
}
Machine Learning

CS 485}
Shai Ben-David

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CS 485 during Fall 2020 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Since the course is online, we are watching recordings from a previous offering. Videos are avail-
able on https://www.newworldai.com/understanding-machine-learning-course/. The textbook for
this course is available at http://www.cs.huji.ac.il/∼shais/UnderstandingMachineLearning.

Some notations:

• D[A] denotes the probability hitting the set A.

• Ch(A) is the convex hull of the set A.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

1

https://www.newworldai.com/understanding-machine-learning-course/
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
https://notes.sibeliusp.com/contact/
https://notes.sibeliusp.com/

Contents

Preface 1

1 Introduction 4
1.1 Learning in Nature . 4

1.2 Many types of machine learning . 5

1.3 Relationships to other fields . 5

1.4 Papaya Tasting . 6

2 A Gentle Start 7
2.1 Formal model for learning . 7

2.2 Empirical Risk Minimization . 7

3 A Formal Learning Model 10
3.1 A formal notion of learnability . 10

3.2 A More General Learning Model . 11

3.3 More general setup for learning . 11

3.4 Agnostic PAC-Learning as a game . 12

4 Learning via Uniform Convergence 13
4.1 Finite Classes Are Agnostic PAC Learnable . 13

4.2 PAC-learnable infinite class example . 15

4.3 Summary . 16

5 The Bias-Complexity Tradeoff 17
5.1 The No-Free-Lunch Theorem . 17

6 The VC-Dimension 18
6.1 Infinite-Size Classes Can Be Learnable . 18

6.2 The VC-Dimension . 18

6.3 Examples . 19

6.4 Some basic properties of VCdim . 19

6.5 Another example of VCdim . 20

6.6 The Fundamental Theorem of PAC learning . 21

6.7 The Sauer’s Lemma . 22

7 Nonuniform Learnability 24
7.1 Characterizing Nonuniform Learnability . 24

7.2 Structural Risk Minimization . 26

7.3 Minimum Description Length (MDL) Learning . 27

8 The Runtime of Learning 28
8.1 Computational Complexity of Learning . 28

8.2 Examples of the computational complexity of some concrete tasks 28

8.3 Hardness of Learning . 30

2

9 Linear Predictors 32
9.1 Halfspaces . 32

9.1.1 Linear Programming . 32

9.1.2 Perceptron for Halfspaces . 33

9.1.3 The VC Dimension of Halfspaces . 33

10 Boosting 35
10.1 Weak Learnability . 35

10.2 The Boosting algorithm paradigm . 37

10.3 Face detection algorithm based on Boosting . 38

11 Model Selection and Validation 39

12 Convex Learning Problems 40
12.1 Properties of convex functions . 41

12.2 Convex Learning Problems . 42

12.2.1 Learnability of Convex Learning Problems . 44

12.3 Surrogate loss functions . 45

12.4 Lipschitzness . 47

12.5 Smoothness . 47

15 Support Vector Machines 48
15.1 Margin and Hard-SVM . 48

15.1.1 The Homogenous Case . 49

15.1.2 The Sample Complexity of Hard-SVM . 49

16 Kernel Methods 50
16.1 Embeddings into Feature Spaces . 50

16.2 The Kernel Trick . 50

16.2.1 Kernels as a Way to Express Prior Knowledge . 51

16.2.2 Characterizing Kernel Functions . 51

20 Neural Networks 52
20.1 Feedforward Neural Networks . 52

20.2 Learning Neural Networks . 53

20.3 The Expressive Power of Neural Networks . 53

A Lecture 23 54

B Final exam 56

3

1
Introduction

Reading

Up to page 41 of the textbook.

What is learning?

Experience Expertise

ML program

program

Process takes us from experience and leads us to expertise. Expertise would be another program that
can do something you need expertise to do. For example, develop a spam filter. The outcome program
is the spam filter.

1.1 Learning in Nature

Bait Shyness: It’s difficult to poison the rats with the bait food. The rats will find that the shape might
be different. If they take a bite and feel sick, they will immediately associate the sickness with the food
and then never touch it again. It’s a clear example of learning from a single experience.

Spam filters: Inputs are emails which are labeled.

(email1, spam), (email2, not spam), . . .

Then we have to come up with the program which filters the spam. The simplest way is to memorize
all the emails that are spam. So what’s wrong with such a program?

It does not generalize. We want generalization. Memorization is not enough. Generalization is
sometimes called inductive reasoning: take previous cases and try to extend it to something new.

Pigeon Superstition: discovered by Skinner in 1947. He took a collection of pigeons and put them
in the cage. Also he put different kinds of toys. Above the cage, there is some mechanism that can
spread grains. Something interesting happens. When the birds get hungry, they pick around for
worms. Suddenly there’s a spread of food. The birds start to learn: maybe the toys the bird is picking
at that particular moment had some influence on getting food. So the next time the bird is hungry, the
bird is more likely to pick on this toy than others. Then the next time food spreads, it reinforces what
the bird did. After several times, the birds are completely devoted to some specific toys.

This is silly generalization. For rats, it’s important generalization making them survive.

4

CHAPTER 1. INTRODUCTION 5

Garcia 1996, looks at the rats again. He gave the rats the poisoned bait which smelled and looked
exactly like the usual food they get. Then the question: does the rat learn the connection between
sickness and the poisoned food? Rats fail to associate the bell ringing with the poison effect. Here
note that unlike the Pavlov’s dog experiment which did repeatedly many times, the rat only has one
chance to learn.

The key point here is prior knowledge: the rat already knows the shape and smell of the food through
generation. Why have this limitation, why not paying attention to everything? In terms of rats, if they
feel sick, every experience/feed is special, then the rat don’t know what to associate to. Therefore, the
prior knowledge is very important.

If we have little prior knowledge, we need a lot of training. If we have much prior knowledge, maybe
we can do without much experiences. ML is living somewhere between these two.

Why do we need Machine Learning?

1. Some tasks that we (animals) can carry out may be too complex to program. E.g., Spam filter,
driving, speech recognition.

2. Tasks that require experience with amounts of data that are beyond human capabilities. E.g., ads
placement, genetic data.

3. Adaptivity.

1.2 Many types of machine learning

1. Supervised vs. Unsupervised. Supervised: spam filter. Unsupervised: outlier detection, cluster-
ing.

There’s also an intermediate scenario called reinforcement learning.

2. Batch vs. Online. Batch: get all training data in advance. Online: need to response as you learn.

3. Cooperative→ indifferent→ adversarial. Teacher.

4. Passive vs. Active learner.

1.3 Relationships to other fields

AI: two important differences: We are going beyond what human/animals can do, not try to imitate;
This area is rigorous, mathematical, nothing like “happens to be”.

Also we need: Algorithms & complexity, statistics, linear algebra, combinatorics, optimization. How-
ever, there’s something different with statistics in several ways.

1. algorithmic statistics

2. Distribution free. No clue on how spam is generated.

3. finite samples.

Outline of the course

• Principles: supervised, batch, ...

• Algorithmic paradigms.

• Other types of learning.

CHAPTER 1. INTRODUCTION 6

1.4 Papaya Tasting

color

red

dark green
softness

hard mushy

tasty

Each papaya corresponds to a coordinate (c, s).

Training data: (x1, y1), . . . (xm, ym) = S, where xi ∈ R2 and yi ∈ {T, N}

Domain set: [0, 1]2

Label set: {T, N}

Output: f : [0, 1]2 → {T, N}. Prediction rule.

Assumption about data generation:

1. Training data are randomly generated.

2. Reliability by rectangles. See the picture above.

Measure of success: probability of my predictor f to err on randomly generated papaya.

2
A Gentle Start

2.1 Formal model for learning

In the context of papaya example last time,

Domain set X [0, 1]2

Label set y {T, N}
Training input (sample)

S = ((x1, y1), . . . , (xm, ym))
set of already

tasted papayas
Learners output

h : X → Y
Prediction rule

for tasteness

The quality of such
h is determined

with respect to some data
generating distribution

and labeling rule

LD, f (h) = D[{x : h(x) 6= f (x)}]
where L stands for loss,
D is the distribution of

papaya generated in the world,
f is the function to determine

the true tastefulness of papaya.
So it determines the probability

that our hypothesis h fails

The goal of the learner is given S to come up with h with small loss.

2.2 Empirical Risk Minimization

Basic learning strategy: empirical risk minimization (ERM) which minimizes the empirical loss.

We define empirical loss (risk) over a sample S:

LS(h) =
|{i : h(xi) 6= yi}|

|S|

A very simple rule for finding h with small empirical risk (ER)

hS(x)
4
=

{
yi if x = xi for some (xi, yi) ∈ S
N otherwise

Then LS(hS) = 0.

Although the ERM rule seems very natural, without being careful, this approach may fail miserably.
It overfits our sample.

To guard against overfitting we introduce some prior knowledge (Inductive Bias).

7

CHAPTER 2. A GENTLE START 8

There exists a good prediction rule that is some axis aligned rectangle. Let H denote a fixed collection
of potential (candidate) prediction rules, i.e.,

H ⊆ { f : X → Y} = XY,

and we call it hypothesis class. Then we have a revised learning rule: ERMH - “pick h ∈ H that
minimizes LS(h)”, i.e.,

ERMH(S) ∈ argmin
h∈H

{LS(h)}

Theorem 2.1

Let X be any set, Y = {0, 1}, and let H be a finite set of functions from X to Y. Assume:

1. The training sample S is generated by some probability distribution D over X and labeled
some f ∈ H, and elements of S are picked i.i.d.a

2. Realizability assumption: ∃h ∈ H such that LD, f (h) = 0

Then ERMH is guaranteed to come up with an h that has small true loss, given sufficiently large
sample S.

aidentically and independently distributed

Remark:
This is quite different from hypothesis testing. Unlike hypothesis testing, here we have assumptions
after seeing the data. We are developing theories based on the data, and here H is a finite set.

Proof:
Confusing samples are those on which ERMH may come up with a bad h.

Fix some success parameter ε > 0, and the set of confusing S’s is

{S : LD, f (hS) > ε}

We wish to upper bound the probability of getting such a bad sample.

Dm[{S|X : LD,F(hS) > ε}]

where S|X = x1, . . . , xm.

Consider HB = {h ∈ H : LD, f (h) > ε} which is the set we want to avoid.

The misleading samples is the set of samples that may lead to an out come in HB, formally:

M = {S|X : ∃h ∈ HBsuch that LS(h) = 0}

We claim that {S|X : LD, f (hS) > ε} ⊆ M. The former set is the cases that we select bad hypothesis,
and M is the cases there exist bad hypothesis. So it is a subset. We might not have selected a bad
hypothesis from M, then we cannot put an equal between these two sets. We want to upper bound
a probability of the set we defined. Therefore, it suffices to upper bound Dm(M).

Dm(M) = Dm

 ⋃
h∈HB

: {S|X : LS(h) = 0}


Now we need two basic probability rules:

1. The union bound: For any two events A, B and any probability distribution P, P(A ∪ B) ≤
P(A) + P(B).

2. If A and B are independent events then P(A ∩ B) = P(A) · P(B).

CHAPTER 2. A GENTLE START 9

For any fixed h ∈ HB. Let us upper bound Dm[{S|X : LS(h) = 0}]. For a single one, the probability
of h is doing wrong on X is at least ε, then

Dm[{S|X : LS(h) = 0}] = Dm[{SX : h(x1) = f (x1) ∧ · · · ∧ h(xm) = f (xm)}]
≤ (1− ε)m

Then we conclude

Dm[Bad S] ≤ Dm(M) = Dm[∪h∈HB(LS(h) = 0)] ≤ |HB| · (1− ε)m ≤ |H| · (1− ε)m

Then ERMH has small probability of failure as m→ ∞.

Note that here we call it paradigm not algorithm since it doesn’t tell you which H to pick.

This time we use a different notation:

Pr
S∼Dm

[LD, f (ERMH(S)) > ε] ≤ |H| · (1− ε)m

for every ε ≥ 0 and for every m, where

LD, f (h) = Pr
x∼D

[h(x) 6= f (x)].

Trust that for every 1 > ε > 0, m
(1− ε)m ≤ e−εm

Thus the probability of making an error is going down exponentially fast in the sample size.

Also recall the proof idea:

• Step 1: For any given h : X → {0, 1}, PrS∼Dm [LS(h) = 0] is small and getting smaller with m,
provided that LD, f (h) > ε. We are looking at samples that make h look good in spite of h being
bad.

• Step 2: Take union over all h ∈ H.

3
A Formal Learning Model

3.1 A formal notion of learnability

PAC learnability

We say that a class of predictors H is PAC learnable (Probably Approximately Correct) if there
exists a function mH : (0, 1)× (0, 1)→N such that there exists a learner

A :
∞⋃

m=1
(X× {0, 1})m → { f | f : X → {0, 1}}

that for every D probability distribution over X and every f ∈ H and every ε, δ > 0

Pr
S∼Dm , f

[LD, f (A(S)) > ε] < δ

for every m ≥ mH(ε, δ).

Here we can think of ε as an accuracy parameter and δ as confidence parameter.

If we rephrase Theorem 2.1, we get

Theorem

Every finite H is PAC learnable with mH(ε, δ) ≤ ln |H|+ln(1/δ)
ε . Furthermore, any ERMH learner

will be successful.

Last time we have showed
Pr

S∼Dm , f
[LD, f (A(s)) > ε] ≤ |H| · e−εm ≤ δ

Then take ln,
ln |H| − εm ≤ ln(δ)

Then we get results as desired.

Strength of the PAC definition is that we can guarantee the number of needed examples (for training)
regardless of the data distribution D and of which f ∈ H is used for labeling. We call this is a
“Distribution free guarantee”.

Weakness: If only works if the labeling rule f comes from H.

10

CHAPTER 3. A FORMAL LEARNING MODEL 11

Relaxation The data is generated by some probability distribution D over X×Y.

We still wish to output a labeling rule h : X → Y.

Assume Y = {0, 1}, we claim the best predictor h should be

h∗(x) =

{
1 if D((x, 1)|x) ≥ 1

2

0 otherwise

which is called the Bayes rule. The problem is we do not know D. We only see a sample (generated by
D).

Note that LD(h∗) in some cases may be high. If it’s a coin flip, and the data generating process is
completely random, then this rate will be half.

3.2 A More General Learning Model

Now redefine successful learning to have only a relative error guarantee.

Agnostic PAC learnability

A class of predictors H is agnostic PAC learnable if there exist some function mH(ε, δ) : (0, 1)×
(0, 1) → N, and a learner A (taking samples, outputting predictors) such that for every D over
X×Y and every ε, δ > 0

Pr
S∼Dm

[LD(A(S)) > min
h∈H

(LD(h)) + ε] < δ

whenever m ≥ mH(ε, δ).

Weaker notion of learner’s success defined relative to some “benchmark” class of functions H. h is
ε-accurate with respect to D, H if LD(h) ≤ minh′∈H(LD(h′)) + ε.

Some other learning tasks

1. Multiclass prediction.

The set of labels Y could be larger than just two elements. For example, {Politics, Sports,Entertainment,
Finance, . . .}

2. Real valued prediction (Regression).

The set of labels is the real line. For example, predict tomorrow’s max temperature.

3.3 More general setup for learning

• Domain set Z

• Set of models M

• Loss of some model: on a given instance z: `(h, z)

The data is generated by some unknown distribution over Z and we aim to find the best model for
that distribution.

LD(h) = Ez∼D`(h, z)

So far,

• Z = X× {0, 1}

CHAPTER 3. A FORMAL LEARNING MODEL 12

• M: functions from X to {0, 1}

• `(h, (x, y)︸ ︷︷ ︸
z

) =

{
1 if h(x) 6= y
0 if h(x) = y

LD(h) coincides with our previous definition LD(h) = Pr(x,y)∈D(h(x) 6= y)

Let’s consider our previous examples with this new setting.

1. Binary label prediction.

Z = X× {0, 1}, `(h, (x, y)) =

{
1 if h(x) 6= y
0 if h(x) = y

2. Multiclass prediction.

Z = X×Y where Y is the set of topics from the previous example.

`(h, (x, y)) =

{
1 if h(x) 6= y
0 if h(x) = y

These are called 0-1 loss for the obvious reason.

3. Regression (Predicting temperature)

Z = X×R, `(h, (x, t)) = (h(x)− t)2 which is called square loss

4. Representing data by k codewords.

distributions of audio signals

∗ ∗

∗

Z = Rd M = vectors of k members of Rd h = (c1 . . . ck)

`((c1 . . . ck), z) = min1≤i≤k ‖ci − z‖2

3.4 Agnostic PAC-Learning as a game

Fix the domain set X and hypothesis class H.

Tester Learner

(ε, δ) ∈ (0, 1)2

mH(ε, δ)

ε, δ

D
m

S ∼ Dm

h = A(S)
S

LD(h)− LD(h∗)
?
> ε h

How often the
learner fails?
more than δ?

where h∗ = argminh∈H LD(h).

4
Learning via Uniform Convergence

epsilon-representative sample

A sample S = (z1 . . . zm) (or S = (x1, y1) . . . (xm, ym)) is ε-representative of a class H with respect
to a distribution D if

∀h ∈ H, |LS(h)− LD(h)| ≤ ε,

where LS(h) = 1
m ∑z∈S `(h, z), the Empirical Risk of h.

Note that if S is indeed representative of H with respect to D, then ERMH is a good learning strategy.

Claim If S is ε-representative of H with respect to D then for any ERMH function hS

LD(hS) ≤ min
h∈H

(LD(h)) + 2ε

Proof:
By definition, since S is ε-representative and hS ∈ H, then LD(hS) ≤ LS(hS) + ε. Since hS is ERMH ,
then LS(hS) ≤ minh∈H [LS(h)]. Again since S is ε-representative, we have

LD(hS) ≤ LS(hS) + ε ≤ min
h∈H

[LS(h) + ε] ≤ min
h∈H

[LD(h)] + ε + ε

4.1 Finite Classes Are Agnostic PAC Learnable

Next step Show that if a large enough S is picked at random by D then with hight probability, such
S will be ε-representative of H with respect to D.

Suggestion Prove an upper bound for sample complexity of a specific algorithm, namely ERM:
A(S) = argminh∈H LD(h).

We then present the above claim as a lemma.

Lemma 4.1

If S is ε-rep, then LD
(

AERM(S)
)
− LD(h∗) ≤ 2ε.

13

CHAPTER 4. LEARNING VIA UNIFORM CONVERGENCE 14

sample complexity of uniform convergence

(w.r.t. H) mUC
H (ε, δ): the minimum number m such that for every distribution D, if we pick

S ∼ Dm, then with probability at least 1− δ, S is ε-representative.

If we have mUC
H (ε, δ) samples, then with high probability our sample S is ε-representative lemma−−−→ ERM

will work→ it will be agnostic PAC-learnable.

Corollary 4.2

mH(ε, δ) ≤ mUC
H (ε/2, δ)

New goal find upper-bound for mUC
H (ε, δ) in the case |H| < ∞

Strategy:

• Step 1: for a single hypothesis h ∈ H, bound the number of samples to make sure that LD(h) ≈
LS(h) with “high probability”.

• Step 2: use union bound to bound the probability that “any” of them fails.

Hoeffding’s inequality

Assume θ1, θ2, . . . , θm are iid random variables with mean µ that take values in [a, b], then

Pr
[∣∣∣∣µ− 1

m ∑ θi

∣∣∣∣ > ε

]
< 2 exp

(
−2mε2

(b− a)2

)

Fix some h ∈ H.

Pr[|LD(h)− LS(h)| ≥ ε] = Pr

[∣∣∣∣∣ E
z∼D

`(h, z)− 1
m ∑

z∈S
`(h, z)

∣∣∣∣∣ ≥ ε

]
≤ 2e

−mε2

(1−0)2 = 2e−mε2

Proof of the main result:

Pr[S is not ε-representative w.r.t. H] = Pr [∃h ∈ H, s.t. |LD(h)− LS(h)| > ε]

≤ ∑
h∈H

Pr[|LD(h)− LS(h)| > ε] by union bound

≤ ∑
h∈H

2e−mε2
by Hoeffding’s ineq

= |H| · 2e−mε2

Then what can we say about mUC
H (ε, δ)?

|H| · 2e−mε2
< δ =⇒ mUC

H >
ln(2|H|/δ)

2ε2

Corollary 4.3

mH(ε, δ) ≤ 2 ln(2|H|/δ)

ε2

CHAPTER 4. LEARNING VIA UNIFORM CONVERGENCE 15

4.2 PAC-learnable infinite class example

Do we have an infinite class that is PAC-learnable?

Let Hthr be the class of all thresholds on [0, 1], that’s

Hthr =

{
hr : hr(x) =

{
0 x ≤ r
1 x > r

, r ∈ [0, 1]

}

Practical Approach: Discretize

Hthr
α =

{
hr : hr(x) =

{
0 x ≤ r
1 x > r

, r ∈
{

0,
1
α

,
2
α

, . . . ,
α− 1

α
, 1
}}

|Hthr
α | = α + 1

In theory, Hthr
α may not be a good approximation of Hthr

min
h∈Hthr

LD(h)� min
h∈Hthr

α

LD(h)

for some specific distribution. Consider the case: D[{(3
2α , 0)}] = D[{(7

2α , 0)}] = 0.5

Is Hthr PAC-learnable (realizable case)?

r

“true” hr such that LD(hr) = 0

o,x: labelled instances

ERM

X X X?

Let A be the ERM algorithm that resolves ties in favor of smaller thresholds.

Let qε be the smallest number in [0, r] that satisfies D|x{x ∈ [qε, r]} ≤ ε.

Claim If sample S|X contains a point in [qε, r] then LD(A(S)) ≤ ε.

Proof:
Let t be such point in S. Then

LD(A(S)) ≤ D|X{x : x ∈ (t, r]}
≤ D|X{x : x ∈ (qε, r]} because t ≥ qε

≤ ε

Proof of PAC-learnability of Hthr:
Pr[LD(A(S)) > ε] ≤ Dm

|X{s : 6 ∃x ∈ S|X s.t. x ∈ [qε, r]}
iid
≤
(

D|X{x : x /∈ [qε, r]}
)m

≤ (1− ε)m ≤ e−εm

CHAPTER 4. LEARNING VIA UNIFORM CONVERGENCE 16

Remark:
So Hthr is PAC-Learnable with mHthr (ε, δ) ≤ ln(1/δ)

ε .

We will not prove here, but Hthr is agnostic PAC-Learnable.

4.3 Summary

All PAC learnable classes

Agnostic PAC
learnable classes

Finite classes

Hall over ∞ X

Hthr

learnable by ERM

Agnostic PAC learnable is stronger than PAC learnable because within agnostic, we require for every
distribution, you will be able to get close to the best classifier with respect to that distribution. In
PAC, we only require this will hold for the distributions for which one of the element of H is a perfect
classifier.

Finally, learnable by ERM, agnostic learnable, PAC learnable are going to be the same family of classes.

Example: non-ERM learnable class

Let X = R. Let H f inite = {hA : A is a finite subset of R} where hA =

{
1 x ∈ A
0 x /∈ A

Let H = H f inite ∪ {hone}

Claim H f inite is not learnable (PAC) by ERM.

Proof:
Let P be the uniform distribution over [0, 1]. Pick as a labeling rule the all-1 function. We wish
to show ERM may fail on this challenge. Pick any sample size m, and S ∼ Pm, then

S = ((x1, 1), . . . , (xm, 1))

An ERM algorithm may now pick hA for A = {x1, . . . , xm}, then LS(hA) = 0, but LP(hA) = 1.
hA fails on every test point x /∈ A.

However Hthr = {hx : x ∈ R} where hx(y) =

{
1 y ≤ x
0 otherwise

Under this setting, ERM is a successful PAC learner.

5
The Bias-Complexity Tradeoff

Tradeoff between “approximation error” and “estimation error”.

εapp = min
h∈H

LD(h)

εest = LD(hS)− εapp

NFL shows for large class, estimation error is large; for small class, approximation error is large.

5.1 The No-Free-Lunch Theorem

Theorem 5.1: No-Free-Lunch

Let X be a domain of size n i.e., |X| = n). Let Hall
n be the set of all possible labelings, i.e.,

Hall
n = {h : X → {0, 1}} (|Hall

n | = 2n). NFL proves that

mHall
n

(
1
8

,
1
7

)
≥ n

2

Proof:
Either see textbook or Lecture 8.

Corollary 5.2

mHall
∞

(
1
8

,
1
7

)
≥ ∞

Therefore, the class of labeling functions over an infinite domain is not PAC-Learnable.

Intuition Assume that |S| = n
2 . Assume D|n is uniform over X. Then the learner can find out about

the labels of points in S|X . But for the points are not in the sample, it cannot do better than random
guess. (Because every labeling is possible on them) Therefore, it fails on at least 1

2 of the points in
X \ S|X (in expectation). It will fail on 25% of the points (expected)

E
S∼Dm

LD(A(S)) ≥ 1
4

17

6
The VC-Dimension

6.1 Infinite-Size Classes Can Be Learnable

See section 4.2

6.2 The VC-Dimension

shatter

Let H be a class of {0, 1} functions over some domain X, and let A ⊆ X. H shatters A if for
every g : A→ {0, 1}, ∃h ∈ H such that for any x ∈ A, h(x) = g(x).

Example:
Let X = R. Consider Hthr.

A = {7, 10}. We have 4 possible g’s over A. However, we cannot get g(7) = 0, g(10) = 1 from Hthr.
Thus H does not shatter A.

Note that there is equivalence between functions from X to {0, 1} and subsets of X. Given h : X →

{0, 1}, define Ah = {x ∈ X : h(x) = 1}. Or going backwards, given A ⊆ X, define hA(x) =

{
1 x ∈ A
0 x /∈ A

In terms of subsets H is a collection of subsets of X: A is shattered by H if for every B ⊆ A, ∃hB ∈ H
such that B = hB ∩ A.

A

X

B

hB

Example:
Let X = R2. Let H = {B(x,r) : x ∈ R2, r ∈ R+} where B(x,r) = {y : ‖y− x‖ ≤ r}

Any A of size 2 is shattered. Any set A consisting of 3 non-colinear points is shattered by H. Any
set A consisting of 3 colinear points is not shattered by H.

18

CHAPTER 6. THE VC-DIMENSION 19

VC-dimension

VCdim (H) := max{|A| : A is shattered by H}

and it is ∞ if no maximal such A exists.

6.3 Examples

1. VCdim (Hthr) = 1

Proof:
We have showed any set A of size ≥ 2 is not shattered by Hthr. So VCdim (Hthr) ≤ 1. The set
{1} is shattered by Hthr, therefore VCdim (Hthr) ≥ 1. Therefore VCdim (Hthr) = 1.

2. VCdim
(

H f inite

)
= ∞

Proof:
Every finite A is shattered by H f inite because ∀B ⊆ A, hB ∈ H f inite and hB ∩ A = B.

3. Let X = R, Hinterval = {ha,b : a, b ∈ R, a < b} where ha,b(x) =

{
1 x ∈ [a, b]
0 otherwise

Every A ⊆ R of size 2 is shattered by Hinterval , then VCdim (Hinterval) ≥ 2. Any ≥ 3 point set is
not shattered so VCdim (Hinterval) = 2.

4. Axis Aligned Rectangles. Hrect = {h(a,b,c,d) : a, b, c, d ∈ R}. X = R2. See the precise definition in
6.3.3 of textbook.

not shattered shattered

Claim VCdim (Hrec) ≤ 4.

Proof:
Given any set A ⊆ R2, let xA

` be the leftmost point of A, xA
r be the rightmost point of A, xA

b
be the lowest point of A, xA

t be the highest point of A. Every rectangle h ∈ Hrec that captures
{xA

` , xA
r , xA

b , xA
t } captures all of A. If |A| ≥ 5, A contains some x∗ 6∈ {xA

` , xA
r , xA

b , xA
t }, we

cannot get B = {xA
` , xA

r , xA
b , xA

t }.

6.4 Some basic properties of VCdim

1. VCdim (H) ≤ log2(|H|) or |H| ≥ 2VCdim(H)

It takes 2|A| h’s to shatter a set A.

This ineq can be not tight. For example, |Hthr| = ∞� 21

2. If H1 ⊆ H2, then VCdim (H1) ≤ VCdim (H2)

Lemma 6.1

If H has infinite VCdim then H is not PAC learnable.

CHAPTER 6. THE VC-DIMENSION 20

Proof:
Follows from the NFL.

For the sake of contradiction, assume such H is PAC learnable, then for some mH : (0, 1)2 → N,
some A, for every distribution P over X and every f ∈ H and every ε, δ > 0,

Pr
S∼Pm , f

[LP, f (A(S)) > ε] < δ

whenever m ≥ mH(ε, δ).

Consider mH(
1
8 , 1

8). By VCdim (H) = ∞, ∃W ⊆ X such that H shatters W and |W| > 2mH(
1
8 , 1

8). H
induces every possible function from W to {0, 1}. But by the NFL theorem, in such case,

mH(1/8, 1/8) ≥ |W|
2

> mH(1/8, 1/8)

contradiction.

6.5 Another example of VCdim

A practical class H: the class of linear predictors over Rn

1

0

The class HSn. Let X = Rn. Given some vector w ∈ Rn and b ∈ R. Let

hw,b(x) = sign(〈w, x〉+ b) =

{
+1 ∑n

i wixi + b ≥ 0
−1 otherwise

Then
HSn = {hw,b : w ∈ Rn, b ∈ R}

Let us restrict our attention to “homogeneous” linear classifiers {hw,0 : w ∈ Rn}. Then what is
VCdim

(
HSn

0
)
? We claim that VCdim

(
HSn

0
)
= n and VCdim (Hn) = n + 1 for every n.

Proof:
• VCdim

(
HSn

0
)
≥ n.

Consider the points {e1, . . . , en}. Pick B ⊆ {e1, . . . , en}. Let hB = (w1, . . . , wn) where

wi =

{
+1 if ei ∈ B
−1 if ei /∈ B

Then 〈w, ei〉 = wi. Thus for all ei ∈ {e1, . . . , en}, then hB(ei) = 1 if ei ∈ B and −1 otherwise.

• VCdim
(

HSn
0
)
≤ n.

We need to prove given any set A = (x1, . . . , xn+1) in Rn, A cannot be shattered by HSn
0 .

Since the dimension of Rn is n, for any n+ 1 vectors x1, . . . , xn+1, there exists coefficients a1, . . . , an+1
not all of them zero, such that

n+1

∑
i=1

aixi = 0

Let P ⊆ {1, . . . , n + 1} be the set of coordinates for which ai > 0, and N ⊆ {1, . . . , n + 1} the set of

CHAPTER 6. THE VC-DIMENSION 21

coordinates for which ai < 0. Then

n+1

∑
i=1

aixi = 0 =⇒ ∑
i∈P

aixi = ∑
j∈N
|aj|xj

Let B = {xi : i ∈ P}. Then hB(xi) = +1 if xi ∈ B and −1 otherwise, then

hB

(
∑
i∈P

aixi

)
= ∑

i∈P
aihB(xi) > 0

and

hB

(
∑
j∈N
|aj|xj

)
= ∑

j∈N
|aj|hB(xj) < 0

which is a contradiction.

Lemma 6.2: Radon’s theorem

For every n, every x1, . . . , xn+2 ∈ Rn, ∃B ⊆ {x1, . . . , xn+2},

Ch(B) ∩ Ch({x1, . . . , xn+2} \ B) 6= ∅

where Ch is the convex hull.

6.6 The Fundamental Theorem of PAC learning

Theorem 6.3: The Fundamental Theorem of Statistical Learning

For every domain X and every class H of functions from X to {0, 1}. TFAE:

1. H has the uniform convergence property.

2. ERM is a successful agnostic PAC learner for H.

3. H is agnostic PAC learnable.

4. ERM is a successful PAC learner for H.

5. H is PAC learnable.

6. VCdim (H) is finite.

Proof:
See 6.5 of textbook or Lecture 8.

Hard part is 6→ 1.

Quantitative statement of the fundamental theorem

There exists constants c1, c2 such that for any class H of finite VCdim, denoting VCdim (H) = d we
get: ∀ε, δ > 0

1. c1
d+ln(1/δ)

ε ≤ mPAC
H (ε, δ) ≤ c2

d ln(1/ε)+ln(1/δ)
ε

2. c1
d+ln(1/δ)

ε2 ≤ mAgPAC
H (ε, δ) ≤ c2

d+ln(1/δ)
ε2

3. c1
d+ln(1/δ)

ε2 ≤ mUC
H (ε, δ) ≤ c2

d+ln(1/δ)
ε2

c1
d+ln(1/δ)

ε2 ≤ mERM
H (ε, δ) ≤ c2

d+ln(1/δ)
ε2

CHAPTER 6. THE VC-DIMENSION 22

Proof:
See Lecture 10.

Why do we need so many examples for learning in the agnostic case?

Consider a situation: given two points x, y in domain. Define a probability distribution by picking
each of x, y with equal probability 1/2, and P(1|x) = P(0|y) = 1

2 + ε, P(0|x) = P(1|y) = 1
2 − ε.

Let H = all 0− 1 functions over {0, 1}, then best predictor in this case is (1, 0). This is also the Bayes
predictor. In order to detect if a coin has bias 1

2 + ε towards H or 1
2 + ε towards T, one needs ∼ 1

ε2 coin
tosses (as ε gets small)

6.7 The Sauer’s Lemma

shatter function

Given a class of binary-valued functions, H, over some domain set X, define the shatter func-
tion, πH : N→N, for any m ∈N

πH(m) = max
A⊆X:|A|=m

{|{h ∩ A : h ∈ H}|}

Simple observations:

1. For any H and any m, πH(m) ≤ 2m

2. If H shatters a set of size m, then πH(m) = 2m.

3. If VCdim (H) < m, then πH(m) < 2m.

m

πH(m) 2m

VCdim(H)

Lemma 6.4: Sauer

For every class H and every d if VCdim (H) = d then, for all m

πH(m) ≤
d

∑
i=0

(
m
i

)
≤ md

Proof:
See textbook or Lecture 11.

Corollary 6.5

The number of partitions realizable by a linear half-space is ≤ mn+1 as VCdim (HSn) = n + 1.

CHAPTER 6. THE VC-DIMENSION 23

Consequences of the Sauer’s Lemma

1. The vast majority of partitions of a subset of Rn cannot be realized by a linear separator:
mn+1 � 2m.

2. Upper bounding mPAC
H (ε, δ).

3. Upper bounding the VCdim of H1 ∪ H2 in terms of VCdim (H1) of VCdim (H2).

Assume H1 ∪ H2 shatters some A of size m, |{h ∩ A : h ∈ H1 or h ∈ H2}| ≥ 2m. On the other
hand,

|{h ∩ A : h ∈ H1 or h ∈ H2}| ≤ |{h ∩ A : h ∈ H1}|+ |{h ∩ A : h ∈ H2}|
Sauer
≤ mVCdim(H1) + mVCdim(H2) m cannot be too big

Upper bounding the sample complexity mUC
H (ε, δ). We wish to show that for sufficiently large m

depending only on ε, δ, VCdim (H), Pr[∃h ∈ H |LS(h)− LP(h)| > ε] < δ, samples S ∼ Pm. If we fix
h, we know PrS∼Pm [LS(h)− LP(h) > ε] < 2e−mε2

by Hoeffding ineq. Using the union bound over all
h ∈ H, we got |H| · 2e−mε2

.

First Idea: we only care about behaviours of h on the sample S. The number of {h ∩ S : h ∈ H}
is always finite, bounded by Sauer’s lemma. We get 2md

e2mε2 → 0 as m → ∞. Illegal move: choose
functions/class based on the sample.

The double sample argument. Some good resources:

• https://cse.buffalo.edu/∼hungngo/classes/2011/Fall-694/lectures/vc-theorem.pdf

• https://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe notes/0218.pdf

I may evaluate the error of any function in HS by using a fresh (independent of S) sample T,

Pr
S∼Pm

[∃h ∈ H |LS(h)− LP(h)| > ε]︸ ︷︷ ︸
BS

≤ 2 Pr
S∼Pm

T∼Pm

[∃h ∈ H |LS(h)− LT(h)| > ε]︸ ︷︷ ︸
BS,T

Pick any subset A ⊆ X of size 2m. We bound PrS,T∼Pm [BS,T |S, T ⊆ A]. For this evaluation, it suffices
to consider HA - the set of possible behaviours of H on A. Then

Pr
S,T∼Pm

≤ (2m)d · 2e−2mε2

Big conclusion: A class H is learnable if and only it has VCdim.

How useful/relevant is such a paradigm?

Argument 1: Sometimes a fixed, small VCdim, H is all we really care about.

However, there are situations in which our goal is to minimize our prediction error regardless of any
class H. Next step: Extend learning beyond finite VC classes.

https://cse.buffalo.edu/~hungngo/classes/2011/Fall-694/lectures/vc-theorem.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0218.pdf

7
Nonuniform Learnability

Recall our definition of Agnostic PAC learnability.

non-uniformly learnable

A hypothesis class H is non-uniformly learnable if there exists a learning algorithm A, a func-
tion mH(ε, δ, h) (mH : (0, 1)2 × H → N), such that for every P over X, every ε, δ > 0, every
h ∈ H, if m ≥ mH(ε, δ, h), then for S ∼ Pm, it is with probability > 1− δ

LP(A(S)) ≤ LP(h) + ε

7.1 Characterizing Nonuniform Learnability

Theorem 7.1

A class H is non-uniformly learnable if and only if there are classes {Hn}n∈N each having finite
VCdim, s.t.,

H =
∞⋃

n=1

Hn

Two obvious preliminary questions for Theorem 7.1:

1. Is there a class that is NUL, but not PAC learnable?

2. Is there a class that is not NUL?

Example:
Let X = R. Let H be the class of all threshold polynomial functions. For each polynomial p =
a0 + a1x + a2x2 + · · ·+ adxd. Let hp(x) = sign(p(x)).

Let H be the class of all such polynomial predictors hp.

Claim 1 H =
∞⋃

n=0
Hn where Hn = {hp : p is a polynomial of degree ≤ n}.

H1 gives just threshold functions. H2 gives intervals and complement of intervals.

Claim 2 Each Hn has a finite VCdim and hence is A-PAC learnable.

24

CHAPTER 7. NONUNIFORM LEARNABILITY 25

Conclusion: H is NUL. Because it has infinite VCdim, H is not PAC learnable.

Example:
Let X = R and for each k let Hk = {h : R → {0, 1} : h(x) = 1 for at most k many x’s}. For
example, H1 = The class of singletons. Then it can be proved that VCdim

(
∪∞

k=1Hk
)
= ∞ and for

every k, VCdim (Hk) = k. Thus H = ∪∞
k=1Hk is NUL, but not PAC learnable.

Lemma 7.2

For every infinite set X, the class of all {0, 1} valued functions over X cannot be covered by any⋃
n

Hn where each Hn has a finite VCdim.

So we didn’t trivialize non-uniform learnability.

Lemma 7.3

If H is NUL, then there exist classes Hn such that

1. H =
∞⋃

n=1
Hn,

2. Each Hn has a finite VCdim (and therefore, A-PAC).

Proof:
Given a NUL H, we know from the definition of NUL that there exists mH(h, ε, δ) such that . . .

For every n, define a class Hn:

Hn =

{
h ∈ H : mH

(
h,

1
8

,
1
8

)
≤ n

}

Claim These Hn meets requirements above.

1. Given any h ∈ H, let n = mH
(
h, 1

8 , 1
8
)
, so h ∈ Hn.

2. For every n, VCdim (Hn) ≤ 2n. Otherwise, pick a subset A ⊆ X, |A| > 2n such that Hn
shatters A. Then NFL theorem tells us that we need > m size training sample to learn the
class of all functions over A with accuracy 1

8 , confidence 1
8 . But since A is shattered by Hn, Hn

contains all functions over A. However, by definition of Hn it can be (1/8, 1/8) learnt from
n-size samples.

The positive direction of the characterization of NUL

Lemma 7.4

If for every n, Hn is learnable, then H =
∞⋃

n=1
Hn is NUL.

Proof:
By the fundamental theorem, each Hn has the uniform convergence property. Namely, for every
Hn there is a function mUC

n (ε, δ) such that for any ε, δ > 0, if m > mUC
n (ε, δ) for every P,

Pr
S∼Pn

[
∃h ∈ Hn : |LS(h)− Lp(h)| > ε

]
< δ

In other words, the event in the bracket: S is not ε-representative for P, Hn.

CHAPTER 7. NONUNIFORM LEARNABILITY 26

We add a new component to our discussion - weighting function. w : N→ [0, 1]. w(n) is the “weight”

we assign to the class Hn. We will require that
∞
∑

n=1
w(n) ≤ 1

7.2 Structural Risk Minimization

The idea will be, given a sample S, we wish to pick h ∈ H that minimizes

LS(h) + penalty that grows as w(n) shrinks for the minimal n for which h ∈ Hn

Theorem 7.5

Let H =
∞⋃

n=1
Hn such that each Hn has uniform convergence property with a function mUC

n (ε, δ)

and let w be any weighting function with
∞
∑

n=1
w(n) ≤ 1. Then for every probability distribution

P, and h ∈ H, every sample size m, and every δ > 0,

Pr
S∼Pn

[
∃h ∈ H : |LS(h)− Lp(h)| > εn(h)

]
< δ

where n(h) is minn{h ∈ Hn} and εn = minε such that m > mUC
n (ε, w(n) · δ)

(See alternative statement on Theorem 7.4 in textbook)

Proof idea:
Step 1: For every n,

Pr
S∼Pn

[
∃h ∈ Hn : |LS(h)− Lp(h)| > εn

]
< δ · w(n)

Step 2: Union bound over all n’s

Pr
S∼Pn

[
∃h ∈

⋃
Hn : |LS(h)− Lp(h)| > εn

]
< ∑

n
δ · w(n) ≤ δ

A-PAC Non uniform learnability
Convergence bound
(relates LS(h) to LD(h))

∀, ∀, ∀, if m > · · ·
|LS(h)− LP(h)| > ε
w. p. < δ

H = ∪n Hn, each Hn has UC
with mn(ε, δ), w : N → [0, 1],
∑n w(n) ≤ 1, ∀P, ∀m, δ

Pr
S∼Pm

[
∃h ∈ H : |LS(h)− LP(h)| > εn(h)(m, w(n(h))δ)

]
< δ

Learner bound its er-
ror/loss

If A is an ERM learner,
then ∀, ∀, ∀h ∈ H,
LP(A(S)) ≤ LP(h) + ε
for m > mH(

ε
2 , δ) w.p.

1− δ

Structural Risk Minimization
Let A(S) be any h ∈ H
that minimizes this bound
LS(h) + εn(h)(m, w(n(h))δ).

Note that when n gets larger, ε is small. For two reasons. First, w will be small because the
summation of w is ≤ 1, then far members in the sequence should be small. Then multiply by δ,
we get even smaller, thus high confidence. Second, m is fixed. I cannot guarantee for a small ε, ε
should be very loose.

A SRM algorithm is given some training sample S and a confidence parameter δ and picks h to
minimize this error bound. LS(h) is how well you do with the sample, εn(h)(m, w(n(h))δ) is the
penalty for picking a complex assumption.

CHAPTER 7. NONUNIFORM LEARNABILITY 27

Theorem 7.6

Given any H =
⋃
n

Hn, where each Hn has the uniform convergence property with some mn(ε, δ)

and given any w : N → [0, 1] such that ∑
n

w(n) ≤ 1, and SRM algorithm is a successful Non-

Uniform learner with sample complexity

mH(h, ε, δ) = mn(h)

(ε

2
, w(n(h)) · δ

)
Proof:
See textbook.

SRM algorithm

prior knowledge: H =
⋃

n Hn where Hn has uniform convergence with mUC
n and w : N→ [0, 1]

where ∑n w(n) ≤ 1.

εn(m, δ) := min{ε ∈ (0, 1) : mUC
n (ε, δ) ≤ m}

n(h) := min{n : h ∈ Hn}

input: training set S ∼ Dm, confidence δ

output: h ∈ argminh∈H [LS(h) + εn(h)(m, w(n(h)) · δ)]

7.3 Minimum Description Length (MDL) Learning

Skipped. Lecture 14, 54:30→ Lecture 15, 43:30.

8
The Runtime of Learning

8.1 Computational Complexity of Learning

Two kind of resources: Information (training sample size), computation (for how long will our algo-
rithm run, once it has sufficient information?)

Runtime of my algorithm: Asymptotic behavior, count computational steps rather than time.

For combinatorial tasks: shortest path on a graph (s, t), or sorting. Here O(n), n is the size of the input,
but it is not clear what is the input for learning. What should play the role of the input size parameter
in learning?

Answer 1: sample size |S|. The problem here is that this approach allows cheating. For example,
suppose the algorithm takes 1000 steps and an input size of 10 and 1000 both take the same number
of steps. Sometimes more samples will make the problem easier.

Answer 2: f (ε, δ). Then we really want to have running time poly(1
ε , 1

δ , n

hypothesis complexity

)

One more issue to take care of: what is the output of a learning algorithm? It’s a function h : X →
{0, 1}. Input: S, ε, δ. Output: Use ERM on S. Thus we define the runtime of a learning algorithm L as

max


time it
takes L
to output
some h

,

time it takes
that h to output
a label on
any given X


We need to make sure our output can be efficiently used.

8.2 Examples of the computational complexity of some concrete tasks

Learning axis aligned rectangles in Rd

Consider the complexity of ERM learning. Recall VCdim (Hd) = 2d, then

mHd(ε, δ) ∼ c
2d + ln(2/δ)

ε2

Then our algorithm:

0© Pick an mH(ε, δ) size sample S

1© implement ERM(S)

28

CHAPTER 8. THE RUNTIME OF LEARNING 29

It suffices to consider rectangles that have points of S on every boundary edge. Every such rectangle
is determined by ≤ 2d points from S. There are ≤ m2d such tuples. For example, in R2, these two
rectangles give the same error.

Thus runtime ∼
[

c
2d + ln(2/δ)

ε2

]2d
.

Conclusion: For every fixed dimension d, ERMHd can be implemented in time poly(1/ε, 1/δ), therefore,
we have efficient learning. However, as a function of d, my runtime is exponential.

To prove a positive result:

• Step 1: Upper bound needed sample size.

We know that VCdim
(

Recd
)
= 2d and mHd

Rec
(ε, δ) ≤ c 2d+ln(2/δ)

ε2

• Step 2: Upper bound the time needed to compute ERMHd
Rec
(m).

Algorithm: Let A1, . . . , At, . . . , Am2d be a list of all subsets of S of size 2d.

For 1 ≤ t ≤ m2d, let Rt be the minimum axis aligned rectangle that contains At, and
compute LS(Rt).

Output: some Rt ∈ argmin(LS(Ri))

Correctness: For every h ∈ HRecd , for every S, ∃Rt such that LS(Rt) ≤ LS(h)

Runtime: m

per iteration

·m2d = m2d+1 =

[
c

2d + ln(1/δ)

ε

]2d+1

which is not polytime in d

Boolean queue example

X = {0, 1}d. Let Hd
con = Boolean conjunctions over {0, 1}d

Consider the variables p1, . . . , pd. A literal is a variable or its negation (p,¬p). A conjunction `1 ∧ `2 ∧
· · · ∧ `k where each `j is a literal. More compact notation

k∧
j=1

`ij

What is the computational complexity of learning Hd
con? Consider ERM learning.

• Step 1: Upper bound mH(ε, δ).

Recall that for any class H, VCdim (H) ≤ log(|H|). We have |H| ≤ 22d because either p/¬p is in
the conjunction or not. We also have |H| ≤ 3d (include p, ¬p or no p).

Then mH(ε, δ) ≤ c
2d + ln(1/δ)

ε2

• Step 2: Given a sample S of size m. How much time (computational) is needed to compute
ERMH(S)?

Let h0 = p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 ∧ · · · ∧ pd ∧ ¬pd which is all 2d literals.

LS(h0) =
|{h(xi, yi) : yi = 1}|

m

CHAPTER 8. THE RUNTIME OF LEARNING 30

Given ht, define ht+1 as follows: consider the t’s examples in S (xt, yt),

ht+1 =

{
ht ht(xt) = yi

ht \ {literals that has a conflict with (xt, yt)} ht(xt) 6= yi

ht+1 is the most demanding conjunction that accepts the + labeled examples among (x1, y1), . . . , (xt, yt).

Then hm+1 is consistent with S (assuming some conjunction has zero error over S). Then this is correct
in the realizable case.

Runtime: m · 2d = c
2d + ln(1/δ)

ε2 · 2d which is polytime of d.

3-term DNF

X = {0, 1}d, H = 3-term DNF’s over X. Each h ∈ H has the form h = A1 ∨ A2 ∨ A3 where each Ai is
a conjunction.

• First step: estimating mH(ε, δ)

|Hd
3T−DNF| ≤ (3d)3 = 33d then mH(ε, δ) ≤ c

d + ln(1/δ)

ε2

• How hard it is to compute ERMH(S) over an m size sample? This is NP-hard even in the
realizable case.

Non ERM algorithm: Note that each h = A1 ∨ A2 ∨ A3 is equivalent to

h′ =
∧

u∈A1
v∈A2
w∈A3

(u ∨ v ∨ w)

Define new (2d)3 variables: xuvw will represent u ∨ v ∨ w. Such conjunctions can be learned in time
poly(1/ε, 1/r, 8d3). Here we learn in a bigger class Conj8d3

.

Proper learning - output h ∈ H
Unrestricted learning1 - output any h.

8.3 Hardness of Learning

What do we mean by computational hardness?

NP-hardness: Unless there is a big surprise in math, there is no polynomial time algorithm that solves
the problem for all inputs.

Some examples of NP-hard learning problems:

1. Hd
Rec if we wish the algorithm to be also polynomial in d.

Also NP hard in realizable and proper case.

2. Learning half-spaces (linear separators).

Easy - realizable case. NP hard in the agnostic case (proper). Hard also for unrestricted learning.

Intersection of k half-spaces: NP hard in the realizable case as soon as k ≥ 3

Cryptographic hardness

One-way functions are functions that are easy to compute f (x) from x, but hard to compute x from
f (x).

1or improper learning in the textbook

CHAPTER 8. THE RUNTIME OF LEARNING 31

Crypto is often based on the assumption that there are one ways functions in the sense that no polytime
algorithm can invert them.

f is a trapdoor function if 1. f is one way; 2. For every n, there is a key sn such that it is easy to invert
f (x) on all inputs x ∈ {0, 1}n, given sn.

Let Fn be a class of trapdoor functions over {0, 1}n, i.e., Fn = { fsn : sn is a key}

Learn = { f−1 : f ∈ Fn}. |Fn| ≤ 2poly(n), then VCdim (Fn) = poly(n).

9
Linear Predictors

In this chapter we will study the family of linear predictors, one of the most useful families of hypoth-
esis classes. Many learning algorithms that are being widely used in practice rely on linear predictors,
first and foremost because of the ability to learn them efficiently in many cases. In addition, linear
predictors are intuitive, are easy to interpret, and fit the data reasonably well in many natural learning
problems. 1

See section 6.5 for a brief introduction to the halfspaces.

First, we define the class of affine functions as

Ld = {hw,b : w ∈ Rd, b ∈ R},

where

hw,b(x) = 〈w, x〉+ b +
(d

∑
i=1

wixi

)
+ b.

It will be convenient also to use the notation

Ld =
{

x 7→ 〈w, x〉+ b : w ∈ Rd, b ∈ R
}

.

9.1 Halfspaces

The first hypothesis class we consider is the class of halfspaces, designed for binary classification
problems, namely, X = Rd abd Y = {±1}. The class of halfspaces is defined as follows:

HSd = sign ◦Ld =
{

x 7→ sign (hw,b(x)) : hw,b ∈ Ld
}

So it returns sign(〈w, x〉+ b).

We have shown in section 6.5 that VCdim (HSd) = d + 1 although we only showed the homogeneous
case.

We then show two solutions to find an ERM halfspace in the realizable case.

9.1.1 Linear Programming

Let S = {(xi, yi)}m
i=1 be a training set of size m. Since we assume the realizable case, an ERM predictor

should have zero errors on the training set. That is, we are looking for some vector w ∈ Rd for which
sign(〈w, xi〉) = yi for all i. Equivalently, yi 〈w, xi〉 > 0 for all i.

1This chapter hasn’t been covered explicitly in any video lectures. Therefore I copied the introduction text from the textbook.

32

CHAPTER 9. LINEAR PREDICTORS 33

Let w∗ be a vector satisfies this condition (it exists due to realizability). Define γ = mini
(
yi 〈w∗, xi〉

)
and let w̄ = w∗

γ . Therefore, for all i we have

yi 〈w, xi〉 =
1
γ

yi 〈w∗, xi〉 ≥ 1

We have thus shown that there exists a vector that satisfies

yi 〈w, xi〉 ≥ 1, ∀i = 1, . . . , m

And clearly, such a vector is an ERM predictor.

To solve it, we can set a dummy objective and use the constraints above.

9.1.2 Perceptron for Halfspaces

A different implementation of the ERM rule is the Perceptron algorithm of Rosenblatt (Rosenblatt
1958).

Algorithm 1: Batch Perceptron

Input: A training set
(
(xi, yi)

)∞

i=1
1 w1 := 0
2 for t = 1, 2, . . . do
3 if ∃i such that yi

〈
wt, xi

〉
≤ 0 then

4 wt+1 = wt + yixi
5 else
6 return wt

Since
yi

〈
w(t+1), xi

〉
= yi

〈
w(t) + yixi, xi

〉
= yi

〈
w(t), xi

〉
+ ‖xi‖2

Hence, the update of the Perceptron guides the solution to be “more correct” on the i-th example.

Then theorem 9.1 in textbook ensures the correctness of the algorithm.

Here B = min{‖w‖ : ∀i ∈ [m], yi 〈w, xi〉 ≥ 1}

Remark:
The Perceptron is simple to implement and is guaranteed to converge. However, the convergence
rate depends on the parameter B, which in some situations might be exponentially large in d. In
such cases, it would be better to implement the ERM problem by solving a linear program, as
described in the previous section. Nevertheless, for many natural data sets, the size of B is not too
large, and the Perceptron converges quite fast.

9.1.3 The VC Dimension of Halfspaces

Theorem 9.1

The VC dimension of the class of homogenous halfspaces in Rd is d.

Proof:
This has been proved in section 6.5.

Theorem 9.2

The VC dimension of the class of homogenous halfspaces in Rd is d + 1.

CHAPTER 9. LINEAR PREDICTORS 34

Proof:
See textbook. The trick is to use reduction.

Let w′ = (b, w1, . . . , wd) ∈ Rd+1 and let x′ = (1, x1, . . . , xd) ∈ Rd+1. Therefore,

hw,b(x) = 〈w, x〉+ b =
〈
w′, x′

〉

10
Boosting

10.1 Weak Learnability

What if we settle for “weak learning”? In Rob Schapire’s PhD thesis, it does not make life easier.

The way to show it was by designing an algorithm that given access to a weak learner, outputs a strong
learner.

gamma-weak learnable

A class H is γ-weakly learnable (for some γ ∈ (0, 1/2)) if there exists a learner A and a function
mγ

H(δ) such that for every probability distribution D over X and every f ∈ H on a sample S
generated by (D, f) of size > mγ

H(δ) with probability > 1− δ

L(D, f)(A(S)) <
1
2
− γ

The question that we focused on is the existence of efficient weak learners - running in time poly(1
δ , m).

Example: Weak Learning of 3-Piece Classifiers Using Decision Stumps
Let H be the class of 3-partitions of R.

H3 = {h+r1,r2
, h−r1,r2

: r1 < r2 ∈ R}

where

h+r1,r2
(x) =

{
+1 if x < r1 or x > r2

−1 if r1 ≤ x ≤ r2
h−r1,r2

(x) = −h+r1,r2
(x)

Claim H3 is 1
6 weakly learnable by ERM over Decision stumps (threshold functions).

Proof:
For every distribution D over R, and every f ∈ H3, there exists a threshold function h such that
L(D, f)(h) ≤ 1

3 = 1
2 −

1
6 .

First note that for each of the three regions of f ∃h threshold that errors only on this region.
Second note that for any D over r and any f ∈ H3 there is a region of f that has D-weight at
most 1

3 .

35

CHAPTER 10. BOOSTING 36

Theorem 10.1

For any γ ∈ (0, 1/2), a class is γ-weakly learnable if only if it has finite VCdim.

Proof:
It’s clear that finite VCdim =⇒ Weakly learnable.

Assume infinite VCdim, then m(1
2 − γ, δ) > c VCdim(H)+ln(1/δ)

ε which is infinite.

So it doesn’t give us any new classes, it is just the matter of computational efficiency.

We will focus on weak learners of the type ERMB for some “basic” class B. Recall our previous
example:

Example:
H = H3, B = Hthr and the claim: for evert sample S labeled by a function f ∈ H3, there exists some
h ∈ B such that LS(h) ≤ 1

3 .

Corollary 10.2

ERMB is a γ-weak learner for H3, where γ < 1
6 .

Given γ < 1
6 let ε be such that γ + ε < 1

6 , let m(δ) = mB(ε, δ). It will guarantee that

L(D, f)(ERMB(S)) ≤ LS(ERMB(S)) + ε ≤ 1
6

In practice, the most popular weak learner class is Hd
DS, which is the class of decision stumps over Rd.

+ −

h1,2,−1

2

Every h ∈ Hd
DS is determined by three parameters (i, r,±1),

hi,r,+1(x) =

{
−1 xi < r
+1 xi ≥ r

where x = (x1, . . . , xd).

Claim For every d the class Hd
DS is efficiently learnable, more concretely, ERMHd

DS
can be imple-

mented in time Õ(md) where m is the sample size.

Proof:
Input S = ((x1, y1), . . . , (xm, ym)) where each xi is a vector in Rd and yi ∈ {+1,−1}

For 1 ≤ i ≤ d, for each 1 ≤ j ≤ m, consider hi,xj(i),+, hi,xj(i),−. Compute LS(h) for each such h,
output the minimizer of this loss. Need to evaluate 2(m + 1)d hypotheses h, now we need m checks

CHAPTER 10. BOOSTING 37

to evaluate LS(h) for each h because if we order them, if we move our h over a point (by one step),
we just need to check one point’s labeling (err → non-err or non-err → err). We need d(m log m)
to order in the dimension, then we check in 2(m + 1)d. Then total is d(m log m) + 2(m + 1)d ∈
Õ(md).

10.2 The Boosting algorithm paradigm

Input:

• a labeled sample S = (x1, y1), . . . , (xm, ym)

• Some Weak Learner (ERMB)

• T - # of iterations

For each iteration t, we will fix a probability distribution Dt over (x1, . . . , xm). We define

D1 :=
(

1
m

, . . . ,
1
m

)
We get Dt+1 by first applying ht = WT(Dt, S) (weak teacher/learner) and increasing the D probability
of each xi on which ht errors and decreasing the probability of each xi on which ht predicts yi.

Then we get h1, h2, . . . , ht, hT . Output sign
(

∑T
t=1 wtht

)
.

Note that we define error εt = ∑m
i=1 D(t)

i 1[h(xi) 6=yi]

For the AdaBoost algorithm

Dt+1(xi) =
Dt(xi)e−wtyiht(xi)

Normalizer
where wt =

1
2 = 1

2 log(1
εt
− 1). Weight is inversely proportional to error.

Analyzing the Boosting algorithm

Let us consider the class of outputs of Boosting. When our weak learner is ERMB, the output
L(B, T) = {sign(∑T

t=1 wtht) : wi ∈ R, hi ∈ B}

Demonstration of the richness of L(B, T)

Let B = H1
DS. Claim: L(B, T) contains all functions (over R) that have ≤ T segments.

Proof:

Consider f =
r1 rt. . .

+ − + − + − +

for every f (x) = sign(∑ wtht) where w1 = 0.5, and wt = (−1)t for t > 1, and ht = Thr(rt).

The empirical error of Boosting

Theorem 10.3

If WT is a γ-weak learner for the sample S (for every distribution D over S, WT(D, S) has error
≤ 1

2 − γ with respect to (D, S)), then for every T, then

LS(hs) = LS

(
sign

(T

∑
t=1

wtht

))
=

1
m

m

∑
i=1

1[hs(xi) 6=yi]
≤ exp(−2γ2T)

What do we gain (or lose) by picking large T?

CHAPTER 10. BOOSTING 38

We know from before, if h ∈ H and VCdim (H), for every data distribution P, iid S from P,

LP(h) ≤ LS(h) +

√
VCdim (H) + ln(1/δ)

|S|

Bounding LS(h) by Theorem 10.3

Bounding the VCdim of the class H from which the Boosting output comes

Recall the class of all potential outputs after T steps is L(B, T) = {sign(∑T
t=1 wtht) : wi ∈ R, hi ∈ B}

Theorem 10.4

For every class B of finite VCdim (B) = d and every T (assume T, d ≥ 3),

VCdim (L(B, T)) ≤ (d + 1)T(3 log((d + 1)T) + 2)

Proof:
Assume L(B, T) shatters some set A of size m. In that case,∣∣∣∣{h ∩ A : h ∈ L(B, T)}

∣∣∣∣ ≥ 2m

By Sauer’s lemma, |{h ∩ A : h ∈ B}| ≤ (em/d)d ≤ md if d ≥ 3. The number of T combinations of
such subsets is at most (md)T = mdT . Then∣∣∣∣{h ∩ A : h ∈ L(B, T)}

∣∣∣∣ ≤ mdT

picking hi’s

· mT

linear predictor

Then mdTmT ≥ 2m. Then we are done if we sub the bound in.

10.3 Face detection algorithm based on Boosting

Inputs are images gray scale with 24 × 24 pixels. The class of basic classifiers B. Every h ∈ B is
determined by a rectangle in the image and one of four types A, B, C, D (img from textbook).

Embed the image in 244 · 4 length vector. See the textbook for details.

11
Model Selection and Validation

In the previous chapter we have described the AdaBoost algorithm and have shown how the parameter
T of AdaBoost controls the bias-complexity tradeoff. But, how do we set T in practice? More generally,
when approaching some practical problem, we usually can think of several algorithms that may yield
a good solution, each of which might have several parameters. How can we choose the best algorithm
for the particular problem at hand? And how do we set the algorithm’s parameters? This task is often
called model selection. 1

To illustrate the model selection task, consider learning 1-d regression function, h : R → R. We cam
fit the data with a polynomial: small degree may not fit data well (large approximation error), high
degree may lead to overfitting (large estimation error).

1This chapter hasn’t been covered explicitly in any video lectures. Therefore I copied the introduction text from the textbook.

39

12
Convex Learning Problems

So far we have discussed: Sample complexity and Computational complexity: How can we overcome
the computational hardness of learning?

Answer 1: Boosting

Answer 2: Characterize a big family of efficiently learnable task.

convex set

A set X ⊆ Rn is convex if for every x, y ∈ X and 0 ≤ α ≤ 1, αx + (1− α)y ∈ X.

Example:
Ball

Linear half-spaces:
L+

w,b = {x̄ ∈ Rd : 〈x̄, w〉+ b ≥ 0}

L−w,b = {x̄ ∈ Rd : 〈x̄, w〉+ b ≤ 0}

Some nice properties

Proposition 12.1

If A, B are convex, then so is A ∩ B.

Corollary 12.2

For every A ⊆ Rn, there exists a set Ch(A) which is convex, A ⊆ Ch(A), and for any convex
B ⊇ A, Ch(A) ⊆ B. Thus Ch(A) is the minimal convex set containing A.

Ch(A) =
⋂
{B : B convex and A ⊆ B}

convex function

A function f : Rd → R is convex if for all x, y, and 0 ≤ α ≤ 1,

f
(
αx + (1− α)y

)
≤ α f (x) + (1− α) f (y)

40

CHAPTER 12. CONVEX LEARNING PROBLEMS 41

Proposition 12.3

f : Rd → R is convex function if and only if

epigraph(f) = {(x, y) : y ≥ f (x)} ⊆ Rd+1

is a convex set.

12.1 Properties of convex functions

local minimum

Given a function f : Rd → R, a point u is a local minimum of f if there exist some 0 < r such
that for all v ∈ B(u, r), f (u) ≤ f (v).

Proposition 12.4

If f is convex then any local minimum of f is also a global (true) minimum.

Proof:
Let f be convex and u a local min of f . Let v be any other point in Rd. For some r > 0, u is a min
among points in B(u, r).

Pick some α > 0 such that αv + (1− α)u ∈ B(u, r).

By the local convexity, we have

f (u) ≤ f (αv + (1− α)u) by local convexity

≤ (1− α) f (u) + α f (v) by convexity of f

= f (u)− α f (u) + α f (v)

which implies f (u) ≤ f (v).

Proposition 12.5

Let f : R→ R and assume that f ′, f ′′ exists. TFAE:

• f is convex

• f ′ non-decreasing

• f ′′ ≥ 0

Corollary 12.6

f (x) = C, f (x) = x, f (x) = x2 are all convex.

Some closure properties of convex functions

Proposition 12.7

If f , g are both convex, then so is max(f , g)(x) = max{ f (x), g(x)}.

CHAPTER 12. CONVEX LEARNING PROBLEMS 42

Use epigraphs of f and g to prove.

Corollary 12.8

|x| is a convex function.

Proposition 12.9

If f1, . . . , fn are all convex, and w1, . . . , wn ≥ 0, then

g(x) =
n

∑
i=1

wi fi(x)

is also convex.

Proposition 12.10

For every convex g : R → R, the function f (w) = g(〈w, x〉+ y) (f : Rd → R) for every x ∈ Rd

and y ∈ R is also convex.

See the alternative statement in Claim 12.4 from the textbook.

Proof:
Just evaluate f at w = αu+(1− α)v for every u, v ∈ Rd and use the linearity of 〈w, x〉 and convexity
of g.

In the context of linear regression, we are given a collection of pairs (x, y) ∈ Rd ×R. A common loss
for linear regression is a search for the best linear function that predicts y from x:

`(w, (x, y)) = (〈w, x〉 − y)2

which is called the square loss.

Corollary 12.11

For any (x, y) the square loss is a convex function of w.

12.2 Convex Learning Problems

convex learning problem

A learning problem, (H, Z, `) is called convex if hypothesis class H (set of models) is convex
and for all z ∈ Z, `(·, z) is a convex function (Rd → R).

Here Z is a space of instances, ` is loss function, `(h, z) ∈ R+. In particular, we focused on the binary
prediction with 0-1 loss case. Z = X× {0, 1} and

`(h, (x, y)) =

{
0 if h(x) = y
1 if h(x) 6= y

How to overcome the computational complexity of learning tasks? Since even the most basic
learning paradigm is computationally infeasible for many classes of interest.

CHAPTER 12. CONVEX LEARNING PROBLEMS 43

We are facing optimization problems: given S and H, find h ∈ H that minimizes LS(h) over H.

A major source of computational difficulty solving such tasks is the existence of local minima.

We defined the motion of convex functions and showed that such functions do not have local
minima (unless these are global minima).

Continue from last time. . .

Convex optimization problems: given some domain set W ⊆ Rd, and a function f : Rd → R. The
task is to find some w ∈ W such that for all u ∈ W, f (w) ≤ f (u). Such a problem is called a convex
optimization problem if W is convex set and f is a convex function.

Recall our general learning framework: a triple (H, Z, `). H a class of models, Z a domain set, ` loss
function H × Z → R+. Given such a triplet and some unknown probability distribution P over Z, the
goal of the learner is to use an iid sample S generated by P to find h ∈ H with small expected loss:

LP(h) = E
z∼P

`(h, z)

Example: Binary classification with 0-1 loss

Z = (X× {0, 1}), H is a class of functions h : X → {0, 1}, and `0−1(h, (x, y)) =

{
0 if h(x) = y
1 if h(x) 6= y

Example: Linear regression
H = linear functions h : Rd → R where hw,b(x) = 〈w, x〉+ b.

Z = Rd+1 = Rd ×R

`(hw,b, (x, y)) =
(
〈w, x〉+ b− y

)2 square loss

Example: k-means clustering

Z ⊆ Rn, H = Rn × · · · ×Rn︸ ︷︷ ︸
k

, `
(
(µ1, . . . , µk), x

)
= min

1≤i≤k
(x− µi)

2

A learning problem (H, Z, `) is convex if

1. H is convex subset of Rd for some d.

2. For every z ∈ Z, the function `(·, z) is a convex function.

Note that H ⊆ Rd is convex as a subset of Rd, also can be viewed as parameter space. For example,
every h ∈ H is a homogeneous linear function hw(x) = 〈w, x〉.

0-1 classification with a class of half-spaces as well as linear regression can be viewed as having
H ⊆ Rd.

Proposition 12.12

If ` is a convex loss, and H is a convex subset of Rd, then for every sample S, ERMH(S) is a
convex optimization problem.

Given S, H, `, the ERM task is to find h ∈ H that minimizes LS(h) = 1
|S| ∑

z∈S
`(h, z). Just recall that if for

all i ∈ [1, m], fi(w) is a convex function, then for any a1, . . . , am ≥ 0, f (w) =
m
∑

i=1
ai fi(w) is also convex.

Denote S := (z1, . . . , zm), then LS(h) =
m
∑

i=1

1
m `(h, zi)

CHAPTER 12. CONVEX LEARNING PROBLEMS 44

Example: Linear regression
Allowing our parameter space to be Rd (or {w ∈ Rd : ‖w‖ ≤ 1})

`(w, (x, y)) = (〈w, x〉 − y)2 is convex for every (x, y)

Conclusion: Linear regression with square loss is a convex learning problem.

Example: Learning linear classifiers with the 0-1 loss
Not convex.

Recall, `0−1(w, (x, y)) =

{
1 if sign(〈w, x〉) 6= y
0 otherwise

We want to see `
(
αw1 + (1− α)w2, (x, y)

) ?
≤ α`

(
w1, (x, y)

)
+ (1− α)`

(
w2, (x, y)

)

+

−

Here is denser

w2

w1

A

B

C

D
1
2 w1 +

1
2 w2

w1 mispredicts on B, w2 mispredicts on D. 1
2 w1 +

1
2 w2 mispredicts on B and D.

`S
(1

2 w1 +
1
2 w2

)
= |B|+|D|

m and `S(w1) =
|B|
m , `S(w2) =

|D|
m . Just assume |B| = |D| = m

4 .

Then `S
(1

2 w1 +
1
2 w2

)
= 1

2 > 1
2 `S(w1) +

1
2 `S(w2) =

1
4 , thus not convex.

Conclusion: the 0-1 loss is not convex. Furthermore, ERMH(S) is not a convex optimization prob-
lem.

12.2.1 Learnability of Convex Learning Problems

Note that this subsection is not covered in youtube lectures.

Maybe all convex learning problems over Rd, are learnable? The example below shows the answer is
negative, even when d is low. There is no contradiction to VC theory since VC theory only deals with
binary classification while here we consider a wide family of problems. There is also no contradiction
to the “discretization trick” (in chapter 9) as there we assumed that the loss function is bounded and
also assumed that a representation of each parameter using a finite number of bits suffices.

Example: Nonlearnability of Linear Regression Even If d = 1

Let H = R and `
(
w, (x, y)

)
= (wx− y)2 (homogeneous case). Let A be any deterministic algorithm.

Then see the textbook for details: we pick two distributions and use the fact that A is deterministic.

In summary, we have shown that for every A there exists a distribution on which A fails, which
implies that the problem is not PAC learnable.

A possible solution to this problem is to add another constraint on the hypothesis class. In addition

CHAPTER 12. CONVEX LEARNING PROBLEMS 45

to the convexity requirement, we require that H will be bounded; namely, we assume that for some
predefined scalar B, every hypothesis w ∈ H satisfies ‖w‖ ≤ B.

Boundedness and convexity alone are still not sufficient for ensuring that the problem is learnable, as
the following example demonstrates.

Example:
As in the previous example, consider a regression problem with squared loss. However, let H =
{w : |w| ≤ 1} ⊂ R be a bounded hypothesis class. Then similarly, we choose two different
distributions such that A must fail on either of them.

This example shows that we need additional assumptions on the learning problem, and this time
the solution is in Lipschitzness or smoothness of the loss function. This motivates a definition of
two families of learning problems, convex-Lipschitz-bounded and convex-smooth-bounded, which
are defined later. 1

12.3 Surrogate loss functions

Focus on learning with linear functions. H ⊆ Rd, a loss ` is a convex surrogate loss if

1. `(·, (x, y)) is a convex function for every (x, y).

2. `(w, (x, y)) ≥ `0−1(w, (x, y)) for all w ∈ H, all (x, y).

The revised learning problem: find h ∈ H that minimizes Lsurrogate
P (h)

Hinge loss

`hinge(w, (x, y)
)
= max

(
0, 1− y 〈w, x〉

)
y 〈w, x〉 is positive if and only if hw(x) = y.

1

1

y〈w, x〉

`hinge

`0−1

Proposition 12.13

`hinge 〈·, (x, y)〉 is convex for all x, y.

Use max of two convex is convex.
1actually no, as this is not required for final.

CHAPTER 12. CONVEX LEARNING PROBLEMS 46

Proposition 12.14

`hinge(w, (x, y)) ≥ `0−1(w, (x, y)).

The margin of a linear classifier

Sample S h ∈ argmin L0−1
S (h)

h1

h2

h3

Clearly h2 is the best among these 3.

Given a linear function (w, b), f (x) = 〈w, x〉+ b, and a point x, define the margin of f with respect to
x0 by min{‖x0 − u‖ : 〈w, u〉+ b = 0}

Proposition 12.15

For every x ∈ Rd, w ∈ Rd, b ∈ R, if ‖w‖ = 1, then margin(w, b) with respect to x equals
| 〈w, x〉+ b|.

The projection of x on to the line is
(
〈w, x〉+ b

)
w, and the perp v = x−

(
〈w, x〉+ b

)
w.

Proof:
Do algebra or check lecture 22.

1

Then go back to hinge loss. It penalizes you for correct labeled points if they are too close to the line.
Once it goes enough above the margin, not penalized. For mispredicted points, penalty grows as we
are getting away from the line.

Then our learning algorithms will aim to minimize the hinge loss rather than 0-1 loss.

Assume we output a classifier h,

L0−1
P (h) ≤ Lhinge

P (h)≤

successful
learning

min
h∈H

(
Lhinge

P (h)
)
+ ε = min

h∈H

(
Lhinge

P (h)
)
−min

h∈H
L01

P (h)︸ ︷︷ ︸
Due to algorithmic

complexity consideration

+min
h∈H

L01
P (h)︸ ︷︷ ︸

approx. err

+ ε︸︷︷︸
generalization err

CHAPTER 12. CONVEX LEARNING PROBLEMS 47

ε→ 0 as |S| → ∞.

H fbayes

minimizes L01
h∈H(h)

minimizes hinge loss

ε

A(S)

The most common learning paradigm for linear classifiers is SVM.

A(S) = argmin
[

λ‖w‖+ Lhinge(w, s)
]

maximize the margin. This is convex.

12.4 Lipschitzness

Not in any videos.

lipschitzness

Let C ⊆ Rd. A function f : Rd → Rk is ρ-Lipschitz over C if for every w1, w2 ∈ C we have
‖ f (w1)− f (w2)‖ ≤ ρ‖w1 − w2‖.

Intuitively, a Lipschitz function cannot change too fast.

12.5 Smoothness

smoothness

A differentiable function f : Rd → R is β-smooth if its gradient is β-Lipschitz; namely, for all
v, w we have ‖∇ f (v)−∇ f (w)‖ ≤ β‖v− w‖.

15
Support Vector Machines

We saw a glimpse in Chapter 12 and Appendix A. Here I’ll follow the textbook.

In this chapter and the next we discuss a very useful machine learning tool: the support vector machine
paradigm (SVM) for learning linear predictors in high dimensional feature spaces. The high dimen-
sionality of the feature space raises both sample complexity and computational complexity challenges.

In the next chapter we will tackle the computational complexity challenge using the idea of kernels. 1

15.1 Margin and Hard-SVM

Let S =
(
(xi, yi)

)m
i=1 be training set, xi ∈ Rd, yi ∈ {±1}. We say this training set is linearly separable

if there exists a halfspace (w, b) such that yi = sign(〈w, xi〉+ b) for all i. For any separable training
sample, there are many ERM halfspaces. Which one of them should the learner pick? In chapter 12,
we know that we should pick h2. One way to formalize this intuition is using the concept of margin.
Hard-SVM is the learning rule in which we return an ERM hyperplane that separates the training set
with the largest possible margin.

Claim The distance between a point x and the hyperplane (w, b) where ‖w‖ = 1, is | 〈w, x〉+ b|.

Proof:
See the proof of Claim 15.1 in textbook or do algebra.

Therefore, the Hard-SVM rule is

argmax
(w,b):‖w‖=1

min
i∈[m]
|〈w, xi〉+ b| s.t. ∀i, yi (〈w, xi〉+ b) > 0

If we are in separable case, we can write an equivalent problem:

argmax
(w,b):‖w‖=1

min
i∈[m]

yi (〈w, xi〉+ b) (*)

Next we give another equivalent formulation of the Hard-SVM rule as a quadratic optimization prob-
lem.

Algorithm 2: Hard-SVM
Input: (x1, y1), . . . , (xm, ym)
Solve: (w0, b0) = argmin(w,b) ‖w‖2 s.t. ∀i, yi (〈w, xi〉+ b) ≥ 1

Output: ŵ = w0
‖w0‖ , b̂ = b0

‖w0‖

1from textbook

48

CHAPTER 15. SUPPORT VECTOR MACHINES 49

The lemma 15.2 in textbook shows that the output of Hard-SVM is a solution to (*).

15.1.1 The Homogenous Case

The bias term b is set to zero. Hard-SVM for homogenous halfspaces amounts to solving

min
w
‖w‖2 s.t. ∀i, yi 〈w, xi〉 ≥ 1

15.1.2 The Sample Complexity of Hard-SVM

Recall VCdim of halfspaces in Rd is d + 1. It follows that the sample complexity of learning halfspaces
grows with the dimensionality of the problem. Furthermore, the fundamental theorem of learning
tells us that if the number of examples is significantly smaller than d/ε then no algorithm can learn an
ε-accurate halfspace. This is problematic when d is very large.

To solve this problem, we make an additional assumption on data distribution.

separable with a (γ, ρ)-margin

Let D be a distribution over Rd × {±1}. We say D is separable with a (γ, ρ)-margin if there
exists (w∗, b∗) such that ‖w∗‖ = 1 and such that with probability 1 over the choice of (x, y) ∼ D
we have y(〈w∗, x〉+ b∗) ≥ γ and ‖x‖ ≤ ρ.

Theorem 15.1

Let D be distribution over Rd × {±1} that satisfies (γ, ρ)-separability with margin assumption
using a homogeneous halfspace. Then, with probability of at least 1− δ over the choice of a
training set of size m, the 0− 1 error of the output of Hard-SVM is at most√

4(ρ/γ)2

m
+

√
2 log(2/δ)

m
.

16
Kernel Methods

In the previous chapter we described the SVM paradigm for learning halfspaces in high dimensional
feature spaces. This enables us to enrich the expressive power of halfspaces by first mapping the data
into a high dimensional feature space, and then learning a linear predictor in that space. This is similar
to the AdaBoost algorithm, which learns a composition of a halfspace over base hypotheses. While this
approach greatly extends the expressiveness of halfspace predictors, it raises both sample complexity
and computational complexity challenges. In the previous chapter we tackled the sample complexity
issue using the concept of margin. In this chapter we tackle the computational complexity challenge
using the method of kernels. 1

16.1 Embeddings into Feature Spaces

See the illustration in Appendix A where we map all points in {−10,−9, . . . , 9, 10} with the mapping
ψ : x 7→ x2. We use the term feature space to denote the range of ψ. After the mapping, we can easily
use a halfspace.

The basic paradigm:

1. Given some domain set X and a learning task, choosing a mapping ψ : X → F for some feature
space F, usually Rn ir any Hilbert space.

2. Given labelled samples, S =
(
(xi, yi)

)m
i=1, create the image sequence Ŝ =

(
(ψ(xi), yi)

)m
i=1.

3. Train a linear predictor h over Ŝ.

4. Predict the label of a test point x to be h(ψ(x)).

16.2 The Kernel Trick

We have seen that embedding the input space into some high dimensional feature space makes half-
space learning more expressive. However, the computational complexity of such learning may still
pose a serious hurdle - computing linear separators over very high dimensional data may be compu-
tationally expensive. The common solution to this concern is kernel based learning.

Given an embedding ψ of some domain space X into some Hilbert space, we define the kernel function
K(x, x′) = 〈ψ(x), ψ(x′)〉. One can think of K as specifying similarity between instances and of the
embedding ψ. as mapping the domain set X into a space where these similarities are realized as inner
products.

1This chapter hasn’t been covered explicitly in any video lectures. Therefore I copied the introduction text from the textbook.
We saw a glimpse in Appendix A.

50

CHAPTER 16. KERNEL METHODS 51

Regularizing the norm of w is helpful in computational complexity. All versions of SVM are instances
of the following general problem:

min
w

(
f
(
〈w, ψ (x1)〉 , . . . , 〈w, ψ (xm)〉

)
+ R

(
‖w‖

))
(?)

R : R+ → R is a monotonically non-decreasing function. The following theorem shows that there
exists an optimal solution of (?) that lies in the span of {ψ(x1), . . . , ψ(xm)}.

Theorem 16.1: Representor Theorem

Assume that ψ is a mapping from X to a Hilbert space. Then there exists α ∈ Rm such that

w =
m
∑

i=1
αiψ(xi) is an optimal solution of (?).

The advantage of working with kernels rather than directly optimizing w in the feature space is that in
some situations the dimension of the feature space is extremely large while implementing the kernel
function is very simple.

16.2.1 Kernels as a Way to Express Prior Knowledge

The suitability of any hypothesis class to a given learning task depends on the nature of that task.
One can therefore think of an embedding ψ as a way to express and utilize prior knowledge about the
problem at hand.

16.2.2 Characterizing Kernel Functions

As we have discussed in the previous section, we can think of the specification of the kernel matrix
as a way to express prior knowledge. Does the kernel function represent an inner product between
ψ(x) and ψ(x′) for some feature mapping ψ? The following lemma gives a sufficient and necessary
condition.

Lemma 16.2

A symmetric function K : X×X → R implements an inner product in some Hilbert space if and
only if it is positive semidefinite; namely, for all x1, . . . , xm, the Gram matrix, Gi,j = K(xi, xj), is
a positive semidefinite matrix.

In linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors v1, . . . , vn in an in-
ner product space is the Hermitian matrix of inner products, whose entries are given by Gij =

〈
vi, vj

〉
.

20
Neural Networks

An artificial neural network is a model of computation inspired by the structure of neural networks in
the brain. In simplified models of the brain, it consists of a large number of basic computing devices
(neurons) that are connected to each other in a complex communication network, through which
the brain is able to carry out highly complex computations. Artificial neural networks are formal
computation constructs that are modeled after this computation paradigm. 1

20.1 Feedforward Neural Networks

A feedforward neural network is described by a directed acyclic graph, G = (V, E), and a weight
function over the edges, w : E→ R. Nodes of the graph correspond to neurons. Each single neuron is
modeled as a simple scalar function, σ : R→ R. Three possible functions for σ:

• sign function: σ(a) = sign(a)

• threshold function: σ(a) = 1a>0

• sigmoid function: σ(a) = 1/(1 + exp(−a)), which is a smooth approximation to the threshold
function.

σ is called the “activation’ function of the neuron.

To simplify the description of the calculation performed by the network, we further assume that the
network is organized in layers, V0, . . . , VT . The bottom layer, V0, input layer, contains n + 1 neurons
where n is the dimensionality of the input space. The last neuron in V0 is the “constant” neuron, which
always outputs 1.

We denote vt,i the i-th neuron of the t-th layer and by ot,i(x) the output of vt,i when the network is fed
with the input vector x. Let at+1,j(x) denote the input to vt+1,j when the network is fed with the input
vector x. Then

at+1,j(x) = ∑
r:(vt,r ,vt+1,j)∈E

w
((

vt,r, vt+1,j
))

ot,r(x)

and
ot+1,j(x) = σ

(
at+1,j(x)

)
Layers V1, . . . , VT−1 are often called hidden layers. The top layer, VT , is called the output layer.

We refer to T as the number of layers in the network (excluding V0), or the “depth”. The size of the
network is |V|. The “width” is maxt |Vt|.

1This chapter hasn’t been covered explicitly in any video lectures though it was discussed in the weekly meetings. Therefore
I copied the introduction text from the textbook.

52

CHAPTER 20. NEURAL NETWORKS 53

20.2 Learning Neural Networks

We specify a NN by NN = (V, E, σ, w), we obtain a function hV,E,σ,w = hNN : R|V0|−1 → R|VT |. The
triplet (V, E, σ) is often called the architecture of the network. We denote the hypothesis class by

HV,E,σ = {hV,E,σ,w : w is a mapping from E to R}

That is, the parameters specifying a hypothesis in the hypothesis class are the weights over the edges
of the network.

20.3 The Expressive Power of Neural Networks

Claim 20.1 For every n, there exists a graph (V, E) of depth 2, such that HV,E,sign contains all functions
from {±1}n to {±1}.

Theorem 20.1

For every n, let s(n) be the minimum integer such that there exists a graph (V, E) with |V| = s(n)
such that the hypothesis class HV,E,sign contains all the functions from {0, 1}n to {0, 1}. Then
s(n) is exponential in n. Similar results hold for HV,E,σ where σ is the sigmoid function.

Which functions can we express using a network of polynomial size? The preceding claim tells us that
it is impossible to express all Boolean functions using a network of polynomial size. On the positive
side, in the following we show that all Boolean functions that can be calculated in time O(T(n)) can
also be expressed by a network of size O(T(n)2).

Theorem 20.2

Let T : N → N and for every n, let Fn be the set of functions that can be implemented using a
Turing machine using runtime of at most T(n). Then, there exist constants b, c ∈ R+ such that
for every n, there is a graph (Vn, En) of size at most cT(n)2 + b such that HVn ,En ,sign contains Fn.

A
Lecture 23

This lecture covers briefly on the last few chapters without going much into details. The last two
lectures (22, 23) smooth the transition between different chapters as you can see some SVM contents
in chapter 12. So I will put all lecture 23 contents here.

We defined margin in lec 22: the distance between the point x and a hyperplane is the distance between
x and closest point on the hyperplane. The drawing in lec 22 has crucial mistake.

hyperplane

w

all x on hyperplane (w, b) satisfy 〈x, w〉 = 0. And the distance is | 〈w, x〉 + b|. See claim 15.1 in
textbook. The closest point on the hyperplane is given by v = x− (〈w, x〉+ b)w.

Basic algorithmic tools in ML: we only discussed boosting. The others are kernel methods + SVM;
Nearest Neighbor; Neural networks.

SVM (minimize hinge loss), only learns halfspaces. Real training data is not likely to be linearly
separable. A learning algorithm, like SVM that outputs a linear classifier will always have error ≥
error(best linear classifier).

So we are using the idea of kernel. Let’s see a simple example. How can we overcome the limited
expressibility of linear classifiers? Let’s try to preprocess our data by embedding it into a space which
it is linearly separable. These points on the line are not linearly separable. After the embedding
x 7→ (x, x2), they becomes linearly separable.

− − − + + + + +−+++

54

APPENDIX A. LECTURE 23 55

We can take our data, and embed all negative points to one point, all positive points to another point.
This won’t work because the embedding relies on the labeling, then we don’t know where should the
new point be embedded to. In our previous example, it does not depend on the labels.

Is there always an embedding only based on the instances (not on labels) and guarantee every data
linearly separable? Even if we require that the embedding does not depend on the labels, we can still
(always) have an embedding in which there exists a perfect linear separator between + labeled points
and - labeled points. We can label each point of S as a new unit vector in R|S|. We know that

LP(h) ≤ LS(h) +

√
VCdim (H) + ln(1/δ)

m

where the sample error is zero, and the generalization term which is approximately 1, as VCdim (H) =
m. The true error is about 0 + 1 = 1. We get no guarantee on the future points.

Note that we can represent the new points by its distance to the old points.

To get generalization guarantees when our H is the class of linear classifiers over a data representation
in some high dimensional space, we use margin based bound instead of vcdim based bound. Namely,
if h has margin γ over a sample S, then we can prove that

LP(h) ≤ LS(h) +

√
(ρ/γ)2 + ln(1/δ)

m

where ρ is the diameter of S. The ρ here ensures that we cannot cheat by scaling S, which will increase
ρ and γ at the same rate. Note that this bound depends on the distribution.

The kernel trick: What is the optimization task that we need to solve to find a good linear separator
in the space to which S was embedded? We can use the hyperspace w with support vectors which are
the points in the sample closest to the halfspaces: w = ∑ αj f (xj) where f is the embedding. Then

〈w, f (xi)〉 =
〈

∑
j

αj f (xj), f (xi)

〉
= ∑

j
αj
〈

f (xj), f (xi)
〉

So we can calculate a matrix contains n× n values:
〈

f (xj), f (xi)
〉
, independent from the dimension we

embed the data. This is called kernel matrix. The learning is based only on the kernel matrix, whose
entries are K(xi, xj). We choose K : X2 → R to reflect our prior knowledge about how likely are xi, xj
to have the same label.

Example: Document classification
document1 7→ (•

aardvark

, . . . , •

chair

, . . . , •

table

, . . . , •
zyzzyva

)

This is the vector of whole dictionary and every entry is a count of how often this word occurs in
the document. So we represent the document with a bag of word. We can also put a weight on
each word according to how informative this word is, like “and”, “or” which we don’t care about.

RBF kernels for radial basis functions.

k-nearest neighbor learning. k-NN is guaranteed to converge to an optimal classifier for every prob-
lem., but the rate of convergence depends on the Lipschitzness of the labelling function. (How likely
are two close points to have different labels)

B
Final exam

You should study chapters 1-12, 15, 16 and 20 in the book.

However, you can skip the following subsections:

• The proof of Sauer’s lemma in 6.5.1

• The proof of Theorem 7.4 and everything beyond that in Chapter 7.

• Subsection 8.4

• Subsections 9.2, 9.3,

• The proof of Thm 10.2

• 12.1.3, 12.2.2

• 15.2 and everything beyond that in Ch 15

• 16.3

• 20.4, 20.5, 20.6

You can skip 11.1 the rest of chapter 11 is non-technical and basically shows how one can utilize in
practice tools that have been developed earlier (in chapters that we did discuss).

56

Index

A

Agnostic PAC learnability 11

C

convex function . 40

convex learning problem 42

convex set . 40

convex surrogate loss . 45

D

Distribution free guarantee 10

E

empirical loss . 7

empirical risk minimization 7

epsilon-representative sample 13

G

gamma-weak learnable. 35

H

Hinge loss . 45

hypothesis class . 8

L

linearly separable . 48

lipschitzness . 47

local minimum . 41

M

margin . 46

model selection . 39

N

non-uniformly learnable 24

O

overfit . 7

P

PAC learnability . 10

S

sample complexity of uniform convergence 14

separable with a (γ, ρ)-margin 49

shatter . 18

shatter function . 22

smoothness . 47

V

VC-dimension . 19

57

	Preface
	Introduction
	Learning in Nature
	Many types of machine learning
	Relationships to other fields
	Papaya Tasting

	A Gentle Start
	Formal model for learning
	Empirical Risk Minimization

	A Formal Learning Model
	A formal notion of learnability
	A More General Learning Model
	More general setup for learning
	Agnostic PAC-Learning as a game

	Learning via Uniform Convergence
	Finite Classes Are Agnostic PAC Learnable
	PAC-learnable infinite class example
	Summary

	The Bias-Complexity Tradeoff
	The No-Free-Lunch Theorem

	The VC-Dimension
	Infinite-Size Classes Can Be Learnable
	The VC-Dimension
	Examples
	Some basic properties of VCdim
	Another example of VCdim
	The Fundamental Theorem of PAC learning
	The Sauer's Lemma

	Nonuniform Learnability
	Characterizing Nonuniform Learnability
	Structural Risk Minimization
	Minimum Description Length (MDL) Learning

	The Runtime of Learning
	Computational Complexity of Learning
	Examples of the computational complexity of some concrete tasks
	Hardness of Learning

	Linear Predictors
	Halfspaces
	Linear Programming
	Perceptron for Halfspaces
	The VC Dimension of Halfspaces

	Boosting
	Weak Learnability
	The Boosting algorithm paradigm
	Face detection algorithm based on Boosting

	Model Selection and Validation
	Convex Learning Problems
	Properties of convex functions
	Convex Learning Problems
	Learnability of Convex Learning Problems

	Surrogate loss functions
	Lipschitzness
	Smoothness

	Support Vector Machines
	Margin and Hard-SVM
	The Homogenous Case
	The Sample Complexity of Hard-SVM

	Kernel Methods
	Embeddings into Feature Spaces
	The Kernel Trick
	Kernels as a Way to Express Prior Knowledge
	Characterizing Kernel Functions

	Neural Networks
	Feedforward Neural Networks
	Learning Neural Networks
	The Expressive Power of Neural Networks

	Lecture 23
	Final exam

