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Introduction

Coding theory is about clever ways of adding redundancy to messages to allow (efficient) error detec-
tion and error correction.

Here is our communication model:

Source
Source
encoder

e.g., voice, text...
(digital)

Chanel
encoder

(encoding alg)

Modulator

Demodulator

channel noise

Channel
decoder

(decoding alg)

Receiver
Source
decoder

(digital)

Data compression CO 331

Encryption/
Authentication

CO 487

Decryption/
Verification

Example: Parity Code

Encoding algorithm Add a 0 bit to the (binary) msg m if the number of 1’s in m is even; else add
a 1 bit.

Decoding algorithm If the number of 1’s in a received msg r is even, then accept r; else declare
that an error has occurred.

Example: Replication Code

Source msgs Codeword
# err/codeword

(always) detected
# err/codeword

(always) corrected ∗ Information rate

0 0
0 0 1

1 1
0 00

1 0 1
21 11

0 000
2 1 1

31 111
0 0000

3 1 1
41 1111

0 00000
4 2 1

51 11111

encoding algorithm−−−−−−−−−−→
∗: using “nearest neighbour decoding”

4
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Goal of Coding Theory

Design codes so that:

1. High information rate

2. High error-correcting capability

3. Efficient encoding & decoding algorithms

Course Overview

This course deals with algebraic methods for designing good (block) codes. The focus is on error cor-
rection (not on error detection). These codes are used in wireless communications, space probes,
CD/DVD players, storage, QR codes, etc.

Some modern stuff are not covered: Turbo codes, LDPC codes, Raptor codes, . . . Their math theories
are not so elegant as algebraic codes.

The big picture

Coding theory in its broadest sense deals with techniques for the efficient, secure and reliable trans-
mission of data over communication channels that may be subject to non-malicious errors (noise) and
adversarial intrusion. The latter includes passive intrusion (eavesdropping) and active intrusion (injec-
tion/deletion/modification).



1
Fundamentals

1.1 Basic Definitions and Concepts

alphabet

An alphabet A is a finite set of q ≥ 2 symbols.

word

A word is a finite sequence of symbols from A (also: vector, tuple).

length

The length of a word is the number of symbols it has.

code

A code C over A is a set of words (of size ≥ 2).

codeword

A codeword is a word in the code C.

block code

A block code is a code in which all codewords have the same length.

A block code of length n containing M codewords over A is a subset C ⊆ An with |C| = M. C
is called an [n, M]-code over A.

6



CHAPTER 1. FUNDAMENTALS 7

Example:
A = {0, 1}. C = {00000, 11100, 00111, 10101} is a [5, 4]-code over {0, 1}.

Messages Codewords
00 → 00000
10 → 11100
01 → 00111
11 →

Encoding of messages (1-1 map)

10101

Assumptions about the communications channel

(1) The channel only transmits symbols from A (“hard decision decoding”).

(2) No symbols are deleted, added, interchanged or transposed during transmission.

(3) The channel is a q-symmetric channel:

Let A = {a1, . . . , aq}. Let Xi = the ith symbol sent. Let Yi = the ith symbol received. Then for all
i ≥ 1, and all i ≤ j, k ≤ q,

Pr(Yi = aj|Xi = ak) =

1− p, if j = k
p

q−1 , if j 6= k.

p is called the symbol error probability of the channel (0 ≤ p ≤ 1).

Binary Symmetric Channel (BSC)

A 2-symmetric channel is called a binary symmetric channel.

0 0

1 1

Sent Received
1− p

1− p

p
p

For a BSC:

1. If p = 0, the channel is perfect.

2. If p = 1/2, the channel is useless.

3. If 1/2 < p ≤ 1, then flipping all received bits converts the channel to a BSC with 0 ≤ p < 1/2.

4. Henceforth, we will assume that 0 < p < 1/2 for a BSC.

Exercise:
For a q-symmetric channel, show that one can take 0 < p < q−1

q WLOG.

One can first consider the case q = 3.

information rate

The information rate (or rate) R of an [n, M]-code C over A is R =
logq M

n .

If C encodes messages that are k-tuples over A (so M = |Ak| = qk), then R = k
n .
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Note:
0 ≤ R ≤ 1. Ideally, R should be close to 1.

Example:
The rate of the binary code C = {00000, 11100, 00111, 10101} is R = 2

5 .

Hamming distance

The Hamming distance (or distance) between two n-tuples over A is the number of coordinate
positions in which they differ.

The Hamming distance (or distance) of an [n, M]-code C is d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

Example:
The distance of C = {00000, 11100, 00111, 10101} is d(C) = 2.

Theorem 1.1: properties of Hamming distance

For all x, y, z ∈ An,

1. d(x, y) ≥ 0, with d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. d(x, y) + d(y, z) ≥ d(x, y) (4 inequality).

1.2 Decoding Strategy

Example:
Let C = {00000, 11100, 00111, 10101}. C is a [5, 4]-code over {0, 1} (a binary code).

Error Detection If C is used for error detection only, the strategy is the following: A received word
r ∈ An is accepted if and only if r ∈ C.

Error Correction Let C be an [n, M]-code over A with distance d. Suppose c ∈ C is transmitted, and
r ∈ An is received. The (channel) decoder must decide one of the following:

(i) No errors have occurred; accept r.

(ii) Errors have occurred; correct1 (decode) r to a codeword c ∈ C?

(iii) Errors have occurred; no correction is possible.

Nearest Neighbour Decoding

(i) Incomplete Maximum Likelihood Decoding (IMLD):

If there is a unique codeword c ∈ C such that d(r, c) is minimum, then correct r to c. If no such c
exists, then report that errors have occurred, but correction is not possible (ask for retransmission,
or disregard information).

(ii) Complete Maximum Likelihood Decoding (CMLD):

1Error correction does not guarantee that the channel decoder always makes the correct decision. For example, 00000 transmit−−−−→
11100 which is accepted.
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Same as IMLD, except that if there are two or more c ∈ C for which d(r, c) is minimum, correct
r to an arbitrary one of these.

Is IMLD a reasonable strategy?

Theorem 1.2

IMLD chooses the codeword c for which the conditional probability

P(r|c) = P(r is received|c is sent)

is largest.

Proof:
Suppose c1, c2 ∈ C with d(c1, r) = d1 and d(c2, r) = d2. Suppose d1 > d2.

Now

P(r|c1) = (1− p)n−d1

(
p

q− 1

)d1

and

P(r|c2) = (1− p)n−d2

(
p

q− 1

)d2

So,
P(r|c1)

P(r|c2)
= (1− p)d2−d1

(
p

q− 1

)d1−d2

=

(
p

(1− p)(q− 1)

)d1−d2

Recall
p <

q− 1
q

=⇒ pq < q− 1 =⇒ 0 < q− pq− 1

=⇒ p < p + q− pq− 1 =⇒ p < (1− p)(q− 1) =⇒ p
(1− p)(q− 1)

< 1

Hence
P(r|c1)

P(r|c2)
< 1

and so
P(r|c1) < P(r|c2)

and the result follows.

Minimum Error Probability Decoding (MED)

An ideal strategy would be to correct r to a codeword c ∈ C for which P(c|r) = P(r is received|c is sent)
is largest. This is MED.

Example: (IMLD/CMLD) is not the same as MED

Consider C = { 000

c1

, 111

c2

}. Suppose P(c1) = 0.1 and P(c2) = 0.9. Suppose p = 1
4 (for a BSC).

Suppose r = 100 is the received word. Then

P(c1|r) =
P(r|c1) · P(c1)

P(r)
=

p(1− p)2 × 0.1
P(r)

=
9

640
· 1

P(r)

P(c2|r) =
P(r|c2) · P(c2)

P(r)
=

(1− p)p2 × 0.9
P(r)

=
27
640
· 1

P(r)

So, MED decodes r to c2. But IMLD decodes r to c1.
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IMLD vs. MED

• IMLD maximizes P(r|c). MED maximizes P(c|r).

• (i) MED has the drawback that the decoding algorithm depends on the probability distribution
of source messages.

(ii) If all source messages are equally likely, then CMLD and MED are equivalent:

P(r|ci) = P(ci|r) · P(ci)/P(r) = P(ci|r) ·
[

1
M · P(r)

]
︸ ︷︷ ︸

does not
depend on ci

(iii) In practice IMLD (or CMLD) is used.

• In this course, we will use IMLD/CMLD.

1.3 Error Correcting & Detecting Capabilities of a Code

Detection Only

Strategy: If r is received, then accept r if and only if r ∈ C.

e-error detecting code

A code C is an e-error detecting code if the decoder always makes the correct decision if e or
fewer errors per codeword are introduced by the channel.

Example:
Consider C = {000, 111}.

C is a 2-error detecting code.

C is not a 3-error detecting code.

Theorem 1.3

A code C of distance d is a (d− 1)-error detecting code (but is not a d-error detecting code).

Proof:
Suppose c ∈ C is sent.

If no errors occur, then c is received (and is accepted).

Suppose that # of errors is ≥ 1 and ≤ d− 1; let r be the received word. Then 1 ≤ d(r, c) ≤ d− 1, so
r /∈ C. Thus r is rejected. This proves that it is (d− 1)-error detecting code.

Since d(C) = d, there exist c1, c2 ∈ C with d(c1, c2) = d. If c1 is sent and c2 is received, then c2 is
accepted; the d errors go undetected.

Correction

Strategy: IMLD/CMLD
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e-error correcting code

A code C is an e-error correcting code if the decoder always makes the correct decision if e or
fewer errors per codeword are introduced by the channel.

Example:
Consider C = {000, 111}.

C is a 1-error correcting code.

C is not a 2-error correcting code.

Theorem 1.4

A code C of distance d is an e-error correcting code, where e =
⌊ d−1

2
⌋
.

Proof:
Suppose that c ∈ C is sent, at most d−1

2 errors are introduced, and r is received. Then d(r, c) ≤ d−1
2 .

On the other hand, if c1 is any other codeword, then

d(r, c1) ≥ d(c, c1)− d(r, c) 4 ineq

≥ d− d− 1
2

since d(C) = d

=
d + 1

2

>
d− 1

2
≥ d(r, c)

Hence c is the unique codeword at minimum distance from r, so the decoder correctly concludes
that c was sent.

Exercise:
Suppose d(C) = d, and let e =

⌊ d−1
2
⌋
. Show that C is not an (e + 1)-error correcting code.

A natural question to ask is: given A, n, M, d, does there exist an [n, M]-code C over A of distance ≥ d.
This can be phrased as an equivalent sphere packing problem:

Sphere packing

Can we place M spheres of radius e =
⌊ d−1

2
⌋

in An so that no two spheres overlap?

C = {c1, . . . , cM}, e =
⌊ d−1

2
⌋
, Sc = sphere of radius e centered at c = all words within distance e of c.

We proved: if c1, c2 ∈ C, c1 6= c2, then Sc1 ∩ Sc2 = ∅.

e

e

e
c1

cM

c2

An
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Let n = 128, q = 2, M = 264. Does there exists a binary [n, M]-code with d ≥ 22? If so, can encoding
and decoding be done efficiently?

We’ll view {0, 1}128 as a vector space of dimension 128 over Z2. We’ll choose C to be a 64-dimensional
subspace of this vector space. We will construct such a code at the end of the course. The main tools
used will be linear algebra (over finite fields) and abstract algebra (rings and fields).



2
Introduction to Finite Fields

2.1 Definitions

ring

A (commutative) ring (R,+, ·) consists of a set R and two operations + : R × R → R and
· : R× R→ R, such that

1. a + (b + c) = (a + b) + c ∀a, b, c ∈ R.

2. a + b = b + a, ∀a, b ∈ R.

3. ∃0 ∈ R such that a + 0 = a, ∀a ∈ R.

4. ∀a ∈ R, ∃ − a ∈ R such that a + (−a) = 0.

5. a · (b · c) = (a · b) · c, ∀a, b, c ∈ R.

6. a · b = b · a, ∀a, b ∈ R.

7. ∃1 ∈ R, 1 6= 0, such that a · 1 = a, ∀a ∈ R.

8. a · (b + c) = a · b + b · c, ∀a, b, c ∈ R.

Notation We will denote (R,+, ·) by R.

Example:
Q, R, C, Z are commutative rings.

field

A field (F,+, ·) is a commutative ring with the additional property:

9. ∀a ∈ F, a 6= 0, ∃a−1 ∈ F such that a · a−1 = 1.

Example:
Q, R, C are fields. Z is not a field.

13
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infinite/finite field

A field (F,+, ·) is a finite field if F is a finite set; otherwise it is an infinite field. If F is a finite
field , its order is |F|.

Example:
Q, R, C are infinite fields.

For which integers n ≥ 2 does there exist a finite field of order n? How does one construct such a field,
i.e., what are the field elements, and how are the field operations performed?

The Integers Modulo n

Let n ≥ 2. Recall that Zn consists of the set of equivalence classes of integers modulo n,
Zn = {[0], [1], [2], . . . , [n− 1]}, with addition and multiplication: [a] + [b] = [a + b], [a] · [b] = [a · b].

More simply, we write Zn = {0, 1, 2, . . . , n− 1}, and perform addition and multiplication modulo n.

Example:
Z9 = {0, 1, 2, . . . , 8}. In Z9, 3 + 7 = 1 and 3 · 7 = 3.

More precisely, 3 + 7 ≡ 1 (mod 9) and 3 · 7 ≡ 3 (mod 9).

Zn is a commutative ring (i.e., axioms 1-8 in the definition are satisfied).

When is Zn is a field?

Theorem 2.1

Zn is a field if and only if n is prime.

Proof:
⇐ Suppose n is prime. Let a ∈ Zn, a 6= 0 (so 1 ≤ a ≤ n− 1). Since n is prime, gcd(a, n) = 1.

Hence ∃s, t ∈ Z such that as + nt = 1. Reducing both sides modulo n gives as ≡ 1 (mod n).
Hence a−1 = s. Thus Zn is a field.

⇒ Suppose n is composite, say n = ab where 2 ≤ a, b ≤ n− 1.

Now, if a−1 exists, say ac ≡ 1 (mod n), then abc ≡ b (mod n), so nc ≡ b (mod n). Thus
b ≡ 0 (mod n), so n | b which is absurd since 2 ≤ b ≤ n− 1. Thus Zn is not a field.

We have established the existence of finite fields of order n, for each prime n. What about finite fields
of order n, where n is composite? In particular, is there a field of order 4? Order 6?

characteristic

Let F be a field. The characteristic of F, denoted char(F), is the smallest positive integer m such
that 1 + · · ·+ 1︸ ︷︷ ︸

m

= 0. If no such m exists, then char(F) = 0.

Example:
Q, R, C have characteristic 0. Zp (p prime) has characteristic p.
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Theorem 2.2

If char(F) = 0, then F is an infinite field.

Proof:
The elements 1, 1 + 1, 1 + 1 + 1, . . . are distinct, because if 1 + · · ·+ 1︸ ︷︷ ︸

a

= 1 + · · ·+ 1︸ ︷︷ ︸
b

where a < b,

then (1 + · · ·+ 1︸ ︷︷ ︸
b

)− (1 + · · ·+ 1︸ ︷︷ ︸
a

) = 1 + · · ·+ 1b−a = 0, contradicting char(F) = 0.

Theorem 2.3

Let F be a field with char(F) = m 6= 0. Then m is prime.

Proof:
Suppose m is composite, say m = ab where 2 ≤ a, b ≤ m− 1. Let s = 1 + · · ·+ 1︸ ︷︷ ︸

a

and t = 1 + · · ·+ 1︸ ︷︷ ︸
b

;

note that s, t 6= 0. Then s · t = (1 + · · ·+ 1︸ ︷︷ ︸
a

) · (1 + · · ·+ 1︸ ︷︷ ︸
b

) = 1 + · · ·+ 1︸ ︷︷ ︸
ab=m

= 0. Thus

s · t · t−1 = s · 1 = s = 0,

a contradiction. We then conclude that m is prime.

Let F be a finite field of characteristic p. Consider the subset of elements of F:

E = {0, 1, 1 + 1, 1 + 1, . . . , 1 + · · ·+ 1︸ ︷︷ ︸
p−1

}.

The elements of E are distinct. One can verify that E is a field, using the same operations as F. E is a
subfield of F. If we identify the elements of E with the elements of Zp in the natural way, then E is
essentially the same field as Zp. We have proven:

Theorem 2.4

Let F be a finite field of char p. Then Zp is a subfield of F.

Finite fields as vector spaces

Let F be a finite field of characteristic p. Identify:

vectors ↔ elements of F
scalars ↔ elements of Zp

vector addition ↔ addition of F
scalar multiplication ↔ multiplication of F

Then F is a vector space over Zp (i.e., the axioms of what it means to be a vector space are satisfied).

2.2 Finite fields: Non-existence

Theorem 2.5

Let F be a finite field of characteristic p. Then the order of F is pn, for some positive integer n.
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Proof:
Let the dimension of F as a vector space over Zp be n. Let α1, . . . , αn be a basis for F over Zp. Then
each element β ∈ F can be written uniquely in the form β = c1α1 + · · ·+ cnαn, where ci ∈ Zp. Thus

F =

{
n
∑

i=1
ciαi : ci ∈ Zp

}
, so |F| = pn.

For example, there do not exist finite fields of order 6, 10, 12, 14, 15, . . .

Do finite fields of orders 4, 8, 9, 16, 25, 27, . . . exist?

2.3 Existence of finite fields

Polynomial rings Let F be a field. F[x] denotes the set of all polynomials in x with coefficients
from F. Addition and multiplication of polynomials in F[x] is done in the usual way, with coefficient
arithmetic done in F.

Example:
In Z5[x],

(3x4 + 2x3 + x + 4) + (x5 + 2x4 + x2 + 2x + 3) = x5 + 2x3 + x2 + 3x + 2

(3x2 + 4x + 1) · (2x2 + x + 2) = (x4 + x3 + 2x2 + 4x + 2).

Note that F[x] is an infinite commutative ring.

Construction of finite fields: main idea

Z Zn Zn

infinite
commutative

ring

finite
commutative

ring

fix n ≥ 2

a ≡ b (modn)

n prime

finite field
of order n

Zp[x] Zp[x]/( f ) Zp[x]/( f )

infinite
commutative

ring

finite
commutative

ring

fix f ∈ Zp[x],
deg( f ) = n ≥ 1

g ≡ h (mod f )

f irreducible

finite field
of order pn

Polynomial division

Let f , g ∈ F[x], with g 6= 0. Then there exist unique polynomials r, s ∈ F[x] such that f = s

quotient

g + r

remainder

,
deg(r) < deg(g). By convention, deg(0) = −∞.



CHAPTER 2. INTRODUCTION TO FINITE FIELDS 17

Example:
Consider f = 3x4 + 2x2 + x + 1, g = 2x2 + 3x + 4 ∈ Z5[x].

4x2 +3

2x2 + 3x + 4
)

3x4 +2x3 +2x2 +x +1

3x4 +2x3 +x2

x2 +x +1

x2 +4x +2

2x +4

So, f = (4x2 + 3)g + (2x + 4).

The ring F[x]/( f )

g ≡ h (mod f )

Let f ∈ F[x] with deg( f ) ≥ 1. Let g, h ∈ F[x]. Then g is congruent to h modulo f , written
g ≡ h (mod f ), if g− h = ` f for some ` ∈ F[x] (equivalently, f | (g− h), or g, h leave the same
remainder upon division by f ).

The relation ≡ (mod f ) is an equivalence relation, and partitions F[x] into equivalence classes:

[g] = {h ∈ F[x] : g ≡ g (mod f )}.

Addition & multiplication: [g] + [h] = [g + h], [g] · [h] = [g · h].

F[x]/( f )

The set of equivalence classes is denoted F[x]/( f ).

Theorem 2.6

F[x]/( f ) is a commutative ring.

Suppose now that deg( f ) = n. Let g ∈ F[x]. Then we can write g = s f + r, where s, r ∈ F[x], and
deg(r) < n. Thus g ≡ r (mod f ), so [g] = [r].

If r1, r2 ∈ F[x], r1 6= r2, deg(r1), deg(r2) < n, then f - (r1 − r2), so r1 6≡ r2 (mod f ). Thus [r1] 6= [r2].

Thus the polynomials in F[x] of degree < n are a complete set of representatives of the equivalence
classes of F[x]/( f ).

Now, let F = Zp. Then Zp[x]/( f ) = {[r] : r ∈ Zp[x], deg(r) < n}. Thus |Zp[x]/( f )| = pn, so
Zp[x]/( f ) is a commutative ring of order pn.

When is F[x]/( f ) a field?

irreducible over F

Let f ∈ F[x], with deg( f ) ≥ 1. Then irreducible over F if f cannot be written as f = g · h,
g, h ∈ F[x], deg(g) ≥ 1, deg(h) ≥ 1.
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Example:
x2 + 1 is irreducible over R, since it has no roots in R.

x2 + 1 is reducible over C, since x2 + 1 = (x + i)(x− i).

x2 + 1 is reducible over Z2, since x2 + 1 = (x + 1)(x + 1).

x2 + 1 is irreducible over Z3, since it has no roots in Z3.

Theorem 2.7

F[x]/( f ) is a field if and only if f is irreducible over F.

Proof:
Analogous to the proof of the theorem: Zn is a field if and only if n is prime.

Now let’s construct finite fields.

Theorem 2.8

Let f ∈ Zp[x] be an irreducible polynomial of degree n ≥ 1. Then Zp[x]/( f ) is a finite field of
order pn and characteristic p. The elements are the polynomials in Zp[x] of degree < n.

Example: finite field of order 4 = 22

Here p = 2 and n = 2. Let f (x) = x2 + x + 1 ∈ Z2[x]. Then f (0) = 1, f (1) = 1, so f has no roots
in Z2. Thus f is irreducible over Z2.

So, F = Z2[x]/(x2 + x + 1) is a finite field of order 22 = 4. The elements are {0, 1, x, x + 1} where
[ ] is omitted.

Example of addition: x + (x + 1) = 1

Example of multiplication: x · (x + 1) = x2 + x = 1

Example: finite field of order 23 = 8

Here, p = 2 and n = 3. We need an irreducible polynomial. We need an irreducible polynomial of
degree 3 over Z2.

Candidates: x3, x3 + 1, x3 + x, x3 + x + 1, x3 + x2, x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1

• Try f (x) = x3 + x + 1.

Since f (0) = f (1) = 1, f has no roots in Z2, and thus no linear factors in Z2[x]. Thus f is
irreducible over Z2, and F1 = Z2[x]/(x3 + x + 1) is a finite field of order 23 = 8.

The elements of F1 are {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1}.

Example of addition: (x2 + x) + (x2 + x + 1) = 1.

Example of multiplication: (x2 + x) · (x2 + x + 1) = x4 + x = x2.

Example of inversion: x−1 = x2 + 1, since x · (x2 + 1) = 1.

• x3 + x2 + 1 is irreducible over Z2, so F2 = Z2[x]/(x3 + x2 + 1) is a finite field of order 8. The
elements of F2 are {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1}.

Note that F1 and F2 are not the same field. For example, in F1, x · x2 = x + 1, whereas in F2,
x · x2 = x2 + 1. However, F1 and F2 are isomorphic (essentially the same). Formally, there is a
bijection φ : F1 → F2 such that φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) ∀a, b ∈ F1.
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Existence and uniqueness of finite fields

Let p be prime and n ≥ 1. Then there exists an irreducible polynomial of degree n over Zp.

Theorem 2.9

There exists a finite field of order q if and only if q = pn for some prime p and n ≥ 1.

Actually, any two finite fields of the same order are isomorphic.

We will denote the finite field of order q by GF(q) “the Galois Field of order q”.

In the previous example, we saw two ways of representing the finite field GF(23).

2.4 Properties of finite fields

Theorem 2.10: Frosh’s dream

Let F be a finite field of characteristic p, and let α, β ∈ F. Then (α + β)pm
= αpm

+ βpm ∀m ≥ 1.

Proof (m = 1):
By the Binomial Theorem,

(α + β)p =

(
p
0

)
αp +

p−1

∑
i=1

(
p
i

)
αiβp−i +

(
p
p

)
βp.

Now for 1 ≤ i ≤ p− 1,(
p
i

)
=

p(p− 1)(p− 2) · · · (p− i + 1)
1 · 2 · 3 · · · i ≡ 0 (mod p),

since p divides the numerator but not the denominator, and since (p
i ) is an integer. Thus(

p
i

)
αiβp−i = αiβp−i + · · ·+ αiβp−i︸ ︷︷ ︸

(p
i )

= (1 + · · ·+ 1)αiβp−i = 0.

Hence (α + β)p = αp + βp. The statement for m ≥ 1 can be proven by induction.

The multiplicative group GF(q)∗

multiplicative group of GF(q)

The multiplicative group of GF(q) is GF(q)∗ = GF(q) \ {0}.

Theorem 2.11

Let α ∈ GF(q)∗. Then αq−1 = 1.

Note that if GF(q) = Zp, this is Fermat’s Little Theorem.
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Proof:
Let the (distinct) elements of GF(q)∗ be α1, α2, . . . , αq−1. Consider the (nonzero) elements αα1, αα2, . . . , ααq−1.
These elements are distinct because if ααi = ααj for some i 6= j, then α−1(ααi) = α−1(ααj), so
αi = αj, a contradiction. Hence {αα1, αα2, . . . , ααq−1} = {α1, α2, . . . , αq−1}, so

(αα1)(αα2) · · · (ααq−1) = α1α2 · · · αq−1.

Cancelling gives αq−1 = 1.

Corollary 2.12

Let α ∈ GF(q). Then αq = α.

Order of finite elements

order of α

Let α ∈ GF(q)∗. The order of α, denoted ord(α), is the smallest positive integer t such that
αt = 1.

Theorem 2.13

Let α ∈ GF(q)∗, ord(α) = t. Then αs = 1 if and only if t | s.

Proof:
Let s ∈ Z. Then long division of s by t yields

s = `t + r, where 0 ≤ r < t.

Now, αs = α`t+r = (αt)` · αr = αr. Hence αs = 1 ⇐⇒ αr = 1 ⇐⇒ r = 0 ⇐⇒ t | s.

Corollary 2.14

Let α ∈ GF(q)∗. Then ord(α) | (q− 1).

Example:
There is only one element in GF(q) of order 1, namely the element 1.

Example:
Consider GF(23) = Z2[x]/(x3 + x + 1). The order of α = x2 + 1 is 7.

Example:
Consider GF(24) = Z2[x]/(x4 + x + 1).

f (x) = x4 + x + 1 has no roots in Z2, thus no linear factors. Also, f (x) has no irreducible quadratic
factors, since (x2 + x + 1) - f (x). Note here x2, x2 + 1, x2 + x are reducible quadratic polynomials.
Thus f is irreducible over Z2.

Find ord(x) in GF(24).

Solution: We have x1 = x, x2 = x2, x3 = x3, x4 = x + 1, x5 = x2 + x 6= 1. Thus ord(x) 6= 1, 3, 5.
Since ord(x) | 15, we must have ord(x) = 15.

Let α ∈ GF(q)∗ with ord(α) = t. Then the elements α0, α1, α2, . . . , αt−1 are distinct. In particular, if
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ord(α) = q− 1, then GF(q)∗ = {α0, α1, α2, . . . , αq−2}.

generator

A generator of GF(q)∗ is an element of order q− 1.

Example:
α = x is a generator of GF(24) = Z2[x]/(x4 + x + 1) since ord(x) = 15. Let’s verify the above fact:

x0 = 1, x1 = x, x2 = x2, x3 = x3,
x4 = x + 1, x5 + x2 + x, x6 = x3 + x2, x7 = x3 + x + 1,
x8 = x2 + 1, x9 = x3 + x, x10 = x2 + x + 1, x11 = x3 + x2 + x,
x12 = x3 + x2 + x + 1, x13 = x3 + x2 + x + 1, x14 = x3 + 1, x15 = 1.

Theorem 2.15

Every finite field GF(q) has a generator.



3
Linear codes

Codes

Block codes

Linear codes

Cyclic codes

BCH codes

RS codes

3.1 Definition

Let F = GF(q). Let Vn(F) = F× · · · × F︸ ︷︷ ︸
n

. Vn(F) is an n-dimensional space over F. |Vn(F)| = qn.

linear (n, k)-code over F

A linear (n, k)-code over F is a k-dimensional subspace of Vn(F).

Recall a subspace S of a vector space V over F is non-empty subset S ⊆ V such that:

(i) a, b ∈ S =⇒ a + b ∈ S, (ii) a ∈ S, λ ∈ F =⇒ λa ∈ S.

If S is a subspace of V, then S is itself a vector space over F; also 0 ∈ S. A basis of S is a linearly
independent, spanning subset of S. All bases of S have the same cardinality, called the dimension of S.

3.2 Properties of Linear Codes

Let C be an (n, k)-code over F, and let v1, v2, . . . , vk be an ordered basis for C.

22
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1. Number of codewords

The elements of C are precisely

c1v1 + c2v2 + · · ·+ ckvk, ci ∈ F.

Thus, |C| = M = qk.

2. Rate

The rate of C is R =
logq M

n =
logq qk

n = k
n .

3. Weight

Hamming weight

The Hamming weight w(v) of a vector v ∈ Vn(F) is the number of nonzero coordinates in v.
The Hamming weight of a linear code C is w(C) = min{w(c) : c ∈ C, c 6= 0}.

Theorem 3.1

If C is a linear code, then w(c) = d(C).

Proof:
We have

d(C) = min{d(x, y) : x, y ∈ C, x 6= y}
= min{w(x− y) : x, y ∈ C, x 6= y} since d(x, y) = w(x− y)

= min{w(c) : c ∈ C, c 6= 0} since C is linear , x− y ∈ C

= w(C).

4. Encoding

Since there are qk codewords, there are also qk source messages. We shall assume that source messages
are the elements of Fk. Then a convenient and natural bijection (i.e., encoding rule) between Fk and C
is defined by:

m = (m1, m2, . . . , mk) 7→ c = m1v1 + m2v2 + · · ·+ mkvk.

Note that different ordered bases for C yield different encoding rules.

5. Generator matrix

A convenient way to represent C.

generator matrix

A generator matrix G for an (n, k)-code C is a k× n matrix whose rows form a basis for C:

G =


v1

v2
...

vk


k×n.
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Note that the encoding rule is c = mG.

Example: linear code
Consider the (5, 3)-binary code:

C = 〈10011
c1

, 01001
c2

, 00110
c3
〉

and c1, c2, c3 are linearly independent over GF(2).

A generator matrix for C is G =

 1 0 1 1 1
0 1 0 0 1
0 0 1 1 0


3×5

The encoding rule (with respect to the ordered basis {c1, c2, c3}) is c = mG.

000 → 00000 100 → 10011
001 → 00110 101 → 10101
010 → 01001 110 → 11010
011 → 01111 111 → 11100

Other properties: M = |C| = 23 = 8, R = 3/5, d(C) = w(C) = 2.

Standard form GM

standard form generator matrix

Let C be an (n, k)-code over F. A GM G for C of the form G =
[
Ik|A

]
k×n is said to be in standard

form.

systematic code

If C has a GM in standard form, then C is a systematic code.

Example: systematic/non-systematic code
C = 〈100011, 001001, 000110〉 is a non-systematic (6, 3)-binary code.

But C′ = 〈10011, 001001, 010010〉 is systematic. A GM for C′ is

G =

 1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 0 1


equivalent codes

Two codes C, C′ over F are equivalent if C′ can be obtained from C by choosing a permutation
of the coordinate positions {1, 2, . . . , n}, and then consistently rearranging every codeword of C
according to this permutation.

Below are some facts of equivalent codes:

1. If C is linear, and C′ is equivalent to C, then C′ is linear.

2. Equivalent codes have the same length, dimension, distance.

3. Every linear code is equivalent to a systematic code.
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3.3 The Dual Code

inner product

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Vn(F). The inner product of x and y is

x · y =
n

∑
i=1

xiyi ∈ F

For all x, y, z ∈ Vn(F) and λ ∈ F:

1. x · y = y · x.

2. x · (y + z) = x · y + x · z.

3. (λx) · y = λ(x · y)

4. x · x does not imply that x = 0.

Example:
Consider x = 111100 ∈ V6(Z2). Then x · x = 0, but x 6= 0. More generally, if x ∈ Vn(Z2), then
x · x = 0 if and only if w(x) is even.

orthogonal vectors

Two vectors x, y are orthogonal if x · y = 0.

dual code

Let C be an (n, k)-code over F. The dual code or orthogonal code of C is

C⊥ = {x ∈ Vn(F) : x · y = 0, ∀y ∈ C}.

Theorem 3.2

If C is an (n, k)-code over F, then C⊥ is an (n, n− k)-code over F.

Proof:
Let G be a GM for C, and let the rows of G be v1, v2, . . . , vk.

Claim Let x ∈ Vn(F). Then x ∈ C⊥ if and only if v1 · x = v2 · x = · · · = vk · x = 0.

Let’s prove the claim.

(⇒) is clear since v1, v2, . . . , vk ∈ C.

(⇐) Suppose v ∈ C. Then we can write v = λ1v1 + · · ·+ λkvk, where λi ∈ F. Then

v · · · x = (λ1v1 + · · ·+ λkvk) · x = λ1(v1 · x) + · · ·+ λk(vk · x) = 0.

Thus, C⊥ = {x ∈ Vn(F) : GxT = 0} = null space of G. Since G has rank k, C⊥ is a subspace of
Vn(F) of dimension n− k.
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3.4 Parity-Check Matrix

Let G be a GM for a linear code C. Then C⊥ = null space of G.

Theorem 3.3

If C is a linear code, then (C⊥)⊥ = C.

Proof:
Let C be an (n, k)-code. Then C⊥ is an (n, n− k)-code.

Furthermore, (C⊥)⊥ is an (n, k)-code, and C ⊆ (C⊥)⊥.

Since dim(C) = dim
(
(C⊥)⊥

)
, it follows that C = (C⊥)⊥.

parity-check matrix

If C is linear, then a generator matrix H for C⊥ is called a parity-check matrix (PCM) for C.

Note:
H is an (n− k)× n matrix.

C has many PCMs.

Constructing a GM for C⊥

Theorem 3.4

Let C be an (n, k)-code with GM G = [Ik | A]. Then H = [−AT | In−k] is a GM for C⊥.

Note that A is k× (n− k) matrix.

Proof:
Since rank(H) = n− k, H is a GM for an (n, n− k)-code C. Also,

GHT = [Ik|A]

[
−A
In−k

]
= −A + A = 0.

Thus C ⊆ C⊥. Since dim(C) = dim(C⊥), we have C = C⊥. Hence H is a GM for C⊥.

Example:

Consider the (5, 2)-code C over Z3 with GM G =

[
2 0 2 1 0
1 1 0 0 1

]
. Find a PCM for C.

Solution Find a GM for C in standard form:

G
R1←2R1−−−−→

[
1 0 1 2 0
1 1 0 0 1

]
R2←R2−R1−−−−−−→

[
1 0 1 2 0
0 1 2 1 1

]
.

So,

H =

 2 1 1 0 0
1 2 0 1 0
0 2 0 0 1


is a PCM for C.
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We have

C =


00000, 20210, 10120,
11001, 22002, 01211,
02122, 21121, 12212


Thus d(C) = w(C) = 3, R = 2/5.

Notes on PCMs

Let C be an (n, k)-code over F with GM G.

1. An (n− k)× n matrix H over F is a PCM for C iff GHT = 0 and rank(H) = n− k.

2. G is a PCM for C⊥ (since (C⊥)⊥ = C).

3. C = null(H).

4. Let H be a PCM for C, and let x ∈ Vn(F), then x ∈ C iff HxT = 0.

3.5 Distance of a Linear Code

Theorem 3.5: distance of a linear code

Let H be a PCM for a (n, k)-code C over F. Then d(C) ≥ s if and only if every s− 1 columns of
H are linearly independent over F.

Corollary 3.6

Let H be a PCM for a linear code C over F. Then d(C) is the smallest number of columns of H
that are linearly dependent over F.

3.6 Hamming Codes

Hamming code of order r over F = GF(q)

A Hamming code of order r over F = GF(q) is an (n, k)-coder over F with n = qr−1
q−1 and

k = n− r, and with PCM Hr and r× n matrix whose columns are nonzero, and no two of whose
columns are scalar multiples of each other.

Notes on Hamming codes:

1. If v ∈ Vr(F), v 6= 0, then exactly one scalar multiple of v is a column of H (giving n = qr−1
q−1

columns in total).

2. Hr has rank r, since among its columns are scalar multiples of the unit vectors. Hence a Hamming
code of order r over GF(q) does indeed have dimension k = n− r.

3. A Hamming code of order r over GF(q) has distance 3 (by design), so is a single-error correcting
code.

https://youtu.be/Gdzq_ad_Iuo
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3.7 Decoding Single-Error Correcting Codes

Let H be a PCM for an (n, k, d)-code C over F with d ≥ 3.

error vector

Suppose c ∈ C is sent, and r ∈ Vn(F) is received, The error vector is e = r− c (so r = c + e).

Algorithm 1: Decoding algorithm for single-error correcting codes
Input: PCM H and a received word r

1 Compute s = HrT .
2 if s = 0 then accept r as transmitted code (e = 0)
3 if s 6= 0 then
4 Compare s with the columns of H.
5 if s = αhi for some i then
6 Set e = (0, . . . , 0, α, 0, . . . , 0) where α is at ith position.
7 Decode r to c = r− e.

8 else
9 Report that more than one error has occurred.

Note that if w(e) = 0 or w(e) = 1, then the decoding algorithm is guaranteed to make the correct
decision.

3.8 Perfect Codes

perfect code

Let C be an [n, M]-code of distance d over A, with |A| = q and e = b d−1
2 c. Then C is perfect if

each x ∈ An is in the sphere of radius e centered at some c ∈ C.

Equivalently, C is perfect if

M ·
e

∑
i=0

(
n
i

)
(q− 1)i = qn .

For fixed q, n, d, a perfect code has maximum possible M. In other words, a perfect code has maximum

possible rate R =
logq M

n , for fixed q, n, d.

Some facts:

• C = An is a (trivial) perfect code with distance d = 1.

• Let n be odd. Binary replication code is a perfect code with d = n.

• Every perfect code has odd distance.

• For a perfect code, IMLD = CMLD.

• All Hamming codes of order r over GF(q) are perfect.
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Theorem 3.7: Tietäräinen, 1973

The only perfect codes are

1) Vn(GF(q))

2) The binary replication code of odd length.

3) The (23, 12, 7)-binary Golay code and all codes equivalent to it.

4) The (11, 6, 5)-ternarya Golay and all codes equivalent to it.

A GM is

G =

 I6

1 1 1 1 1
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0


6×11

5) The Hamming codes and all codes of the same [n, M, d] parameters as them. (d = 3).

aover Z3

3.9 Syndrome Decoding

Let C be an (n, k)-code over F = GF(q) with PCM H.

x ≡ y (mod C)

Let x, y ∈ Vn(F). We write x ≡ y (mod C) if x− y ∈ C.

Facts:

1. ≡ (mod C) is an equivalence relation.

2. The set of equivalences classes partitions Vn(F).

3. The equivalence class containing x ∈ Vn(F) is called a coset of C. Check the broader definition
in PMATH 347. This class is

C + x = {y ∈ Vn(F) : y ≡ (mod C)} = {c + x : c ∈ C}.

C C + x1 C + x2 C + x3 · · · Vn(F)

Example: Cosets
Consider a (5, 2)-binary code C with GM

G =

[
1 0 1 1 1
0 1 1 1 0

]
.

https://notes.sibeliusp.com/pmath347
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Find all cosets of C.

Solution The cosets of C are:

C = C + 00000 = {00000, 10111, 01110, 11001} = C + 10111 = C + 01110 + C + 11001

C + 10000 = {10000, 00111, 11110, 01001} = C + 00111 = C + 11110 = C + 01001

C + 01000 = {01000, 11111, 00110, 10001}
C + 00100 = {00100, 10011, 01010, 11101}
C + 00010 = {00010, 10101, 01100, 11011}
C + 00001 = {00001, 10110, 01111, 11000}
C + 10100 = {10100, 00011, 11010, 01101}
C + 10010 = {10010, 00101, 11100, 01011}

Facts on cosets:

1. C + 0 = C.

2. If y ∈ C + x, then C + y = C + x.

3. All cosets of C has the same size qk.

4. The number of cosets is qn/qk = qn−k.

syndrome

Let H be a PCM for an (n, k)-code C over F. For x ∈ Vn(F), the syndrome of x (with respect to
H) is s = HxT .

Theorem 3.8

Let x, y ∈ Vn(F). Then x ≡ y (mod C) if HxT = HyT .

Syndrome decoding algorithm

For each coset of C, select an arbitrary vector of smallest weight in that coset, and call it coset leader of
that coset. Store a table of coset leaders and their syndromes.

Algorithm 2: Decoding algorithm (CMLD)

1 Given r, compute s = HrT .
2 Let e be the corresponding coset leader.
3 Decode r to c = r− e.

The decoding algorithm is guaranteed to make the correct decision if the error vector is a coset leader;
otherwise is guaranteed to make a wrong decision.

Theorem 3.9

Let C be an (n, k)-code over F with distance d. Let x ∈ Vn(F) be a vector of weight ≤ b d−1
2 c.

Then x is a coset leader.
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Note:
Syndrome decoding is not efficient in general since the syndrome table is exponentially large. For
an (n, k)-binary code, the syndrome table has size

2n−k(n + (n− k)) = 2n−k(2n− k) bits



4
Golay codes

4.1 The (Binary) Golay Code

Let

B̂ =



1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 0 0 0 1


12×11

Let Ĝ = [I12 | B̂]12×23. Ĝ is a GM for a (23, 12)-binary code called the (binary) Golay code C23. We will
prove d(C23) = 7. C23 is a perfect code.

4.2 The Extended Golay Code C24

C24 is the binary code with GM G = [I12 | B]12×24, where

B =


0
1
1 B̂
...
1


12×12

Properties of C24:

• C24 is a (24, 12)-binary code.

• GGT = 0. Hence C24 ⊆ C⊥24, so C24 is a self-orthogonal code.

Since C24 = C⊥24. Hence C24 is a self-dual code.

32
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• BT = B (so B is symmetric).

• A PCM for C24 is H = [−BT | I12] = [B | I12].

• Since C24 = C⊥24, H is also a GM for C24.

Theorem 4.1

d(C24) = 8.

Corollary 4.2

d(C23) = 7.

4.3 A Decoding Algorithm For C24

Recall n = 24, k = 12, d = 8, e = 3. G = [I12 | B] and H = [B | I12] are both GMs and PCMs for C24

Decoding strategy (IMLD) Compute a syndrome s of the received word r. Find a vector e of weight
≤ 3 that has the same syndrome. If no such e exists, reject r.

Correctness If the error vector has weight ≤ 3, then the decoder always makes the correct decision.
If the error vector has weight > 3, the decoder will reject r or decode r to a codeword than the
transmitted one.

There are 5 cases, not mutually exclusive, in the event w(e) ≤ 3.

Suppose r = (x, y) is received.

Algorithm 3: Decoding algorithm for C24

1 Compute s1 = [I12 | B]rT .
2 if s1 = 0 then
3 accept r and STOP // A

4 if w(s1) ≤ 3 then
5 e← (sT

1 , 0)
6 Decode r to c = r− e; STOP // B

7 foreach row i of B do
8 if row i differs in one position (j), or two positions (j & k) with s1 then
9 Correct x in position j, or positions j, k;

10 Correct y in position i; STOP // C

11 Compute s2 = [B | I12]rT .
12 if w(s2) ≤ 3 then
13 e← (0, sT

2 )

14 Decode r to c = r− e; STOP // D

15 foreach row i of B do
16 if row i differs in one position (j), or two positions (j & k) with s2 then
17 Correct x in position i;
18 Correct y in position j, or positions j, k; STOP // E

19 Reject r
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Decoding algorithm only needs B, no need for a syndrome table, which is much larger than B. Decod-
ing is efficient and simple, which is good for hardware implementation.

Is C24 better than simpler codes such as replication codes or Hamming codes?

4.4 Reliability of C24

• p = symbol error probability (BSC)

• C = {c1, c2, . . . , cM}

• wi = probability that decoding algorithm makes an incorrect decision if ci is sent.

• Error probability of C is PC = 1
M ∑M

i=1 wi = wi = error probability of C

• 1− PC = Reliability of C = probability that r is decoded correctly

p (1) (1− p)12 (2) 1-PC24 (3) 1− PT (4) 1− PH

0.1 0.282429 0.7857377 0.7112056 0.5490430
0.01 0.8863848 0.99990946 0.9964298 0.9903702
0.001 0.9880657 0.9999999895 0.99996402 0.998959
Rate 1 1/2 1/3 11/15 ≈ 0.73

(1) If no source is used (no channel encoding is used), then the reliability for 12-bit messages is
(1− p)12.

(2) wi = 1−
[
(1− p)24 +

(
24
1

)
p(1− p)23 +

(
24
2

)
p2(1− p)22 +

(
24
3

)
(1− p)21

]

PC24 =
1

212

212

∑
i=1

wi = wi

(3) T = Triplication code
10110 . . . 0︸ ︷︷ ︸

12

→ 111 000 111 111 000 . . . 111︸ ︷︷ ︸
36

1− PT =
[
(1− p)3 + 3p(1− p)2]12

(4) (15, 11)-binary Hamming code

1− PH = (1− p)15 + 15p(1− p)14



5
Cyclic codes

cyclic space

A subspace S of Vn(F) is cyclic if (a0, a1, . . . , an−1) ∈ S =⇒ (an−1, a0, a1, . . . , an−2) ∈ S.

cyclic code

A cyclic code is a cyclic subspace of Vn(F).

5.1 The Polynomial Ring R = F[x]/(xn − 1)

Let R = F[x]/(xn − 1), where F = GF(q). Then R is a commutative ring (but not a field, since xn − 1
is reducible over F).

We have the following bijection between Vn(F) and R:

a = (a0, a1, a2, . . . , an−1)←→ a(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1.

Vector addition and scalar multiplication preserved.

a · b

Let a, b ∈ Vn(F). Then a · b = c ∈ Vn(F), where c↔ c(x) = a(x) · b(x) mod (xn − 1).

ideal

Let R be a (finite) commutative ring. A non-empty subset I of R is an ideal of R if

(i) a, b ∈ I =⇒ a + b ∈ I;

(ii) a ∈ I, b ∈ R =⇒ a · b ∈ I.

Theorem 5.1: algebraic characterization of cyclic subspaces of Vn(F)

Let S be a non-empty subset of Vn(F). Let I be the associated polynomials in R = F[x]/(xn− 1).
Then S is a cyclic subspace of Vn(F) if and only if I is an ideal of R.

35
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5.2 Ideals of R = F[x]/(xn − 1)

ideal generated by g

Let R be a (commutative) ring, and let g ∈ R. Let 〈g〉 = {g · r : r ∈ R}. Then 〈g〉 is an ideal of
R, called the ideal generated by g.

principal ideal

An ideal I of R is said to be principal if I = 〈g〉 for some g ∈ I.

principal ideal ring

A ring R is a principal ideal ring if every ideal of R is principal.

Theorem 5.2

R = F[x]/(xn − 1) is a principal ideal ring.

generator polynomial

Let I be an ideal of R = F[x]/(xn − 1).

• If I = {0}, then xn − 1 is the generator polynomial of I.

• If I 6= {0}, then the monic polynomial of smallest degree in I is called the generator
polynomial of I.

Theorem 5.3

Let I be a nonzero ideal of R = F[x]/(xn − 1).

1) There is a unique monic polynomial g(x) of smallest degree in I; I = 〈g〉.

2) g(x) | (xn − 1) in F[x].

Theorem 5.4

Let h(x) be a monic divisor of xn − 1 in F[x]. Then h(x) is the generator polynomial of 〈h(x)〉.

Corollary 5.5

There is a 1-1 correspondence between ideals of R and monic divisors of xn − 1, and thus also a
1-1 correspondence between cyclic subspaces of Vn(F) and monic divisors of xn − 1.
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5.3 Dimension of a Cyclic Code

Theorem 5.6

Let g(x) be a monic divisor of xn − 1 over F, where F = GF(q). Suppose deg(g) = n− k. Then
the cyclic subspace S of Vn(F) generated by g(x) has dimension k.

5.4 GM of a Cyclic Code

Theorem 5.7

Let g(x) be the generator polynomial of an (n, k)-cyclic code C over F (so g(x) is a monic divisor
of xn − 1 over F of degree n− k). Then a (non-standard) GM for C is

G =


g(x)

xg(x)
x2g(x)

...
xk−1g(x)


k×n

.

Encoding Source messages are the polynomials in F[x] of degree < k. If m(x) = m0 + m1x + · · ·+
mk−1xk−1, then encoding of m with respect to G is

c =
[
m0 m1 · · · mk−1

]
G = m0g(x) + m1xg(x) + · · ·+ mk−1xk−1g(x) ,

so c(x) = m(x)g(x). Note that no reduction by xn − 1 is needed.

5.5 The Dual Code of a Cyclic Code

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). Let

g(x) = g0

6= 0

+ g1x + · · ·+ gn−k

= 1

xn−k + gn−k+1xn−k+1 + · · ·+ gn−1xn−1︸ ︷︷ ︸
0

.

parity-check polynomial

The parity-check polynomial is h(x) = (xn − 1)/g(x).

Let
h(x) = h0

6= 0

+ h1x + · · ·+ hk

= 1

xk + hk+1xk+1 + · · ·+ hn−1xn−1︸ ︷︷ ︸
0

Also define hj = hj mod n for all j ∈ Z.

Observe that g = (g0, . . . , gn−1) is orthogonal to the vector h = (hn−1, . . . , h0) and all its cyclic shifts.

It follows that all cyclic shifts of g are orthogonal to all cyclic shifts of h. Recall the GM for C, we
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define H:

G =


g0 g1 · · · · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k−1 gn−k · · · 0
...

...
. . .

0 0 · · · g0 g1 · · · · · · gn−k


k×n

H =


hk hk−1 · · · · · · h0 0 · · · 0
0 hk hk−1 · · · h1 h0 · · · 0
...

...
. . .

0 0 · · · hk hk−1 · · · · · · h0


(n−k)×n

We have GHT = 0. Thus C′ ⊆ C⊥, where C′ is the code generated by H. But rank(H) = n− k (since
hk = 1), so dim(C′) = n− k = dim(C⊥). Hence C′ = C⊥, and H is a (non-standard) PCM for C.

C⊥ is cyclic

reciprocal polynomial

Let h(x) = h0 + h1x + · · · + hkxk be a polynomial of degree k (so hk 6= 0). The reciprocal
polynomial of h(x) is hR(x) = xkh

( 1
x
)
= hk + hk−1x + · · ·+ h0xk.

If h0 6= 0, we define h∗(x) = h−1
0 hR(x). So h∗ is monic.

Theorem 5.8

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). Let h(x) = (xn − 1)/g(x).
Then C⊥ is cyclic, with generator polynomial h∗(x).

5.6 Computing Syndromes

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). We will find a “nice” PCM for
C.

1. Find a GM for C of the form [R | Ik]

For 0 ≤ i ≤ k− 1, long division gives xn−k+i = `i(x)g(x) + ri(x), deg(ri) < n− k, deg(`i) < k. Then
xn−k+i − ri(x) = `i(x)g(x) ∈ C. Thus a GM for C is

G =


−r0(x) + xn−k

−r1(x) + xn−k+1

...
−rk−1(x) + xn−1


k×n

=


−xn−k (mod g)(x)

Ik
−xn−k+1 (mod g)(x)

...
−xn−1 (mod g)(x)

 = [R | Ik]

Note that rank(G) = k.

2. A (systematic) PCM for C is H = [In−k | −RT]

The rows of HT (columns of H) are x0 mod g(x), x1 mod g(x), . . . , xn−1 mod g(x).
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Theorem 5.9: computing syndromes

The syndrome of r ∈ Vn(F) with respect to the above PCM is s ∈ Vn−k(F), where

s(x) = r(x) mod g(x).

The syndromes of a vector and its cyclic shifts are closely related.

Theorem 5.10

Let r(x) be a polynomial with syndrome polynomial s(x) = s0 + s1x + · · ·+ sn−k−1xn−k−1. The
syndrome of xr(x) is: {

xs(x), if sn−k−1 = 0.

xs(x)− sn−k−1g(x), if sn−k−1 6= 0.

Note that xs(x) is not cyclic shift.

So given the syndrome s of r, we can easily compute the syndromes of cyclic shifts of r.

5.7 Burst Error Correcting

Cyclic codes are good for correcting burst errors.

cyclic burst length

Let e ∈ Vn(F). The cyclic burst length of e is the length of the shortest cyclic block of e that
contains all the nonzero components.

For example, the cyclic burst length of e = 0 1 1 0 1 0 0 0 1 0 is 7.

t-cyclic burst error correcting code

A linear code C is a t-cyclic burst error correcting code if all cyclic burst errors of length ≤ t
are in different cosets of C, i.e., have different syndromes. The largest such t is the cyclic burst
error correcting capability of C.

Theorem 5.11: bounds on burst error correcting capability

Let C be an (n, k, d)-code over GF(q). Let t be the cyclic burst error correcting capability of C.
Then b d−1

2 c ≤ t ≤ (n− k).

In fact, we can prove that t ≤ b n−k
2 c.

5.8 Decoding Algorithm for Cyclic Burst Error Correcting Codes

Let C be an (n, k)-cyclic code over F with generator polynomial g(x) and cyclic burst error correcting
capability t (so t ≤ n− k).



CHAPTER 5. CYCLIC CODES 40

Let r(x) be the received word. Let si(x) denote the syndrome of xir(x), 0 ≤ i ≤ n− 1.

Algorithm 4: Error-trapping decoding algorithm for cyclic burst error codes

1 for i← 0 . . . n− 1 do
2 Compute si(x)
3 if si has (non-cyclic) burst length ≤ t then
4 e(x)← xn−i(si, 0)
5 Decode r(x) to c(x) = r(x)− e(x)

6 Reject r.

5.9 Interleaving

Purpose Increase the cyclic burst error correcting capability of a code.

Let C be an (n, k)-code with cyclic burst error correcting capability t. Suppose

c1 = (c11, c12, . . . , c1n) ∈ C

c2 = (c21, c22, . . . , c2n) ∈ C
...

cs = (cs1, cs2, . . . , csn) ∈ C

Interleaving to a depth of s Instead of transmitting c1, c2, . . . , cs in that order, transmit the columns
of the above array:

c∗ = (c11, c21, . . . , cs1, c12, c22, c22, . . . , cs2, . . . , c1n, c2n, . . . , csn)

Then, any cyclic burst of length ≤ st in c∗ results in a cyclic burst of length ≤ t in each of the original
codewords c1, c2, . . . , cs (and these errors can be corrected).

Theorem 5.12: interleaving codes

Let C be an (n, k)-code over F with cyclic burst error capability t. Let C∗ be the code obtained
by interleaving C to a depth s.

1. C∗ is an (ns, ks)-code over F with cyclic burst error correcting capability ts.

2. Suppose C is cyclic with generator polynomial g(x). Then C∗ is cyclic with generator
polynomial g(xs).



6
BCH codes

6.1 Subfields and Extension fields

For any prime power q, GF(q) is a subfield of GF(qm) and we can view GF(qm) as an m-dimensional
vector space over GF(q).

Example:
GF(216) is a 16-dimensional vector space over GF(2).
GF(216) is a 8-dimensional vector space over GF(22).
GF(216) is a 4-dimensional vector space over GF(24).
GF(216) is a 2-dimensional vector space over GF(28).
GF(216) is a 1-dimensional vector space over GF(216).

6.2 Minimal Polynomials

We call GF(qm) the extension field, and GF(q) the subfield.

minimal polynomial of α over GF(q)

Let α ∈ GF(qm). The minimal polynomial of α over GF(q), denoted mα(y) is the monic poly-
nomial of smallest degree in GF(q)[y] that α has a root.

Theorem 6.1

Let α ∈ GF(qm).

1. The minimal polynomial mα(y) of α over GF(q) is unique.

2. mα(y) is irreducible over GF(q).

3. deg(mα) ≤ m.

4. If f ∈ GF(q)[y], then f (α) = 0 ⇐⇒ mα(y) | f (y).

41
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6.3 Computing Minimal Polynomials

Theorem 6.2

Let α ∈ GF(qm). Then α ∈ GF(q) if and only if αq = α.

set of conjugates of α w.r.t. GF(q)

Let α ∈ GF(qm). Let t be the smallest positive integer such that αqt
= α (note: t ≤ m). Then the

set of conjugates of α w.r.t. GF(q) is C(α) =
{

α, αq, αq2
, . . . , αqt−1}

.

The t elements in C(α) are distinct.

Theorem 6.3

Let α ∈ GF(qm). Then the minimal polynomial of α over GF(q) is

m(y) = ∏
β∈C(α)

(y− β) .

6.4 Factoring xn − 1 over GF(q)

Preliminaries Let p be the characteristic of GF(q). If gcd(n, q) 6= 1, then write n = np`, where ` ≥ 1
and gcd(n, p) = 1. Then xn − 1 = (xn − 1)p` . So, WLOG, we shall assume that gcd(n, q) = 1.

Let m be the smallest integer such that qm ≡ 1 (mod n), i.e., n | (qm − 1). Note that such an m exists.

Let α be a generator of GF(qm)∗. Let β = α(q
m−1)/n; note that β ∈ GF(qm).

Also note, ord(β) = n, and 1, β, β2, . . . , βn−1 are distinct. Furthermore, (βi)n = (βn)i = 1 for each
i ∈ [0, n− 1]. Hence 1, β, β2, . . . , βn−1 are roots of xn − 1; and there aren’t any other roots. So,

xn − 1 = (x− 1)(x− β)(x− β2) · · · (x− βn−1)

is the complete factorization of xn − 1 over GF(qm).

However, we seek the factorization of xn − 1 over GF(q).

Consider βi, where 0 ≤ i ≤ n− 1. Since βi is a root of xn − 1, we have mβi (x) | (xn − 1). Also, the

roots of mβi (x) are C(βi) =
{

βi, βiq, βiq2
, . . . , βiqt−1}

, where t is the smallest positive integer such that
iqt ≡ i (mod n).

cyclotomic coset of q (mod n) containing i

Suppose gcd(n, q) = 1, and let 0 ≤ i ≤ n− 1. The cyclotomic coset of q (mod n) containing i is

Ci = {i, iq mod n, iq2 mod n, . . . , iqt−1 mod n},

where t is the smallest positive integer such that iqt ≡ i (mod n). Also C = {Ci : 0 ≤ i ≤ n− 1}
is the set of cyclotomic cosets of q mod n.
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Theorem 6.4

Suppose gcd(n, q) = 1.

• The number of monic irreducible factors of xn − 1 over GF(q) is equal to the number of
(distinct) cyclotomic cosets of q mod n.

• The number of monic irreducible factors of degree d is equal to the number of (distinct)
cyclotomic cosets of q mod n of size d.

Theorem 6.5

Suppose gcd(n, q) = 1. Let m be the smallest positive integer such that qm (mod n), and let
β ∈ GF(qm) be an element of order n. Then the monic irreducible factor of xn − 1 over GF(q)
are

{
mβi (x) : 0 ≤ i ≤ n− 1

}
, where

mβi (x) = ∏
j∈Ci

(x− βj) .

If j ∈ Ci, then mβj(x) = mβi (x).

6.5 BCH Codes: Definition

BCH codes are cyclic codes that are constructed in such a way that a (useful) lower bound on their
distance is known.

BCH code

A BCH code C over GF(q) of block length n and designed distance δ is a cyclic code generated
by g(x) = lcm

{
mβi (x) : a ≤ i ≤ a + δ− 2

}
, for some integer a.

6.6 BCH Bound

Vanderdmonde matrix

A Vanderdmonde matrix over a field F is a matrix of the form

A(x1, x2, . . . , xt) =


1 1 · · · 1
x1 x2 · · · xt

x2
1 x2

2 · · · x2
t

...
...

...
xt−1

1 xt−1
2 · · · xt−1

t


t×t

,

where x1, x2, . . . , xt ∈ F.

Theorem 6.6

det
(

A(x1, . . . , xt)
)
6= 0 if and only if x1, . . . , xt are distinct.
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Corollary 6.7

A Vanderdmonde matrix A(x1, . . . , xt) is non-singular if and only if x1, x2, . . . , xt are distinct.

Theorem 6.8: BCH bound

Let C be an (n, k)-BCH code over GF(q) with designed distance δ. Then d(C) ≥ δ.

6.7 BCH Decoding

We will present a decoding algorithm for one specific BCH code, named C15. The decoding algorithm
for C15 captures the essential ideas of a decoding algorithm for general BCH codes.

Let q = 2, n = 15, m = 4. Let GF(24) = Z2[α]/(α4 + α + 1). Then α os a generator of GF(24)∗, and
β = α has order 15.

Let
g(x) = mβ(x) ·mβ3(x) = 1 + x + x6 + x7 + x8

The roots of g(x) include β, β2, β3, β4, so g(x) generates a (15, 7)-BCH code C15 over GF(2) with δ = 5.
In fact, d(C15) = 5, since g(x) is a codeword of weight 5. This BCH code is called C15 : (15, 7, 5)-binary
code. Note that C15 is a 2-error correcting code.

A PCM for C15 is

H =

[
β0 β1 β2 · · · β14

(β3)0 (β3)1 (β3)2 · · · (β3)14

]
8×15

Note that H is a 2× 15 matrix over GF(24). If we replace each element in H by its vector representation
over GF(2), then we get an 8× 15 matrix over GF(2).

The syndrome of r ∈ V15(Z2) is HrT =

[
r(β)

r(β3)

]
4
=

[
s1

s3

]
.

So we don’t need H to compute syndromes.

Decoding strategy If there is an error vector e of weight ≤ 2 that has the same syndrome (s2, s3) as
r, then we decode r to r− e. Otherwise, we reject r.

Algorithm 5: Decoding algorithm for C15

1 Received word is r ∈ V15(Z2).
2 Compute s1 = r(β) and s3 = r(β3).
3 if s1 = s3 = 0 then accept r and STOP.
4 if s3

1 = s3 then correct r in position i where s1 = βi, and STOP.
5 if s1 = 0 (and s3 6= 0) then reject r and STOP.

6 Form the error locator polynomial r(z) = z2 + s1z +
(

s3
s1
+ s2

1

)
, and find its roots in GF(24). If

there are two (distinct) roots βi and βj, then correct r in positions i and j and STOP.
7 Reject.

The algorithm is guaranteed to make the correct decision if w(e) ≤ 2.

More generally, suppose C is a binary (n, k)-BCH code with designed distance δ. Suppose the gen-
erator polynomial of C is g(x) = lcm{mβi (x) : i ∈ [δ − 1]} where β ∈ GF(2m) has order n. Then,

d(C) ≥ δ. Let t = b δ−1
2 c.
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Suppose c ∈ C is transmitted, w(e) ≤ t, and r is received.

Compute si = r(βi) for each 1 ≤ i ≤ δ− 1, and form the syndrome polynomial:

s(z) = s1 + s2z + s3z3 + · · ·+ sδ−1zδ−2

Fact From s(z), the error locator polynomial can be efficiently computed. The roots of σ(z) are β−j,
where j are the error positions.

Also, the algorithm generalizes to BCH codes over GF(q).



7
RS codes

7.1 Introduction

Reed-Solomon code

A Reed-Solomon (RS) code is a BCH code of length n over GF(q) where n | (q− 1).

Since q1 ≡ 1 (mod n), we have m = 1.

Suppose n | (q− 1), and let β ∈ GF(q) be an element of order n. Then mβi (x) = x− βi for all i.

A RS code C of length n over GF(q) with designed distance δ is a BCH code over GF(q) with genera-
tor polynomial

g(x) = (x− βa)(x− βa+1)(x− βa+2) · · · (x− βa+δ−2)

for some a.

Since deg(g) = δ− 1, we have w(g) ≤ δ, so d(c) ≤ δ. d(C) ≥ δ by BCH bound, hence d(C) = δ.

Since dim(C) = k = n − deg(g) = n − δ + 1, we have k = n − d + 1, so d = n − k + 1. Recall that
d ≤ n− k + 1 for any (n, k, d)-code. Thus, RS are optimal in the sense that, for any fixed n, k, q, they
achieve maximum distance among all (n, k, d)-codes over GF(q).

7.2 RS Codes Have Good (Cyclic) Burst-Error Correcting Capability

Let C be a RS code of length n over GF(2r) and designed distance δ. Consider c = (c1, c2, . . . , cn) ∈ C,
and let e = b d−1

2 c = b
n−k

2 c. Note that ci ∈ GF(2r).

By writing each ci as a binary vector of length r, we can view c as a binary vector of length nr.

Now, if c is transmitted and if a cyclic burst error of length ≤ 1 + (e− 1)r bits is introduced, then at
most e symbols of c are received incorrectly. Thus, the received word can be decoded correctly.

Theorem 7.1

Let C be an (n, k)-RS code over GF(2r). Then C′, the code obtained by replacing each symbol
in the codewords of C by the r-bit binary representations, is an (nr, kr)-binary code with cyclic
burst error correcting capability t = 1 + (e− 1)r where e = b n−k

2 c.
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Example:
Consider GF(28) = Z2[α]/(α8 + α4 + α3 + α2 + 1).

Then β = α has order n = 255 (so q = 256, n = 255). Let

g(x) =
24

∏
i=1

(x− βi)

Then g(x) is the generator polynomial for a (255, 231, 25)-RS code C with error correcting capability
e = 12. The related code C′ is a (2040, 1848)-binary code with cyclic burst error correcting capability
t = 89.

The code C, and others derived from it, have widely been used in practice, including in CDs, DVDs,
and QR codes.



8
Code-Based Cryptography

See Cameron’s notes

48

https://hextical.github.io/university-notes/year-2/semester-2/CO%20331/co331.pdf


9
Coding Theory 2

RS codes Optimal erasure codes (good for data storage). Efficient decoding algorithms + hardware
architectures.

LDPC codes Low Density Parity Check codes. Good for soft-decision coding. Used in digital TV,
optical communications, wireless communications, etc.

Concatenation codes BCH/RC + LDPC

Other codes Turbo codes, Raptor codes, Polar codes

List decoding Sudan-Guruswami algorithm. Lots of applications in theoretical computer science.

49



Index

A

alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B

BCH code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

block code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C

characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

codeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

coset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

cyclic burst error correcting capability . . . . . . 39

cyclic burst length. . . . . . . . . . . . . . . . . . . . . . . . . . 39

cyclic code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

cyclic space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

cyclotomic coset of q (mod n) containing i . 42

D

designed distance δ . . . . . . . . . . . . . . . . . . . . . . . . 43

dual code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

E

e-error correcting code . . . . . . . . . . . . . . . . . . . . . 11

e-error detecting code . . . . . . . . . . . . . . . . . . . . . . 10

equivalent codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

error vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

extension field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

F

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

finite field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

G

generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

generator matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

generator polynomial . . . . . . . . . . . . . . . . . . . . . . 36

H

Hamming code of order r over F = GF(q) . . 27

Hamming distance . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Hamming weight . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I

ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ideal generated by g . . . . . . . . . . . . . . . . . . . . . . . 36

infinite field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

information rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

irreducible over F . . . . . . . . . . . . . . . . . . . . . . . . . . 17

L

length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

linear (n, k)-code over F . . . . . . . . . . . . . . . . . . . . 22

M

minimal polynomial of α over GF(q) . . . . . . . 41

multiplicative group of GF(q) . . . . . . . . . . . . . . 19

50



INDEX 51

O

order of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

order of a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

orthogonal code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

orthogonal vectors . . . . . . . . . . . . . . . . . . . . . . . . . 25

P

parity-check matrix . . . . . . . . . . . . . . . . . . . . . . . . 26

parity-check polynomial . . . . . . . . . . . . . . . . . . . 37

perfect code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

principal ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

principal ideal ring. . . . . . . . . . . . . . . . . . . . . . . . . 36

R

reciprocal polynomial . . . . . . . . . . . . . . . . . . . . . . 38

Reed-Solomon code . . . . . . . . . . . . . . . . . . . . . . . . 46

ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

S

self-dual code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

self-orthogonal code . . . . . . . . . . . . . . . . . . . . . . . 32

set of conjugates of α w.r.t. GF(q) . . . . . . . . . . 42

set of cyclotomic cosets of q mod n . . . . . . . . . 42

standard form generator matrix . . . . . . . . . . . . 24

subfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

symbol error probability . . . . . . . . . . . . . . . . . . . . 7

syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

systematic code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

T

t-cyclic burst error correcting code . . . . . . . . . 39

V

Vanderdmonde matrix . . . . . . . . . . . . . . . . . . . . . 43

W

word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6


	Preface
	Introduction
	Fundamentals
	Basic Definitions and Concepts
	Decoding Strategy
	Error Correcting & Detecting Capabilities of a Code

	Introduction to Finite Fields
	Definitions
	Finite fields: Non-existence
	Existence of finite fields
	Properties of finite fields

	Linear codes
	Definition
	Properties of Linear Codes
	The Dual Code
	Parity-Check Matrix
	Distance of a Linear Code
	Hamming Codes
	Decoding Single-Error Correcting Codes
	Perfect Codes
	Syndrome Decoding

	Golay codes
	The (Binary) Golay Code
	The Extended Golay Code C24
	A Decoding Algorithm For C24
	Reliability of C24

	Cyclic codes
	The Polynomial Ring R=F[x]/(xn-1)
	Ideals of R=F[x]/(xn-1)
	Dimension of a Cyclic Code
	GM of a Cyclic Code
	The Dual Code of a Cyclic Code
	Computing Syndromes
	Burst Error Correcting
	Decoding Algorithm for Cyclic Burst Error Correcting Codes
	Interleaving

	BCH codes
	Subfields and Extension fields
	Minimal Polynomials
	Computing Minimal Polynomials
	Factoring xn-1 over GF(q)
	BCH Codes: Definition
	BCH Bound
	BCH Decoding

	RS codes
	Introduction
	RS Codes Have Good (Cyclic) Burst-Error Correcting Capability

	Code-Based Cryptography
	Coding Theory 2

