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5.2 Ideals of R = F[x]/ (xn � 1)

ideal generated by g

Let R be a (commutative) ring, and let g 2 R. Let hgi = f g � r : r 2 Rg. Then hgi is an ideal of
R, called the ideal generated by g.

principal ideal

An ideal I of R is said to be principal if I = hgi for some g 2 I .

principal ideal ring

A ring R is a principal ideal ring if every ideal of R is principal.

Theorem 5.2

R = F[x]/ (xn � 1) is a principal ideal ring.

generator polynomial

Let I be an ideal of R = F[x]/ (xn � 1).

• If I = f 0g, then xn � 1 is the generator polynomial of I .

• If I 6= f 0g, then the monic polynomial of smallest degree in I is called the generator
polynomial of I .

Theorem 5.3

Let I be a nonzero ideal of R = F[x]/ (xn � 1).

1) There is a unique monic polynomial g(x) of smallest degree in I ; I = hgi .

2) g(x) j (xn � 1) in F[x].

Theorem 5.4

Let h(x) be a monic divisor of xn � 1 in F[x]. Then h(x) is thegenerator polynomial of hh(x)i .

Corollary 5.5

There is a 1-1 correspondence between ideals ofR and monic divisors of xn � 1, and thus also a
1-1 correspondence between cyclic subspaces ofVn(F) and monic divisors of xn � 1.
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5.3 Dimension of a Cyclic Code

Theorem 5.6

Let g(x) be a monic divisor of xn � 1 over F, where F = GF(q). Suppose deg(g) = n � k. Then
the cyclic subspaceS of Vn(F) generated by g(x) has dimension k.

5.4 GM of a Cyclic Code

Theorem 5.7

Let g(x) be the generator polynomial of an (n, k)-cyclic code C over F (so g(x) is a monic divisor
of xn � 1 over F of degree n � k). Then a (non-standard) GM for C is

G =

2

6
6
6
6
6
6
4

g(x)
xg(x)
x2g(x)

...
xk� 1g(x)

3

7
7
7
7
7
7
5

k� n

.

Encoding Source messages are the polynomials inF[x] of degree < k. If m(x) = m0 + m1x + � � � +
mk� 1xk� 1, then encoding of m with respect to G is

c =
h
m0 m1 � � � mk� 1

i
G = m0g(x) + m1xg(x) + � � � + mk� 1xk� 1g(x) ,

so c(x) = m(x)g(x). Note that no reduction by xn � 1 is needed.

5.5 The Dual Code of a Cyclic Code

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). Let

g(x) = g0

6= 0

+ g1x + � � � + gn� k

= 1

xn� k + gn� k+ 1xn� k+ 1 + � � � + gn� 1xn� 1

| {z }
0

.

parity-check polynomial

The parity-check polynomial is h(x) = ( xn � 1)/ g(x).

Let
h(x) = h0

6= 0

+ h1x + � � � + hk

= 1

xk + hk+ 1xk+ 1 + � � � + hn� 1xn� 1

| {z }
0

Also de�ne hj = hj mod n for all j 2 Z .

Observe that g = ( g0, . . . ,gn� 1) is orthogonal to the vector h = ( hn� 1, . . . ,h0) and all its cyclic shifts.

It follows that all cyclic shifts of g are orthogonal to all cyclic shifts of h. Recall the GM for C, we
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de�ne H:

G =

2

6
6
6
6
4

g0 g1 � � � � � � gn� k 0 � � � 0
0 g0 g1 � � � gn� k� 1 gn� k � � � 0
...

...
...

0 0 � � � g0 g1 � � � � � � gn� k

3

7
7
7
7
5

k� n

H =

2

6
6
6
6
4

hk hk� 1 � � � � � � h0 0 � � � 0
0 hk hk� 1 � � � h1 h0 � � � 0
...

...
...

0 0 � � � hk hk� 1 � � � � � � h0

3

7
7
7
7
5

(n� k)� n

We have GHT = 0. Thus C0 � C? , where C0 is the code generated by H. But rank (H ) = n � k (since
hk = 1), so dim(C0) = n � k = dim (C? ). Hence C0 = C? , and H is a (non-standard) PCM for C.

C? is cyclic

reciprocal polynomial

Let h(x) = h0 + h1x + � � � + hkxk be a polynomial of degree k (so hk 6= 0). The reciprocal
polynomial of h(x) is hR(x) = xkh

� 1
x

�
= hk + hk� 1x + � � � + h0xk.

If h0 6= 0, we de�ne h� (x) = h� 1
0 hR(x). Soh� is monic.

Theorem 5.8

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). Let h(x) = ( xn � 1)/ g(x).
Then C? is cyclic, with generator polynomial h� (x).

5.6 Computing Syndromes

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). We will �nd a “nice” PCM for
C.

1. Find a GM for C of the form [R j Ik]

For 0 � i � k � 1, long division gives xn� k+ i = ` i (x)g(x) + r i (x), deg(r i ) < n � k, deg(` i ) < k. Then
xn� k+ i � r i (x) = ` i (x)g(x) 2 C. Thus a GM for C is

G =

2

6
6
6
6
4

� r0(x) + xn� k

� r1(x) + xn� k+ 1

...
� rk� 1(x) + xn� 1

3

7
7
7
7
5

k� n

=

2

6
6
6
6
4

� xn� k (mod g)( x)

Ik
� xn� k+ 1 (mod g)( x)

...
� xn� 1 (mod g)( x)

3

7
7
7
7
5

= [ R j Ik]

Note that rank (G) = k.

2. A (systematic) PCM for C is H = [ In� k j � RT]

The rows of HT (columns of H) are x0 mod g(x), x1 mod g(x), . . . ,xn� 1 mod g(x).
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Theorem 5.9: computing syndromes

The syndrome of r 2 Vn(F) with respect to the above PCM is s 2 Vn� k(F), where

s(x) = r(x) mod g(x).

The syndromes of a vector and its cyclic shifts are closely related.

Theorem 5.10

Let r(x) be a polynomial with syndrome polynomial s(x) = s0 + s1x + � � � + sn� k� 1xn� k� 1. The
syndrome of xr(x) is:

(
xs(x), if sn� k� 1 = 0.

xs(x) � sn� k� 1g(x), if sn� k� 1 6= 0.

Note that xs(x) is not cyclic shift.

So given the syndrome s of r, we can easily compute the syndromes of cyclic shifts of r.

5.7 Burst Error Correcting

Cyclic codes are good for correcting burst errors.

cyclic burst length

Let e 2 Vn(F). The cyclic burst length of e is the length of the shortest cyclic block of e that
contains all the nonzero components.

For example, the cyclic burst length of e= 0 1 1 0 1 0 0 0 1 0is 7.

t-cyclic burst error correcting code

A linear code C is a t-cyclic burst error correcting code if all cyclic burst errors of length � t
are in different cosets of C, i.e., have different syndromes. The largest such t is the cyclic burst
error correcting capability of C.

Theorem 5.11: bounds on burst error correcting capability

Let C be an (n, k, d)-code over GF(q). Let t be the cyclic burst error correcting capability of C.
Then bd� 1

2 c � t � (n � k).

In fact, we can prove that t � b n� k
2 c.

5.8 Decoding Algorithm for Cyclic Burst Error Correcting Codes

Let C be an (n, k)-cyclic code over F with generator polynomial g(x) and cyclic burst error correcting
capability t (so t � n � k).
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Let r(x) be the received word. Let si (x) denote the syndrome of xi r(x), 0 � i � n � 1.

Algorithm 4: Error-trapping decoding algorithm for cyclic burst error codes

1 for i  0 . . .n � 1 do
2 Compute si (x)
3 if si has (non-cyclic) burst length� t then
4 e(x)  xn� i (si , 0)
5 Decode r(x) to c(x) = r(x) � e(x)

6 Rejectr.

5.9 Interleaving

Purpose Increase the cyclic burst error correcting capability of a code.

Let C be an (n, k)-code with cyclic burst error correcting capability t. Suppose

c1 = ( c11, c12, . . . ,c1n) 2 C

c2 = ( c21, c22, . . . ,c2n) 2 C

...

cs = ( cs1, cs2, . . . ,csn) 2 C

Interleaving to a depth of s Instead of transmitting c1, c2, . . . ,cs in that order, transmit the columns
of the above array:

c� = ( c11, c21, . . . ,cs1, c12, c22, c22, . . . ,cs2, . . . ,c1n, c2n, . . . ,csn)

Then, any cyclic burst of length � st in c� results in a cyclic burst of length � t in each of the original
codewords c1, c2, . . . ,cs (and these errors can be corrected).

Theorem 5.12: interleaving codes

Let C be an (n, k)-code over F with cyclic burst error capability t. Let C� be the code obtained
by interleaving C to a depth s.

1. C� is an (ns, ks)-code over F with cyclic burst error correcting capability ts.

2. Suppose C is cyclic with generator polynomial g(x). Then C� is cyclic with generator
polynomial g(xs).



6
BCH codes

6.1 Sub�elds and Extension �elds

For any prime power q, GF(q) is a sub�eld of GF (qm) and we can view GF(qm) as an m-dimensional
vector space over GF(q).

Example:

GF(216) is a 16-dimensional vector space over GF(2).
GF(216) is a 8-dimensional vector space over GF(22).
GF(216) is a 4-dimensional vector space over GF(24).
GF(216) is a 2-dimensional vector space over GF(28).
GF(216) is a 1-dimensional vector space over GF(216).

6.2 Minimal Polynomials

We call GF(qm) the extension �eld , and GF(q) the sub�eld.

minimal polynomial of a over GF(q)

Let a 2 GF(qm). The minimal polynomial of a over GF(q), denoted ma(y) is the monic poly-
nomial of smallest degree in GF(q)[y] that a has a root.

Theorem 6.1

Let a 2 GF(qm).

1. The minimal polynomial ma(y) of a over GF(q) is unique.

2. ma(y) is irreducible over GF (q).

3. deg(ma) � m.

4. If f 2 GF(q)[y], then f (a) = 0 () ma(y) j f (y).

41
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6.3 Computing Minimal Polynomials

Theorem 6.2

Let a 2 GF(qm). Then a 2 GF(q) if and only if aq = a.

set of conjugates of a w.r.t. GF(q)

Let a 2 GF(qm). Let t be the smallest positive integer such that aqt
= a (note: t � m). Then the

set of conjugates of a w.r.t. GF(q) is C(a) =
�

a, aq, aq2
, . . . ,aqt � 1 	

.

The t elements in C(a) are distinct.

Theorem 6.3

Let a 2 GF(qm). Then the minimal polynomial of a over GF(q) is

m(y) = Õ
b2C(a)

(y � b) .

6.4 Factoring xn � 1 over GF(q)

Preliminaries Let p be the characteristic of GF(q). If gcd(n, q) 6= 1, then write n = np` , where ` � 1
and gcd(n, p) = 1. Then xn � 1 = ( xn � 1)p`

. So, WLOG, we shall assume that gcd(n, q) = 1.

Let m be the smallest integer such that qm � 1 (mod n), i.e., n j (qm � 1). Note that such an m exists.

Let a be a generator of GF(qm) � . Let b = a(qm� 1)/ n; note that b 2 GF(qm).

Also note, ord (b) = n, and 1,b, b2, . . . ,bn� 1 are distinct. Furthermore, (bi )n = ( bn) i = 1 for each
i 2 [0,n � 1]. Hence 1,b, b2, . . . ,bn� 1 are roots of xn � 1; and there aren't any other roots. So,

xn � 1 = ( x � 1)( x � b)( x � b2) � � � (x � bn� 1)

is the complete factorization of xn � 1 over GF(qm).

However, we seek the factorization of xn � 1 over GF(q).

Consider bi , where 0 � i � n � 1. Sincebi is a root of xn � 1, we have mbi (x) j (xn � 1). Also, the

roots of mbi (x) are C(bi ) =
�

bi , biq, biq2
, . . . ,biqt � 1 	

, where t is the smallest positive integer such that
iqt � i (mod n).

cyclotomic coset of q (mod n) containing i

Suppose gcd(n, q) = 1, and let 0 � i � n � 1. The cyclotomic coset of q (mod n) containing i is

Ci = f i , iq mod n, iq2 mod n, . . . , iqt � 1 mod ng,

where t is the smallest positive integer such that iqt � i (mod n). Also C = f Ci : 0 � i � n � 1g
is the set of cyclotomic cosets of q mod n.
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Theorem 6.4

Suppose gcd(n, q) = 1.

• The number of monic irreducible factors of xn � 1 over GF(q) is equal to the number of
(distinct) cyclotomic cosets of q mod n.

• The number of monic irreducible factors of degree d is equal to the number of (distinct)
cyclotomic cosets of q mod n of size d.

Theorem 6.5

Suppose gcd(n, q) = 1. Let m be the smallest positive integer such that qm (mod n), and let
b 2 GF(qm) be an element of order n. Then the monic irreducible factor of xn � 1 over GF(q)
are

�
mbi (x) : 0 � i � n � 1

	
, where

mbi (x) = Õ
j2Ci

(x � bj ) .

If j 2 Ci , then mbj (x) = mbi (x).

6.5 BCH Codes: De�nition

BCH codes are cyclic codes that are constructed in such a way that a (useful) lower bound on their
distance is known.

BCH code

A BCH code C over GF(q) of block length n and designed distance d is a cyclic code generated
by g(x) = lcm

�
mbi (x) : a � i � a+ d � 2

	
, for some integer a.

6.6 BCH Bound

Vanderdmonde matrix

A Vanderdmonde matrix over a �eld F is a matrix of the form

A(x1, x2, . . . ,xt ) =

2

6
6
6
6
6
6
4

1 1 � � � 1
x1 x2 � � � xt

x2
1 x2

2 � � � x2
t

...
...

...
xt � 1

1 xt � 1
2 � � � xt � 1

t

3

7
7
7
7
7
7
5

t � t

,

where x1, x2, . . . ,xt 2 F.

Theorem 6.6

det
�
A(x1, . . . ,xt )

�
6= 0 if and only if x1, . . . ,xt are distinct.
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Corollary 6.7

A Vanderdmonde matrix A(x1, . . . ,xt ) is non-singular if and only if x1, x2, . . . ,xt are distinct.

Theorem 6.8: BCH bound

Let C be an (n, k)-BCH code over GF(q) with designed distance d. Then d(C) � d.

6.7 BCH Decoding

We will present a decoding algorithm for one speci�c BCH code, named C15. The decoding algorithm
for C15 captures the essential ideas of a decoding algorithm for general BCH codes.

Let q = 2,n = 15,m = 4. Let GF(24) = Z 2[a]/ (a4 + a + 1). Then a os a generator of GF(24) � , and
b = a has order 15.

Let
g(x) = mb(x) � mb3(x) = 1 + x + x6 + x7 + x8

The roots of g(x) include b, b2, b3, b4, so g(x) generates a(15, 7)-BCH code C15 over GF(2) with d = 5.
In fact, d(C15) = 5, sinceg(x) is a codeword of weight 5. This BCH code is called C15 : (15, 7, 5)-binary
code. Note that C15 is a 2-error correcting code.

A PCM for C15 is

H =

"
b0 b1 b2 � � � b14

(b3)0 (b3)1 (b3)2 � � � (b3)14

#

8� 15

Note that H is a 2� 15 matrix over GF(24). If we replace each element in H by its vector representation
over GF(2), then we get an 8 � 15 matrix over GF(2).

The syndrome of r 2 V15(Z 2) is Hr T =

"
r(b)
r(b3)

#
4
=

"
s1

s3

#

.

So we don't need H to compute syndromes.

Decoding strategy If there is an error vector e of weight � 2 that has the same syndrome (s2, s3) as
r, then we decode r to r � e. Otherwise, we reject r.

Algorithm 5: Decoding algorithm for C15

1 Received word is r 2 V15(Z 2).
2 Compute s1 = r(b) and s3 = r(b3).
3 if s1 = s3 = 0 then accept r and STOP.
4 if s3

1 = s3 then correct r in position i where s1 = bi , and STOP.
5 if s1 = 0 (and s3 6= 0) then reject r and STOP.

6 Form the error locator polynomial r(z) = z2 + s1z +
�

s3
s1

+ s2
1

�
, and �nd its roots in GF (24). If

there are two (distinct) roots bi and bj , then correct r in positions i and j and STOP.
7 Reject.

The algorithm is guaranteed to make the correct decision if w(e) � 2.

More generally, suppose C is a binary (n, k)-BCH code with designed distance d. Suppose the gen-
erator polynomial of C is g(x) = lcmf mbi (x) : i 2 [d � 1]g where b 2 GF(2m) has order n. Then,

d(C) � d. Let t = bd� 1
2 c.
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Supposec 2 C is transmitted, w(e) � t, and r is received.

Compute si = r(bi ) for each 1 � i � d � 1, and form the syndrome polynomial:

s(z) = s1 + s2z + s3z3 + � � � + sd� 1zd� 2

Fact From s(z), the error locator polynomialcan be ef�ciently computed. The roots of s(z) are b� j ,
where j are the error positions.

Also, the algorithm generalizes to BCH codes over GF(q).
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RS codes

7.1 Introduction

Reed-Solomon code

A Reed-Solomon (RS) code is a BCH code of length n over GF(q) where n j (q � 1).

Sinceq1 � 1 (mod n), we have m = 1.

Supposen j (q � 1), and let b 2 GF(q) be an element of order n. Then mbi (x) = x � bi for all i.

A RS codeC of length n over GF(q) with designed distance d is a BCH code over GF(q) with genera-
tor polynomial

g(x) = ( x � ba)( x � ba+ 1)( x � ba+ 2) � � � (x � ba+ d� 2)

for some a.

Since deg(g) = d � 1, we have w(g) � d, so d(c) � d. d(C) � d by BCH bound, hence d(C) = d.

Since dim(C) = k = n � deg(g) = n � d + 1, we have k = n � d + 1, so d = n � k + 1. Recall that
d � n � k + 1 for any (n, k, d)-code. Thus, RS are optimalin the sense that, for any �xed n, k, q, they
achieve maximum distance among all (n, k, d)-codes over GF(q).

7.2 RS Codes Have Good (Cyclic) Burst-Error Correcting Capability

Let C be a RS code of lengthn over GF(2r ) and designed distance d. Consider c = ( c1, c2, . . . ,cn) 2 C,
and let e= bd� 1

2 c = bn� k
2 c. Note that ci 2 GF(2r ).

By writing each ci as a binary vector of length r, we can view c as a binary vector of length nr.

Now, if c is transmitted and if a cyclic burst error of length � 1 + ( e� 1)r bits is introduced, then at
most esymbols of c are received incorrectly. Thus, the received word can be decoded correctly.

Theorem 7.1

Let C be an (n, k)-RS code over GF(2r ). Then C0, the code obtained by replacing each symbol
in the codewords of C by the r-bit binary representations, is an (nr, kr)-binary code with cyclic
burst error correcting capability t = 1 + ( e� 1)r where e= bn� k

2 c.

46
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Example:

Consider GF(28) = Z 2[a]/ (a8 + a4 + a3 + a2 + 1).

Then b = a has order n = 255 (soq = 256,n = 255). Let

g(x) =
24

Õ
i= 1

(x � bi )

Then g(x) is the generator polynomial for a (255, 231, 25)-RS codeC with error correcting capability
e= 12. The related codeC0 is a (2040, 1848)-binary code with cyclic burst error correcting capability
t = 89.

The code C, and others derived from it, have widely been used in practice, including in CDs, DVDs,
and QR codes.



8
Code-Based Cryptography

See Cameron's notes

48

https://hextical.github.io/university-notes/year-2/semester-2/CO%20331/co331.pdf


9
Coding Theory 2

RS codes Optimal erasure codes (good for data storage). Ef�cient decoding algorithms + hardware
architectures.

LDPC codes Low Density Parity Check codes. Good for soft-decision coding. Used in digital TV,
optical communications, wireless communications, etc.

Concatenation codes BCH/RC + LDPC

Other codes Turbo codes, Raptor codes, Polar codes

List decoding Sudan-Guruswami algorithm. Lots of applications in theoretical computer science.
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