S is a local minimizer for (P). If h0( x̄) does not have rank p, then 9v̄ 2 R p n f 0g such
that v̄Th0( x̄) = 0T . So, we may set l̄ := 0 and ū := 0, and we are done.

Otherwise (rank
�
h0( x̄)

�
= p), by Corollary 56, the system

8
><

>:

hr f ( x̄), di < 0
hr gi( x̄), di < 0 8i 2 J( x̄)
hr hi( x̄), di = 0

has no solution. Thus, by Lemma 57, 9l̄ 2 R+ , ūJ � 0, v̄ 2 R p such that
�

l̄
ūJ

�
6= 0 and

l̄ r f ( x̄) + å
i2 J( x̄)

ūir gi( x̄) +
p

å
i= 1

v̄ir hi( x̄) = 0.

Note that being able to set l̄ = 0 “makes the statement of the theorem work, without a Constraint
Qualification” but it also takes away from its potential power.

Example 60:
min f (x) := x1

s.t. g1(x) := � x3
1 + x2 � 0

g2(x) := � x2 � 0

S

x1

x2

r f ( x̄)

r g1( x̄)

r g2( x̄)
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Here x̄ :=
�

0
0

�
, r f ( x̄) =

�
1
0

�
, r g1( x̄) =

�
0
1

�
, r g2( x̄) =

�
0

� 1

�

l̄ must be zero in this case; l̄ := 0, ū1 := ū2 := 1 works.

Geometry of this problem is bad.

Example 61:

min f (x) := x1 + x2
s.t. g1(x) := � x3

1 � 0
g2(x) := � x3

2 � 0
(P)

Here S = R2
+ .

x̄ :=
�

0
0

�
, r g1( x̄) = r g2( x̄) =

�
0
0

�
, r f ( x̄) =

�
1
1

�
. Again, we must set l̄ = 0.

However, the geometry of S is nice! Nevertheless, the geometry of f 0, g0, h0 is determined by the
original formulation (P) given by f , g, h. In this case, the formulation is bad! (P) is equivalent to an
LP.

To have more useful results (than Theorem 59), we will look for necessary conditions in which l̄ > 0.

3.1 The First-order Constraint Qualification at x̄ 2 S

Let

D( x̄) :=

(

d 2 Rn :



r gi( x̄), d

�
� 0 8i 2 J( x̄)



r hi( x̄), d

�
= 0 8i 2 f 1, . . . , pg

)

Then, First-order Constraint Qualification holds at x̄ if 8d̄ 2 D( x̄) 9 a sequence f d(k)g with d(k) ! d̄
such that 9āk > 0 and a C1 arc t(k) : [0, āk) ! Rn such that

8
><

>:

t(k) (a) 2 S, 8a 2 [0, ā)
t(k) (0) = x̄
�
t(k) � 0(0) = d(k)

Informally, this means the polyhedral cone D( x̄) is a reasonably good approximation to the set of
feasible directions at x̄.

In Example 60, D( x̄) = spanf e1g. The Constraint Qualification looks ok for d = e1 but fails for
d = � e1. Therefore, Constraint Qualification fails fails at x̄.

In Example 61, D( x̄) = R2. For d =
�
� 1
� 1

�
2 D( x̄) the Constraint Qualification cannot be satisfied.

Lemma 62: Mangasarian-Fromowitz Constraint Qualification (1967)

Let x̄ 2 S, h, g 2 C1. If h0( x̄) has rank p and 9d̄ 2 Rn such that


r gi( x̄), d̄

�
< 0 8i 2 J( x̄),



r hi( x̄), d̄

�
= 0 8i 2 f 1, . . . , pg,

then the First-order Constraint Qualification holds at x̄.

Proof:
Suppose the assumptions hold. Let d 2 D( x̄), d(k) := d + 1

k d̄ 8k 2 Z ++ . Then hr gi( x̄), d(k) i < 0
8i 2 J( x̄) and h0( x̄)d(k) = 0 8k 2 Z ++ . By Lemma 55, 9 a suitable C1 arc t̂(k) 8k 2 Z ++ .
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Corollary 63

Let x̄ 2 S, h, g 2 C1. If
�

g0
J( x̄)

h0( x̄)

�
has linearly independent rows, then the First-order Constraint

Qualification holds at x̄.

Proof:

Suppose x̄ 2 S, and g, h 2 C1. If 9d̄ 2 Rn satisfying

(
g0

J( x̄)d < 0

h0( x̄)d = 0
, then we are done by Lemma 62.

Otherwise, by Lemma 57,
�

g0
J( x̄)

h0( x̄)

�
has linearly dependent rows.

Corollary 64

If all constraints in (P) are linear (i.e., all functions g1, . . . , gm, h1, . . . , hp are affine) then the
First-order Constraint Qualification holds at every x 2 S.

Proof:

Suppose the assumptions hold. Let x̄ 2 S. For every d 2 D( x̄), set

(
d(k) := d
t̂(k) := x̄ + ad

8k 2 Z ++ .

Lemma 65

Let A 2 Rn� q, B 2 Rn� r, c 2 Rn. Then exactly one of the following systems has a solution:

1. ATd � 0, BTd = 0, cTd < 0;

2. c + Au + Bv = 0, u � 0.

Theorem 66: First-order Necessary Conditions under Constraint Qualification�
Karush 1939, Kuhn-Tucker 1951(KKT Theorem)

�

Suppose f , g, h 2 C1 and the First-order Constraint Qualification holds at x̄ 2 S, a local mini-
mizer for (P). Then, 9( ū

v̄) 2 Rm � R p such that
(

r f ( x̄) + [ g0( x̄)]T ū + [ h0( x̄)]T v̄ = 0
ū � 0, ūT g( x̄) = 0

Proof:
Suppose the assumptions hold. Further suppose that 9d 2 D( x̄) such that hr f ( x̄), di < 0. Then
by First-order Constraint Qualification, we can find d(k) 2 Rn such that hr f ( x̄), d(k) i < 0 and
d(k) is the first derivative of a feasible C1 arc t̂ starting at x̄. Defining f (a) := f ( t̂(a)) leads to
f 0(0) = hr f ( x̄), d(k) i < 0. This leads to a contradiction to x̄ being a local minimizer for (P). So,
now we may assume the system 8

><

>:

hr f ( x̄), di < 0

g0
J( x̄)d � 0

h0( x̄)d = 0

has no solution.

By Lemma 65, 9ūJ � 0, v̄ 2 R p such that r f ( x̄) + [ g0
J( x̄)]T ūJ + [ h0( x̄)]T v̄ = 0. Setting ūi := 0

8i 2 [m] n J( x̄) yields the desired conclusion.
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Many algorithms for continuous optimization problems (and discrete optimization problems) are de-
signed via these conditions.

KKT Conditions, KKT Triple
8
>>>>>><

>>>>>>:

g(x) � 0
h(x) = 0

�
Primal feasibility

r f (x) + [ g0(x)]Tu + [ h0(x)]Tv = 0
u � 0

�
Dual feasibility

uT g(x) = 0
o

Complementary Slackness

9
>>>>>>=

>>>>>>;

0

@
x̄
ū
v̄

1

A satisfying the above conditions (KKT conditions) is called a KKT triple.

Lagrangian: L : Rn � Rm � R p ! R

L (x, u, v) := f (x) + uT g(x) + vTh(x)

r xL (x, u, v) = r f (x) + [ g0(x)]Tu + [ h0(x)]Tv

r uL (x, u, v) = g(x)
r vL (x, u, v) = h(x)

KKT COnditions can equivalently be stated as:

8
>>>>>><

>>>>>>:

r xL ( x̄, ū, v̄) = 0

r uL ( x̄, ū, v̄) � 0

r vL ( x̄, ū, v̄) = 0

ūTr uL ( x̄, ū, v̄) = 0

ū � 0

9
>>>>>>=

>>>>>>;

This implies x̄ satisfies First-order conditions for it to be a local minimizer of L ( �, ū, v̄) over Rn; ( ū
v̄)

satisfies First-order conditions for it to be a local maximizer of L ( x̄, �, �) over Rm � R p. Therefore,
�

x̄ ū v̄
� T satisfies the First-order conditions for it to be a saddle point of the Lagrangian.

Example 67:
Let A 2 R p� n, b 2 R p, c 2 Rn be given. Consider

inf f (x) := cTx
s.t. g(x) := � x � 0

h(x) := b � Ax = 0
(LP)

sup bTv
s.t. ATv � c

(LD)

Note: (
c + ( � I)u + ( � AT)v = 0

u � 0 uTx = 0

)

()

(
ATv � c

xT(c � ATv) =

cTx = bTy

(using Ax = b)

0

)
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3.2 Second-order Conditions for Constrained Optimization

Assume f , g, h 2 C2,
inf f (x)
s.t. g(x) � 0

h(x) = 0
(P)

Example 68:

inf f (x) := 1
2 x2

1 � 1
2 x2

2

s.t. g1(x) := x2 � 1 � 0

g2(x) := � x2 � 0

x1

x2

S

x̄ :=
�

0
1

�

x̄ is the unique minimizer of (P). J( x̄) = f 1g.

1

� 1
2

1� 1

� 1
2

x2

f (0, x2)

x1

f (x1, 1)

r f ( x̄) =
�

0
� 1

�
, r g1( x̄) =

�
0
1

�
.

KKT conditions hold at x̄ with ū :=
�

1
0

�
. r 2 f ( x̄) =

�
1 0
0 � 1

�
, r 2g1( x̄) = r 2g2( x̄) = 0.

r 2 f ( x̄) is not positive semidefinite. However, it is positive semidefinite in the appropriate linear subspace

f d : g0
J( x̄)d = 0, h0( x̄)d = 0g

( tangent

d2 = 0

to the active constraints

x2 = 1

)

Example 69:

inf f (x) := � 1
2 (x1 + 1)2 � 1

2 x2
2

s.t. g1(x) := 1
2 x2

1 + 1
2 x2

2 � 1
2 � 0
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x2

x1

S

x̄ :=
�

1
0

�

x̄ is the unique optimal solution.

r f ( x̄) =
�
� 2
0

�
, r g1( x̄) =

�
1
0

�
. KKT conditions are satisfied at x̄ with ū := 2.

r 2 f ( x̄) =
�
� 1 0
0 � 1

�
, r 2g1( x̄) =

�
1 0
0 1

�
. r 2 f ( x̄) is not positive semidefinite; but

r 2
xxL ( x̄, ū) = r 2 f ( x̄) + 2r 2g1( x̄) = � I + 2I = I

is positive semidefinite.

Second-order Constraint Qualification (at x̄ 2 S) holds if

(
g0

J( x̄)d = 0

h0( x̄)d = 0

)

=)

9ā and a C2 arc t̂ : [0, ā) ! Rn such that8
>><

>>:

t̂(0) = x̄
t̂0(0) = d
gJ( t̂(a)) = 0 8a 2 [0, ā)
h( t̂(a)) = 0 8a 2 [0, ā)

Theorem 70: Second-order necessary conditions

Suppose x̄ 2 S is a local minimizer for (P) and second-order Constraint Qualification holds at x̄.
Then if

�
x̄ ū v̄

� T is a KKT triple, we have

g0
J( x̄)d = 0

h0( x̄)d = 0

)

=) dT �
r 2

xxL ( x̄, ū, v̄)
�
d � 0.

Corollary 71

Suppose x̄ 2 S is a local minimizer for (P) and the first-order & second-order Constraint Quali-
fications hold at x̄. Then, 9ū 2 Rm, v̄ 2 R p such that

r f ( x̄) + [ g0( x̄)]T ū + [ h0( x̄)]T v̄ = 0, ū � 0, ūT g( x̄) = 0,

and r 2
xxL ( x̄, ū, v̄) is positive semidefinite on

(

d 2 Rn :
g0

J( x̄)d = 0

h0( x̄)d = 0

)

.
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Theorem 72

Suppose g, h 2 C2, x̄ 2 S. If
�

g0
J( x̄)

h0( x̄)

�
has linearly independent rows, then the First-order as well

as Second-order Constraint Qualifications hold at x̄.

Use the Implicit Function Theorem (Theorem 21).

Theorem 73: Second Order Sufficiency Condition

Suppose
�
x̄ ū v̄

� T is a KKT triple for (P) and

g0
J( x̄)d � 0

h0( x̄)d = 0

ūT
J g0

J( x̄)d = 0

d 6= 0

9
>>>>=

>>>>;

=) dTr 2
xxL ( x̄, ū, v̄)d > 0.

Then, x̄ is a strict local minimizer of (P).

3.3 Strict Complementarity

Let
�

x̄ ū v̄
� T be a KKT triple for (P). We say that

�
x̄ ū v̄

� T satisfies strict complementarity (or,

equivalently x̄ and ū are strict complementary) if the following holds

(
gi( x̄) = 0
ūi = 0

Recall: Since we have a KKT triple, we already have 8i 2 [m], at least one of gi( x̄), ūi is zero. When the
KKT triple satisfies strict complementarity, the statement of the last theorem and its proof simplify.

Theorem 74: Second Order Sufficiency Condition when strict complementarity holds

Suppose
�
x̄ ū v̄

� T is a strictly complementary KKT triple for (P) and

�
g0

J( x̄)
h0( x̄)

�
d = 0

d 6= 0

9
>=

>;
=) dTr 2

xxL ( x̄, ū, v̄)d > 0.

Then x̄ is a strict local minimizer of (P).

In a proof of Theorem 74 and in some similar situations, the following fact is useful.

Lemma 75

Let A 2 Rn� q, B 2 Sn such that

ATd = 0

d 6= 0

)

=) dT Bd > 0.

Then, 9r̄ � 0 such that
8r � r̄ , (B + r AAT) 2 Sn

++ .

When (P) is a convex optimization problem (e.g., S is a convex set and f is a convex function on S),
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every local minimizer of (P) is a global minimizer of (P) and our results above can be made “global”.

3.4 Augmented Lagrangians

Let r > 0, s > 0.

L r ,s (x, u, v) := inf
y: y� g(x)
z: z= h(x)

n
f (x) + uTy + vTz +

1
2

r yTy +
1
2

sztz
o

= f (x) + vTh(x) +
s
2

kh(x)k2
2 +

m

å
i= 1

inf
yi � gi(x)

n
uiyi +

1
2

r y2
i

o

| {z }
= :f r (ui ,gi(x))

Example:
Consider the case ui > 0 (recall r > 0)

f r (ui , gi(x))

gi(x)
� ui/r

� u2
i /2r

slope at gi(x) = 0 is ui

Theorem 76

Suppose KKT-triple
�
x̄ ū v̄

� T satisfies the Second-order Sufficiency conditions for being a

strict local minimizer for (P). Suppose strict complementary holds at
�
x̄ ū v̄

� T . Then 9r̄ � 0
and s̄ � 0 such that 8r � r̄ , s � s̄ , x̄ is a strict local minimizer of L r ,s ( �, ū, v̄). Furthermore,
�
ū v̄

� T is a global maximizer of L r ,s ( x̄, �, �).

3.4.1 Algorithms from Augmented Lagrangians

There are many ways to design algorithms based on Augmented Lagrangians. Let us put (P) into an
equality form using new variables xi, i 2 [m]:

inf f (x)
s.t. gi(x) + x2

i = 0 i 2 [m]
hi(x) = 0 i 2 [p]

Lr

��
x
x

�
,
�

u
v

��
= f (x) + uT g(x) +

m

å
i= 1

uix2
i + vTh(x) +

r
2

k� � �k2
2

Let

Lr (x, u, v) := inf
x2Rm

�
Lr

��
x
x

�
,
�

u
v

���

= f (x) +
1
2

r
h

g(x) +
u
r

i T

+

h
g(x) +

u
r

i
�

1
2r

uTu + vTh(x) +
1
2

r kh(x)k2
2

where, for w 2 Rm, [w]+ 2 Rm is defined by for each j 2 [m], maxf 0, wjg.
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When Lr is differentiable in x,

r xLr (x, u, v) = r f (x) + r g(x)[u + g(x)]+ + r h(x)[v + r h(x)].

Algorithm Choose x(0) , u(0) , v(0) , r 0 > 0; k := 0. At iteration k, DO:

x(k+ 1) :=

perhaps only approximately

argmin
x2Rn

f Lr k (x, u(k) , v(k) )g

u(k+ 1) := [ u(k) + r kg(x(k+ 1) )]+

v(k+ 1) := v(k) + r khx(k+ 1)

update r k to r k+ 1

How do we choose r k?

• Present strategy (e.g., r k := bk, where b > 1 constant).

• Adaptive (if g(x(k) ) is “approximately � 0” and h(x) � 0 then keep r k the same; otherwise,
increase r k).

Now, let us consider (P) in pure inequality form.

Theorem 77: Bertsekas (1982)

inf f (x)
s.t. g(x) � 0

(P)

Suppose x̄ 2 Rn is a local minimizer for (P); f , g 2 C2 and r 2 f , r 2gi (i 2 [m]) 2 Lip in a
neighborhood of x̄. Further assume 2nd-order Sufficiency conditions hold at x̄ with Lagrange
multipliers ū � 0, r gJ( x̄) has full column rank, strict complementarity holds at

�
x̄ ū

� T .

Then, 8U � Rm bounded, 9r̄ > 0 such that r > r̄ implies Lr ( �, u) for u 2 U has a local
minimizer x(u, r ) and 9 a constant M > 0 such that

kx(u, r ) � x̄k �
M
r

ku � ūk,

k[u + r � g
�
x(u, r )

�
]+ � ūk �

M
r

ku � ūk.

Therefore, if we choose r > M, then we get at least Q-linear convergence of u(k)s, and at least R-linear
convergence of x(k)s. If r k ! + ¥ fast, we get Q-superlinear convergence of u(k)s. If f , gi are convex,
then we get global convergence.

3.5 Method of Multipliers

Consider
inf f (x)
s.t. Ax = b

(P)

where A 2 R p� n, b 2 R p given.

L r = f (x) + vT(

h(x)
z }| {
Ax � b) +

r
2

 Ax � b
 2

2
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Algorithm Choose x(0) 2 Rn, v(0) 2 R p, r 0 > 0. At iteration k, DO:

x(k+ 1) := argmin
x2Rn

L r k (x, v(k) )

v(k+ 1) := v(k) + r k(Ax(k+ 1) � b)
update r k to r k+ 1

Suppose f is C1. Then, KKT conditions:

Ax = b primal feasibility
r f (x) + ATv = 0 dual feasibility

x(k+ 1) = argmin
x2Rn

L r k (x, v(k) )

=) r xL r k (x(k+ 1) , v(k) ) = 0 = r f (x(k+ 1) ) + AT [v(k) + r k

“dual step size”

(Ax(k+ 1) � b)]
| {z }

= v(k+ 1)

() r f (x(k+ 1) ) + ATv(k+ 1) = 0

At the end of each iteration, x(k) , v(k) satisfy dual feasibility. Algorithm strives to achieve primal
feasibility.

3.6 Alternating Direction Method of Multipliers (ADMM)

We will again illustrate the algorithm for a special form of (P). Let fi : Rni ! R be C1 functions.
A1 2 R p� n1 , A2 2 R p� n2 , b 2 R p be given.

inf f1(x) + f2(x)
s.t. A1x + A2x = b

(P)

L r k

��
x
x

�
, v

�
= f1(x) + f2(x) + vT(A1x + A2x � b) +

r k
2

 A1x + A2x � b
 2

2

Algorithm Choose x(0) 2 Rn1 , x(0) 2 Rn2 , v(0) 2 R p, r 0 > 0. At iteration k, DO:

x(k+ 1) := argmin
x2Rn1

L r k

��
x

x(k)

�
, v(k)

�

x(k+ 1) := argmin
x2Rn2

L r k

��
x(k+ 1)

x

�
, v(k)

�

v(k+ 1) := v(k) + r k
�

A1x(k+ 1) + A2x(k+ 1) � b
�

update r k to r k+ 1

In our illustration of the ADMM algorithm, we had a continuous optimization problem which was
separable with respect to x and x: f1(x) + f2(x). Of course, this approach easily extends to objective

functions f (x) =
L
å

‘ = 1
f‘ (x‘ ) which separate into L � 2 subfunctions.

3.7 Proximal Point Methods

There is a more general framework which unifies algorithms inspired by Augmented Lagrangians,
ADMM, Douglas-Rachford splitting methods, operator splitting methods, Dykstra’s alternating pro-
jections, Spingarn’s method of partial inverses, Bregman iterations: Proximal Point Method(s)
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Proximal Operator

Let f : Rn ! R [ f + ¥ g. Suppose

epi( f ) =
��

m
x

�
2 R � Rn : f (x) � m

�

is closed and convex.

Proximal operator of f is prox f : Rn ! Rn,

prox f (z) := argmin
x2Rn

n
f (x) +

1
2

kx � zk2
2

o
.

Consider the continuous optimization problem:

inf f (x)
s.t. x 2 S

(P)

where S � Rn is a convex set, and f : Rn ! R [ f + ¥ g is a convex function.

Indicator function of S:

d(xjS) :=

(
0, if x 2 S
+ ¥ , otherwise.

Define f̃ : Rn ! R [ f + ¥ g such that f̃ (x) := f (x) + d(xjS). Then f̃ is convex and (P) is equivalent to
the constrained convex optimization problem

inf
x2Rn

f̃ (x) (P̃)

S
z(2)

z(1)
z(3)

prox f̃

�
z(2) �

prox f̃

�
z(1) �

prox f̃

�
z(3) �

level sets of f

We do not even need f̃ to be C1. h 2 Rn is a subgradient of f̃ ar x̄ 2 Rn if f̃ (x) � f̃ ( x̄) + hT(x � x̄)
8x 2 Rn.

¶ f̃ ( x̄)

subdiffential of f̃ at x̄

:= f h 2 Rn : his a subgradient of f̃ at x̄g

(P) is equivalent to: find x̃ 2 Rn such that 0 2 ¶ f̃ ( x̃).

Algorithm (Proximal point algorithm): Choose x(0) 2 Rn, l 2 R++ . At iteration k, DO

x(k+ 1) := proxl f
�
x(k) �

k := k + 1

In fact, proxl f ( �) = ( I + l¶ f ) � 1
| {z }

Resolvent operator

( �). This interpretation connected proximal point algorithms to

Fixed Point Theory. More on this in CO 463.
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3.8 Closest Points and Projections

Theorem 78: Kolmogorov Criterion

Let S � Rn be a nonempty closed convex set, and let z 2 Rn. Then the closest point proj(zjS)
exists and is unique and it satisfies

�
z � proj(zjS)

� T �
z � proj(zjS)

�
� 0 8x 2 S.

Proof:
See the proof of Corollary 111 in CO 255Lecture Notes.

proj(zjS) is the unique optimal solution of inf
�

kx � zk2
2 : x 2 S

	
.

A very useful characterization of the closest point (projection) applies to the case when S is a convex
cone.

S�

dual cone (of S)

:=
�

s 2 Rn : xTs � 0 8x 2 S
	

.

Theorem 79: Moreau Decomposition

Let S � Rn be a nonempty closed convex cone and z 2 Rn. Then, z̄ = proj(zjS) if and only if
z̄ 2 S and 9ȳ 2 S� such that z = z̄ � ȳ and z̄T ȳ = 0.

In the above, ȳ = proj( � zjS� ).

Therefore, 8z 2 Rn can be expressed as z = proj(zjS) � proj( � zjS� ).

Recall, 8z 2 Rn, z = [ z]+ � [� z]+ .

3.9 A Stochastic Descent Algorithm

Let A 2 Rm� n, b 2 Rm be given. We want to find x̄ 2 Rn such that Ax̄ � b.

Ax � b () h ai, xi � bi 8i 2 [m]

Choose x(0) . At iteration k, DO

choose i 2 [m] uniformly randomly

x(k+ 1) := closest point in f x 2 Rn : hai, xi � big to x(k)

k := k + 1

S := f x 2 Rn : Ax � bg.

Note that

x(k+ 1) = x(k) �
[hai, x(k) i � bi]+

kaik2 ai.

I.e., x(k+ 1) = x(k) if x(k) lies in the halfspace f x 2 Rn : hai, xi � big; otherwise, x(k+ 1) is the orthogonal
projection of x(k) on the hyperplane f x 2 Rn : hai, xi = big.

We multiply both sides of ith inequality by 1
kaik2

. Thus, we may assume kaik2 = 1 for all i.
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S

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

Since kaik2 = 1 8i 2 [m], we have kAk2
F = m.

Theorem 80: Hoffman (1952)

Let A 2 Rm� n. Then 9 a constant LA such that 8b 2 Rm for which f x 2 Rn : Ax � bg 6= ∅, and
8x̃ 2 Rn,

min
x: Ax� b

kx � x̃k2 � LA
 [Ax̃ � b]+


2.

The last inequality is equivalent to dist( x̃, S) � LA � dist(b � Ax̃, Rm
+ ). LA is sometimes called the

Lipschitz bound of A.

These type of results are also called “error bounds” in the literature. Generalizations to various classes
of convex optimization problems exist.

Theorem 81: Leventhal-Lewis (2010)

Suppose S 6= ∅. Then the above algorithm converges linearly in expectation. In particular,
8k 2 Z + ,

E
h�

dist(x(k+ 1) , S)
� 2jx(k)

i
�

�
1 �

1
mL2

A

� �
dist(x(k) , S)

� 2.

Proof:
Suppose S 6= ∅, let k 2 Z + , i 2 [m]. Note [dist(x(k+ 1) , S)]2 =

 x(k+ 1) � proj(x(k+ 1) jS)
 2

2, and
 x(k+ 1) � proj(x(k) jS)

| {z }
some point in S

 2
2 �

 x(k+ 1) � proj(x(k+ 1) jS)
| {z }

closest point
to x(k+ 1) in S

 2
2

Thus,

[dist(x(k+ 1) , S)]2 �
 x(k+ 1) � proj(x(k) jS)

 2
2

=
 x(k) �

�
hai, x(k) i � bi

�
+ ai � proj(x(k) jS)

 2
2

�
 x(k) � proj(x(k) jS)

 2
2 + [ hai, x(k) i � bi]2+ � 2[hai, x(k) i � bi]+ hai, x(k) � proj(x(k) jS) i

| {z }
= hai ,x(k) i� bi �

�
hai ,proj(x(k) jS) � bi i

�

� [dist(x(k) , S)]2 � [hai, x(k) i � bi]2+
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Take expectation over all i 2 [m], we have

E
h�

dist(x(k+ 1) , S)
� 2jx(k)

i
�

�
dist(x(k) , S)

� 2 �
1
m

 [Ax(k) � b]+
 2

2

Now, we apply Theorem 90 to the second term in the RHS to get

�
1
m

 [Ax(k) � b]+
 2

2 � �
1

mL2
A

dist(x(k) jS)2.

Therefore,

E
h�

dist(x(k+ 1) , S)
� 2jx(k)

i
�

�
1 �

1
mL2

A

� �
dist(x(k) , S)

� 2

as desired.

The underlying algorithm has its roots in the algorirhtm of Kaczmarz from 1930’s (for solving systems
of linear equations). We discussed Randomized Kaczmarz algorithm for systems of linear inequalities.

In the above algorithm and its analysis we illustrated some of the fundamental ingredients for Stochas-

tic Gradient Descent (SGD) applied to inf
x2Rn

f (x) :=
m
å

i= 1
fi(x).

In (SGD) we randomly choose i 2 [m],

x(k+ 1) := x(k) � ak

step size (in ML, it is usually called the learning rate)

r fi(x(k) )

...

Note that in our Randomized Kaczmarz Algorithm we used the probability distribution: pi = 1
m for

all i. If we hadn’t normalized kaik2 = 1 for all i, we would have chosen instead: pi = kaik2
2

kAk2
F

8i.

Convergence speed may be very very slow on many instances. Why should we use it? (More like,
when should we use it?)

• very very large instances (big data)

• highly parallelizable (if 9 enough separablility)

• easy to code, easy to modify

• easy to analyze

• can try to strengthen by utilizing second-order info.

• � � �

3.10 Sequential Quadratic Programming

inf f (x)
s.t. g(x) � 0

h(x) = 0
(P)

Given current iterate x(k) (not necessary feasible) and estimates u(k) , v(k) of Lagrange multipliers (dual
variables), and Bk � r 2

xxL (x(k) , u(k) , v(k) ), construct an approximating

inf f (x(k) ) + hr f (x(k) ), di + 1
2 dT Bkd

s.t. g(x(k) ) + r g(x(k) )Td � 0
h(x(k) ) + r h(x(k) )Td = 0
d 2 Rn

(QP)k
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Start with x(0) , u(0) , v(0) , B0. At iteration k, solve (QP)k for d 2 Rn to determine the search direction,
or the step.

How do we update u(k) , v(k) , Bk? How do we make sure we make progress towards satisfying all the
constraints?

We can merge many ideas here to design SQP based algorithms.

Let d̄ 2 Rn be an optimal solution of (QP)k. We may update by x(k+ 1) := x(k) + d̄ or x(k+ 1) := x(k) + ad̄
and determine a by a line search using a “merit function” or a “potential function”.

Example:
f m(x) := f (x) + mk[g(x)]+ k + mkh(x)k for m> 0; or we may use a Trust-Region approach.

We may update Bk using a Quasi-Newton type approach, where

y(k) := r xL (x(k+ 1) , u(k+ 1) , v(k+ 1) ) � r xL (xk, u(k+ 1) , v(k+ 1) )

We may update u(k) ! u(k+ 1) , v(k) ! v(k+ 1) as in Augmented Lagrangian based algorithms (or in
some other way which still takes into consideration indivisual entries of g(x(k+ 1) ) or h(x(k+ 1) )).

3.11 Penalty and Barrier Methods, Modern Interior-Point Methods

In many of the approaches we discussed during the recent lectures, we used Lagrange multipliers or
dual variables or “penalties” to “move” the constraints into the objective function of (P) and “convert”
the constrained continuous optimization problem at hand to an unconstrained optimization problem.

Suppose (P) is a convex optimization problem. Then under some mild assumptions, we can express
(P) in the following conic form:

inf hc, xi
s.t. Ax = b

x 2 K
(CP)

where K � Rn is a closed convex cone with nonempty interiors, A 2 Rm� n, b 2 Rm, c 2 Rn are all
given.

The dual cone of K is given by K� := f x 2 Rn : hx, si � 0 8x 2 Kg.

We define the dual of (CP) as:
sup hb, yi
s.t. ATy + s = c

s 2 K�
(CD)

Theorem 82: Weak Duality Theorem for Conic Optimization

For every x̄ 2 Rn that is feasible for (CP) and for every ( ȳ, s̄) 2 Rm � Rn that is feasible for
(CD), we have hc, x̄i � h b, ȳi . Moreover, if hc, x̄i = hb, ȳi then x̄ is optimal for (CP) and ( ȳ, s̄) is
optimal for (CD).

Proof:
Let x̄, ( ȳ, s̄) be feasible solutions to (CP), (CD) respectively. Then

hc, x̄i = hAT ȳi � h b, ȳi
= hȳ, Ax̄i + hs̄, x̄i � h b, ȳi
= hs̄

2 K�

, x̄

2 K

i � 0 by definition of K�

Applying the first part to x̄ and every feasible solution (y, s) of (CD) establishes that ( ȳ, s̄) is optimal
for (CD). Applying the first part to ( ȳ, s̄) and every . . .
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3.11.1 Logarithmically Homogeneous Self-concordant Barrier

Suppose F : int(K) ! R has the following properties:

(i) F 2 C3;

(ii) 8f x(k)g � int(K) such that x(k) ! x̄ 2 bd(K), F(x(k) ) ! + ¥ ;

(iii)
��D3F(x)[d, d, d]

�� � 2
�

D2F(x)[d, d]
� 3/2 8x 2 int(K), 8d 2 Rn;

(iv) F(tx) = F(x) � q ln t, 8x 2 int(K), 8t 2 R++ for some q � 1.

Such an F is called a Logarithmically Homogeneous Self-concordant barrier for K.

Recall, in Theorem 43, we needed D2 f 2 Lip(L).

��D3F(x)[d1, d2, d3]
�� = lim

d! 0

1
d

���D2F(x + td1)[d1, d2] � D2F(x)[d1, d2]
��� � Lkd1kkd2k2.

In the theory of self-concordant functions, we are replacing 2-norms with local norms defined by
D2F(x).

For every m> 0, we define
inf hc, xi + mF(x)
s.t. Ax = b

(Pm)

where we define F(x) := + ¥ , 8x 2 Rn n int(K).

Some examples of LHSCBs

K := Rn
+ , q = n

F(x) :=

8
><

>:

�
n
å

j= 1
ln xj, x 2 Rn

++

+ ¥ , otherwise.

This is LP.

K := Sn
+ , q = n

F(X) :=

(
� ln det(X), X 2 Sn

++
+ ¥ , otherwise.

This is Semidefinite programming.

K :=
��

t
x

�
2 R � Rn : t � k xk2

�
(Second-Order Cone)

F(t, x) :=

(
� ln(t2 � k xk2

2), kxk2 < t
+ ¥ , otherwise.

Taking direct sums of Second Order Cones leads to Second-Order Cone Programming (SOCP) prob-
lems.

Each of these cones is a pointed, closed convex cone. A convex set is pointed it does not contain whole
line(s).

Theorem 83

If K � Rn is a pointed closed convex cone with nonempty interior, then so is its dual K� .
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x̄ 2 Rn is a Slater point for (CP) if Ax̄ = b and x̄ 2 int(K).

( ȳ, s̄) 2 Rm � Rn is a Slater point for (CD) if AT ȳ + s̄ = c and s̄ 2 int(K� ).

These two are Constraint Qualifications for (CP) and (CD)

Theorem 84: Strong Duality Theorem for Conic Optimization

Suppose (CP) has a Slater point and the objective function of (CP) is bounded from below over
its feasible region. Then, (CD) has an optimal solution and the optimal objective values of (CP)
and (CD) are the same.

Remark 85
The dual of (CD) is equivalent to (CP).

So, we can swap (CP) $ (CD) in Theorem 84.

Corollary 86

Suppose both (CP) and (CD) have Slater points. Then, both (CP) and (CD) have optimal solu-
tions and the optimal objective values of (CP) and (CD) are the same.

Suppose A 2 Rm� n has full row rank (rank(A) = m), K is a pointed closed convex cone with nonempty
interior, F is a q-LHSCB for K; b 2 Rm, c 2 Rn are given so that (CP) and (CD) have Slater points. Recall
the family of problems: m> 0

inf hc, xi + mF(x)
s.t. Ax = b

(CPm)

Necessary and sufficient conditions for optimality:

Ax = b, x 2 int(K)

ATy � mr F(x) = c
� � � (Central-Path)

For every m > 0, the above system has a unique solution (x(m), y(m)) . In fact, s(m) := � mr F(x(m))
| {z }

2 int(K� )
yields a solution (y(m), s(m)) of (CD).

Remark 87
Let x 2 int(K), F be a q-LHSCB for K. Then 8t > 0, F(tx) = F(x) � q ln t

=)

(
r F(tx) = 1

t r F(x)
hr F(tx), xi = � q

t
=) h�r F(x), xi = q.

We have from (Central-Path),

ATy(m) � mr F(x(m)) = c =) h x(m), ATy(m) i � mhr F(x(m)) , x(m) i = hc, x(m) i

()

Ax(m) = b & Remark 87

hb, y(m) i + qm=

hc, x(m) i � h b, y(m) i = qm.

hc, x(m) i

As m& 0, hc, x(m) i and hb, y(m) i converge to the optimal objective values of (CP) and (CD).
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S = f x : Ax = b, x 2 Kg

x(0)

x(+ ¥ )

x(m)

� c
(Approximately) follow the
central path as m& 0

Say x(k) 2 int(K) \ S is a very good approximation of x(mk) (where x(mk) is the optimal solution of
(CPmk )). Let mk+ 1 :=

�
1 � 0.1p

q

�
mk so that x(k) is a good approximation of x(mk+ 1). Then taking one

Newton step (or a similar move) x(k+ 1) := x(k) + ad, x(k+ 1) becomes a very good approximation of
x(mk+ 1). Continuing, we obtain in K iterations, a feasible solution x(K) of (CP) such that

mK =
�

1 �
0.1p

q

� K

m0

Therefore, in O
� p

q ln
� qm0

e
� �

iterations, we have x̄ feasible in (CP) such that hc, x̄i is within e of the
optimal objective value of (CP).

We can also design algorithms which utilize the dual problem (CD) more than we did.

Legendre-Fenchel Conjugate of F

F� : Rn ! R [ f + ¥ g, F� (s) := sup
x2Rn

f�h s, xi � F(x)g and dom

domain of F

(F) := f x : F(x) < + ¥ g

By definition, 8x̄ 2 dom(F), we have

�h s, x̄i � F( x̄) � sup
x2Rn

f�h s, xi � F(x)g 8s 2 Rn.

Proposition 88: Fenchel-Young Inequality

For every x 2 dom(F) and s 2 Rn, we have F(x) + F� (x) � �h s, xi .

Theorem 89: Nesterov & Nemisovski (1994)

Let K � Rn be a pointed, closed convex cone with nonempty interior. If F is a q-LHSCB for K,
then F� is a q-LHSCB for K� .

3.11.2 Some practical issues

• We assumed having available x(0) such that Ax(0) = b, x(0) 2 int(K). In practice, we should
be above to start from infeasible points x(0) (hence, infeasible-start algorithms). Let e 2 int(K),
consider the auxiliary problem

inf z
s.t. Ax + ( b � Ae)z = b

x 2 K
z 2 R+

(CPaux)
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( x̄
z̄) := (e

1) is a feasible solution of (CPaux). In fact, ( x̄
z̄) 2 int (K � R+ ).

We may use a two-phase approach (compute a Slater point in Phase I, then initiate Phase II to
solve (CP)). However, successful practical algorithms take a combined approach and strive to
reduce both infeasibility and min a controlled way.

• The updates mk+ 1  
�

1 � constantp
q

�
mk are too conservative in practice. We use much more ag-

gressive strategies to decreasemin practical algorithms.

• In each iteration of an interior-point algorithm, we solve (perhaps approximately) a linear system
of equations

(AH � 1AT)dy = r or
�

H AT

A 0

� �
dx

dy

�
=

�
r1
r2

�
,

where r, r1, r2 are given (easily computed), dx and dy are unknowns (leading to the search di-
rection in the current iteration) and H is either r 2F(x(k) ) or [r 2F� (s(k) )] � 1 or some symmetric
positive de�nite matrix related to these.

Current best upper bounds on the iteration complexity of interior-point algorithms are W(
p

qln (1/ e))
to obtain an e-optimal solution.

However, in practice, infeasible-start interior-point algorithms require 10-80 iterations to obtain
a solution that is 10 � 9-optimal on well-posed instances of convex optimization problems.

A meta theorem of ipm practice

Given a well-posed instance of a convex optimization problem, if we can perform one iteration
of the ipm in a reasonable amount of time, we can solve the instance in a reasonable amount of
time.

We can use the NEOS server for optimization: https://neos-server.org/neos/
and/or CVX (Disciplined Convex Programming): http://cvxr.com/
and/or (Domain Driver Solver): http://www.math.uwaterloo.ca/ � m7karimi/DDS.html
Leading commercial conic optimization solver MOSEK: https://www.mosek.com/

Some interior-point algorithms can attain quadratic convergence (locally) or near-quadratic superlinear
convergence.

What if our problem instances are so huge that we can't even perform a single iteration of an interior-
point algorithm in a reasonable amount of time. ! Consider First-Order Algorithms

Aside We also have some techniques to address this within an ipm framework.

3.12 Worst-Case Computational Complexity of First-Order Methods

Suppose S = Rn, f 2 C1 and convex with Lipschitz continuous gradients, Lipschitz constant L. Con-
sider the class of algorithms which generate a set of iterates with the property that

x(k) 2 x(0) + span
n

r f (x(0) ), r f (x(1) ), . . . ,r f (x(k� 1) )
o

8k 2 Z ++ (P.1)

Let's build a family of functions f f` g for which we can prove a lower bound on the number of iterations
required by any algorithm with (P. 1) to compute an approximate minimizer.

Fix L > 0. Consider 8` 2 [n], f : Rn ! R,

f` (x) :=
L
4

�
1
2

�
x2

1 +
` � 1

å
i= 1

(xi � xi+ 1)2 + x2
`

�
� x1

�

https://neos-server.org/neos/
http://cvxr.com/
http://www.math.uwaterloo.ca/~m7karimi/DDS.html

	Preface
	Introduction
	Conic Form
	Derivatives
	Fixed Point
	Other

	Unconstrained Continuous Optimization
	Affine Subspace Constraints
	Applications
	Prototype low-rank approximation problem
	Classical Algorithmic Approaches
	Convergence Properties of Descent Algorithms
	A General Conversation about Convergence
	Quasi-Newton Methods
	Convergence Results
	Implementation of Quasi-Newton Methods

	Conjugate Gradient Methods
	Preconditioned Conjugate Gradient


	Constrained Optimization
	The First-order Constraint Qualification
	Second-order Conditions for Constrained Optimization
	Strict Complementarity
	Augmented Lagrangians
	Algorithms from Augmented Lagrangians

	Method of Multipliers
	Alternating Direction Method of Multipliers (ADMM)
	Proximal Point Methods
	Closest Points and Projections
	A Stochastic Descent Algorithm
	Sequential Quadratic Programming
	Penalty and Barrier Methods, Modern Interior-Point Methods
	Logarithmically Homogeneous Self-concordant Barrier
	Some practical issues

	Worst-Case Computational Complexity of First-Order Methods
	Optimal First-Order Methods


