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Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CO 444 during Winter 2021 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

This set of notes is incomplete. For the rest of the contents, please refer to the textbook Algebraic Graph
Theory by Chris Godsil, Gordon Royle.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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1
Graphs

1.1 Graphs

• X = (V, E) where V is set of vertices and E is set of edges.

• neighbours, adjacency, incidence.

• graph isomorphism. X ∼= Y if there exists a bijection f : V(X)→ V(Y) such that uv ∈ E(x) ⇐⇒
f (u) f (v) ∈ E(Y).

• complete graphs, (complete) bipartite graphs, empty graphs, the null graph, multigraphs, simple
graphs, directed graphs, finite graphs, infinite graphs.

1.2 Subgraphs

subgraph

Y is a subgraph of X if V(Y) ⊆ V(X) and E(Y) ⊆ E(X).

Spanning subgraph V(Y) = V(X)

Induced subgraph uv ∈ E(Y) ⇐⇒ uv ∈ E(X) for all u, v ∈ V(Y).

cliques, independent sets, paths, cycles, spanning trees.

1.3 Automorphism

automorphism

An isomorphism f : X → X is an automorphism of X.

Aut X = { f : f automorphism of X}

Let Sym(V(X)) denote the symmetric group of all permutations on V(X) =⇒ Aut(X) ⊆ Sym(V(X)).

Let Sym(n) denote the symmetric group of all permutations on [n].
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Proposition 1.1

Aut(X) is a subgroup of Sym(V(X)).

For g ∈ Sym(V(X)), and v ∈ V(X). Let vg denote g(v), Sg denote {g(v) : v ∈ S}.

If Y ⊆ X and g ∈ Aut(X). Yg is a graph defined by

V(Yg) = V(Y)g, E(Yg) = {g(u)g(v) : uv ∈ E(Y)}

Yg ⊆ X, and Yg ∼= Y.

A few basic properties of Aut(X)

Lemma 1.2: automorphism preserves degrees

Let v ∈ V(X) and g ∈ Aut(X), then deg(v) = deg(g(v))/

Proof:
Let Y(v) be the subgraph of X induced by {v} ∪ N(v). Then Y(v) ∼= Yg = Y(g(v)). So deg(v) =
deg(g(v)).

Let d(x, y) be the length of shortest path from x to y.

Lemma 1.3: automorphism preserves graph distance

Let u, v ∈ V(X) and g ∈ Aut(X). Then d(u, v) = d(ug, vg).

Proof:
Easy to see that a shortest path from x to y is mapped to a shortest path from g(x) to g(y).

We will learn more properties of Aut(X).

1.4 Homomorphisms

homomorphism

X, Y are graphs. f : V(X) → V(Y) is called a homomorphism if x ∼ y in X =⇒ f (x) ∼ f (y)
in Y.

Examples skipped.

Recall graph coloring and the chromatic number of a graph.

Lemma 1.4

χ(X) = min{r ∈N : ∃ f homomorphism from X to Kr}.

Proof:
Let k = χ(X). Let g be a k-coloring of X. Then the map sending v ∈ V(X) to g(v) is a homomor-
phism from X to Kk. Hence k ≥ min{r ∈N : ∃ f homomorphism X → Kr}.

Suppose f is a homomorphism from X to Kr. Then f−1(i) induces an independent set of X for all
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i ∈ [r]. So X has an r-coloring, i.e., k ≤ r.

Remark:
The set of homomorphisms from X to Kr is the set of r-colorings with colours [r].

retraction

A retraction is a homomorphism f : V(X)→ V(Y) such that

• Y is a subgraph of X,

• f | Y (restriction of f to V(Y)) is the identity map.

If such a retraction from X to Y exists, we call Y a retract of X.

Examples skipped.

1.5 Graph examples

1.5.1 Circulant graphs

Cn

V(Cn) = {0, 1, 2, . . . , n− 1}
E(Cn) = {uv : u− v ≡ ±1 (mod n)}

Then what is Aut(Cn)?

Let g = (1, 2, . . . , n− 1, 0), g ∈ Aut(Cn). R a subgroup of Aut(Cn), where R = {gm : 0 ≤ m ≤ n− 1}.

Let h ∈ Sym(V(Cn)) such that h(i) ≡ −i (mod n). h ∈ Aut(Cn).

=⇒ hR: A coset of R different from R.

=⇒ |Aut(Cn)| ≥ 2|R| = 2n.

To generalize, we get circulant graphs. C ⊆ Zn \ {0}. Closed under inverse. c ∈ C =⇒ −c ∈ C.

X = X(Zn, C) where V(X) = Zn and E(X) = {ij : i− j ∈ C},

g, h ∈ Aut(X) as in the case for Cn, this implies |Aut(X)| ≥ 2n.

Further generalization: Cayley graphs.

1.6 Johnson graphs

Johnson graph

Let v ≥ k ≥ i, J = J(v, k, i).

V(J) = {S ⊆ [v] : |S| = k} E(J) =
{
{S, T} : |S ∩ T| = i

}
J(v, k, i) is d-regular with d = (k

i)(
v−k
k−i).
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Lemma 1.5

J(v, k, i) ∼= J(v, v− k, v− 2k + i).

Proof:
f (S) = S̄ is an isomorphism.

J(v, k, 0): Kneser graph. J(5, 2, 0): Peterson graph.

Lemma 1.6

Aut(J(v, k, i)) contains a subgroup isomorphic to Sym(v).

Proof:
Let g ∈ Sym(v). Let σg : V(J(v, k, i))→ V(J(v, k, i)), S→ Sg.

It’s easy to see that |S ∩ T| = |Sg ∩ Tg|. Then σg ∈ Aut(J(v, k, i)). Then {σg : g ∈ Sym(v)} ⊆
Aut(J(v, k, i)) and {σg : g ∈ Sym(v)} ∼= Sym(v).

Remark:
Aut(J(v, k, i)) is usually isomorphic to Sym(v).

1.6.1 Line graphs

L(X)

V(L(X)) = E(X)

E(L(X)) =
{
{e, f } : e ∩ f 6= ∅

}
X ∼= Y =⇒ L(X) ∼= L(Y). Converse false. The converse is true however if the minimum degrees of X
and Y are ≥ 4.
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