
}
Coding Theory

CO 331}
Alfred Menezes

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CO 331 during Winter 2021 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Note that the notes is not complete, but should contain the main results. For a complete version,
please refer to

• old notes which is not well-structured; or

• Cameron’s notes, which I have corrected a number of typos.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

1

https://notes.sibeliusp.com/pdf/1201/co331.pdf
https://hextical.github.io/university-notes/year-2/semester-2/CO%20331/co331.pdf
https://notes.sibeliusp.com/contact
https://notes.sibeliusp.com/

Contents

Preface 1

Introduction 4

1 Fundamentals 6
1.1 Basic Definitions and Concepts . 6

1.2 Decoding Strategy . 8

1.3 Error Correcting & Detecting Capabilities of a Code . 10

2 Introduction to Finite Fields 13
2.1 Definitions . 13

2.2 Finite fields: Non-existence . 15

2.3 Existence of finite fields . 16

2.4 Properties of finite fields . 19

3 Linear codes 22
3.1 Definition . 22

3.2 Properties of Linear Codes . 22

3.3 The Dual Code . 25

3.4 Parity-Check Matrix . 26

3.5 Distance of a Linear Code . 27

3.6 Hamming Codes . 27

3.7 Decoding Single-Error Correcting Codes . 28

3.8 Perfect Codes . 28

3.9 Syndrome Decoding . 29

4 Golay codes 32
4.1 The (Binary) Golay Code . 32

4.2 The Extended Golay Code C24 . 32

4.3 A Decoding Algorithm For C24 . 33

4.4 Reliability of C24 . 34

5 Cyclic codes 35
5.1 The Polynomial Ring R = F[x]/(xn − 1) . 35

5.2 Ideals of R = F[x]/(xn − 1) . 36

5.3 Dimension of a Cyclic Code . 37

5.4 GM of a Cyclic Code . 37

5.5 The Dual Code of a Cyclic Code . 37

5.6 Computing Syndromes . 38

5.7 Burst Error Correcting . 39

2

5.8 Decoding Algorithm for Cyclic Burst Error Correcting Codes 39

5.9 Interleaving . 40

6 BCH codes 41
6.1 Subfields and Extension fields . 41

6.2 Minimal Polynomials . 41

6.3 Computing Minimal Polynomials . 42

6.4 Factoring xn − 1 over GF(q) . 42

6.5 BCH Codes: Definition . 43

6.6 BCH Bound . 43

6.7 BCH Decoding . 44

7 RS codes 46
7.1 Introduction . 46

7.2 RS Codes Have Good (Cyclic) Burst-Error Correcting Capability 46

8 Code-Based Cryptography 48

9 Coding Theory 2 49

3

Introduction

Coding theory is about clever ways of adding redundancy to messages to allow (efficient) error detec-
tion and error correction.

Here is our communication model:

Source
Source
encoder

e.g., voice, text...
(digital)

Chanel
encoder

(encoding alg)

Modulator

Demodulator

channel noise

Channel
decoder

(decoding alg)

Receiver
Source
decoder

(digital)

Data compression CO 331

Encryption/
Authentication

CO 487

Decryption/
Verification

Example: Parity Code

Encoding algorithm Add a 0 bit to the (binary) msg m if the number of 1’s in m is even; else add
a 1 bit.

Decoding algorithm If the number of 1’s in a received msg r is even, then accept r; else declare
that an error has occurred.

Example: Replication Code

Source msgs Codeword
err/codeword

(always) detected
err/codeword

(always) corrected ∗ Information rate

0 0
0 0 1

1 1
0 00

1 0 1
21 11

0 000
2 1 1

31 111
0 0000

3 1 1
41 1111

0 00000
4 2 1

51 11111

encoding algorithm−−−−−−−−−−→
∗: using “nearest neighbour decoding”

4

5

Goal of Coding Theory

Design codes so that:

1. High information rate

2. High error-correcting capability

3. Efficient encoding & decoding algorithms

Course Overview

This course deals with algebraic methods for designing good (block) codes. The focus is on error cor-
rection (not on error detection). These codes are used in wireless communications, space probes,
CD/DVD players, storage, QR codes, etc.

Some modern stuff are not covered: Turbo codes, LDPC codes, Raptor codes, . . . Their math theories
are not so elegant as algebraic codes.

The big picture

Coding theory in its broadest sense deals with techniques for the efficient, secure and reliable trans-
mission of data over communication channels that may be subject to non-malicious errors (noise) and
adversarial intrusion. The latter includes passive intrusion (eavesdropping) and active intrusion (injec-
tion/deletion/modification).

1
Fundamentals

1.1 Basic Definitions and Concepts

alphabet

An alphabet A is a finite set of q ≥ 2 symbols.

word

A word is a finite sequence of symbols from A (also: vector, tuple).

length

The length of a word is the number of symbols it has.

code

A code C over A is a set of words (of size ≥ 2).

codeword

A codeword is a word in the code C.

block code

A block code is a code in which all codewords have the same length.

A block code of length n containing M codewords over A is a subset C ⊆ An with |C| = M. C
is called an [n, M]-code over A.

6

CHAPTER 1. FUNDAMENTALS 7

Example:
A = {0, 1}. C = {00000, 11100, 00111, 10101} is a [5, 4]-code over {0, 1}.

Messages Codewords
00 → 00000
10 → 11100
01 → 00111
11 →

Encoding of messages (1-1 map)

10101

Assumptions about the communications channel

(1) The channel only transmits symbols from A (“hard decision decoding”).

(2) No symbols are deleted, added, interchanged or transposed during transmission.

(3) The channel is a q-symmetric channel:

Let A = {a1, . . . , aq}. Let Xi = the ith symbol sent. Let Yi = the ith symbol received. Then for all
i ≥ 1, and all i ≤ j, k ≤ q,

Pr(Yi = aj|Xi = ak) =

1− p, if j = k
p

q−1 , if j 6= k.

p is called the symbol error probability of the channel (0 ≤ p ≤ 1).

Binary Symmetric Channel (BSC)

A 2-symmetric channel is called a binary symmetric channel.

0 0

1 1

Sent Received
1− p

1− p

p
p

For a BSC:

1. If p = 0, the channel is perfect.

2. If p = 1/2, the channel is useless.

3. If 1/2 < p ≤ 1, then flipping all received bits converts the channel to a BSC with 0 ≤ p < 1/2.

4. Henceforth, we will assume that 0 < p < 1/2 for a BSC.

Exercise:
For a q-symmetric channel, show that one can take 0 < p < q−1

q WLOG.

One can first consider the case q = 3.

information rate

The information rate (or rate) R of an [n, M]-code C over A is R =
logq M

n .

If C encodes messages that are k-tuples over A (so M = |Ak| = qk), then R = k
n .

CHAPTER 1. FUNDAMENTALS 8

Note:
0 ≤ R ≤ 1. Ideally, R should be close to 1.

Example:
The rate of the binary code C = {00000, 11100, 00111, 10101} is R = 2

5 .

Hamming distance

The Hamming distance (or distance) between two n-tuples over A is the number of coordinate
positions in which they differ.

The Hamming distance (or distance) of an [n, M]-code C is d(C) = min{d(x, y) : x, y ∈ C, x 6= y}.

Example:
The distance of C = {00000, 11100, 00111, 10101} is d(C) = 2.

Theorem 1.1: properties of Hamming distance

For all x, y, z ∈ An,

1. d(x, y) ≥ 0, with d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. d(x, y) + d(y, z) ≥ d(x, y) (4 inequality).

1.2 Decoding Strategy

Example:
Let C = {00000, 11100, 00111, 10101}. C is a [5, 4]-code over {0, 1} (a binary code).

Error Detection If C is used for error detection only, the strategy is the following: A received word
r ∈ An is accepted if and only if r ∈ C.

Error Correction Let C be an [n, M]-code over A with distance d. Suppose c ∈ C is transmitted, and
r ∈ An is received. The (channel) decoder must decide one of the following:

(i) No errors have occurred; accept r.

(ii) Errors have occurred; correct1 (decode) r to a codeword c ∈ C?

(iii) Errors have occurred; no correction is possible.

Nearest Neighbour Decoding

(i) Incomplete Maximum Likelihood Decoding (IMLD):

If there is a unique codeword c ∈ C such that d(r, c) is minimum, then correct r to c. If no such c
exists, then report that errors have occurred, but correction is not possible (ask for retransmission,
or disregard information).

(ii) Complete Maximum Likelihood Decoding (CMLD):

1Error correction does not guarantee that the channel decoder always makes the correct decision. For example, 00000 transmit−−−−→
11100 which is accepted.

CHAPTER 1. FUNDAMENTALS 9

Same as IMLD, except that if there are two or more c ∈ C for which d(r, c) is minimum, correct
r to an arbitrary one of these.

Is IMLD a reasonable strategy?

Theorem 1.2

IMLD chooses the codeword c for which the conditional probability

P(r|c) = P(r is received|c is sent)

is largest.

Proof:
Suppose c1, c2 ∈ C with d(c1, r) = d1 and d(c2, r) = d2. Suppose d1 > d2.

Now

P(r|c1) = (1− p)n−d1

(
p

q− 1

)d1

and

P(r|c2) = (1− p)n−d2

(
p

q− 1

)d2

So,
P(r|c1)

P(r|c2)
= (1− p)d2−d1

(
p

q− 1

)d1−d2

=

(
p

(1− p)(q− 1)

)d1−d2

Recall
p <

q− 1
q

=⇒ pq < q− 1 =⇒ 0 < q− pq− 1

=⇒ p < p + q− pq− 1 =⇒ p < (1− p)(q− 1) =⇒ p
(1− p)(q− 1)

< 1

Hence
P(r|c1)

P(r|c2)
< 1

and so
P(r|c1) < P(r|c2)

and the result follows.

Minimum Error Probability Decoding (MED)

An ideal strategy would be to correct r to a codeword c ∈ C for which P(c|r) = P(r is received|c is sent)
is largest. This is MED.

Example: (IMLD/CMLD) is not the same as MED

Consider C = { 000

c1

, 111

c2

}. Suppose P(c1) = 0.1 and P(c2) = 0.9. Suppose p = 1
4 (for a BSC).

Suppose r = 100 is the received word. Then

P(c1|r) =
P(r|c1) · P(c1)

P(r)
=

p(1− p)2 × 0.1
P(r)

=
9

640
· 1

P(r)

P(c2|r) =
P(r|c2) · P(c2)

P(r)
=

(1− p)p2 × 0.9
P(r)

=
27
640
· 1

P(r)

So, MED decodes r to c2. But IMLD decodes r to c1.

CHAPTER 1. FUNDAMENTALS 10

IMLD vs. MED

• IMLD maximizes P(r|c). MED maximizes P(c|r).

• (i) MED has the drawback that the decoding algorithm depends on the probability distribution
of source messages.

(ii) If all source messages are equally likely, then CMLD and MED are equivalent:

P(r|ci) = P(ci|r) · P(ci)/P(r) = P(ci|r) ·
[

1
M · P(r)

]
︸ ︷︷ ︸

does not
depend on ci

(iii) In practice IMLD (or CMLD) is used.

• In this course, we will use IMLD/CMLD.

1.3 Error Correcting & Detecting Capabilities of a Code

Detection Only

Strategy: If r is received, then accept r if and only if r ∈ C.

e-error detecting code

A code C is an e-error detecting code if the decoder always makes the correct decision if e or
fewer errors per codeword are introduced by the channel.

Example:
Consider C = {000, 111}.

C is a 2-error detecting code.

C is not a 3-error detecting code.

Theorem 1.3

A code C of distance d is a (d− 1)-error detecting code (but is not a d-error detecting code).

Proof:
Suppose c ∈ C is sent.

If no errors occur, then c is received (and is accepted).

Suppose that # of errors is ≥ 1 and ≤ d− 1; let r be the received word. Then 1 ≤ d(r, c) ≤ d− 1, so
r /∈ C. Thus r is rejected. This proves that it is (d− 1)-error detecting code.

Since d(C) = d, there exist c1, c2 ∈ C with d(c1, c2) = d. If c1 is sent and c2 is received, then c2 is
accepted; the d errors go undetected.

Correction

Strategy: IMLD/CMLD

CHAPTER 1. FUNDAMENTALS 11

e-error correcting code

A code C is an e-error correcting code if the decoder always makes the correct decision if e or
fewer errors per codeword are introduced by the channel.

Example:
Consider C = {000, 111}.

C is a 1-error correcting code.

C is not a 2-error correcting code.

Theorem 1.4

A code C of distance d is an e-error correcting code, where e =
⌊ d−1

2
⌋
.

Proof:
Suppose that c ∈ C is sent, at most d−1

2 errors are introduced, and r is received. Then d(r, c) ≤ d−1
2 .

On the other hand, if c1 is any other codeword, then

d(r, c1) ≥ d(c, c1)− d(r, c) 4 ineq

≥ d− d− 1
2

since d(C) = d

=
d + 1

2

>
d− 1

2
≥ d(r, c)

Hence c is the unique codeword at minimum distance from r, so the decoder correctly concludes
that c was sent.

Exercise:
Suppose d(C) = d, and let e =

⌊ d−1
2
⌋
. Show that C is not an (e + 1)-error correcting code.

A natural question to ask is: given A, n, M, d, does there exist an [n, M]-code C over A of distance ≥ d.
This can be phrased as an equivalent sphere packing problem:

Sphere packing

Can we place M spheres of radius e =
⌊ d−1

2
⌋

in An so that no two spheres overlap?

C = {c1, . . . , cM}, e =
⌊ d−1

2
⌋
, Sc = sphere of radius e centered at c = all words within distance e of c.

We proved: if c1, c2 ∈ C, c1 6= c2, then Sc1 ∩ Sc2 = ∅.

e

e

e
c1

cM

c2

An

CHAPTER 1. FUNDAMENTALS 12

Let n = 128, q = 2, M = 264. Does there exists a binary [n, M]-code with d ≥ 22? If so, can encoding
and decoding be done efficiently?

We’ll view {0, 1}128 as a vector space of dimension 128 over Z2. We’ll choose C to be a 64-dimensional
subspace of this vector space. We will construct such a code at the end of the course. The main tools
used will be linear algebra (over finite fields) and abstract algebra (rings and fields).

2
Introduction to Finite Fields

2.1 Definitions

ring

A (commutative) ring (R,+, ·) consists of a set R and two operations + : R × R → R and
· : R× R→ R, such that

1. a + (b + c) = (a + b) + c ∀a, b, c ∈ R.

2. a + b = b + a, ∀a, b ∈ R.

3. ∃0 ∈ R such that a + 0 = a, ∀a ∈ R.

4. ∀a ∈ R, ∃ − a ∈ R such that a + (−a) = 0.

5. a · (b · c) = (a · b) · c, ∀a, b, c ∈ R.

6. a · b = b · a, ∀a, b ∈ R.

7. ∃1 ∈ R, 1 6= 0, such that a · 1 = a, ∀a ∈ R.

8. a · (b + c) = a · b + b · c, ∀a, b, c ∈ R.

Notation We will denote (R,+, ·) by R.

Example:
Q, R, C, Z are commutative rings.

field

A field (F,+, ·) is a commutative ring with the additional property:

9. ∀a ∈ F, a 6= 0, ∃a−1 ∈ F such that a · a−1 = 1.

Example:
Q, R, C are fields. Z is not a field.

13

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 14

infinite/finite field

A field (F,+, ·) is a finite field if F is a finite set; otherwise it is an infinite field. If F is a finite
field , its order is |F|.

Example:
Q, R, C are infinite fields.

For which integers n ≥ 2 does there exist a finite field of order n? How does one construct such a field,
i.e., what are the field elements, and how are the field operations performed?

The Integers Modulo n

Let n ≥ 2. Recall that Zn consists of the set of equivalence classes of integers modulo n,
Zn = {[0], [1], [2], . . . , [n− 1]}, with addition and multiplication: [a] + [b] = [a + b], [a] · [b] = [a · b].

More simply, we write Zn = {0, 1, 2, . . . , n− 1}, and perform addition and multiplication modulo n.

Example:
Z9 = {0, 1, 2, . . . , 8}. In Z9, 3 + 7 = 1 and 3 · 7 = 3.

More precisely, 3 + 7 ≡ 1 (mod 9) and 3 · 7 ≡ 3 (mod 9).

Zn is a commutative ring (i.e., axioms 1-8 in the definition are satisfied).

When is Zn is a field?

Theorem 2.1

Zn is a field if and only if n is prime.

Proof:
⇐ Suppose n is prime. Let a ∈ Zn, a 6= 0 (so 1 ≤ a ≤ n− 1). Since n is prime, gcd(a, n) = 1.

Hence ∃s, t ∈ Z such that as + nt = 1. Reducing both sides modulo n gives as ≡ 1 (mod n).
Hence a−1 = s. Thus Zn is a field.

⇒ Suppose n is composite, say n = ab where 2 ≤ a, b ≤ n− 1.

Now, if a−1 exists, say ac ≡ 1 (mod n), then abc ≡ b (mod n), so nc ≡ b (mod n). Thus
b ≡ 0 (mod n), so n | b which is absurd since 2 ≤ b ≤ n− 1. Thus Zn is not a field.

We have established the existence of finite fields of order n, for each prime n. What about finite fields
of order n, where n is composite? In particular, is there a field of order 4? Order 6?

characteristic

Let F be a field. The characteristic of F, denoted char(F), is the smallest positive integer m such
that 1 + · · ·+ 1︸ ︷︷ ︸

m

= 0. If no such m exists, then char(F) = 0.

Example:
Q, R, C have characteristic 0. Zp (p prime) has characteristic p.

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 15

Theorem 2.2

If char(F) = 0, then F is an infinite field.

Proof:
The elements 1, 1 + 1, 1 + 1 + 1, . . . are distinct, because if 1 + · · ·+ 1︸ ︷︷ ︸

a

= 1 + · · ·+ 1︸ ︷︷ ︸
b

where a < b,

then (1 + · · ·+ 1︸ ︷︷ ︸
b

)− (1 + · · ·+ 1︸ ︷︷ ︸
a

) = 1 + · · ·+ 1b−a = 0, contradicting char(F) = 0.

Theorem 2.3

Let F be a field with char(F) = m 6= 0. Then m is prime.

Proof:
Suppose m is composite, say m = ab where 2 ≤ a, b ≤ m− 1. Let s = 1 + · · ·+ 1︸ ︷︷ ︸

a

and t = 1 + · · ·+ 1︸ ︷︷ ︸
b

;

note that s, t 6= 0. Then s · t = (1 + · · ·+ 1︸ ︷︷ ︸
a

) · (1 + · · ·+ 1︸ ︷︷ ︸
b

) = 1 + · · ·+ 1︸ ︷︷ ︸
ab=m

= 0. Thus

s · t · t−1 = s · 1 = s = 0,

a contradiction. We then conclude that m is prime.

Let F be a finite field of characteristic p. Consider the subset of elements of F:

E = {0, 1, 1 + 1, 1 + 1, . . . , 1 + · · ·+ 1︸ ︷︷ ︸
p−1

}.

The elements of E are distinct. One can verify that E is a field, using the same operations as F. E is a
subfield of F. If we identify the elements of E with the elements of Zp in the natural way, then E is
essentially the same field as Zp. We have proven:

Theorem 2.4

Let F be a finite field of char p. Then Zp is a subfield of F.

Finite fields as vector spaces

Let F be a finite field of characteristic p. Identify:

vectors ↔ elements of F
scalars ↔ elements of Zp

vector addition ↔ addition of F
scalar multiplication ↔ multiplication of F

Then F is a vector space over Zp (i.e., the axioms of what it means to be a vector space are satisfied).

2.2 Finite fields: Non-existence

Theorem 2.5

Let F be a finite field of characteristic p. Then the order of F is pn, for some positive integer n.

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 16

Proof:
Let the dimension of F as a vector space over Zp be n. Let α1, . . . , αn be a basis for F over Zp. Then
each element β ∈ F can be written uniquely in the form β = c1α1 + · · ·+ cnαn, where ci ∈ Zp. Thus

F =

{
n
∑

i=1
ciαi : ci ∈ Zp

}
, so |F| = pn.

For example, there do not exist finite fields of order 6, 10, 12, 14, 15, . . .

Do finite fields of orders 4, 8, 9, 16, 25, 27, . . . exist?

2.3 Existence of finite fields

Polynomial rings Let F be a field. F[x] denotes the set of all polynomials in x with coefficients
from F. Addition and multiplication of polynomials in F[x] is done in the usual way, with coefficient
arithmetic done in F.

Example:
In Z5[x],

(3x4 + 2x3 + x + 4) + (x5 + 2x4 + x2 + 2x + 3) = x5 + 2x3 + x2 + 3x + 2

(3x2 + 4x + 1) · (2x2 + x + 2) = (x4 + x3 + 2x2 + 4x + 2).

Note that F[x] is an infinite commutative ring.

Construction of finite fields: main idea

Z Zn Zn

infinite
commutative

ring

finite
commutative

ring

fix n ≥ 2

a ≡ b (modn)

n prime

finite field
of order n

Zp[x] Zp[x]/(f) Zp[x]/(f)

infinite
commutative

ring

finite
commutative

ring

fix f ∈ Zp[x],
deg(f) = n ≥ 1

g ≡ h (mod f)

f irreducible

finite field
of order pn

Polynomial division

Let f , g ∈ F[x], with g 6= 0. Then there exist unique polynomials r, s ∈ F[x] such that f = s

quotient

g + r

remainder

,
deg(r) < deg(g). By convention, deg(0) = −∞.

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 17

Example:
Consider f = 3x4 + 2x2 + x + 1, g = 2x2 + 3x + 4 ∈ Z5[x].

4x2 +3

2x2 + 3x + 4
)

3x4 +2x3 +2x2 +x +1

3x4 +2x3 +x2

x2 +x +1

x2 +4x +2

2x +4

So, f = (4x2 + 3)g + (2x + 4).

The ring F[x]/(f)

g ≡ h (mod f)

Let f ∈ F[x] with deg(f) ≥ 1. Let g, h ∈ F[x]. Then g is congruent to h modulo f , written
g ≡ h (mod f), if g− h = ` f for some ` ∈ F[x] (equivalently, f | (g− h), or g, h leave the same
remainder upon division by f).

The relation ≡ (mod f) is an equivalence relation, and partitions F[x] into equivalence classes:

[g] = {h ∈ F[x] : g ≡ g (mod f)}.

Addition & multiplication: [g] + [h] = [g + h], [g] · [h] = [g · h].

F[x]/(f)

The set of equivalence classes is denoted F[x]/(f).

Theorem 2.6

F[x]/(f) is a commutative ring.

Suppose now that deg(f) = n. Let g ∈ F[x]. Then we can write g = s f + r, where s, r ∈ F[x], and
deg(r) < n. Thus g ≡ r (mod f), so [g] = [r].

If r1, r2 ∈ F[x], r1 6= r2, deg(r1), deg(r2) < n, then f - (r1 − r2), so r1 6≡ r2 (mod f). Thus [r1] 6= [r2].

Thus the polynomials in F[x] of degree < n are a complete set of representatives of the equivalence
classes of F[x]/(f).

Now, let F = Zp. Then Zp[x]/(f) = {[r] : r ∈ Zp[x], deg(r) < n}. Thus |Zp[x]/(f)| = pn, so
Zp[x]/(f) is a commutative ring of order pn.

When is F[x]/(f) a field?

irreducible over F

Let f ∈ F[x], with deg(f) ≥ 1. Then irreducible over F if f cannot be written as f = g · h,
g, h ∈ F[x], deg(g) ≥ 1, deg(h) ≥ 1.

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 18

Example:
x2 + 1 is irreducible over R, since it has no roots in R.

x2 + 1 is reducible over C, since x2 + 1 = (x + i)(x− i).

x2 + 1 is reducible over Z2, since x2 + 1 = (x + 1)(x + 1).

x2 + 1 is irreducible over Z3, since it has no roots in Z3.

Theorem 2.7

F[x]/(f) is a field if and only if f is irreducible over F.

Proof:
Analogous to the proof of the theorem: Zn is a field if and only if n is prime.

Now let’s construct finite fields.

Theorem 2.8

Let f ∈ Zp[x] be an irreducible polynomial of degree n ≥ 1. Then Zp[x]/(f) is a finite field of
order pn and characteristic p. The elements are the polynomials in Zp[x] of degree < n.

Example: finite field of order 4 = 22

Here p = 2 and n = 2. Let f (x) = x2 + x + 1 ∈ Z2[x]. Then f (0) = 1, f (1) = 1, so f has no roots
in Z2. Thus f is irreducible over Z2.

So, F = Z2[x]/(x2 + x + 1) is a finite field of order 22 = 4. The elements are {0, 1, x, x + 1} where
[] is omitted.

Example of addition: x + (x + 1) = 1

Example of multiplication: x · (x + 1) = x2 + x = 1

Example: finite field of order 23 = 8

Here, p = 2 and n = 3. We need an irreducible polynomial. We need an irreducible polynomial of
degree 3 over Z2.

Candidates: x3, x3 + 1, x3 + x, x3 + x + 1, x3 + x2, x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1

• Try f (x) = x3 + x + 1.

Since f (0) = f (1) = 1, f has no roots in Z2, and thus no linear factors in Z2[x]. Thus f is
irreducible over Z2, and F1 = Z2[x]/(x3 + x + 1) is a finite field of order 23 = 8.

The elements of F1 are {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1}.

Example of addition: (x2 + x) + (x2 + x + 1) = 1.

Example of multiplication: (x2 + x) · (x2 + x + 1) = x4 + x = x2.

Example of inversion: x−1 = x2 + 1, since x · (x2 + 1) = 1.

• x3 + x2 + 1 is irreducible over Z2, so F2 = Z2[x]/(x3 + x2 + 1) is a finite field of order 8. The
elements of F2 are {0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1}.

Note that F1 and F2 are not the same field. For example, in F1, x · x2 = x + 1, whereas in F2,
x · x2 = x2 + 1. However, F1 and F2 are isomorphic (essentially the same). Formally, there is a
bijection φ : F1 → F2 such that φ(a + b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b) ∀a, b ∈ F1.

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 19

Existence and uniqueness of finite fields

Let p be prime and n ≥ 1. Then there exists an irreducible polynomial of degree n over Zp.

Theorem 2.9

There exists a finite field of order q if and only if q = pn for some prime p and n ≥ 1.

Actually, any two finite fields of the same order are isomorphic.

We will denote the finite field of order q by GF(q) “the Galois Field of order q”.

In the previous example, we saw two ways of representing the finite field GF(23).

2.4 Properties of finite fields

Theorem 2.10: Frosh’s dream

Let F be a finite field of characteristic p, and let α, β ∈ F. Then (α + β)pm
= αpm

+ βpm ∀m ≥ 1.

Proof (m = 1):
By the Binomial Theorem,

(α + β)p =

(
p
0

)
αp +

p−1

∑
i=1

(
p
i

)
αiβp−i +

(
p
p

)
βp.

Now for 1 ≤ i ≤ p− 1,(
p
i

)
=

p(p− 1)(p− 2) · · · (p− i + 1)
1 · 2 · 3 · · · i ≡ 0 (mod p),

since p divides the numerator but not the denominator, and since (p
i) is an integer. Thus(

p
i

)
αiβp−i = αiβp−i + · · ·+ αiβp−i︸ ︷︷ ︸

(p
i)

= (1 + · · ·+ 1)αiβp−i = 0.

Hence (α + β)p = αp + βp. The statement for m ≥ 1 can be proven by induction.

The multiplicative group GF(q)∗

multiplicative group of GF(q)

The multiplicative group of GF(q) is GF(q)∗ = GF(q) \ {0}.

Theorem 2.11

Let α ∈ GF(q)∗. Then αq−1 = 1.

Note that if GF(q) = Zp, this is Fermat’s Little Theorem.

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 20

Proof:
Let the (distinct) elements of GF(q)∗ be α1, α2, . . . , αq−1. Consider the (nonzero) elements αα1, αα2, . . . , ααq−1.
These elements are distinct because if ααi = ααj for some i 6= j, then α−1(ααi) = α−1(ααj), so
αi = αj, a contradiction. Hence {αα1, αα2, . . . , ααq−1} = {α1, α2, . . . , αq−1}, so

(αα1)(αα2) · · · (ααq−1) = α1α2 · · · αq−1.

Cancelling gives αq−1 = 1.

Corollary 2.12

Let α ∈ GF(q). Then αq = α.

Order of finite elements

order of α

Let α ∈ GF(q)∗. The order of α, denoted ord(α), is the smallest positive integer t such that
αt = 1.

Theorem 2.13

Let α ∈ GF(q)∗, ord(α) = t. Then αs = 1 if and only if t | s.

Proof:
Let s ∈ Z. Then long division of s by t yields

s = `t + r, where 0 ≤ r < t.

Now, αs = α`t+r = (αt)` · αr = αr. Hence αs = 1 ⇐⇒ αr = 1 ⇐⇒ r = 0 ⇐⇒ t | s.

Corollary 2.14

Let α ∈ GF(q)∗. Then ord(α) | (q− 1).

Example:
There is only one element in GF(q) of order 1, namely the element 1.

Example:
Consider GF(23) = Z2[x]/(x3 + x + 1). The order of α = x2 + 1 is 7.

Example:
Consider GF(24) = Z2[x]/(x4 + x + 1).

f (x) = x4 + x + 1 has no roots in Z2, thus no linear factors. Also, f (x) has no irreducible quadratic
factors, since (x2 + x + 1) - f (x). Note here x2, x2 + 1, x2 + x are reducible quadratic polynomials.
Thus f is irreducible over Z2.

Find ord(x) in GF(24).

Solution: We have x1 = x, x2 = x2, x3 = x3, x4 = x + 1, x5 = x2 + x 6= 1. Thus ord(x) 6= 1, 3, 5.
Since ord(x) | 15, we must have ord(x) = 15.

Let α ∈ GF(q)∗ with ord(α) = t. Then the elements α0, α1, α2, . . . , αt−1 are distinct. In particular, if

CHAPTER 2. INTRODUCTION TO FINITE FIELDS 21

ord(α) = q− 1, then GF(q)∗ = {α0, α1, α2, . . . , αq−2}.

generator

A generator of GF(q)∗ is an element of order q− 1.

Example:
α = x is a generator of GF(24) = Z2[x]/(x4 + x + 1) since ord(x) = 15. Let’s verify the above fact:

x0 = 1, x1 = x, x2 = x2, x3 = x3,
x4 = x + 1, x5 + x2 + x, x6 = x3 + x2, x7 = x3 + x + 1,
x8 = x2 + 1, x9 = x3 + x, x10 = x2 + x + 1, x11 = x3 + x2 + x,
x12 = x3 + x2 + x + 1, x13 = x3 + x2 + x + 1, x14 = x3 + 1, x15 = 1.

Theorem 2.15

Every finite field GF(q) has a generator.

3
Linear codes

Codes

Block codes

Linear codes

Cyclic codes

BCH codes

RS codes

3.1 Definition

Let F = GF(q). Let Vn(F) = F× · · · × F︸ ︷︷ ︸
n

. Vn(F) is an n-dimensional space over F. |Vn(F)| = qn.

linear (n, k)-code over F

A linear (n, k)-code over F is a k-dimensional subspace of Vn(F).

Recall a subspace S of a vector space V over F is non-empty subset S ⊆ V such that:

(i) a, b ∈ S =⇒ a + b ∈ S, (ii) a ∈ S, λ ∈ F =⇒ λa ∈ S.

If S is a subspace of V, then S is itself a vector space over F; also 0 ∈ S. A basis of S is a linearly
independent, spanning subset of S. All bases of S have the same cardinality, called the dimension of S.

3.2 Properties of Linear Codes

Let C be an (n, k)-code over F, and let v1, v2, . . . , vk be an ordered basis for C.

22

CHAPTER 3. LINEAR CODES 23

1. Number of codewords

The elements of C are precisely

c1v1 + c2v2 + · · ·+ ckvk, ci ∈ F.

Thus, |C| = M = qk.

2. Rate

The rate of C is R =
logq M

n =
logq qk

n = k
n .

3. Weight

Hamming weight

The Hamming weight w(v) of a vector v ∈ Vn(F) is the number of nonzero coordinates in v.
The Hamming weight of a linear code C is w(C) = min{w(c) : c ∈ C, c 6= 0}.

Theorem 3.1

If C is a linear code, then w(c) = d(C).

Proof:
We have

d(C) = min{d(x, y) : x, y ∈ C, x 6= y}
= min{w(x− y) : x, y ∈ C, x 6= y} since d(x, y) = w(x− y)

= min{w(c) : c ∈ C, c 6= 0} since C is linear , x− y ∈ C

= w(C).

4. Encoding

Since there are qk codewords, there are also qk source messages. We shall assume that source messages
are the elements of Fk. Then a convenient and natural bijection (i.e., encoding rule) between Fk and C
is defined by:

m = (m1, m2, . . . , mk) 7→ c = m1v1 + m2v2 + · · ·+ mkvk.

Note that different ordered bases for C yield different encoding rules.

5. Generator matrix

A convenient way to represent C.

generator matrix

A generator matrix G for an (n, k)-code C is a k× n matrix whose rows form a basis for C:

G =


v1

v2
...

vk


k×n.

CHAPTER 3. LINEAR CODES 24

Note that the encoding rule is c = mG.

Example: linear code
Consider the (5, 3)-binary code:

C = 〈10011
c1

, 01001
c2

, 00110
c3
〉

and c1, c2, c3 are linearly independent over GF(2).

A generator matrix for C is G =

 1 0 1 1 1
0 1 0 0 1
0 0 1 1 0


3×5

The encoding rule (with respect to the ordered basis {c1, c2, c3}) is c = mG.

000 → 00000 100 → 10011
001 → 00110 101 → 10101
010 → 01001 110 → 11010
011 → 01111 111 → 11100

Other properties: M = |C| = 23 = 8, R = 3/5, d(C) = w(C) = 2.

Standard form GM

standard form generator matrix

Let C be an (n, k)-code over F. A GM G for C of the form G =
[
Ik|A

]
k×n is said to be in standard

form.

systematic code

If C has a GM in standard form, then C is a systematic code.

Example: systematic/non-systematic code
C = 〈100011, 001001, 000110〉 is a non-systematic (6, 3)-binary code.

But C′ = 〈10011, 001001, 010010〉 is systematic. A GM for C′ is

G =

 1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 0 1


equivalent codes

Two codes C, C′ over F are equivalent if C′ can be obtained from C by choosing a permutation
of the coordinate positions {1, 2, . . . , n}, and then consistently rearranging every codeword of C
according to this permutation.

Below are some facts of equivalent codes:

1. If C is linear, and C′ is equivalent to C, then C′ is linear.

2. Equivalent codes have the same length, dimension, distance.

3. Every linear code is equivalent to a systematic code.

CHAPTER 3. LINEAR CODES 25

3.3 The Dual Code

inner product

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Vn(F). The inner product of x and y is

x · y =
n

∑
i=1

xiyi ∈ F

For all x, y, z ∈ Vn(F) and λ ∈ F:

1. x · y = y · x.

2. x · (y + z) = x · y + x · z.

3. (λx) · y = λ(x · y)

4. x · x does not imply that x = 0.

Example:
Consider x = 111100 ∈ V6(Z2). Then x · x = 0, but x 6= 0. More generally, if x ∈ Vn(Z2), then
x · x = 0 if and only if w(x) is even.

orthogonal vectors

Two vectors x, y are orthogonal if x · y = 0.

dual code

Let C be an (n, k)-code over F. The dual code or orthogonal code of C is

C⊥ = {x ∈ Vn(F) : x · y = 0, ∀y ∈ C}.

Theorem 3.2

If C is an (n, k)-code over F, then C⊥ is an (n, n− k)-code over F.

Proof:
Let G be a GM for C, and let the rows of G be v1, v2, . . . , vk.

Claim Let x ∈ Vn(F). Then x ∈ C⊥ if and only if v1 · x = v2 · x = · · · = vk · x = 0.

Let’s prove the claim.

(⇒) is clear since v1, v2, . . . , vk ∈ C.

(⇐) Suppose v ∈ C. Then we can write v = λ1v1 + · · ·+ λkvk, where λi ∈ F. Then

v · · · x = (λ1v1 + · · ·+ λkvk) · x = λ1(v1 · x) + · · ·+ λk(vk · x) = 0.

Thus, C⊥ = {x ∈ Vn(F) : GxT = 0} = null space of G. Since G has rank k, C⊥ is a subspace of
Vn(F) of dimension n− k.

CHAPTER 3. LINEAR CODES 26

3.4 Parity-Check Matrix

Let G be a GM for a linear code C. Then C⊥ = null space of G.

Theorem 3.3

If C is a linear code, then (C⊥)⊥ = C.

Proof:
Let C be an (n, k)-code. Then C⊥ is an (n, n− k)-code.

Furthermore, (C⊥)⊥ is an (n, k)-code, and C ⊆ (C⊥)⊥.

Since dim(C) = dim
(
(C⊥)⊥

)
, it follows that C = (C⊥)⊥.

parity-check matrix

If C is linear, then a generator matrix H for C⊥ is called a parity-check matrix (PCM) for C.

Note:
H is an (n− k)× n matrix.

C has many PCMs.

Constructing a GM for C⊥

Theorem 3.4

Let C be an (n, k)-code with GM G = [Ik | A]. Then H = [−AT | In−k] is a GM for C⊥.

Note that A is k× (n− k) matrix.

Proof:
Since rank(H) = n− k, H is a GM for an (n, n− k)-code C. Also,

GHT = [Ik|A]

[
−A
In−k

]
= −A + A = 0.

Thus C ⊆ C⊥. Since dim(C) = dim(C⊥), we have C = C⊥. Hence H is a GM for C⊥.

Example:

Consider the (5, 2)-code C over Z3 with GM G =

[
2 0 2 1 0
1 1 0 0 1

]
. Find a PCM for C.

Solution Find a GM for C in standard form:

G
R1←2R1−−−−→

[
1 0 1 2 0
1 1 0 0 1

]
R2←R2−R1−−−−−−→

[
1 0 1 2 0
0 1 2 1 1

]
.

So,

H =

 2 1 1 0 0
1 2 0 1 0
0 2 0 0 1


is a PCM for C.

CHAPTER 3. LINEAR CODES 27

We have

C =


00000, 20210, 10120,
11001, 22002, 01211,
02122, 21121, 12212


Thus d(C) = w(C) = 3, R = 2/5.

Notes on PCMs

Let C be an (n, k)-code over F with GM G.

1. An (n− k)× n matrix H over F is a PCM for C iff GHT = 0 and rank(H) = n− k.

2. G is a PCM for C⊥ (since (C⊥)⊥ = C).

3. C = null(H).

4. Let H be a PCM for C, and let x ∈ Vn(F), then x ∈ C iff HxT = 0.

3.5 Distance of a Linear Code

Theorem 3.5: distance of a linear code

Let H be a PCM for a (n, k)-code C over F. Then d(C) ≥ s if and only if every s− 1 columns of
H are linearly independent over F.

Corollary 3.6

Let H be a PCM for a linear code C over F. Then d(C) is the smallest number of columns of H
that are linearly dependent over F.

3.6 Hamming Codes

Hamming code of order r over F = GF(q)

A Hamming code of order r over F = GF(q) is an (n, k)-coder over F with n = qr−1
q−1 and

k = n− r, and with PCM Hr and r× n matrix whose columns are nonzero, and no two of whose
columns are scalar multiples of each other.

Notes on Hamming codes:

1. If v ∈ Vr(F), v 6= 0, then exactly one scalar multiple of v is a column of H (giving n = qr−1
q−1

columns in total).

2. Hr has rank r, since among its columns are scalar multiples of the unit vectors. Hence a Hamming
code of order r over GF(q) does indeed have dimension k = n− r.

3. A Hamming code of order r over GF(q) has distance 3 (by design), so is a single-error correcting
code.

https://youtu.be/Gdzq_ad_Iuo

CHAPTER 3. LINEAR CODES 28

3.7 Decoding Single-Error Correcting Codes

Let H be a PCM for an (n, k, d)-code C over F with d ≥ 3.

error vector

Suppose c ∈ C is sent, and r ∈ Vn(F) is received, The error vector is e = r− c (so r = c + e).

Algorithm 1: Decoding algorithm for single-error correcting codes
Input: PCM H and a received word r

1 Compute s = HrT .
2 if s = 0 then accept r as transmitted code (e = 0)
3 if s 6= 0 then
4 Compare s with the columns of H.
5 if s = αhi for some i then
6 Set e = (0, . . . , 0, α, 0, . . . , 0) where α is at ith position.
7 Decode r to c = r− e.

8 else
9 Report that more than one error has occurred.

Note that if w(e) = 0 or w(e) = 1, then the decoding algorithm is guaranteed to make the correct
decision.

3.8 Perfect Codes

perfect code

Let C be an [n, M]-code of distance d over A, with |A| = q and e = b d−1
2 c. Then C is perfect if

each x ∈ An is in the sphere of radius e centered at some c ∈ C.

Equivalently, C is perfect if

M ·
e

∑
i=0

(
n
i

)
(q− 1)i = qn .

For fixed q, n, d, a perfect code has maximum possible M. In other words, a perfect code has maximum

possible rate R =
logq M

n , for fixed q, n, d.

Some facts:

• C = An is a (trivial) perfect code with distance d = 1.

• Let n be odd. Binary replication code is a perfect code with d = n.

• Every perfect code has odd distance.

• For a perfect code, IMLD = CMLD.

• All Hamming codes of order r over GF(q) are perfect.

CHAPTER 3. LINEAR CODES 29

Theorem 3.7: Tietäräinen, 1973

The only perfect codes are

1) Vn(GF(q))

2) The binary replication code of odd length.

3) The (23, 12, 7)-binary Golay code and all codes equivalent to it.

4) The (11, 6, 5)-ternarya Golay and all codes equivalent to it.

A GM is

G =

 I6

1 1 1 1 1
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0


6×11

5) The Hamming codes and all codes of the same [n, M, d] parameters as them. (d = 3).

aover Z3

3.9 Syndrome Decoding

Let C be an (n, k)-code over F = GF(q) with PCM H.

x ≡ y (mod C)

Let x, y ∈ Vn(F). We write x ≡ y (mod C) if x− y ∈ C.

Facts:

1. ≡ (mod C) is an equivalence relation.

2. The set of equivalences classes partitions Vn(F).

3. The equivalence class containing x ∈ Vn(F) is called a coset of C. Check the broader definition
in PMATH 347. This class is

C + x = {y ∈ Vn(F) : y ≡ (mod C)} = {c + x : c ∈ C}.

C C + x1 C + x2 C + x3 · · · Vn(F)

Example: Cosets
Consider a (5, 2)-binary code C with GM

G =

[
1 0 1 1 1
0 1 1 1 0

]
.

https://notes.sibeliusp.com/pmath347

CHAPTER 3. LINEAR CODES 30

Find all cosets of C.

Solution The cosets of C are:

C = C + 00000 = {00000, 10111, 01110, 11001} = C + 10111 = C + 01110 + C + 11001

C + 10000 = {10000, 00111, 11110, 01001} = C + 00111 = C + 11110 = C + 01001

C + 01000 = {01000, 11111, 00110, 10001}
C + 00100 = {00100, 10011, 01010, 11101}
C + 00010 = {00010, 10101, 01100, 11011}
C + 00001 = {00001, 10110, 01111, 11000}
C + 10100 = {10100, 00011, 11010, 01101}
C + 10010 = {10010, 00101, 11100, 01011}

Facts on cosets:

1. C + 0 = C.

2. If y ∈ C + x, then C + y = C + x.

3. All cosets of C has the same size qk.

4. The number of cosets is qn/qk = qn−k.

syndrome

Let H be a PCM for an (n, k)-code C over F. For x ∈ Vn(F), the syndrome of x (with respect to
H) is s = HxT .

Theorem 3.8

Let x, y ∈ Vn(F). Then x ≡ y (mod C) if HxT = HyT .

Syndrome decoding algorithm

For each coset of C, select an arbitrary vector of smallest weight in that coset, and call it coset leader of
that coset. Store a table of coset leaders and their syndromes.

Algorithm 2: Decoding algorithm (CMLD)

1 Given r, compute s = HrT .
2 Let e be the corresponding coset leader.
3 Decode r to c = r− e.

The decoding algorithm is guaranteed to make the correct decision if the error vector is a coset leader;
otherwise is guaranteed to make a wrong decision.

Theorem 3.9

Let C be an (n, k)-code over F with distance d. Let x ∈ Vn(F) be a vector of weight ≤ b d−1
2 c.

Then x is a coset leader.

CHAPTER 3. LINEAR CODES 31

Note:
Syndrome decoding is not efficient in general since the syndrome table is exponentially large. For
an (n, k)-binary code, the syndrome table has size

2n−k(n + (n− k)) = 2n−k(2n− k) bits

4
Golay codes

4.1 The (Binary) Golay Code

Let

B̂ =



1 1 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 0 0 0 1


12×11

Let Ĝ = [I12 | B̂]12×23. Ĝ is a GM for a (23, 12)-binary code called the (binary) Golay code C23. We will
prove d(C23) = 7. C23 is a perfect code.

4.2 The Extended Golay Code C24

C24 is the binary code with GM G = [I12 | B]12×24, where

B =


0
1
1 B̂
...
1


12×12

Properties of C24:

• C24 is a (24, 12)-binary code.

• GGT = 0. Hence C24 ⊆ C⊥24, so C24 is a self-orthogonal code.

Since C24 = C⊥24. Hence C24 is a self-dual code.

32

CHAPTER 4. GOLAY CODES 33

• BT = B (so B is symmetric).

• A PCM for C24 is H = [−BT | I12] = [B | I12].

• Since C24 = C⊥24, H is also a GM for C24.

Theorem 4.1

d(C24) = 8.

Corollary 4.2

d(C23) = 7.

4.3 A Decoding Algorithm For C24

Recall n = 24, k = 12, d = 8, e = 3. G = [I12 | B] and H = [B | I12] are both GMs and PCMs for C24

Decoding strategy (IMLD) Compute a syndrome s of the received word r. Find a vector e of weight
≤ 3 that has the same syndrome. If no such e exists, reject r.

Correctness If the error vector has weight ≤ 3, then the decoder always makes the correct decision.
If the error vector has weight > 3, the decoder will reject r or decode r to a codeword than the
transmitted one.

There are 5 cases, not mutually exclusive, in the event w(e) ≤ 3.

Suppose r = (x, y) is received.

Algorithm 3: Decoding algorithm for C24

1 Compute s1 = [I12 | B]rT .
2 if s1 = 0 then
3 accept r and STOP // A

4 if w(s1) ≤ 3 then
5 e← (sT

1 , 0)
6 Decode r to c = r− e; STOP // B

7 foreach row i of B do
8 if row i differs in one position (j), or two positions (j & k) with s1 then
9 Correct x in position j, or positions j, k;

10 Correct y in position i; STOP // C

11 Compute s2 = [B | I12]rT .
12 if w(s2) ≤ 3 then
13 e← (0, sT

2)

14 Decode r to c = r− e; STOP // D

15 foreach row i of B do
16 if row i differs in one position (j), or two positions (j & k) with s2 then
17 Correct x in position i;
18 Correct y in position j, or positions j, k; STOP // E

19 Reject r

CHAPTER 4. GOLAY CODES 34

Decoding algorithm only needs B, no need for a syndrome table, which is much larger than B. Decod-
ing is efficient and simple, which is good for hardware implementation.

Is C24 better than simpler codes such as replication codes or Hamming codes?

4.4 Reliability of C24

• p = symbol error probability (BSC)

• C = {c1, c2, . . . , cM}

• wi = probability that decoding algorithm makes an incorrect decision if ci is sent.

• Error probability of C is PC = 1
M ∑M

i=1 wi = wi = error probability of C

• 1− PC = Reliability of C = probability that r is decoded correctly

p (1) (1− p)12 (2) 1-PC24 (3) 1− PT (4) 1− PH

0.1 0.282429 0.7857377 0.7112056 0.5490430
0.01 0.8863848 0.99990946 0.9964298 0.9903702
0.001 0.9880657 0.9999999895 0.99996402 0.998959
Rate 1 1/2 1/3 11/15 ≈ 0.73

(1) If no source is used (no channel encoding is used), then the reliability for 12-bit messages is
(1− p)12.

(2) wi = 1−
[
(1− p)24 +

(
24
1

)
p(1− p)23 +

(
24
2

)
p2(1− p)22 +

(
24
3

)
(1− p)21

]

PC24 =
1

212

212

∑
i=1

wi = wi

(3) T = Triplication code
10110 . . . 0︸ ︷︷ ︸

12

→ 111 000 111 111 000 . . . 111︸ ︷︷ ︸
36

1− PT =
[
(1− p)3 + 3p(1− p)2]12

(4) (15, 11)-binary Hamming code

1− PH = (1− p)15 + 15p(1− p)14

5
Cyclic codes

cyclic space

A subspace S of Vn(F) is cyclic if (a0, a1, . . . , an−1) ∈ S =⇒ (an−1, a0, a1, . . . , an−2) ∈ S.

cyclic code

A cyclic code is a cyclic subspace of Vn(F).

5.1 The Polynomial Ring R = F[x]/(xn − 1)

Let R = F[x]/(xn − 1), where F = GF(q). Then R is a commutative ring (but not a field, since xn − 1
is reducible over F).

We have the following bijection between Vn(F) and R:

a = (a0, a1, a2, . . . , an−1)←→ a(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1.

Vector addition and scalar multiplication preserved.

a · b

Let a, b ∈ Vn(F). Then a · b = c ∈ Vn(F), where c↔ c(x) = a(x) · b(x) mod (xn − 1).

ideal

Let R be a (finite) commutative ring. A non-empty subset I of R is an ideal of R if

(i) a, b ∈ I =⇒ a + b ∈ I;

(ii) a ∈ I, b ∈ R =⇒ a · b ∈ I.

Theorem 5.1: algebraic characterization of cyclic subspaces of Vn(F)

Let S be a non-empty subset of Vn(F). Let I be the associated polynomials in R = F[x]/(xn− 1).
Then S is a cyclic subspace of Vn(F) if and only if I is an ideal of R.

35

CHAPTER 5. CYCLIC CODES 36

5.2 Ideals of R = F[x]/(xn − 1)

ideal generated by g

Let R be a (commutative) ring, and let g ∈ R. Let 〈g〉 = {g · r : r ∈ R}. Then 〈g〉 is an ideal of
R, called the ideal generated by g.

principal ideal

An ideal I of R is said to be principal if I = 〈g〉 for some g ∈ I.

principal ideal ring

A ring R is a principal ideal ring if every ideal of R is principal.

Theorem 5.2

R = F[x]/(xn − 1) is a principal ideal ring.

generator polynomial

Let I be an ideal of R = F[x]/(xn − 1).

• If I = {0}, then xn − 1 is the generator polynomial of I.

• If I 6= {0}, then the monic polynomial of smallest degree in I is called the generator
polynomial of I.

Theorem 5.3

Let I be a nonzero ideal of R = F[x]/(xn − 1).

1) There is a unique monic polynomial g(x) of smallest degree in I; I = 〈g〉.

2) g(x) | (xn − 1) in F[x].

Theorem 5.4

Let h(x) be a monic divisor of xn − 1 in F[x]. Then h(x) is the generator polynomial of 〈h(x)〉.

Corollary 5.5

There is a 1-1 correspondence between ideals of R and monic divisors of xn − 1, and thus also a
1-1 correspondence between cyclic subspaces of Vn(F) and monic divisors of xn − 1.

CHAPTER 5. CYCLIC CODES 37

5.3 Dimension of a Cyclic Code

Theorem 5.6

Let g(x) be a monic divisor of xn − 1 over F, where F = GF(q). Suppose deg(g) = n− k. Then
the cyclic subspace S of Vn(F) generated by g(x) has dimension k.

5.4 GM of a Cyclic Code

Theorem 5.7

Let g(x) be the generator polynomial of an (n, k)-cyclic code C over F (so g(x) is a monic divisor
of xn − 1 over F of degree n− k). Then a (non-standard) GM for C is

G =


g(x)

xg(x)
x2g(x)

...
xk−1g(x)


k×n

.

Encoding Source messages are the polynomials in F[x] of degree < k. If m(x) = m0 + m1x + · · ·+
mk−1xk−1, then encoding of m with respect to G is

c =
[
m0 m1 · · · mk−1

]
G = m0g(x) + m1xg(x) + · · ·+ mk−1xk−1g(x) ,

so c(x) = m(x)g(x). Note that no reduction by xn − 1 is needed.

5.5 The Dual Code of a Cyclic Code

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). Let

g(x) = g0

6= 0

+ g1x + · · ·+ gn−k

= 1

xn−k + gn−k+1xn−k+1 + · · ·+ gn−1xn−1︸ ︷︷ ︸
0

.

parity-check polynomial

The parity-check polynomial is h(x) = (xn − 1)/g(x).

Let
h(x) = h0

6= 0

+ h1x + · · ·+ hk

= 1

xk + hk+1xk+1 + · · ·+ hn−1xn−1︸ ︷︷ ︸
0

Also define hj = hj mod n for all j ∈ Z.

Observe that g = (g0, . . . , gn−1) is orthogonal to the vector h = (hn−1, . . . , h0) and all its cyclic shifts.

It follows that all cyclic shifts of g are orthogonal to all cyclic shifts of h. Recall the GM for C, we

CHAPTER 5. CYCLIC CODES 38

define H:

G =


g0 g1 · · · · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k−1 gn−k · · · 0
...

...
. . .

0 0 · · · g0 g1 · · · · · · gn−k


k×n

H =


hk hk−1 · · · · · · h0 0 · · · 0
0 hk hk−1 · · · h1 h0 · · · 0
...

...
. . .

0 0 · · · hk hk−1 · · · · · · h0


(n−k)×n

We have GHT = 0. Thus C′ ⊆ C⊥, where C′ is the code generated by H. But rank(H) = n− k (since
hk = 1), so dim(C′) = n− k = dim(C⊥). Hence C′ = C⊥, and H is a (non-standard) PCM for C.

C⊥ is cyclic

reciprocal polynomial

Let h(x) = h0 + h1x + · · · + hkxk be a polynomial of degree k (so hk 6= 0). The reciprocal
polynomial of h(x) is hR(x) = xkh

(1
x
)
= hk + hk−1x + · · ·+ h0xk.

If h0 6= 0, we define h∗(x) = h−1
0 hR(x). So h∗ is monic.

Theorem 5.8

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). Let h(x) = (xn − 1)/g(x).
Then C⊥ is cyclic, with generator polynomial h∗(x).

5.6 Computing Syndromes

Let C be an (n, k)-cyclic code over F with generator polynomial g(x). We will find a “nice” PCM for
C.

1. Find a GM for C of the form [R | Ik]

For 0 ≤ i ≤ k− 1, long division gives xn−k+i = `i(x)g(x) + ri(x), deg(ri) < n− k, deg(`i) < k. Then
xn−k+i − ri(x) = `i(x)g(x) ∈ C. Thus a GM for C is

G =


−r0(x) + xn−k

−r1(x) + xn−k+1

...
−rk−1(x) + xn−1


k×n

=


−xn−k (mod g)(x)

Ik
−xn−k+1 (mod g)(x)

...
−xn−1 (mod g)(x)

 = [R | Ik]

Note that rank(G) = k.

2. A (systematic) PCM for C is H = [In−k | −RT]

The rows of HT (columns of H) are x0 mod g(x), x1 mod g(x), . . . , xn−1 mod g(x).

CHAPTER 5. CYCLIC CODES 39

Theorem 5.9: computing syndromes

The syndrome of r ∈ Vn(F) with respect to the above PCM is s ∈ Vn−k(F), where

s(x) = r(x) mod g(x).

The syndromes of a vector and its cyclic shifts are closely related.

Theorem 5.10

Let r(x) be a polynomial with syndrome polynomial s(x) = s0 + s1x + · · ·+ sn−k−1xn−k−1. The
syndrome of xr(x) is: {

xs(x), if sn−k−1 = 0.

xs(x)− sn−k−1g(x), if sn−k−1 6= 0.

Note that xs(x) is not cyclic shift.

So given the syndrome s of r, we can easily compute the syndromes of cyclic shifts of r.

5.7 Burst Error Correcting

Cyclic codes are good for correcting burst errors.

cyclic burst length

Let e ∈ Vn(F). The cyclic burst length of e is the length of the shortest cyclic block of e that
contains all the nonzero components.

For example, the cyclic burst length of e = 0 1 1 0 1 0 0 0 1 0 is 7.

t-cyclic burst error correcting code

A linear code C is a t-cyclic burst error correcting code if all cyclic burst errors of length ≤ t
are in different cosets of C, i.e., have different syndromes. The largest such t is the cyclic burst
error correcting capability of C.

Theorem 5.11: bounds on burst error correcting capability

Let C be an (n, k, d)-code over GF(q). Let t be the cyclic burst error correcting capability of C.
Then b d−1

2 c ≤ t ≤ (n− k).

In fact, we can prove that t ≤ b n−k
2 c.

5.8 Decoding Algorithm for Cyclic Burst Error Correcting Codes

Let C be an (n, k)-cyclic code over F with generator polynomial g(x) and cyclic burst error correcting
capability t (so t ≤ n− k).

CHAPTER 5. CYCLIC CODES 40

Let r(x) be the received word. Let si(x) denote the syndrome of xir(x), 0 ≤ i ≤ n− 1.

Algorithm 4: Error-trapping decoding algorithm for cyclic burst error codes

1 for i← 0 . . . n− 1 do
2 Compute si(x)
3 if si has (non-cyclic) burst length ≤ t then
4 e(x)← xn−i(si, 0)
5 Decode r(x) to c(x) = r(x)− e(x)

6 Reject r.

5.9 Interleaving

Purpose Increase the cyclic burst error correcting capability of a code.

Let C be an (n, k)-code with cyclic burst error correcting capability t. Suppose

c1 = (c11, c12, . . . , c1n) ∈ C

c2 = (c21, c22, . . . , c2n) ∈ C
...

cs = (cs1, cs2, . . . , csn) ∈ C

Interleaving to a depth of s Instead of transmitting c1, c2, . . . , cs in that order, transmit the columns
of the above array:

c∗ = (c11, c21, . . . , cs1, c12, c22, c22, . . . , cs2, . . . , c1n, c2n, . . . , csn)

Then, any cyclic burst of length ≤ st in c∗ results in a cyclic burst of length ≤ t in each of the original
codewords c1, c2, . . . , cs (and these errors can be corrected).

Theorem 5.12: interleaving codes

Let C be an (n, k)-code over F with cyclic burst error capability t. Let C∗ be the code obtained
by interleaving C to a depth s.

1. C∗ is an (ns, ks)-code over F with cyclic burst error correcting capability ts.

2. Suppose C is cyclic with generator polynomial g(x). Then C∗ is cyclic with generator
polynomial g(xs).

6
BCH codes

6.1 Subfields and Extension fields

For any prime power q, GF(q) is a subfield of GF(qm) and we can view GF(qm) as an m-dimensional
vector space over GF(q).

Example:
GF(216) is a 16-dimensional vector space over GF(2).
GF(216) is a 8-dimensional vector space over GF(22).
GF(216) is a 4-dimensional vector space over GF(24).
GF(216) is a 2-dimensional vector space over GF(28).
GF(216) is a 1-dimensional vector space over GF(216).

6.2 Minimal Polynomials

We call GF(qm) the extension field, and GF(q) the subfield.

minimal polynomial of α over GF(q)

Let α ∈ GF(qm). The minimal polynomial of α over GF(q), denoted mα(y) is the monic poly-
nomial of smallest degree in GF(q)[y] that α has a root.

Theorem 6.1

Let α ∈ GF(qm).

1. The minimal polynomial mα(y) of α over GF(q) is unique.

2. mα(y) is irreducible over GF(q).

3. deg(mα) ≤ m.

4. If f ∈ GF(q)[y], then f (α) = 0 ⇐⇒ mα(y) | f (y).

41

CHAPTER 6. BCH CODES 42

6.3 Computing Minimal Polynomials

Theorem 6.2

Let α ∈ GF(qm). Then α ∈ GF(q) if and only if αq = α.

set of conjugates of α w.r.t. GF(q)

Let α ∈ GF(qm). Let t be the smallest positive integer such that αqt
= α (note: t ≤ m). Then the

set of conjugates of α w.r.t. GF(q) is C(α) =
{

α, αq, αq2
, . . . , αqt−1}

.

The t elements in C(α) are distinct.

Theorem 6.3

Let α ∈ GF(qm). Then the minimal polynomial of α over GF(q) is

m(y) = ∏
β∈C(α)

(y− β) .

6.4 Factoring xn − 1 over GF(q)

Preliminaries Let p be the characteristic of GF(q). If gcd(n, q) 6= 1, then write n = np`, where ` ≥ 1
and gcd(n, p) = 1. Then xn − 1 = (xn − 1)p` . So, WLOG, we shall assume that gcd(n, q) = 1.

Let m be the smallest integer such that qm ≡ 1 (mod n), i.e., n | (qm − 1). Note that such an m exists.

Let α be a generator of GF(qm)∗. Let β = α(q
m−1)/n; note that β ∈ GF(qm).

Also note, ord(β) = n, and 1, β, β2, . . . , βn−1 are distinct. Furthermore, (βi)n = (βn)i = 1 for each
i ∈ [0, n− 1]. Hence 1, β, β2, . . . , βn−1 are roots of xn − 1; and there aren’t any other roots. So,

xn − 1 = (x− 1)(x− β)(x− β2) · · · (x− βn−1)

is the complete factorization of xn − 1 over GF(qm).

However, we seek the factorization of xn − 1 over GF(q).

Consider βi, where 0 ≤ i ≤ n− 1. Since βi is a root of xn − 1, we have mβi (x) | (xn − 1). Also, the

roots of mβi (x) are C(βi) =
{

βi, βiq, βiq2
, . . . , βiqt−1}

, where t is the smallest positive integer such that
iqt ≡ i (mod n).

cyclotomic coset of q (mod n) containing i

Suppose gcd(n, q) = 1, and let 0 ≤ i ≤ n− 1. The cyclotomic coset of q (mod n) containing i is

Ci = {i, iq mod n, iq2 mod n, . . . , iqt−1 mod n},

where t is the smallest positive integer such that iqt ≡ i (mod n). Also C = {Ci : 0 ≤ i ≤ n− 1}
is the set of cyclotomic cosets of q mod n.

CHAPTER 6. BCH CODES 43

Theorem 6.4

Suppose gcd(n, q) = 1.

• The number of monic irreducible factors of xn − 1 over GF(q) is equal to the number of
(distinct) cyclotomic cosets of q mod n.

• The number of monic irreducible factors of degree d is equal to the number of (distinct)
cyclotomic cosets of q mod n of size d.

Theorem 6.5

Suppose gcd(n, q) = 1. Let m be the smallest positive integer such that qm (mod n), and let
β ∈ GF(qm) be an element of order n. Then the monic irreducible factor of xn − 1 over GF(q)
are

{
mβi (x) : 0 ≤ i ≤ n− 1

}
, where

mβi (x) = ∏
j∈Ci

(x− βj) .

If j ∈ Ci, then mβj(x) = mβi (x).

6.5 BCH Codes: Definition

BCH codes are cyclic codes that are constructed in such a way that a (useful) lower bound on their
distance is known.

BCH code

A BCH code C over GF(q) of block length n and designed distance δ is a cyclic code generated
by g(x) = lcm

{
mβi (x) : a ≤ i ≤ a + δ− 2

}
, for some integer a.

6.6 BCH Bound

Vanderdmonde matrix

A Vanderdmonde matrix over a field F is a matrix of the form

A(x1, x2, . . . , xt) =


1 1 · · · 1
x1 x2 · · · xt

x2
1 x2

2 · · · x2
t

...
...

...
xt−1

1 xt−1
2 · · · xt−1

t


t×t

,

where x1, x2, . . . , xt ∈ F.

Theorem 6.6

det
(

A(x1, . . . , xt)
)
6= 0 if and only if x1, . . . , xt are distinct.

CHAPTER 6. BCH CODES 44

Corollary 6.7

A Vanderdmonde matrix A(x1, . . . , xt) is non-singular if and only if x1, x2, . . . , xt are distinct.

Theorem 6.8: BCH bound

Let C be an (n, k)-BCH code over GF(q) with designed distance δ. Then d(C) ≥ δ.

6.7 BCH Decoding

We will present a decoding algorithm for one specific BCH code, named C15. The decoding algorithm
for C15 captures the essential ideas of a decoding algorithm for general BCH codes.

Let q = 2, n = 15, m = 4. Let GF(24) = Z2[α]/(α4 + α + 1). Then α os a generator of GF(24)∗, and
β = α has order 15.

Let
g(x) = mβ(x) ·mβ3(x) = 1 + x + x6 + x7 + x8

The roots of g(x) include β, β2, β3, β4, so g(x) generates a (15, 7)-BCH code C15 over GF(2) with δ = 5.
In fact, d(C15) = 5, since g(x) is a codeword of weight 5. This BCH code is called C15 : (15, 7, 5)-binary
code. Note that C15 is a 2-error correcting code.

A PCM for C15 is

H =

[
β0 β1 β2 · · · β14

(β3)0 (β3)1 (β3)2 · · · (β3)14

]
8×15

Note that H is a 2× 15 matrix over GF(24). If we replace each element in H by its vector representation
over GF(2), then we get an 8× 15 matrix over GF(2).

The syndrome of r ∈ V15(Z2) is HrT =

[
r(β)

r(β3)

]
4
=

[
s1

s3

]
.

So we don’t need H to compute syndromes.

Decoding strategy If there is an error vector e of weight ≤ 2 that has the same syndrome (s2, s3) as
r, then we decode r to r− e. Otherwise, we reject r.

Algorithm 5: Decoding algorithm for C15

1 Received word is r ∈ V15(Z2).
2 Compute s1 = r(β) and s3 = r(β3).
3 if s1 = s3 = 0 then accept r and STOP.
4 if s3

1 = s3 then correct r in position i where s1 = βi, and STOP.
5 if s1 = 0 (and s3 6= 0) then reject r and STOP.

6 Form the error locator polynomial r(z) = z2 + s1z +
(

s3
s1
+ s2

1

)
, and find its roots in GF(24). If

there are two (distinct) roots βi and βj, then correct r in positions i and j and STOP.
7 Reject.

The algorithm is guaranteed to make the correct decision if w(e) ≤ 2.

More generally, suppose C is a binary (n, k)-BCH code with designed distance δ. Suppose the gen-
erator polynomial of C is g(x) = lcm{mβi (x) : i ∈ [δ − 1]} where β ∈ GF(2m) has order n. Then,

d(C) ≥ δ. Let t = b δ−1
2 c.

CHAPTER 6. BCH CODES 45

Suppose c ∈ C is transmitted, w(e) ≤ t, and r is received.

Compute si = r(βi) for each 1 ≤ i ≤ δ− 1, and form the syndrome polynomial:

s(z) = s1 + s2z + s3z3 + · · ·+ sδ−1zδ−2

Fact From s(z), the error locator polynomial can be efficiently computed. The roots of σ(z) are β−j,
where j are the error positions.

Also, the algorithm generalizes to BCH codes over GF(q).

7
RS codes

7.1 Introduction

Reed-Solomon code

A Reed-Solomon (RS) code is a BCH code of length n over GF(q) where n | (q− 1).

Since q1 ≡ 1 (mod n), we have m = 1.

Suppose n | (q− 1), and let β ∈ GF(q) be an element of order n. Then mβi (x) = x− βi for all i.

A RS code C of length n over GF(q) with designed distance δ is a BCH code over GF(q) with genera-
tor polynomial

g(x) = (x− βa)(x− βa+1)(x− βa+2) · · · (x− βa+δ−2)

for some a.

Since deg(g) = δ− 1, we have w(g) ≤ δ, so d(c) ≤ δ. d(C) ≥ δ by BCH bound, hence d(C) = δ.

Since dim(C) = k = n − deg(g) = n − δ + 1, we have k = n − d + 1, so d = n − k + 1. Recall that
d ≤ n− k + 1 for any (n, k, d)-code. Thus, RS are optimal in the sense that, for any fixed n, k, q, they
achieve maximum distance among all (n, k, d)-codes over GF(q).

7.2 RS Codes Have Good (Cyclic) Burst-Error Correcting Capability

Let C be a RS code of length n over GF(2r) and designed distance δ. Consider c = (c1, c2, . . . , cn) ∈ C,
and let e = b d−1

2 c = b
n−k

2 c. Note that ci ∈ GF(2r).

By writing each ci as a binary vector of length r, we can view c as a binary vector of length nr.

Now, if c is transmitted and if a cyclic burst error of length ≤ 1 + (e− 1)r bits is introduced, then at
most e symbols of c are received incorrectly. Thus, the received word can be decoded correctly.

Theorem 7.1

Let C be an (n, k)-RS code over GF(2r). Then C′, the code obtained by replacing each symbol
in the codewords of C by the r-bit binary representations, is an (nr, kr)-binary code with cyclic
burst error correcting capability t = 1 + (e− 1)r where e = b n−k

2 c.

46

CHAPTER 7. RS CODES 47

Example:
Consider GF(28) = Z2[α]/(α8 + α4 + α3 + α2 + 1).

Then β = α has order n = 255 (so q = 256, n = 255). Let

g(x) =
24

∏
i=1

(x− βi)

Then g(x) is the generator polynomial for a (255, 231, 25)-RS code C with error correcting capability
e = 12. The related code C′ is a (2040, 1848)-binary code with cyclic burst error correcting capability
t = 89.

The code C, and others derived from it, have widely been used in practice, including in CDs, DVDs,
and QR codes.

8
Code-Based Cryptography

See Cameron’s notes

48

https://hextical.github.io/university-notes/year-2/semester-2/CO%20331/co331.pdf

9
Coding Theory 2

RS codes Optimal erasure codes (good for data storage). Efficient decoding algorithms + hardware
architectures.

LDPC codes Low Density Parity Check codes. Good for soft-decision coding. Used in digital TV,
optical communications, wireless communications, etc.

Concatenation codes BCH/RC + LDPC

Other codes Turbo codes, Raptor codes, Polar codes

List decoding Sudan-Guruswami algorithm. Lots of applications in theoretical computer science.

49

Index

A

alphabet . 6

B

BCH code . 43

block code . 6

C

characteristic . 14

code . 6

codeword . 6

coset . 29

cyclic burst error correcting capability 39

cyclic burst length. 39

cyclic code . 35

cyclic space . 35

cyclotomic coset of q (mod n) containing i . 42

D

designed distance δ . 43

dual code . 25

E

e-error correcting code . 11

e-error detecting code . 10

equivalent codes . 24

error vector . 28

extension field . 41

F

field. 13

finite field . 14

G

generator . 21

generator matrix . 23

generator polynomial . 36

H

Hamming code of order r over F = GF(q) . . 27

Hamming distance . 8

Hamming weight . 23

I

ideal . 35

ideal generated by g . 36

infinite field . 14

information rate . 7

inner product . 25

irreducible over F . 17

L

length . 6

linear (n, k)-code over F . 22

M

minimal polynomial of α over GF(q) 41

multiplicative group of GF(q) 19

50

INDEX 51

O

order of α . 20

order of a field . 14

orthogonal code . 25

orthogonal vectors . 25

P

parity-check matrix . 26

parity-check polynomial 37

perfect code . 28

principal ideal . 36

principal ideal ring. 36

R

reciprocal polynomial . 38

Reed-Solomon code . 46

ring . 13

S

self-dual code . 32

self-orthogonal code . 32

set of conjugates of α w.r.t. GF(q) 42

set of cyclotomic cosets of q mod n 42

standard form generator matrix 24

subfield . 15

symbol error probability . 7

syndrome . 30

systematic code . 24

T

t-cyclic burst error correcting code 39

V

Vanderdmonde matrix . 43

W

word . 6

	Preface
	Introduction
	Fundamentals
	Basic Definitions and Concepts
	Decoding Strategy
	Error Correcting & Detecting Capabilities of a Code

	Introduction to Finite Fields
	Definitions
	Finite fields: Non-existence
	Existence of finite fields
	Properties of finite fields

	Linear codes
	Definition
	Properties of Linear Codes
	The Dual Code
	Parity-Check Matrix
	Distance of a Linear Code
	Hamming Codes
	Decoding Single-Error Correcting Codes
	Perfect Codes
	Syndrome Decoding

	Golay codes
	The (Binary) Golay Code
	The Extended Golay Code C24
	A Decoding Algorithm For C24
	Reliability of C24

	Cyclic codes
	The Polynomial Ring R=F[x]/(xn-1)
	Ideals of R=F[x]/(xn-1)
	Dimension of a Cyclic Code
	GM of a Cyclic Code
	The Dual Code of a Cyclic Code
	Computing Syndromes
	Burst Error Correcting
	Decoding Algorithm for Cyclic Burst Error Correcting Codes
	Interleaving

	BCH codes
	Subfields and Extension fields
	Minimal Polynomials
	Computing Minimal Polynomials
	Factoring xn-1 over GF(q)
	BCH Codes: Definition
	BCH Bound
	BCH Decoding

	RS codes
	Introduction
	RS Codes Have Good (Cyclic) Burst-Error Correcting Capability

	Code-Based Cryptography
	Coding Theory 2

