
}
Applied Cryptography

CO 487}
Alfred Menezes

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CO 487 during Winter 2021 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Notations:

• k ∈R K means that k is chosen uniformly and independently at random from K.

• a ‖ b and a, b denote the concatenation between strings a and b.

Note that you can scan the QR code on page 123.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

1

https://notes.sibeliusp.com/contact
https://notes.sibeliusp.com/

Contents

Preface 1

List of Algorithms 7

1 Introduction 8
1.1 Secure Web Transactions . 9

1.1.1 The TLS Protocol . 9

1.2 Cryptography in Context . 10

2 Symmetric-Key Cryptography 11
2.1 Basic concepts . 11

2.1.1 The Simple Substitution Cipher . 12

2.1.2 Security of SKES . 12

2.1.3 Polyalphabetic Ciphers . 15

2.2 The One-Time Pad . 15

2.3 Stream Ciphers . 16

2.4 The RC4 Stream Cipher . 17

2.4.1 Case Study: Wired Equivalent Privacy . 18

2.4.2 Fluhrer-Mantin-Shamir Attack . 21

2.5 ChaCha20 Stream Cipher . 22

2.5.1 ChaCha20 Quarter Round Function . 23

2.6 Block Ciphers . 24

2.6.1 Brief History of Block Ciphers . 25

2.6.2 Some Desirable Properties of Block Ciphers . 26

2.6.3 The Data Encryption Standard (DES) . 27

2.6.4 Double-DES . 28

2.6.5 Triple-DES . 30

2.6.6 The Advanced Encryption Standard (AES) . 31

2.6.7 Block Cipher Modes of Operation . 38

3 Hash Functions 40
3.1 Introduction . 40

3.1.1 Hash Functions from Block Ciphers . 42

3.1.2 Desirable security properties for hash functions . 42

3.1.3 Relationships between PR, 2PR, CR . 44

3.2 Generic Attacks . 46

3.2.1 Find Preimages . 46

3.2.2 Find Collisions . 46

3.2.3 VW Parallel Collision Search . 47

3.3 Iterated Hash Functions (Merkle Meta-Method) . 49

2

3.3.1 Collision Resistance of Iterated Hash Functions . 50

3.3.2 Provable Security . 50

3.4 MDx-Family of Hash Functions . 51

3.5 SHA . 51

3.5.1 SHA-1 . 51

3.5.2 SHA-2 Family . 52

3.5.3 Description of SHA-256 . 52

3.5.4 SHA-3 . 54

3.5.5 NIST’s Policy on Hash Functions . 54

4 Message authentication code schemes 55
4.1 Introduction . 55

4.1.1 Security Definition . 56

4.2 Generic Attacks on MAC schemes . 56

4.3 MACs Based on Block Ciphers . 57

4.3.1 Security of CBC-MAC . 57

4.3.2 Encrypted CBC-MAC (EMAC) . 58

4.4 MACs Based on Hash Functions . 58

4.4.1 Secret Prefix Method . 58

4.4.2 Secret Suffix Method . 59

4.4.3 Envelope Method . 59

4.4.4 HMAC . 59

4.5 Case study: GSM . 60

4.5.1 GSM Security . 61

5 Authentic Encryption 62
5.1 AES-GCM . 63

5.1.1 CTR: CounTeR Mode of Encryption . 63

5.1.2 AES-GCM Encryption, Decryption/Authentication Procedure 64

5.1.3 Insights into Authentication Mechanism . 66

5.1.4 Some Features of AES-GCM . 67

5.2 Google Encryption . 68

5.2.1 Google Data . 68

5.2.2 Key Management Service (KMS) . 69

5.2.3 Google’s Key Hierarchy . 69

6 Introduction to Public-Key Cryptography 72
6.1 Drawbacks with Symmetric-Key Cryptography . 72

6.1.1 Key Establishment Problem . 72

6.1.2 Key Management Problem . 73

6.1.3 Non-Repudiation is Difficult to Achieve . 73

6.2 Public-Key Cryptography . 73

6.2.1 Merkle Puzzles . 74

6.2.2 Public-Key Encryption . 75

6.2.3 Digital Signatures . 75

6.2.4 Hybrid Schemes . 76

6.3 Algorithmic Number Theory . 76

6.3.1 Complexity Theory Review . 76

6.3.2 Basic Integer Operations . 77

6.3.3 Basic Modular Operations . 78

7 RSA 79

3

7.1 Basic RSA . 79

7.1.1 RSA Encryption . 79

7.1.2 Basic RSA Signature Scheme . 81

7.2 Case Study: QQ Browser . 81

7.2.1 Version 1 . 81

7.2.2 Version 2 . 82

7.3 Security of RSA Encryption . 83

7.4 Integer Factorization . 85

7.4.1 Review from complexity theory . 85

7.4.2 Factoring Algorithms . 85

7.4.3 History of Factoring . 86

7.5 RSA Signature Scheme . 87

7.5.1 Attack Model . 87

7.5.2 Security of a Signature Scheme . 88

7.6 RSA PKCS #1 v1.5 Signatures (1993) . 88

7.6.1 Bleichenbacher’s Attack (2006) . 89

8 Elliptic Curve Cryptography 90
8.1 Elliptic Curves . 90

8.1.1 Point Addition . 92

8.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) . 94

8.3 Elliptic Curve Cryptography . 96

8.3.1 Elliptic Curves in Practice . 97

8.3.2 Modular Reduction . 97

8.4 Elliptic Curve Diffie–Hellman (ECDH) . 99

8.4.1 Unauthenticated ECDH . 99

8.4.2 Authenticated ECDH . 100

8.5 Case Study: ECDH in Google . 100

8.5.1 TLS (as was commonly implemented) . 100

8.5.2 TLS as implemented by Google . 100

8.6 The Elliptic Curve Digital Signature Algorithm (ECDSA) 101

9 Bluetooth Security 104
9.1 Introduction . 104

9.2 The Bluetooth security protocol . 105

9.3 KNOB Attack . 108

10 Key Management 109
10.1 Public Key Management . 109

10.2 Certification Authorities (CAs) . 110

10.3 Public-Key Infrastructures (PKI) . 110

10.4 Case Study: TLS . 111

10.4.1 TLS Handshake Protocol . 111

10.4.2 TLS 1.2 Record Protocol . 112

10.4.3 TLS 1.3 . 112

10.5 Public Key Management in TLS . 112

10.5.1 Example of an X.509 Certificate . 113

11 Random Bit Generation 116
11.1 Introduction . 116

11.2 Cloudflare Random Bit Generation . 117

11.3 Weak Random Bit Generation . 117

4

11.4 Pseudorandom Bit Generation . 118

12 FIDO U2F 119
12.1 U2F Protocol . 119

12.2 Google’s Titan Security Key . 120

12.3 FIDO2 . 120

13 The Signal Protocol 121
13.1 Introduction . 121

13.2 Signal Objectives . 121

13.3 Signal Protocol . 122

13.3.1 Registration . 122

13.3.2 Root Key Establishment . 122

13.3.3 Message Transmission . 123

13.3.4 Example of Message Transmission . 124

13.4 References . 126

14 Post-Quantum Cryptography 127
14.1 Quantum Computers . 127

14.2 The Threat of Quantum Computers . 127

14.2.1 Shor . 127

14.2.2 Grover . 128

14.3 Quantum Supremacy . 128

14.4 The Threat of Shor and Grover cont’d . 129

14.4.1 PQC Standardization . 130

14.5 Quantum-Safe Candidates . 130

15 Bitcoin 131
15.1 Paper Cash . 131

15.1.1 Features of Paper Cash . 131

15.2 Bitcoin . 131

15.2.1 Reasons to use Bitcoin . 132

15.2.2 Distributed Ledger . 133

15.2.3 Elements of Bitcoin . 133

15.3 Transactions . 134

15.3.1 Transaction Chain for the First Bitcoins . 134

15.4 Ethereum . 138

16 Wrap-up 139
16.1 Boring Crypto . 139

16.2 Cool Crypto . 139

5

List of Algorithms

1 RC4 Key Scheduling Algorithm . 17

2 RC4 Keystream Generator . 18

3 WEP protocol: sending packet . 19

4 WEP protocol: receiving packet . 20

5 ChaCha20 Keystream Generator . 24

6 Meet-In-The-Middle Attack on Double-DES . 28

7 Encryption of Substitution-Permutation Networks . 32

8 AES Encryption . 37

9 AES Decryption . 37

10 Davies-Meyer hash function . 42

11 VW collision finding . 48

12 Merkle’s hash function . 49

13 SHA-256 Preprocessing . 53

14 CBC-MAC . 57

15 Basic GSM security protocol . 61

16 CTR: Encryption . 63

17 CTR: Decryption . 63

18 AES-GCM encryption/authentication . 64

19 AES-GCM decryption/authentication . 65

20 Hybrid scheme: encryption of signed message . 76

21 Hybrid scheme: authenticity verification . 76

22 Modular exponentiation naive algorithm 1 . 78

23 Modular exponentiation naive algorithm 2 . 78

24 Modular exponentiation: repeated square-and-multiply . 78

25 RSA Key Generation . 79

26 RSA Encryption . 79

27 RSA Decryption . 79

28 RSA Signature Generation . 81

29 RSA Signature Verification . 81

30 RSA PKCS #1 v1.5 signature generations . 88

31 RSA PKCS #1 v1.5 signature verification . 88

32 Bleichenbacher’s Attack . 89

33 Shank’s algorithm . 96

34 c = a · b mod p . 98

6

LIST OF ALGORITHMS 7

35 ECDSA key generation . 101

36 ECDSA signature generation . 102

37 ECDSA signature verification . 102

38 Bluetooth security protocol phase 1: public key exchange 106

39 Bluetooth security protocol phase 2: authentication stage 1 106

40 Bluetooth security protocol phase 3: authentication stage 2 107

41 Bluetooth security protocol phase 4: link key calculation . 107

42 Bluetooth security protocol: authentication and encryption 107

1
Introduction

Cryptography is about securing communications in the presence of malicious adversaries.

Alice Bob

Eve

Unsecured Channel

Read data
Modify data
Inject data
Delete data
· · ·

Note that even if we call him “Eve”, he can do more than eavesdropping... The adversary is malicious,
powerful and unpredictable.

Fundamental Goals of Cryptography

1. Confidentiality: Keeping data secret from all but those authorized to see it.

2. Data integrity: Ensuring data has not been altered by unauthorized means.

3. Data origin authentication: Corroborating the source of data.

4. Non-repudiation: Preventing an entity from denying previous commitments or actions.

Some examples of unsecured channel:

• Secure Browsing: The Internet

• Online Shopping: The Internet

• Automatic Software Upgrades: The Internet

• Cell Phone Service: Wireless

• Wi-Fi: Wireless

• Bluetooth: Wireless

• Messaging: Wired/Wireless

8

CHAPTER 1. INTRODUCTION 9

Communicating Parties

Alice and Bob are two communicating devices.

Alice Bob Communication channel
person person telephone cable
person person cellular network
person web site internet
iPhone wireless router wireless
iPhone headphones wireless
iPhone service provider cellular network
your car’s brakes another car wireless
smart card bank machine financial network
smart meter energy provider wireless
military commander satellite space

1.1 Secure Web Transactions

Transport Layer Security (TLS): The cryptographic protocol used by web browsers for secure web
transactions for secure access to amazon, gmail, hotmail, facebook etc.

TLS is used to assure an individual user (called a client) of the authenticity of the web site (called the
server) he or she is visiting, and to establish a secure communications channel for the remainder of
the session.

Symmetric-key cryptography: The client and server a priori share some secret information k, called a
key.

They can subsequently engage in secure communications by encrypting their messages with AES and
authenticating the resulting ciphertexts with HMAC.

How do they establish the shared secret key k?

Public-key cryptography: Communicating parties a priori share some authenticated (but non-secret)
information.

To establish a secret key, the client selects the secret session key k, and encrypts it with the server’s
RSA public key. Then only the server can decrypt the resulting ciphertext with its RSA private key to
recover k.

How does the client obtain an authentic copy of the server’s RSA public key?

Signature scheme: The server’s RSA public key is signed by a Certifying Authority using the RSA
signature scheme.

The client can verify the signature using the Certifying Authority’s RSA public verification key which
is embedded in its browser. Then, the client obtains an authentic copy of the server’s RSA public key.

1.1.1 The TLS Protocol

1. When a client first visits a secured web page, the server transmits its certificate to the client.

• The certificate contains the server’s identifying information (e.g., web site name and URL)
and RSA public key, and the RSA signature of a certifying authority.

• The certifying authority (e.g., Verisign) is trusted to carefully verify the server’s identity
before issuing the certificate.

CHAPTER 1. INTRODUCTION 10

2. Upon receipt of the certificate, the client verifies the signature using the certifying authority’s
public key, which is embedded in the browser. A successful verification confirms the authenticity
of the server and of its RSA public key.

3. The client selects a random session key k, encrypts it with the server’s RSA public key, and
transmits the resulting ciphertext to the server.

4. The server decrypts the ciphertext to obtain the session key, which is then used with symmetric-
key schemes to encrypt (e.g. with AES) and authenticate (e.g. with HMAC) all sensitive data
exchanged for the remainder of the session.

5. The establishment of a secure link is indicated by a closed padlock in the browser. Clicking on
this icon reveals the server’s certificate and information about the certifying authority.

TLS is one of the most successful security technologies ever deployed. But is TLS really secure?

There are many potential security vulnerabilities:

1. The crypto is weak (e.g., AES, HMAC, RSA).

2. Quantum attacks on the underlying cryptography.

3. Weak random number generation.

4. Issuance of fraudulent certificates

• In 2001, Verisign erroneously issued two Class 3 code-signing certificates to a person mas-
querading as a Microsoft representative.

• Mistake due to human error.

5. Software bugs (both inadvertent and malicious).

6. Phishing attacks.

7. TLS only protects data during transit. It does not protect your data when collected at the server.

Many servers store large amounts of credit card data and other personal information.

8. The National Security Agency (NSA)

1.2 Cryptography in Context

Cybersecurity is comprised of the concepts, technical measures, and administrative measures used to
protect networks, computers, programs and data from deliberate or inadvertent unauthorized access,
disclosure, manipulation, loss or use. Also known as information security. Cybersecurity includes the
study of computer security, network security and software security.

Note that Cryptography 6= Cybersecurity.

• Cryptography provides some mathematical tools that can assist with the provision of cybersecu-
rity services. It is a small, albeit an indispensable, part of a complete security solution.

• Security is a chain

– Weak links become targets; one flaw is all it takes.

– Cryptography is usually not the weakest link. However, when the crypto fails the damage
can be catastrophic.

2
Symmetric-Key Cryptography

2.1 Basic concepts

symmetric-key encryption scheme

A symmetric-key encryption scheme (SKES) consists of:

• M - the plaintext space,

• C - the ciphertext space,

• K - the key space,

• a family of encryption functions: Ek : M→ C, ∀k ∈ K,

• a family of decryption functions: Dk : M → C, ∀k ∈ K, such that Dk(Ek(m)) = m for all
m ∈ M, k ∈ K.

Alice Bob

Eve

Unsecured Channel

Secure Channel

1. Alice and Bob agree on a secret key k ∈ K by communicating over the secure channel.

2. Alice computes c = Ek(m) and sends the ciphertext c to Bob over the unsecured channel.

3. Bob retrieves the plaintext by computing m = Dk(c).

Some examples:

• WWII: Enigma Machine, Alan Turing,

https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

• WWII: Lorenz Machine, Bill Tutte, Colossus

11

https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 12

http://tinyurl.com/COBillTutte, http://billtuttememorial.org.uk/

2.1.1 The Simple Substitution Cipher

• M = all English msgs.

• C = all encrypted msgs.

• K = all permutations of the English alphabet.

• Ek(m): Apply permutation k to m, one letter at a time.

• Dk(c): Apply inverse permutations k−1 to c, one letter at a time.

Example:

k =
a b c d e f g h i j k l m n o p q r s t u v w x y z
D N X E S K O J T A F P Y I Q U B R Z G V C H M W L

Encryption: m = the big dog, c = Ek(the big dog) = GJS NTO EQO.

Decryption: c = GJS NTO EQO, m = E−1
k (GJS NTO EQO) = the big dog.

2.1.2 Security of SKES

Is the simple substitution cipher a secure SKES? but wait, what does it mean for a SKES to be secure?
We need a security definition.

1. What are the computational powers of the adversary?

2. How does the adversary interact with the two communicating parties?

3. What is the adversary’s goal?

Security model: Defines the computational abilities of the adversary, and how she interacts with the
communicating parties.

Basic assumption: The adversary knows everything about the SKES, except the particular key k chosen
by Alice and Bob. (Avoid security by obscurity!!) Security should only depend on the secrecy of the
secret keying material, not on the secrecy of the algorithms that describe the cryptographic scheme.

Let’s now consider the computational power of the adversary.

• Information-theoretic security: Eve has infinite computational resources.

• Complexity-theoretic security: Eve is a ‘polynomial-time Turing machine’.

• Computational security: Eve has 36,768 Intel E5-2683 V4 cores running at 2.1 GHz at her dis-
posal. See: Graham in the basement of MC

We say: Eve is “computationally bounded”.

In this course, we will be concerned with computational security.

Next consider how the adversary can interact with Alice and Bob.

• Passive attacks:

– Ciphertext-only attack: The adversary knows some ciphertext (that was generated by Alice
or Bob).

– Known-plaintext attack: The adversary also knows some plaintext and the corresponding

http://tinyurl.com/COBillTutte
http://billtuttememorial.org.uk/
https://docs.computecanada.ca/wiki/Graham

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 13

ciphertext. (stronger because more info than before)1

• Active attacks: (even stronger)

– Chosen-plaintext attack: The adversary can also choose some plaintext and obtains the
corresponding ciphertext. This is at least as strong as known-plaintext attack because the
attacker gets to choose the plain text for which it is given the corresponding ciphertext.

• Other attacks (not considered in this course):

– Clandestine attacks: bribery, blackmail, etc.

– Side-channel attacks: monitor the encryption and decryption equipment (timing attacks,
power analysis attacks, electromagnetic-radiation analysis, etc.)

Finally, we will consider the adversary’s goal (from strongest to weakest).

1. Recover the secret key.

2. Systematically recover plaintext from ciphertext (without necessarily learning the secret key).

3. Learn some partial information about the plaintext from the ciphertext (other than its length).

If the adversary can achieve 1 or 2, the SKES is said to be totally insecure (or totally broken).

If the adversary cannot learn any partial information about the plaintext from the ciphertext (except
possibly its length), the SKES is said to be semantically secure. So the ciphertext hides all the meaning
about the corresponding plaintext.

security of symmetric-key encryption scheme

A symmetric-key encryption scheme is said to be secure if it is semantically secure against
chosen-plaintext attack by a computationally bounded adversary.

Note that the definitions captures the computational abilities of the adversary, namely some concrete
upper bound on its computational resources. It captures how the adversary interacts with Alice and
Bob, namely by mounting a chosen-plaintext attack. And finally, it captures the goal of the adversary,
namely breaking semantic security. Note also that in the definition the attacker’s capabilities are as
strong as possible, namely a chosen-plaintext attack and its goal is as weak as possible namely, breaking
semantic security

From the definition, we can also deduce what it means to break an encryption scheme.

1. The adversary is given a challenge ciphertext c (generated by Alice or Bob using their secret
key k).

2. During its computation, the adversary can select plaintexts and obtains (from Alice or Bob) the
corresponding ciphertexts.

3. After a feasible amount of computation, the adversary obtains some information about the plain-
text m corresponding to the challenge ciphertext c (other than the length of m).

If the attacker can win this game specified in these three steps, then we’ll say that the encryption
scheme is in secure.

1In practice, Eve might get such plaintext because in many applications data is first formatted by prepending to it some
header information whose contents might be predictable, for example email headers.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 14

Desirable Properties of a SKES

1. Efficient algorithms should be known for computing Ek and Dk (i.e., for encryption and decryp-
tion).

2. The secret key should be small (but large enough to render exhaustive key search infeasible).

3. The scheme should be secure.

4. The scheme should be secure even against the designer of the system.

The last point is to ensure that the designer hasn’t somehow inserted a backdoor into the encryption
scheme whereby the adversary can learn a secret keying material by looking at ciphertext, while this
method would be hard to find by other people. This fourth property can sometimes be very difficult
to obtain in practice.

Now we can see whether the simple substitution cipher is secure: Totally insecure against a chosen-
plaintext attack. This is because the adversary can simply give the plaintext message that’s comprised of
the English alphabet from a to z to Alice for encryption. Alice returns to the adversary the ciphertext,
which it turns out is the secret key itself. And so by simply giving Alice a short plaintext and getting
back the corresponding ciphertext the adversary has learnt Alice’s secret key.

What about security under a ciphertext-only attack? Is exhaustive key search possible?

In this attack, we are given sufficient amounts of ciphertext c, decrypt c using each possible key until
c decrypts to a plaintext message which “makes sense” (normal English). In principle, 30 characters
of ciphertext are sufficient on average to yield a unique plaintext that is a sensible English message. In
practice, a few hundred characters are needed.

If we tried exhaustive search, the number of keys to try is 26! ≈ 288, which is very large in the following
sense: If the adversary uses 106 computers, each capable of trying 109 keys per second, then exhaustive
key search takes about 104 years. So, exhaustive key search is infeasible.

In this course, a cryptographic task that requires

• 240 operations is considered very easy.

• 256 operations is considered easy.

• 264 operations is considered feasible.

• 280 operations is considered barely feasible.

• 2128 operations is considered infeasible.

The Bitcoin network is presently performing hash operations at the rate of 266.4 per second (or 291.3

per year).

The Landauer limit from thermodynamics suggests that exhaustively trying 2128 symmetric keys
would require � 3000 gigawatts of power for one year (which is � 100% of the world’s energy
production). http://en.wikipedia.org/wiki/Brute-force_attack

security level of a cryptographic scheme

A cryptographic scheme is said to have a security level of ` bits if the fasted known attack on
the scheme takes approximately 2` operations.

As of the year 2021, a security level of 128 bits is desirable in practice.

http://en.wikipedia.org/wiki/Brute-force_attack

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 15

Let’s return to our question of whether the simple substitution cipher is secure against a ciphertext-
only attack. In fact, simple frequency analysis of ciphertext letters can be used to recover the key. One
would simply find the most frequently occurring ciphertext letter; this would most likely correspond
to the English letter e which is the most frequently occurring letter in the English alphabet. Hence, the
simple substitution cipher is totally insecure even against a ciphertext-only attack.

2.1.3 Polyalphabetic Ciphers

Basic idea: Use several permutations, so a plaintext letter is encrypted to one of several possible
ciphertext letters.

Example: Vigenère cipher
Secret key is an English word having no repeated letters. E.g., k = CRYPTO.

Example of encryption:

m = t h i s i s a m e s s a g e
+ k = C R Y P T O C R Y P T O C R

c = V Y G H B G C D C H L O I V

Here, A = 0, B = 1, . . . , Z = 25; addition of letters is mod 26.

Decryption is subtraction modulo 26: m = c− k.

Frequency distribution of ciphertext letters is flatter (than for a simple substitution cipher).

The Vigenère cipher is totally insecure against a chosen-plaintext attack. Not unexpectedly, the Vi-
genère cipher is also totally insecure against a ciphertext-only attack.

2.2 The One-Time Pad

The one-time pad is a symmetric-key encryption scheme invented by Vernam in 1917 for the telegraph
system. The key is a random2 string of letters. Example of encryption:

m = t h i s i s a m e s s a g e
+ k = Z F K W O G P S M F J D L G

c = S M S P W Y P F Q X C D R K

Note that the key is as long as the plaintext. One major disadvantage of the one-time pad is that the
secret key is of the same length as the plaintext. This is especially inconvenient if Alice and Bob are
exchanging long messages over a period of time, and so it might be tempting in practice to reuse the
secret key.

The key should not be re-used: If c1 = m1 + k and c2 = m2 + k, then c1 − c2 = m1 −m2. Thus c1 − c2

depends only on the plaintext (and not on the key) and hence can leak information about the plaintext.
In particular, if m1 is known, then m2 can be easily computed.

In the one-time pad, we took the plaintext letters to be the english alphabet. From now on in the
course, unless otherwise stated, messages and keys will be assumed to be binary/bit strings. This is a
reasonable convention since computers process binary data.

2independently and uniformly at random

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 16

XOR

⊕ is bitwise exclusive-or (XOR) i.e., bitwise addition modulo 2. For example:

1011001010⊕ 1001001001 = 0010000011.

Note that x⊕ x = 0 and x⊕ y = y⊕ x. Hence if x = y⊕ z, then x⊕ y = z.

So, for the one-time pad:

Encryption: c = m⊕ k.

Decryption: m = c⊕ k.

https://cryptosmith.com/2008/05/31/stream-reuse/ is an example which reuses the same key...

Security of One-Time Pad

Perfect secrecy: The one-time pad is semantically secure against ciphertext-only attack by an adversary
with infinite computational resources. This can be proven formally using concepts from information
theory [Shannon 1949].

The bad news with perfect secrecy is that Shannon (1949) proved that if plaintexts are m-bit strings,
then any symmetric-key encryption scheme with perfect secrecy must have |K| ≥ 2m. So, perfect
secrecy (and the one-time pad) is fairly useless in practice. However, all is not lost. One can use
one-time pads to inspire the construction of so-called stream ciphers.

2.3 Stream Ciphers

Basic idea: Instead of using a random key in the one-time pad, use a “pseudorandom” key.

A pseudorandom bit generator (PRBG) is a deterministic algorithm that takes as input a (relatively
small random) seed, and outputs a longer “pseudorandom” sequence called the keystream.

Using a PRBG for encryption (a stream cipher):

The seed is the secret key shared by Alice and Bob.

Seed

PRBG

Keystream

Plaintext⊕

Ciphertext

The XOR portion of the stream cipher emulates a one-time pad. Note though that we no longer have
perfect secrecy because the keystream is no longer purely random but pseudo-random. Thus security
depends on the quality of the PRBG.

There are two security requirements for the pseudo-random bit generator.

https://cryptosmith.com/2008/05/31/stream-reuse/

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 17

First, The keystream should be “indistinguishable” from a random sequence (the indistinguishability
requirement).

If an adversary knows a portion c1 of ciphertext and the corresponding plaintext m1, then she can easily
find the corresponding portion k1 = c1 ⊕m1 of the keystream. Thus, given portions of the keystream,
it should be infeasible to learn any information about the rest of the keystream (the unpredictability
requirement).

Aside: Don’t use UNIX random number generators (rand and srand) for cryptography!

• X0 = seed, Xi+1 = aXi + b mod n, i ≥ 0.

• a, b and n are fixed and public constants.

And so the UNIX routines rand and srand do not meet the unpredictability requirement.

One difficulty with using stream ciphers in practice is that we still have the requirement as we did
with the one-time pad that keystream should never be reused.

Then we will see two examples of stream ciphers: RC4 and ChaCha20.

2.4 The RC4 Stream Cipher

It was designed by Ron Rivest in 1987. He is the “R” in RSA. Until recently, was widely used in
commercial products including Adobe Acrobat, Windows password encryption, Oracle secure SQL,
TLS, etc.

• Pros: Extremely simple; extremely fast; variable key length. No catastrophic weakness has been
found since 1987.

• Cons: Design criteria are proprietary; not much public scrutiny until the year 2001.

In the past 10 years, many weaknesses have been found in RC4 and so its use has rapidly declined in
practice.

RC4 has two components: (i) a key scheduling algorithm, and (ii) a keystream generator.

In the following, K[i], K[i] and S[i] are 8-bit integers (bytes).

Algorithm 1: RC4 Key Scheduling Algorithm

Input: Secret key K[0], K[1], . . . , K[d− 1]. (Keylength is 8d bits.)
Output: 256-long array: S[0], S[1], . . . , S[255].

1 for i = 0, . . . , 255 do
2 S[i]← i
3 K[i]← K[i mod d]

4 j← 0
5 for i = 0, . . . , 255 do
6 j← (K[i] + S[i] + j) mod 256
7 Swap(S[i], S[j])

The idea of key scheduling is to begin with the identity permutation capital S of the integers 0 through
255, and then apply 256 random swaps to this permutation with the hope that the resulting permuta-
tion is a random looking permutation. S is a “random-looking” permutation of {0, 1, 2, . . . , 255} that
is generated from the secret key.

In keystream generation, the array S from key scheduling is used to generate keystream of the desired

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 18

length. Alice would generate keystream of a certain length, add it to plaintext to get ciphertext. And
Bob would generate the same keystream and add it to ciphertext to get plaintext.

Algorithm 2: RC4 Keystream Generator

Input: 256-long byte array: S[0], S[1], . . . , S[255] produced by the RC4 Key Scheduling
Algorithm

Output: Keystream.
1 i← 0; j← 0
2 while keystream bytes are required do
3 i← (i + 1) mod 256
4 j← (S[i] + j) mod 256
5 Swap(S[i], S[j])
6 t← (S[i] + S[j]) mod 256
7 Output(S[t])

ENCRYPTION: The keystream bytes are stored with the plaintext bytes to produce ciphertext bytes.

2.4.1 Case Study: Wired Equivalent Privacy

Wireless Security

Wireless networks have become prevalent. Popular standards for wireless networks: IEEE 802.11

(longer range, higher speeds, commonly used for wireless LANs) and Bluetooth (short range, low
speed).

New security concerns:

• More attack opportunities (no need for physical access).

• Attack from a distance (> 1 km with good antennae).

• No physical evidence of attack.

IEEE 802.11 Security

IEEE 802.11 standard for wireless LAN communications includes a protocol called Wired Equivalent
Privacy (WEP). This standard was ratified in September 1999. This was a very exciting time because
this was the first time that wi-fi was available to the consumer market. Multiple amendments: 802.11a
(1999), 802.11b (1999), 802.11g (2003), 802.11i (2004), 802.11n (2009). . . WEP’s goal is (only) to protect
link-level data during wireless transmission between mobile stations and access points. A mobile
station might be your cell phone or your laptop, and an access point is a wi-fi router somewhere in
the building.

LAN

Access Point

Mobile Station Mobile StationMobile Station

WEP had three main security goals.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 19

1. Confidentiality: Prevent casual eavesdropping. To achieve this, RC4 is used for encryption.

2. Data Integrity: Prevent tampering with transmitted messages. To achieve this, an ‘integrity check-
sum’ is used for WEP.

3. Access Control: Protect access to a wireless network infrastructure. This was achieved by discard-
ing all packets that are not properly encrypted using WEP.

Description of WEP Protocol

Mobile stations share a secret key k with access point. Here k is either 40 bits or 104 bits in length.
The IEEE standard does not specify how the key is to be distributed. But in practice, one shared key
per LAN is common; this key is manually injected into each access point and mobile station; the key
is not changed very frequently.

Plaintext messages are divided into packets of some fixed length (e.g., 1500 bytes). These packets were
encrypted using RC4. Since a mobile station or access point might encrypt many packets in a given
period of time, WEP had to be careful not to reuse RC4 keystreams.

Thus WEP uses a per-packet 24-bit initialization vector (IV) v to process each packet. WEP does not
specify how the IVs are managed. In practice: either a random IV is generated for each packet; or the
IV is set to 0 and incremented by 1 for each use.

To send a packet m, an entity (e.g., Alice) does the following:

Algorithm 3: WEP protocol: sending packet

1 Select a 24-bit IV v.
2 Compute a 32-bit checksum: S = CRC(m).
3 Compute c = (m ‖ S)⊕ RC4(v ‖ k).
4 Send (v, c) over the wireless channel.

Note:

• 802.11 specifies that a CRC-32 checksum be used. CRC-32 is linear. That is, for any two messages
m1 and m2 of the same bitlength,

CRC(m1 ⊕m2) = CRC(m1) + CRC(m2).

(The details of CRC-32 are not important to us)

• In step 3, ‖ (and also a comma) denotes concatenation

• (v ‖ k) is the key used the RC4 stream cipher.

Here’s a diagram of the encryption process.

Message m | CRC

Keystream = RC4(v, k)

Ciphertext cv

⊕

Transmitted data

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 20

The receiver of (v, c) does the following:

Algorithm 4: WEP protocol: receiving packet

1 Compute (m ‖ S) = c⊕ RC4(v ‖ k).
2 Compute S′ = CRC(m); reject the packet if S′ 6= S.

Are confidentiality, data integrity, and access control achieved?

Intuitively the answer is yes. No (Borisov, Goldberg & Wagner; 2001),

Problem 1: IV Collision

Suppose that two packets (v, c) and (v, c′) use the same IV v. Let m, m′ be the corresponding plaintexts.
Then c⊕ c′ = (m ‖ S)⊕ (m′ ‖ S′). Thus, the eavesdropper can compute m⊕m′. If m is known, the, m′

is immediately available. If m is not known, then one may be able to use the expected distribution of
m and m′ to discover information about them. (Some contents of network traffic is predictable.)

Since there are only 224 choices for the IV, collisions are guaranteed after enough time - a few days on
a busy network (5 Mbps). If IVs are randomly selected, then one can expect a collision after about 212

(=
√

224) packets. This is due to the birthday paradox.

Birthday paradox

Suppose that an urn contains n numbered balls. Suppose that balls are drawn from the urn,
one at a time, with replacement. The expected number of draws before a ball is selected for a
second time (called a collision) is approximately

√
πn/2 ≈ √n.

Collisions are more likely if keys k are long-lived and the same key is used for multiple mobile stations
in a network.

Conclusion: WEP does not provide a high degree of confidentiality.

Problem 2: Checksum is Linear

CRC-32 is used to check integrity. This is fine for random errors, but not for deliberate ones.

It is easy to make controlled changes to (encrypted) packets: Suppose (v, c) is an encrypted packet.
Let c = RC4(c ‖ k)⊕ (m ‖ S), where k, m, S are unknown to the adversary.

The adversary chooses a bit string ∆ of the same length as m, where the ones in ∆ correspond to the
bits of m that she wishes to change. Let m′ = m⊕ ∆, where ∆ is a bit string. And so in this way the
attacker can make controlled changes to the unknown plaintext m.

Let c′ = c⊕ (∆ ‖ CRC(∆)). Then (v, c′) is a valid encrypted packet for m′.

c′ = c⊕ (∆ ‖ CRC(∆))

= RC4(v ‖ k)⊕ (m ‖ S)⊕ (∆ ‖ CRC(∆))

= RC4(v ‖ k)⊕ (m⊕ ∆ ‖ CRC(m)⊕CRC(∆))

= RC4(c ‖ k)⊕ (m′ ‖ CRC(m⊕ ∆))

= RC4(v ‖ k)⊕ (m′ ‖ CRC(m′))

Hence the receiver will accept c′ as a validly encrypted WEP packet, and will accept m′ as the plaintext.
In this way, the adversary has successfully made a controlled change to the plaintext m without actually
knowing the plaintext.

https://cs.uwaterloo.ca/~iang/

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 21

Conclusion: WEP does not provide data integrity.

Problem 3: Integrity Function is Unkeyed

Suppose that an attacker learns the plaintext m corresponding to a single encrypted packet (v, c).
Then, the attacker can compute the RC4 keystream RC4(v ‖ k) = c ⊕ (m ‖ CRC(m)). Henceforth,
the attacker can compute a valid encrypted packet for any plaintext m′ of her choice: (v, c′), where
c′ = RC4(v ‖ k) = c ⊕ (m′ ‖ CRC(m′)). Note that this is a validly encrypted ciphertext for the
plaintext m′.

Conclusion: WEP does not provide access control.

Optional Reading: Sections 1, 2, 3, 4.1, 4.2, 6 of “Intercepting mobile communications: The insecurity of
802.11", by N. Borisov, I. Goldberg and D. Wagner.

2.4.2 Fluhrer-Mantin-Shamir Attack

Shortly after these attacks on WEP were disclosed, a more devastating attack was discovered. This was
due to Fluhrer, Mantin & Shamir, 2001. Shamir is the “S" in RSA.

The attack makes the following three assumptions:

1. The same 104-bit key k is used for a long period of time. [Most products do this.]

2. The IV is incremented for each packet, or a random IV is selected for each packet. [Most products
do this.]

3. The first plaintext byte of each packet (i.e. the first byte of each m) is known to the attacker.
[Most wireless protocols prepend the plaintext with some header bytes which are non-secret.]

In the attack, a passive adversary who can collect about 5,000,000 encrypted packets can very easily
recover k (and thus totally break the system). [Details not covered in this course.]

The attack can be easily mounted in practice: Can buy a $100 wireless card and hack drivers to capture
(encrypted) packets. On a busy wireless network (5Mbps), 5 million packets can be captured in a few
hours, and then k can be immediately computed.

Implementation details: A. Stubbefield, J. Ionnidis, A. Rubin, “Using the Fluhrer, Mantin and Shamir
attack to break WEP”, AT&T Technical Report, August 2001.

If you want to mount the WEP attack today, all you have to do is find a wireless network that still uses
WEP and then go to one of these two websites: Aircrack-ng, WEPCrack. The latest enhancement of
the Fleur-Mantin-Shamir attack is aircrack ptw. This can break WEP in under 60 seconds (only about
40,000 packets are needed).

WEP was blamed for the 2007 theft of 45 million credit-card numbers from T.J. Maxx. (T.J. Maxx is an
American department store chain). A subsequent class action lawsuit settled for $40, 900, 000.

See: http://tinyurl.com/WEP-TJMaxx

IEEE 802.11 Update

http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access

WPA2 (Wi-Fi Protected Access) Implements the new IEEE 802.11i standard (2004). Uses the AES
block cipher instead of RC4. Deployed ubiquitously in Wi-fi networks. However, deployments of WEP
are still out there, check https://wigle.net/stats. KRACK attack disclosed in October 2017.

http://www.isaac.cs.berkeley.edu/isaac/mobicom.pdf
http://www.isaac.cs.berkeley.edu/isaac/mobicom.pdf
http://www.aircrack-ng.org/doku.php
https://sourceforge.net/projects/wepcrack
http://tinyurl.com/WEP-TJMaxx
http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
https://wigle.net/stats

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 22

WPA3 Adopted in January 2018. This contains further improvements to WPA2, including counter-
measures to the CRACK attack. Dragonblood attack disclosed in April 2019.

This cycle of finding attacks and then fixing them with counter-measures continues today.

The Fluhrer-Mantin-Shamir attack exploits known biases in the first few bytes of the keystream. The
attack can be defeated by discarding the first few bytes (e.g., 768 bytes) of the keystream. [Details
omitted]

As of 2013, approximately 50% of all TLS traffic was secured using RC4. 2013-2021: Because of several
new weaknesses discovered, RC4 has been deprecated in applications such as TLS. (As of October
2019, ≈ 11.6% of websites have RC4 enabled, and only ≈ 1.1% actually use it.)

Conclusions: Don’t use RC4. Instead use ChaCha20 or AES-CTR (more on these later).

Lessons Learned

1. Details matter: RC4 was considered to be a secure stream cipher. However, it was improperly
used in WEP and the result was a highly insecure communications protocol. Do not assume
that “obvious” ways of using cryptographic functions are secure.

2. Attacks only get better; they never get worse.

(a) Moore’s law (1965): computers get twice as fast every two years.

(b) Known attacks are constantly being tweaked and improved.

(c) New attacks are constantly being invented.

3. Designing security is hard:

• Designing cryptographic protocols is complicated and difficult.

• Clearly state your security objectives.

• Hire cryptography experts to design your security. Programming or engineering experts
are not good enough.

• Make your protocols available for public scrutiny.

4. There is a big demand in industry for “security engineers”: People who have a deep under-
standing of applied cryptography and have excellent programming skills.

2.5 ChaCha20 Stream Cipher

It was designed by Dan Bernstein in 2008.

The ChaCha20 stream cipher is conceptually simple, word-oriented, and uses only simple arithmetic
operations (integer addition modulo 232, xor, and left rotations3). As a result, it is extremely fast
in software, and does not require any special hardware. To date, no security weaknesses have been
found. ChaCha20 is widely deployed in practice, including in TLS.

Let’s first describe ChaCha20’s initial state. We will use the following notation:

• 256-bit key: k = (k1, k2, . . . , k8)

• 96-bit nonce: n = (n1, n2, n3)

• 128-bit constant: f = (f1, f2, f3, f4)

3These three arithmetic operations are included in the instruction sets of most modern processors.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 23

• 32-bit counter: c

A hexadecimal digit is a 4-bit number.

The words are f1, f2, f3, f4, written as hexadecimal strings of length 8. For example, f1 = 0x61707865.
Each of the eight hexadecimal digits is between 0 and 9 or a to f. These represent the decimal numbers
between 0 and 15, or a binary string of length 4. And so this hexadecimal string of length 8 can be
viewed as a binary string of length 32.

A nonce (or IV) is a non-repeating quantity (either a counter, or a randomly-generated string).

The initial state of ChaCha20 can be represented by this 4× 4 array of 32-bit words:

f1 f2 f3 f4

k1 k2 k3 k4

k5 k6 k7 k8

c n1 n2 n3

=

S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11 S12

S13 S14 S15 S16

2.5.1 ChaCha20 Quarter Round Function

It’s called a quarter round function since it operates on a quarter of the state, which is a binary string
of length 128 bits.

Src: https://commons.wikimedia.org/wiki/File:ChaCha_Cipher_Quarter_Round_Function.svg.

The purpose of the quarter round function is to mix up the bits of a, b, c, and d in a complicated
nonlinear fashion. This is done with three arithmetic operations defined on 32-bit words, ⊕: XOR; and
�: integer addition modulo 232; and≪ t: left-rotate by t bit positions.

https://commons.wikimedia.org/wiki/File:ChaCha_Cipher_Quarter_Round_Function.svg

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 24

QR: Quarter Round Function

Input Four 32-bit words a, b, c, d

a← a� b, d← d⊕ a, d← d≪ 16
c← c� d, b← b⊕ c, b← b≪ 12
a← a� b, d← d⊕ a, d← d≪ 8
c← c� d, b← b⊕ c, b← b≪ 7

Output a, b, c, d

Finally, here is a description of ChaCha20’s keystream generator.

Algorithm 5: ChaCha20 Keystream Generator

1 Select a nonce n and initialize the counter c.
2 while keystream bytes are required do
3 Create the initial state S.
4 Make a copy S′ of S.
5 Update S by repeating the following 10 times:

QR (S1, S5, S9, S13) QR (S2, S6, S10, S14)

QR (S3, S7, S11, S15) QR (S4, S8, S12, S16)

QR (S1, S6, S11, S16) QR (S2, S7, S12, S13)

QR (S3, S8, S9, S14) QR (S4, S5, S10, S15)

6 Output S⊕ S′ (64 keystream bytes).
7 Increment the counter.

ENCRYPTION: The keystream bytes are xored with the plaintext bytes to produce ciphertext bytes.
The nonce is included in the ciphertext.

When Bob receives the ciphertext and the nonce, he regenerates a keystream using the keystream
generation algorithm just as Alice did, and then he xors the keystream bytes with the ciphtext bytes
to produce the plaintext bytes.

We can now see why ChaCha20 is very efficient. 64 key stream bytes can be generated using only 960

computer instructions.

Unlike RC4, ChaCha20 incorporates a nonce and a counter into the encryption algorithm and thus
the problems we saw with using RC4 in WEP are automatically avoided, even though Alice and Bob
might use the same secret key for a long period of time. Since they use a 96-bit nonce for each plaintext
that they encrypt and they use a counter for each 64 byte portion of the keystream for encrypting a
particular plaintext, with very high probability ChaCha20 keystream is never reused by Alice and Bob.

2.6 Block Ciphers

A block cipher is a SKES that breaks up the plaintext into blocks of a fixed length (e.g. 128 bits), and
encrypts the blocks one at a time.

In contrast, a stream cipher encrypts the plaintext one character (usually a bit) at a time.

Historically important example of a block cipher: The Data Encryption Standard (DES)

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 25

Key

DESPlaintext Ciphertext

64 bits 64 bits

56 bits

Key length: 56 bits; Size of key space 256; Block length: 64 bits.

2.6.1 Brief History of Block Ciphers

Late 1960’s: Feistel network and LUCIFER designed at IBM.

1972: NBS (now NIST: National Institute of Standards and Technology) solicits proposals for encryp-
tion algorithms for the protection of computer data.

1973-1974: IBM develops DES.

1975: NSA (National Security Agency) “fixes” DES. Reduces the key length from 64 bits to 56 bits.
(NSA tried for 48 bits; compromised at 56 bits.)

To understand NSA’s motivation for doing this, let’s take a quick look at the NSA organization and its
mission.

NSA

The National Security Agency: Founded in 1952. Budget is Classified (estimated: $10.8 billion/year),
as well as its number of employees (30,000–40,000).

NSA has two main divisions: Signals Intelligence (SIGINT) which produces foreign intelligence infor-
mation and Information Assurance (IA) which protects all classified and sensitive information that is
stored or sent through US government equipment.

The NSA is very influential in setting US government export policy for cryptographic products (espe-
cially encryption). Canadian counterpart: Communications Security Establishment (CSE).

Most countries around the world have organizations analogous to the NSA. Here is the logo of Min-
istry of State Security (China):

https://www.nsa.gov/
https://www.cse-cst.gc.ca/

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 26

Picture from wiki: https://commons.wikimedia.org/wiki/File:Ministry_of_State_Security_of_
the_People%27s_Republic_of_China.svg

NSA Shenanigans
Edward Snowden. CIA/NSA contractor who disclosed in 2013 up to 200,000 NSA classified doc-
uments to the press. Currently in Russia under temporary asylum. Documents revealed the enor-
mous capabilities of NSA and its partners (including CSE and GCHQ):

• “Groundbreaking cryptanalytic capabilities”

• Collects vast amounts of internet communications and automatically analyzes the data

• Directly attacks routers, switches, firewalls, etc.

• Installs malware on individual computers

• Breaks into individual computers

Bruce Schneier, a well-known security expert, “The NSA is subverting the Internet and turning it
into a massive surveillance tool.”

Block Cipher history continued...

1977: DES adopted as US Federal Information Processing Standard (FIPS 46).

1981: DES adopted as a US banking standard (ANSI X3.92).

1997: NIST begins the AES (Advanced Encryption Standard) competition.

1999: 5 finalists for AES announced.

2001: Rijndael adopted for AES (FIPS 197). AES has three key lengths: 128, 192 and 256 bits.

2021: No significant weaknesses found with AES (as yet). AES uptake is rapidly increasing. However,
(Triple-)DES is still deployed.

2.6.2 Some Desirable Properties of Block Ciphers

Design principles described by Claude Shannon in 1949:

• Security:

– Diffusion: each ciphertext bit should depend on all plaintext bits.

– Confusion: the relationship between key and ciphertext bits should be complicated.

– Key length: should be small, but large enough to preclude exhaustive key search.

• Efficiency:

– Simplicity (easier to implement and analyze).

– High encryption and decryption rate.

– Suitability for hardware or software.

https://commons.wikimedia.org/wiki/File:Ministry_of_State_Security_of_the_People%27s_Republic_of_China.svg
https://commons.wikimedia.org/wiki/File:Ministry_of_State_Security_of_the_People%27s_Republic_of_China.svg

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 27

2.6.3 The Data Encryption Standard (DES)

Key

DESPlaintext Ciphertext

64 bits 64 bits

56 bits

Key length: 56 bits; Size of key space 256; Block length: 64 bits.

The design principles of DES were classified by the NSA in the mid-1970s and they remain classified
today, making analysis difficult. Nonetheless, hundreds of research papers have been written on the
security of DES since the mid-1970s. (Triple-)DES is still deployed is practice, although its use is
rapidly decreasing.

DES Problem 1: Small Key Size

Exhaustive search on key space takes 256 steps and can be easily parallelized.

In the mid-1990s, the RSA security company set some DES challenges. In the challenge, you were
given three known plaintext-ciphertext pairs generated with a secret key. The plaintext were the
ASCII messages “the unknown message is”, each block being eight ASCII characters or 64 bits. You
were also given a fourth ciphertext and finding the corresponding plaintext was the challenge.

T h e u n k n o w n m e s s a g e i s : ? ? ? ? ? ? ? ?

The DES challenge was first solved in June of 1997. This was done in three months by Internet search.
In 1999, it was broken in 56 hours by DeepCrack machine (1800 chips; $250, 000). In 2006, broken in
153 hours by COPACOBANA machine ($10, 000). In 2012, broken in 11.5 hours by crack.sh ($200).
These experiments show us that the cost and time to perform exhaustive key search decrease over time
as computers get faster and cheaper.

The RSA security company also set some 64-bit challenges using the RC5 block cipher which has a
key length of 64 bits. In July 2002, broken in 1757 days. Participation by 331,252 individuals.

DES Problem 2: Small Block Size

If plaintext blocks are distributed “uniformly at random”, then the expected number of ciphertext
blocks observed before a collision occurs is ≈ 232 (by the birthday paradox). Hence the ciphertext
reveals some information about the plaintext. Small block length is also damaging to some authenti-
cation applications (more on this later).

To summarize, the only (substantial) weaknesses known in DES are the obvious ones: small key length
and small block length.

How can one construct a more secure block cipher from DES? (i.e., without changing the internals of DES.)

One approach is to use multiple encryption: Re-encrypt the ciphertext one or more times using
independent keys. Hope that this increases the effective key length.

Note that multiple encryption does not always result in increased security. For example, if Eπ denotes
the encryption function for the simple substitution cipher with key π, then is Eπ2 ◦ Eπ1 any more
secure than Eπ? No, since Eπ2 ◦ Eπ1 = Eπ2◦π1 .

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 28

2.6.4 Double-DES

Key is k = (k1, k2), k1, k2 ∈R {0, 1}56. Here k ∈R K means that k is chosen uniformly and independently
at random from K.

Encryption: c = Ek2(Ek1(m)). (E = DES encryption, E−1 = DES decryption)

k1

DESm DES

k2

c

Decryption: m = E−1
k1

(E−1
k2

(c)).

The Double-DES key length is ` = 112, so exhaustive key search takes 2112 steps (infeasible). Note also
that the block length of Double DES is the same as that of DES, namely 64 bits.

Main idea c = Ek2(Ek1(m)) if and only if E−1
k2

(c) = Ek1(m). Suppose now that (k1, k2) is Alice and
Bob’s secret key. Suppose also that we are given three plaintext-ciphertext pairs (m1, c1), (m2, c2)and(m3, c3)

that were generated by Alice or Bob using their secret key (k1, k2). In the meet-in-the-middle attack,
we’ll search for keys (h1, h2) which also encrypt mi → ci for i = 1, 2, 3. We do this by searching all
possible candidate keys (h1, h2). If we have found such key (h1, h2), we’ll conclude that (h1, h2) equals
(k1, k2) with high probability.

Algorithm 6: Meet-In-The-Middle Attack on Double-DES
Input: 3 known PT/CT pairs (m1, c1), (m2, c2), (m3, c3)

Output: The secret key (k1, k2)

1 foreach h2 ∈ {0, 1}56 do
2 Compute E−1

h2
(c1), and store [E−1

h2
(c1), h2] in a table sorted by first component.

3 foreach h1 ∈ {0, 1}56 do
4 Compute Eh1(m1).
5 Search for Eh1(m1) in the table.

// We say that Eh1(m1) matches table entry [E−1
h2

(c1), h2] if E−1
h2

(c1) = Eh1(m1).

6 foreach match [E−1
h2

(c1), h2] in the table do
7 if Eh2(Eh1(m2)) = c2 then
8 if Eh2(Eh1(m3)) = c3 then
9 Output (h1, h2) and STOP.

We need to justify the correctness and analyze the running time of the attack.

Correctness

We would like to find the number of known plaintext/ciphertext pairs needed for unique key deter-
mination.

Let E be a block cipher with key space K = {0, 1}`, and plaintext and ciphertext space {0, 1}L.

Let k′ ∈ K be the secret key chosen by Alice and Bob, and let (mi, ci), 1 ≤ i ≤ t, be known plaintext/-
ciphertext pairs, where the plaintext mi are distinct. (Note that ci = Ek′(mi) for all 1 ≤ i ≤ t)

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 29

Question Then how large should t be to ensure (with probability very close to 1) that there is only
one key k ∈ K such that Ek(mi) = ci for all 1 ≤ i ≤ t?

Answer Select t so that FK ≈ 0 where FK is so-called “false keys”.

For each k ∈ K, then encryption function Ek : {0, 1}L → {0, 1}L is a permutation. This is because the
encryption function Ek is an invertible function.

We make the heuristic assumption that for each k ∈ K, Ek is a random function (i.e., a randomly selected
function). This assumption is certainly false since Ek is not random, and because a random function is
almost certainly not a permutation. Nonetheless, it turns out that the assumption is good enough for
our analysis.

Now, fix k ∈ K, k 6= k′. The probability that Ek(mi) = ci for all 1 ≤ i ≤ t is

1
2L ·

1
2L · · ·

1
2L︸ ︷︷ ︸

t

=
1

2Lt .

Here the first probability, 1
2L , is the probability that Ek encrypts m1 to c1. This is because there are 2L

possible ciphertext blocks. Similarly for i = 2, . . . , t. Then we multiply these probabilities together.

Thus the expected number of false keys k ∈ K (not including k′) for which Ek(mi) = ci for all 1 ≤ i ≤ t
is

FK =
2` − 1

2Lt .

This expected number is the probability that a single key is a false key times the number of possible
false keys, which is the total number of keys 2` − 1 because we aren’t considering k′ as a false key.
And so the expected number of false keys is given by this expression.

Now let’s return to the correctness of the meet-in-the-middle attack. Let E be the DES encryption
function, so Double-DES encryption is c = Ek2(Ek1(m)).

1. If ` = 112, L = 64, t = 3, then FK ≈ 1/280 ≈ 0. Thus if a Double-DES key (h1, h2) is found for
which Eh2(Eh1(mi)) = ci for i = 1, 2, 3, then with very high probability we have (h1, h2) = (k1, k2).

2. If ` = 112, L = 64, t = 1, then FK ≈ 248. Thus the expected number of Double-DES keys (h1, h2)

for which Eh2(Eh1(m1)) = c1 is ≈ 248.

3. If ` = 112, L = 64, t = 2, then FK ≈ 1/216. Thus the expected number of Double-DES keys
(h1, h2) for which Eh2(Eh1(m1)) = c1 and Eh2(Eh1(m2)) = c2 is ≈ 1/216.

This justifies correctness of the meet-in-the-middle attack on Double DES.

Runtime Analysis

In the analysis, we’ll take one operation to be either a single DES encryption operation E, or a single
DES decryption operation E−1.

Now let’s take a closer look at the algorithm. The running time of line 2 is 256 operations because we
do one single decryption for each key h2 in the single DES key space.4 Similarly, the total running
time of line 4 is 256 operations. Line 7 is executed every time there is a match in line 6.

The number of matches equals the number of keys h1 for which this equation holds, in other words
(h1, h2) encrypts m1 to c1. We need to count the number of keys (h1, h2) that encrypt m1 to c1. That is
given by the number of double DES false keys when t = 1. By the formula for false keys, we see that

4More precisely, the running time here means this particular line would do one operation 256 times: this line has been
executed 256 times, and this line consists of 1 operation.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 30

this is roughly 248, so the attack will execute line 7 a total of 248 times. Thus the cost of line 7 is 2× 248

as this line involves 2 DES operations.

Finally, the attack will execute line 8 for each false key (h1, h2) that encrypts m1 → c1, m2 → c2. By the
formula for false keys, the expected number of double DES keys when t = 2 is roughly 1/216, and so
we expect that line 8 is executed 1/216 times for false keys (h1, h2), and once for the actual secret key
(k1, k2). Therefore, the expected running time of line 8 is 2×

(
1 + 1

216

)
.

To summarize, the number of DES operations is ≈ 256 + 256 + 2 · 248 ≈ 257. (We are not counting the
time to do the sorting and searching)

Note that this is a lot less than the expected running time of exhaustive key search for double DES,
which is roughly 2112. Note also that this is a feasible amount of computation and so we might
conclude that the meet-in-the-middle attack on Double DES demonstrates that Double DES offers no
more security than single DES.

Space requirements

In line 2, the table entry has length 64 + 56 bits, and we have 256 table entries. Therefore, the space of
the table in line 2 is 256(64 + 56) bits ≈ 1, 080, 863 Tbytes.

To put this in context, we consider storage units conversion:

• 103 bytes = 1 Kbyte (kilo) ≈ 210 bytes

• 103 Kbytes = 1 Mbyte (mega) ≈ 220 bytes

• 103 Mbytes = 1 Gbyte (giga) ≈ 230 bytes

• 103 Gbytes = 1 Tbyte (tera) ≈ 240 bytes

• 103 Tbytes = 1 Pbyte (peta) ≈ 250 bytes

• 103 Pbytes = 1 Ebyte (exa) ≈ 260 bytes

Accessing such a large storage would slow down the attack. Whether the meet-in-the-middle attack
on Double DES is indeed cost effective, and in particular is much better than exhaustive key search on
single DES? To address this concern, consider time-memory tradeoff. The attack can be modified to
decrease the storage requirements at the expense of time: for s ∈ [1, 55], we have time 256+s steps and
memory 256−s units.

Conclusions: Double-DES has the same effective key length as DES. Double-DES is not much more
secure than DES.

2.6.5 Triple-DES

Triple-DES. Key is k = (k1, k2, k3), k1, k2, k3 ∈R {0, 1}56.

Encryption: c = Ek3(Ek2(Ek1(m))) where E = DES encryption, E−1 = DES decryption

DES DES DESm c

k1 k2 k3

Decryption: m = E−1
k1

(E−1
k2

(E−1
k3

(c))).

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 31

Key length of Triple-DES is ` = 168, so exhaustive key search takes 2168 steps (infeasible)

One can verify meet-in-the-middle attack takes ≈ 2112 steps. So, the effective key length of Triple-DES
against exhaustive key search is ≈ 112 bits, still infeasible. However, no proof that Triple-DES is more
secure than DES.

Note that block length is unchanged.

Triple-DES is still deployed in practice, especially by some financial institutions, where its use can be
expected to continue until 2030.

2.6.6 The Advanced Encryption Standard (AES)

In this section, we will discuss AES, the block cipher that is the most widely deployed symmetric-key
encryption scheme. http://www.nist.gov/aes

In 1997, NIST began the competition for selecting the Advanced Encryption Standard or AES to replace
the aging Data Encryption Standard.

Four main requirements:

• Key lengths: 128, 192 or 256 bits.

• Block length: 128 bits.

• Efficient on both hardware and software platforms.

• Availability on a worldwide, non-exclusive, royalty-free basis.

Plaintext AES Ciphertext

Key 128 bits

128 bits 128 bits

In this lecture, we’ll describe AES encryption for the case where the secret key as length 128 bits.

The AES Process: 1998: 15 submissions in Round 1. 1999: 5 finalists selected by NIST: MARS, RC6,
Rijndael, Serpent, Twofish. 1999: NSA performed a hardware efficiency comparison. 2000: Rijndael
was selected. 2001: The AES standard is officially adopted (FIPS 197). Rijndael is an example of a
substitution-permutation network. 2021: No attacks have been found on AES that are (significantly)
faster than exhaustive key search.

http://www.nist.gov/aes

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 32

Substitution-Permutation Networks

A substitution-permutation network (SPN) is an iterated block cipher where a round consists
of a substitution operation followed by a permutation operation.

The components of an SPN cipher are the following:

• n: the block length.

• `: the key length.

• h: the number of rounds.

• A fixed invertible function S : {0, 1}b → {0, 1}b, where b is a divisor of n.

• A fixed permutation P on {1, 2, . . . , n}.

• A key scheduling algorithm that determines subkeys k1, k2, . . . , kh, kh+1 from a key k.

Note that n, `, h, S, P and the key scheduling algorithm are public. The only secret in AES is the
key k that is selected.

Here is a description of encryption:

Algorithm 7: Encryption of Substitution-Permutation Networks

1 A← plaintext
2 for i = 1 . . . h do
3 A← A⊕ ki // XOR

4 A← S(A) // Substitution

5 A← P(A) // Permutation

6 A← A⊕ kh+1

7 ciphertext← A

The substitution provides confusion. The permutation provides diffusion. Decryption is just the
reverse of encryption.

⊕k1

⊕k2

S S S S

S S S S

...
...

...
...

Round 1

Round 2

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 33

AES is an SPN, where the permutation operation is replaced by two invertible linear transformations.
All operations are byte oriented (e.g., b = 8 so the S-box maps 8-bits to 8-bits). This allows AES to be
efficiently implemented on software platforms. The block length of AES is n = 128 bits. Each subkey
is 128 bits. AES accepts three different key lengths. The number of rounds h depends on the key
length:

cipher key length ` h
AES-128 128 10

AES-192 192 12

AES-256 256 14

AES Round Operations

Each round updates a variable called State which consists of a 4× 4 array of bytes (note: 4 · 4 · 8 = 128,
the block length). State is initialized with the plaintext:

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

← plaintext

After h rounds are completed, a final subkey is XOR-ed with State, the result being the ciphertext.

The AES round function uses four invertible operations:

1. AddRoundKey (key mixing)

2. SubBytes (S-box)

3. ShiftRows (permutation)

4. MixColumns (linear transformation).

The pictures below are from wiki:

• https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg

• https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg

• https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg

• https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg

Add Round Key

Bitwise-XOR each byte of State with the corresponding byte of the subkey.

https://commons.wikimedia.org/wiki/File:AES-AddRoundKey.svg
https://commons.wikimedia.org/wiki/File:AES-SubBytes.svg
https://commons.wikimedia.org/wiki/File:AES-ShiftRows.svg
https://commons.wikimedia.org/wiki/File:AES-MixColumns.svg

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 34

Substitute Bytes

Take each byte in State and replace it with the output of the S-box.

S : {0, 1}8 → {0, 1}8 is a fixed, public, invertible function. The S-box is a non-linear function.

The Finite Field GF(28)

The elements of the finite field GF(28) are the polynomials of degree at most 7 in Z2[y], with
addition and multiplication performed modulo the irreducible polynomial
f (y) = y8 + y4 + y3 + y + 1.

Interpret an 8-bit string a = a7a6a5a4a3a2a1a0 as coefficients of the polynomial
a(y) = a7y7 + a6y6 + a5y5 + · · ·+ a1y + a0 and vice versa.

Example:
Let a = 11101100 = ec and b = 00111011 = 3b, so a(y) = y7 + y6 + y5 + y3 + y2 and similarly
b(y) = y5 + y4 + y3 + y + 1.

1. Addition: a(y) + b(y) = y7 + y6 + yt + y2 + y + 1, so ec+ 3b = d7.

2. Multiplication: a(y) · b(y) = y12 + y10 + y8 + y4 + y2, which leaves a remainder of
r(y) = y7 + y6 + y3 upon division by f (y). Hence a · b = 11001000 in GF(28), or ec · 3b = c8.

3. Inversion: ec−1 = 5d since ec · 5d = 01.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 35

S-box Definition

Let p ∈ {0, 1}8, and consider p as an element of GF(28).

1. Let q = p−1 if p 6= 0, and q = p if p = 0.

2. Define q = (q7q6q5q4q3q2q1q0).

3. Compute 

r0

r1

r2

r3

r4

r5

r6

r7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





q0

q1

q2

q3

q4

q5

q6

q7


+



1
1
0
0
0
1
1
0


mod 2

Then S(p) = r = (r7r6r5r4r3r2r1r0).

So S maps the byte p to the byte r. This is a nonlinear function since inversion in the field GF(28) is a
non-linear function.

Instead of the algebraic description of the S-box, I can define the S function by this table.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

For example, S(a8) = c2.

Shift Rows

Permute the bytes of State by applying a cyclic shift to each row.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 36

Mix Columns

The purpose of MixColumns is to mix up the bits in the four bytes of each column of the State.

1. Read column i of State as a polynomial:

(a0,i, a1,i, a2,i, a3,i) = a0,i + a1,ix + a2,ix2 + a3,ix3

(interpret the coefficients as elements of the finite field GF(28)).

2. Multiply this polynomial with the constant polynomial c(x) = 03 · x3 + 01 · x2 + 01 · x + 02 and
reduce modulo x4 − 1. This gives a new polynomial: b0,i + b1,ix + b2,ix2 + b3,ix3

The ⊗c(x) Operation

Let a(x) = a0 + a1x + a2x2 + a3x3, where each ai ∈ GF(28).

Let c(x) = 02+ 01x + 01x2 + 03x3, where 01, 02, 03 are elements in GF(28) (in hexadecimal).

To compute a(x)⊗ c(x):

• Compute d(x) = a(x)× c(x) (polynomial multiplication, where coefficient arithmetic is in
GF(28)).

• Divide by x4 − 1 to find the remainder polynomial r(x) (equivalently, replace x4 by 1, x5

by x, and x6 by x2).

• Then a(x)⊗ c(x) = r(x).

Let a(x) = d0f112bb = d0+ f1x + 12x2 + bbx3. a(x)⊗ c(x) = 1a+ a4x + d3x2 + e5x3 = 1aa4d3e5.

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 37

AES Encryption

From the key k derive h + 1 subkeys k0, k1, . . . , kh. Below is a description of encryption:

Algorithm 8: AES Encryption

1 State← plaintext
2 State← State ⊕ k0

3 for i = 1 . . . h− 1 do
4 State← SubBytes(State)
5 State← ShiftRows(State)
6 State← MixColumns(State)
7 State← State ⊕ ki

8 State← SubBytes(State)
9 State← ShiftRows(State)

10 State← State ⊕ kh
11 ciphertext← State

Note that in the final round, MixColumns is not applied. This helps make decryption more similar to
encryption, and thus is useful when implementing AES. [Details omitted]

AES Decryption

From the key k derive h + 1 subkeys k0, k1, . . . , kh. Below is a description of decryption:

Algorithm 9: AES Decryption

1 State← ciphertext
2 State← State ⊕ kh
3 State← InvShiftRows(State)
4 State← InvSubBytes(State)
5 for i = h− 1 . . . 1 do
6 State← State ⊕ ki
7 State← InvMixColumns(State)
8 State← InvShiftRows(State)
9 State← InvSubBytes(State)

10 State← State ⊕ k0

11 plaintext← State

InvMixColumns is multiplication by d(x) = 0e+ 09x + 0dx2 + 0bx3 modulo x4 − 1.

To complete the description of AES encryption, let’s see AES key schedule for 128-bit keys. For 128-bit
keys, AES has 10 rounds, so we need 11 subkeys.

• The first subkey k0 = (r0, r1, r2, r3) which is
the actual AES key.

• The second subkey is k1 = (r4, r5, r6, r7).

• The third subkey is k2 = (r8, r9, r9, r10).

• . . .

• The 11th subkey is k10 = (r40, r41, r42, r43).

fi

r4i−1r4i−2r4i−3r4i−4

r4i+3r4i+2r4i r4i+1

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 38

Finally, here is a description of the key schedule functions fi. The functions fi : {0, 1}32 → {0, 1}32 are
defined as follows:

1. The input is divided into 4 bytes: (a, b, c, d).

2. Left-rotate the bytes: (b, c, d, a).

3. Apply the AES S-box to each byte: (S(b), S(c), S(d), S(a)).

4. XOR the leftmost byte with the constant `i, and output the result: (S(b)⊕ `i, S(c), S(d), S(a)).

The constants `i:

i `i i `i i `i i `i i `i

1 0x01 2 0x02 3 0x04 4 0x08 5 0x10

6 0x20 7 0x40 8 0x80 9 0x1b 10 0x36

The AES encryption scheme is superior to Triple DES in many ways:

1. AES has three key lengths 128, 192 and 256 bits, whereas Triple DES has only one key length,
namely 168 bits. Although its effective key length is 112 bits.

2. AES has block length 128 bits whereas the block length of Triple DES is only 64 bits.

3. AES is byte-oriented and so has very fast software implementations. On the other hand, Triple
DES is bit-oriented and is significantly slower in software.

2.6.7 Block Cipher Modes of Operation

From https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation:

In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher
to provide information security such as confidentiality or authenticity. A block cipher by
itself is only suitable for the secure cryptographic transformation (encryption or decryp-
tion) of one fixed-length group of bits called a block. A mode of operation describes how to
repeatedly apply a cipher’s single-block operation to securely transform amounts of data
larger than a block.

In practice, one might need to encrypt a large quantity of data. Plaintext message is m = m1, m2, . . . , mt,
where each mi is an L-bit block.

Question How should we use a block cipher Ek : {0, 1}L → {0, 1}L to encrypt m?

One way to encrypt the multi-block message m is to use electronic codebook or ECB mode.

Electronic Codebook (ECB) Mode

Encrypt blocks independently, one at a time: c = c1, c2, . . . , ct, where ci = Ek(mi).

m1 m2 m3 mt

c1 c2 c3 ct

Decryption: mi = E−1
k (ci), i = 1, 2, . . . , t.

Drawback: Identical plaintexts result in identical ciphertexts (under the same key), and thus ECB

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

CHAPTER 2. SYMMETRIC-KEY CRYPTOGRAPHY 39

encryption is not (semantically) secure against chosen-plaintext attacks.

Suppose that the adversary has a challenge ciphertext c of length t blocks. The adversary would like to
learn something about the plaintext m that corresponds to c. The adversary can select a plaintext m′ of
block length t, and obtain from Alice the encryption c′ of m′. Now if c′ equals c, then the adversary can
conclude that m equals m′. On the other hand, if c′ is not equal to c, then the adversary can conclude
that m is not equal to m′. In either case, the adversary has learned something about the unknown
plaintext m, and thus has broken semantic security.

The main problem with ECB mode is that the encryption process is deterministic. And so, for security
one must include randomization into the encryption process. One way to do that is using Cipher Block
Chaining or CBC mode.

Cipher Block Chaining (CBC) Mode

Encryption: Select c0 ∈R {0, 1}L (c0 is a random non-secret IV). Then compute ci = Ek(mi ⊕ ci−1),
i = 1, 2, . . . , t.

m1 m2 m3

c1 c2 c3

IV

Ek Ek Ek

Ciphertext is (c0, c1, c2, . . . , ct).

Decryption: mi = E−1
k (ci)⊕ ci−1, i = 1, 2, . . . , t.

Note that Alice selects a new random IV c0 for every plaintext m that she encrypts. Identical plaintexts
with different IVs result in different ciphertexts and for this reason CBC encryption is (semantically)
secure against chosen-plaintext attacks (for a well chosen block cipher E).

3
Hash Functions

3.1 Introduction

Hash functions play a fundamental role in cryptography. They are used in a variety of cryptographic
primitives and protocols. They are very difficult to design because of very stringent security and per-
formance requirements. Over the years, many hash functions have been broken. The main candidates
available today are: SHA-1; SHA-2 family: SHA-224, SHA-256, SHA-384, SHA-512

What is a Hash Function? Informally speaking, a hash function is a fixed public function that takes
as input messages of any length and outputs a hash value of a fixed length. In some sense the output
serves as a fingerprint of the much longer input.

Hash functions play a
fundamental role in
cryptography. They are
used in a variety of
cryptographic protocols
and primitives. They
are very difficult to
design because of
stringent requirements.

H 145abcef0ab667899

See these websites

• http://www.xorbin.com/tools/md5-hash-calculator

• http://www.xorbin.com/tools/sha1-hash-calculator

• http://www.xorbin.com/tools/sha256-hash-calculator

for calculators for the hash functions MD5, SHA-1 and SHA-256.

40

http://www.xorbin.com/tools/md5-hash-calculator
http://www.xorbin.com/tools/sha1-hash-calculator
http://www.xorbin.com/tools/sha256-hash-calculator

CHAPTER 3. HASH FUNCTIONS 41

hash function

A hash function is a mapping H such that:

1. H maps binary messages of arbitrary lengths ≤ L to outputs of a fixed length n:

H : {0, 1}≤L → {0, 1}n.

(L is large, e.g., L = 264; n is small, e.g., n = 256)

2. H(x) can be efficiently computed for all x ∈ {0, 1}≤L.

H is called an n-bit hash function. H(x) is called the hash or message digest of x.

Note:
The description of a hash function is public and fixed. There are no secret keys.

For simplicity, we will usually write {0, 1}∗ instead of {0, 1}≤L.

Toy Hash Function

H : {0, 1}≤4 → {0, 1}2

x H(x) x H(x) x H(x) x H(x)

0 00 1 01
00 11 01 01 10 01 11 00

000 00 001 10 010 11 011 11
100 11 101 01 110 01 111 10

0000 00 0001 11 0010 11 0011 00
0100 01 0101 10 0110 10 0111 01
1000 11 1001 01 1010 00 1011 01
1100 10 1101 00 1110 00 1111 11

(00, 1000) is a collision because these two messages have the same hash value, namely 11.

1001 is a preimage of 01 since the hash of 1001 is 01.

10 is a second preimage of 1011 since the hash of 1011 is 01 and hash of 10 is also 01.

Example: SHA-256
SHA-256: {0, 1}∗ → {0, 1}256

SHA-256(“Hello there”) =
0x4e47826698bb4630fb4451010062fadbf85d61427cbdfaed7ad0f23f239bed89

SHA-256(“Hello There”) =
0xabf5dacd019d2229174f1daa9e62852554ab1b955fe6ae6bbbb214bab611f6f5

SHA-256(“Welcome to CO 487”) =
0x819ba4b1e568e516738b48d15b568952d4a35ea73f801c873907d3ae1f5546fb

SHA-256(“Welcome to CO 687”) =
0x404fb0ee527b8f9f01c337e915e8beb6e03983cfd9544296b8cf0e09c9d8753d

So the idea behind hash functions is that for each message, the hash function outputs a hash value
that appears random and has no apparent resemblance to the original message.

CHAPTER 3. HASH FUNCTIONS 42

3.1.1 Hash Functions from Block Ciphers

Davies-Meyer hash function

Let Ek be an m-bit block cipher with n-bit key k. Let IV be a fixed m-bit initializing value.

To compute H(x), do:

Algorithm 10: Davies-Meyer hash function

1 Break up x ‖ 1 into n-bit blocks: x = x1, x2, . . . , xt, padding out the last block with 0 bits if
necessary.

2 H0 := IV
3 for i = 1, . . . , t do
4 Compute Hi = Exi (Hi−1)⊕ Hi−1

5 H(x) := Ht

E E E Ex1 x2 x3 xt

H0

H1 H2 Ht−1

· · ·

Ht = H(x)

Note that hashing x does not use any secret keying information. The blocks of the message x are used
as the keys in the hashing process, and so anyone who knows the message x can compute its hash.

Hash functions are the Swiss Army knife of cryptography. Hash functions are used for all kinds of
applications they were not designed for, and for this reason it’s sometimes difficult to assess security
of these applications. One reason for this widespread use of hash functions is speed.

3.1.2 Desirable security properties for hash functions

Preimage Resistance (PR)

H : {0, 1}∗ → {0, 1}n.

preimage resistance hash function

Given a hash value y ∈R {0, 1}n, it is computationally infeasible to find (with non-negligible
probability of success) any x ∈ {0, 1}∗ such that H(x) = y.

Here x is called a preimage of y.

Note that x ∈R S means that x is chosen independently and uniformly at random from S.

Preimage resistance is required if hash functions are used for password protection on a multi-user com-
puter system: Server stores (userid, H(password)) in a password file. Thus, if an attacker gets a copy
of the password file, she does not learn any passwords. She only learns the hashes of the passwords.

CHAPTER 3. HASH FUNCTIONS 43

2nd Preimage Resistance (2PR)

H : {0, 1}∗ → {0, 1}n.

second-preimage resistance hash function

Given an input x ∈R {0, 1}∗, it is computationally infeasible to find (with non-negligible proba-
bility of success) a second input x′ ∈ {0, 1}∗, x′ 6= x, such that H(x′) = H(x).

2PR is needed if hash functions are used as Modification Detection Codes (MDCs): To ensure that a
message m is not modified by unauthorized means, one computes H(m) and protects H(m) from
unauthorized modification. Protecting H(m) might be easier than protecting m itself because H(m) is
in general much smaller than m.

Modification detection codes can be used for virus protection. A user Alice wishes to download a piece
of software x from a website that might be untrusted. Suppose also that Alice has an authentic copy
of the hash of x, which might have been obtained from the print copy of a trade magazine. So Alice
will download x from the website, compute its hash, and compare the hash value with the hash from
the trade magazine. If the two hash values are equal, then Alice installs the software on her computer.
An adversary who wants Alice to install a piece of malware needs to format the malware x′ so that
the hash of x′ equals the hash of x. In other words the adversary needs to find a second preimage for
the message x, and so for this application we need H to be second-preimage resistant.

Collision Resistance (CR)

H : {0, 1}∗ → {0, 1}n.

collision-resistant hash function

It is computationally infeasible to find (with non-negligible probability of success) two distinct
inputs x, x′ ∈ {0, 1}∗ such that H(x) = H(x′).

The pair (x, x′) is called a collision for H.

Note that H has many collisions since the domain is much larger in general than its codomain, and so
by the pigeonhole principle there are many pairs of messages with the same hash value. So the issue
isn’t whether collisions exist, but whether one can find a collision efficiently.

Collision resistance is required when hash functions are used to compute message digests or digital
signature schemes: For reasons of efficiency, instead of signing a (long) message, the (much shorter)
message digest is signed. This action requires preimage-resistance, 2nd preimage resistance, and
collision resistance. (More on this later)

To see why collision resistance is required: Suppose that the legitimate signer Alice can find two
messages x1 and x2, with x1 6= x2 and H(x1) = H(x2). Alice can sign x1 and later claim to have signed
x2. In this way, Alice might be able to repudiate her signature on x1.

Later on in the course, we’ll see many other applications of hash functions:

1. Message Authentication Codes (HMAC). [More on this later]

2. Pseudorandom bit generation: Distilling random bits s from several “pseudorandom” sources
x1, . . . , xt. Output s = H(x1, . . . , xt).

3. Key derivation function (KDF): Deriving a cryptographic key from a shared secret. [More later]

CHAPTER 3. HASH FUNCTIONS 44

4. Proof-of-work in cryptocurrencies (Bitcoin): [More on this later]

5. Quantum-safe signature schemes: [More on this later]

3.1.3 Relationships between PR, 2PR, CR

Let H : {0, 1}∗ → {0, 1}n be a hash function.

CR

PR 2PR

∗

∗
∗ for somewhat uniform hash functions

1. CR implies 2PR

Proof:
Suppose that H is not 2PR.

Select x ∈R {0, 1}∗. Since H is not 2PR, we can efficiently find x′ ∈ {0, 1}∗, x′ 6= x, with the same
hash value H(x′) = H(x). Thus we have efficiently found a collision (x, x′) for H.

Hence H is not CR.

Note that this proof establishes the contrapositive statement.

2. 2PR does not guarantee CR

Proof:
Suppose that H : {0, 1}∗ → {0, 1}n is 2PR.

Consider H : {0, 1}∗ → {0, 1}n defined by:

H(x) =

{
H(0), if x = 1,

H(x), if x 6= 1.

Thus we have H(1) = H(0) = H(0).

Suppose that H is not 2PR. So, given x ∈R {0, 1}∗, we can efficiently find x′ ∈ {0, 1}∗, x′ 6= x, with
H(x′) = H(x). With probability essentially 1, we can assume that x 6= 0, 1. Hence H(x) = H(x).

Now, if x′ 6= 1, then H(x′) = H(x′) = H(x); while if x′ = 1, then H(x′) = H(1) = H(0) = H(x).
In either case, we have found a second preimage for x with respect to H. This contradicts the
assumption that H is second preimage resistant. So, H must be 2PR.

Also, H is not CR, since (0, 1) is a collision for H.

Hence H is second preimage resistant but not collision resistant.

CHAPTER 3. HASH FUNCTIONS 45

3. CR does not guarantee PR

Proof:
Suppose that H : {0, 1}∗ → {0, 1}n is CR.

Consider H : {0, 1}∗ → {0, 1}n+1 defined by:

H(x) =

{
1 ‖ x, if x ∈ {0, 1}n,

0 ‖ H(x), if x /∈ {0, 1}n.

Then we claim that H is CR.

First note that hash values that begin with the 1 have unique preimages, and hence there does not
exist a collision for H-bar where the colliding messages have hash values that begin with a 1.

Suppose next that we can officially find a collision for H where the colliding messages have hash
values that begin with a 0. But then this collision for H is also a collision for H that we have
officially found. This contradicts the assumption that H is collision resistant, and so we conclude
that H is also collision resistant.

And, H is not PR since preimages can be efficiently found for at least half of all y ∈ {0, 1}n+1.

However, if H is “somewhat uniform” (i.e., all hash values have roughly the same number of preimages),
then CR does imply PR.

Proof:
Suppose H us a somewhat uniform hash function that is not PR. Select x ∈R {0, 1}∗ and compute
y = H(x). Since H is somewhat uniform, y is also a randomly selected hash value.

Since H is not PR, we can efficiently find a preimage x′ of y. Since H is somewhat uniform, we
expect that y has many preimages, and thus x′ 6= x with very high probability. Thus, (x, x′) is a
collision for H that we have efficiently found, so H is not CR.

Note that we shall henceforth assume that hash functions are somewhat uniform.

4. PR does not guarantee 2PR

Proof:
Suppose H : {0, 1}∗ → {0, 1}n is PR.

Define H : {0, 1}∗ → {0, 1}n by

H(x1, x2, . . . , xt) = H(0, x2, . . . , xt).

Then we first claim H is PR.

Suppose that H is not preimage resistant. Then, given a random hash value y, we can efficiently
find a message x such that H(x) equals y. But then H(x′) = y where x′ is the same as x except
that its first bit is now zero. And so we can efficiently find preimages for H. This contradicts the
assumption that H is preimage resistant, and so we conclude that H is also preimage resistant.

Then let’s prove H is not 2PR.

Suppose that we’re given a random message x. Then we can easily find a second preimage for x
with respect to H, namely by flipping the first bit of x to get the message x′. And this shows that
H is not second preimage resistant.

So H is a hash function that is preimage resistant but is not second preimage resistant.

CHAPTER 3. HASH FUNCTIONS 46

5. 2PR implies PR (for somewhat uniform H)

Proof:
Exercise.

Note that CR is the hardest property to satisfy because if a hash function is CR then it is also PR and
also 2PR. On the other hand, PR does not imply CR and 2PR does not imply CR.

3.2 Generic Attacks

generic attack

A generic attack on a hash function H : {0, 1}∗ → {0, 1}n does not exploit any properties the
specific hash function may have.

In the analysis of a generic attack, we view H as a random selected function in the sense that for each
x ∈ {0, 1}∗, we assume that the value y = H(x) was chosen by selecting y ∈R {0, 1}n.

From a security point of view, a random function is an ideal hash function. However, random functions
are not suitable for practical applications because they cannot be compactly stored.

3.2.1 Find Preimages

Here’s a generic attack for finding preimages for an n-bit hash function H : {0, 1}∗ → {0, 1}n.

Given y ∈R {0, 1}n, repeatedly select arbitrary x ∈ {0, 1}∗ until H(x) = y.

For each message x, the probability that H(x) equals the specific y is 1/2n because the total number
of hash values is 2n and we’re assuming that H is a randomly selected function. Hence the expected
number of steps is ≈ 2n. (Here, a ‘step’ is a hash function evaluation.)

This attack is infeasible if n ≥ 128.

Note:
It has been proven that this generic attack for finding preimages is optimal, i.e., no faster generic
attack exists.

Of course, for a specific hash function, there might exist a preimage finding algorithm that is faster
than the generic attack.

3.2.2 Find Collisions

Select arbitrary x ∈ {0, 1}∗ and store (H(x), x) in a table sorted by first entry. Continue until a collision
is found.

Since there are 2n possible hash values, by the birthday paradox we conclude that the expected number
of steps is

√
π2n/2 ≈

√
2n. (Here, a “step” is a hash function evaluation.)

This attack is infeasible if n ≥ 256.

It has been proven that this generic attack for finding collisions is optimal in terms of the number of
hash function evaluations.

A major draw back of this algorithm is the expected space required:
√

π2n/2 ≈
√

2n.

If n = 128, then the expected running time is 264 steps (feasible). However, the expected space required
is 7× 108 Tbytes (infeasible).

CHAPTER 3. HASH FUNCTIONS 47

3.2.3 VW Parallel Collision Search

VW: Paul van Oorschot, Michael Wiener (1993)

Expected number of steps is
√

2n. However, expected space required is negligible.

It is easy to parallelize: m-fold speedup with m processors.

The VW attack finds a random pair of n-bit messages with the same hash value. It might appear
that such a collision is useless in practice. However, the VW attack can easily be modified to find
“meaningful” collisions. See the details in Parallel Collision Search with Cryptanalytic Applications.

Conclusion: If collision resistance is desired, then use an n-bit hash function with n ≥ 256

Parallel collision search (VW Method)

Problem: Find a collision for H : {0, 1}∗ → {0, 1}n.

Assumption: H is a random function.

Notation: Let N = 2n.

Define a sequence {xi}i≥0 by

x0 ∈R {0, 1}n, xi = H(xi−1) for i ≥ 1.

x0 x1 x2 x3 x4 xi−1 xi xi+1 xi+2 xi+3

xj

xj−1

cycle
tail

This sequence cannot be distinct forever, because the terms are drawn from a finite set, and so the
sequence must eventually collide with itself. Let j be the smallest index for which xj = xi for some
i < j; such a j must exist. Then xj+` = xi+` for all ` ≥ 1.

By the birthday paradox, E[j] ≈
√

πN
2 ≈

√
N. In fact, E[i] ≈ 1

2

√
N where i is the length of the tail of

the sequence. And E[j− i] ≈ 1
2

√
N where j− i is the length of the cycle.

Now, i 6= 0 with overwhelming probability; in that event, (xi−1, xj−1) (red points) is a collision for H.

One way to find this collision is to compute the terms x0, x1, x2, . . . and store them in a table. However
the table would be too large, namely of size roughly

√
N. How to find (xi−1, xj−1) without using much

storage? VW method’s idea is to store only distinguished points.

Select an easily testable distinguishing property for elements of {0, 1}n (e.g., leading 32 bits are all 0).
Let θ be the proportion of elements of {0, 1}n that are distinguished. In a nutshell, VW algorithm is to
compute x0, x1, x2, . . . and only store the points in the sequence that are distinguished.

x0 xa xb

xd

xc

collision has occurred

collision is detected

https://link.springer.com/article/10.1007/PL00003816

CHAPTER 3. HASH FUNCTIONS 48

We can expand the green portion of the diagram as follows:

xa xb

xd

xc

xa+1 xa+k

Algorithm 11: VW collision finding

// Stage 1 (detecting a collision)

1 Select x0 ∈R {0, 1}n

2 Store (x0, 0,−) in a sorted table
3 LP← x0 // LP = last point stored in the table

4 for d = 1, 2, 3, 4, . . . do
5 Compute xd = H(xd−1)

6 if xd is distinguished then
7 if xd is already in table then

// Say xd = xb where b < d
8 Go to Stage 2.
9 else
10 Store (xd, d, LP) in a table.
11 LP← xd

// Stage 2 (finding a collision)

12 `1 ← b− d, `2 ← d− c
// WLOG suppose `1 ≥ `2

13 k← `1 − `2

14 Compute xa+1, xa+2, . . . , xa+k.
15 for m = 1, 2, 3, . . . do
16 Compute (xa+k+m, xc+m)

17 until xa+k+m = xc+m

18 The collision is (xa+k+m−1, xc+m−1)

Let’s analyze the VW attack.

• Stage 1: Expected # of H-evaluations is√
πN

2︸ ︷︷ ︸
collision occurs

+
1
θ︸︷︷︸

collision is detected

≈
√

N +
1
θ

• Stage 2: Expected # of H-evaluations is ≤ 3
θ (see optional readings)

Overall expected running time:
√

N +
4
θ

Storage: ≈ θ
√

N(3n) bits (each table entry has bitlength 3n)

Let’s revisit the example when n = 128. Take θ = 1
232 . Then the expected time of VW collision search

CHAPTER 3. HASH FUNCTIONS 49

is 264 H-evaluations (feasible), and the expected storage is 241 Gbytes (free).

Parallelizing VW collision search

Suppose we had m processors available to us. Run a copy of VW on each of the m processors. Each
processor would report distinguished points to a central server , and the central server would check
for repeated distinguish points.

Note that each processor begins with its own random starting point, and so each processor computes
a different sequence. Each sequence can now collide either with itself or with another sequence as
shown here. When two sequences from different processors collide then we have a collision of n-
bit strings. This collision is detected by the central server because this distinguished point will be
computed twice, once by this processor and once by this processor. When a collision is detected then
the collision can be found as before using Stage 2 of the VW attack.

Expected time ≈
√

N/m + 4/θ. Expected storage ≈ θ
√

N(3n) bits

Note that we have factor-m speedup. No communication between processors. Processors only occa-
sionally communicate with central server. So VW parallelizes very well.

3.3 Iterated Hash Functions (Merkle Meta-Method)

Iterated hash functions has two components:

• Fixed initializing value IV ∈ {0, 1}n,

• Compression function f : {0, 1}n+r → {0, 1}n (efficiently computable).

To compute H(x) where x has bitlength b < 2r do:

Algorithm 12: Merkle’s hash function

1 Break up x into r-bit blocks: x = x1, x2, . . . , xt, padding out the last block with 0 bits if
necessary.

2 Define xt+1, the length-block, to hold the right-justified binary representation of b.
3 H0 := IV
4 for i = 1, 2, . . . , t + 1 do
5 Compute Hi = f (Hi−1, xi)

6 H(x) := Ht+1

The Hi’s are called chaining variables.

Here is a diagram that illustrates Merkle’s has function construction.

f f f f f· · · H(x)
IV H1 H2 H3 Ht

x1 x2 x3 xt xt+1

CHAPTER 3. HASH FUNCTIONS 50

3.3.1 Collision Resistance of Iterated Hash Functions

Merkle’s Theorem

If the compression function f is collision resistant, then the hash function H is also collision
resistant.

Merkle’s theorem reduces the problem of designing collision-resistant hash functions to that of de-
signing collision-resistant compression functions.

Proof:
Suppose H is not CR. Then we can efficiently find x, x′ ∈ {0, 1}∗, x 6= x′, with H(x) = H(x′).

Let

x = x1, x2, . . . , xt, b = bitlength(x), xt+1 = length block

x′ = x′1, x′2, . . . , x′t, b′ = bitlength(x′), x′t′+1 = length block.

We efficiently compute:

H0 = IV

H1 = f (H0, x1)

H2 = f (H1, x2)

...

Ht−1 = f (Ht−2, xt−1)

Ht = f (Ht−1, xt)

Ht+1 = f (Ht, xt+1)

H0 = IV

H′1 = f (H0, x′1)

H′2 = f (H′1, x′2)
...

H′t′−1 = f (H′t′−2, x′t′−1)

H′t′ = f (Ht′−1, x′t′)

Ht′+1 = f (H′t′ , x′t′+1)

Since H(x) = H(x′), we have Ht+1 = H′t′+1.

Now if b 6= b′, then xt+1 6= x′t′+1. Thus (Ht, xt+1), (H′t′ , x′t′+1) is a collision for f that we have
efficiently found. Hence f is not collision resistant.

Suppose b = b′. Then t = t′ and xt+1 = x′t′+1.

Let i be the largest index, i ∈ [0, t], for which (Hi, xi+1) 6= (H′i , x′i+1). Such i must exist since x 6= x′.
Then

Hi+1 = f (Hi, xi+1) = f (H′i , x′i+1) = H′i+1,

so (Hi, xi+1), (H′i , x′i+1) is a collision for f that we have efficiently found. Hence f is not CR.

3.3.2 Provable Security

A major theme of cryptographic research is to formulate precise security definitions and assumptions,
and then prove that a cryptographic protocol is secure. A proof of security is certainly desirable since
it rules out the possibility of attacks being discovered in the future. However, it isn’t always easy to
assess the practical security assurances (if any) that a security proof provides.

• The assumptions might be unrealistic, or false, or circular.

• The security proof might be fallacious.

• The security model might not account for certain kinds of realistic attacks.

CHAPTER 3. HASH FUNCTIONS 51

• The security proof might be asymptotic.

• The security proof might have a large tightness gap.

Optional reading: http://anotherlook.ca and this page is not secure.

3.4 MDx-Family of Hash Functions

MDx is a family of iterated hash functions.

MD4

MD4 was proposed by Ron Rivest in 1990. MD4 has 128-bit outputs. (VW finds an MD4 collision in
time 264) Wang et al. (2004) found collisions for MD4 by hand. So this showed that MD4 was com-
pletely insecure from the point of view of collision resistance. Leurent (2008) discovered an algorithm
for finding MD4 preimages in 2102 steps.

MD5

MD5 is a strengthened version of MD4. Designed by Ron Rivest in 1991. MD5 has 128-bit outputs.

Wang and Yu (2004) found MD5 collisions in 239 steps. MD5 collisions can now be found in 224

steps (in a few seconds on a laptop computer). Sasaki & Aoki (2009) discovered a method for finding
preimages for MD5 in 2123.4 steps.

Therefore, MD5 should not be used if collision resistance is required, but is probably okay as a
preimage-resistant hash function.

MD5 is still used today. The reason is that MD5 was widely deployed in the 1990s and the 2000s and
it’s very expensive and cumbersome to replace all these implementations. For example, in 2006, MD5

is implemented more than 850 times in Microsoft Windows source code. In 2014, Microsoft issued a
patch that restricts the use of certificates with MD5 in Windows: http:tinyurl.com/MicrosoftMD5.
The reason for the patch was the discovery of the Flame malware.

Flame Malware

See https://en.wikipedia.org/wiki/Flame_(malware)

Discovered in May 2012. Highly sophisticated espionage tool. Targeted computers in Iran and the
Middle East. Suspected to originate from the US and/or Israeli government; US government has
denied all responsibility. Contains a forged Microsoft certificate for Windows code signing. Forged
certificate used a new, “zero-day MD5 chosen-prefix” collision attack. Microsoft no longer allows the
use of MD5 for code signing.

3.5 SHA

3.5.1 SHA-1

Secure Hash Algorithm (SHA) was designed by NSA and published by NIST in 1993 (FIPS 180). 160-
bit iterated hash function, based on MD4. Slightly modified to SHA-1 (FIPS 180-1) in 1994 in order to
fix an (undisclosed) security weakness. Wang et al. (2005) found collisions for SHA in 239 steps. Wang
et al. (2005) discovered a collision-finding algorithm for SHA-1 that takes 263 steps. The first SHA-1
collision was found on February 23, 2017. No preimage or 2nd preimage attacks (that are faster than
the generic attacks) are known for SHA-1.

http://anotherlook.ca
http:tinyurl.com/MicrosoftMD5
https://en.wikipedia.org/wiki/Flame_(malware)

CHAPTER 3. HASH FUNCTIONS 52

Microsoft’s SHA-1 Plan

See http://tinyurl.com/MicrosoftSHA1. As of May 9, 2017: TLS server-authentication certificates
that use SHA-1 will be considered invalid. However, Microsoft still permits the use of SHA-1 in Code
signature file hashes, Code signing certificates, Timestamp signature hashes, Timestamping certificates,
etc.

3.5.2 SHA-2 Family

In 2001, NSA proposed variable output-length versions of SHA-1.

Output lengths are 224 bits (SHA-224 and SHA-512/224), 256 bits (SHA-256 and SHA-512/256), 384

bits (SHA-384) and 512 bits (SHA-512).

2020: No weaknesses in any of these hash functions have been found.

Note: The security levels of these hash functions against collision-finding attacks is the same as the
security levels of Triple-DES, AES-128, AES-192 and AES-256 against exhaustive key search attacks.
For example, the VW attack on SHA-224 can find a collision in 2112 operations, whereas the meet-in-
the-middle attack on Triple-DES finds a secret key in 2112 steps.

The SHA-2 hash functions are standardized in FIPS 180-2.

3.5.3 Description of SHA-256

f f f f f· · · H(x)
IV H1 H2 H3 Ht

x1 x2 x3 xt xt+1

SHA-256 is an iterated hash function (Merkle meta-method).

n = 256, r = 512.

Compression function is f : {0, 1}256+512 → {0, 1}256.

Input: bitstring x of arbitrary bitlength b ≥ 0.

Output: 256-bit hash value H(x) of x.

http://tinyurl.com/MicrosoftSHA1

CHAPTER 3. HASH FUNCTIONS 53

SHA-256 Notation

A, B, C, D, E, F, G, H 32-bit words.
+ addition modulo 232.
A bitwise complement.
A� s shift A right through s positions.
A ↪→ s rotate A right through s positions.
AB bitwise AND.
A⊕ B bitwise exclusive-OR.
f (A, B, C) AB⊕ AC.
g(A, B, C) AB⊕ AC⊕ BC.
r1(A) (A ↪→ 2)⊕ (A ↪→ 13)⊕ (A ↪→ 22).
r2(A) (A ↪→ 6)⊕ (A ↪→ 11)⊕ (A ↪→ 25).
r3(A) (A ↪→ 7)⊕ (A ↪→ 18)⊕ (A� 3)
r4(A) (A ↪→ 17)⊕ (A ↪→ 19)⊕ (A� 10).

SHA-256 Constants

32-bit initial chaining values (IVs):

h1 = 0x6a09e667, h2 = 0xbb67ae85, h3 = 0x3c6ef372, h4 = 0xa54ff53a,
h5 = 0x510e527f, h6 = 0x9b05688c, h7 = 0x1f83d9ab, h8 = 0x5be0cd19.

These words were obtained by taking the first 32 bits of the fractional parts of the square roots of the
first 8 prime numbers.

Per-round integer additive constants:

y0 = 0x428a2f98, y1 = 0x71374491, y2 = 0xb5c0fbcf, y3 = 0xe9b5dba5,
. y62 = 0xbef9a3f7, y63 = 0xc67178f2.

These words were obtained by taking the first 32 bits of the fractional parts of the cube roots of the
first 64 prime numbers.

Algorithm 13: SHA-256 Preprocessing

1 Pad x (with 1 followed by as few 0’s as possible) so that its bitlength is 64 less than a multiple
of 512.

2 Append a 64-bit representation of b mod 264.
3 The formatted input is x0, x1, . . . , x16m−1, where each xi is a 32-bit word.
4 Initialize chaining variables: (H1, H2, . . . , H6, H7, H8)← (h1, h2, . . . , h6, h7, h8).
5 foreach i = 0 . . . m− 1 do
6 Copy the i-th block of sixteen 32-bit words into temporary storage: Xj ← x16i+j, 0 ≤ j ≤ 15.

// Expand the 16-word block into a 64-word block:

7 for j = 16 . . . 63 do
8 Xj ← r4

(
Xj−2

)
+ Xj−7 + r3

(
Xj−15

)
+ Xj−16.

// Initialize working variables

9 (A, B, . . . , F, G, H)← (H1, H2, . . . , H6, H7, H8).
10 for j = 0 . . . 63 do
11 T1 ← H + r2(E) + f (E, F, G) + yj + Xj
12 T2 ← r1(A) + g(A, B, C)
13 H ← G, G ← F, F ← E, E← D + T1

14 D ← C, C ← B, B← A, A← T1 + T2.

15 Update chaining values: (H1, H2, . . . , H7, H8)← (H1 + A, H2 + B, . . . , H7 + G, H8 + H).

CHAPTER 3. HASH FUNCTIONS 54

Output: SHA-256(x) = H1 ‖ H2 ‖ H3 ‖ H4 ‖ H5 ‖ H5 ‖ H6 ‖ H7 ‖ H8.

Performance: Speed benchmarks (2017) for software implementations on an Intel Core i9 2.9 GHz
6-core Coffee Lake (8950HK) using OpenSSL 1.1.1d. SHA-256 is quite fast in software. It’s not as fast
as MD5 or SHA-1, but that’s probably just as well since MD5 and SHA-1 are considered to be insecure
as far as collision resistance is concerned.

3.5.4 SHA-3

The SHA-2 design is similar to SHA-1, and thus there are lingering concerns that the SHA-1 weak-
nesses could eventually extend to SHA-2.

SHA-3: NIST hash function competition. 64 candidates submitted by Oct 31 2008 deadline.
2012: Keecak was selected as the winner. Keecak uses the “sponge construction” and not the Merkle
iterated hash design. SHA-3 is being used in practice, but is not as widely deployed as SHA-2.

3.5.5 NIST’s Policy on Hash Functions

August 5, 2015. See: http://csrc.nist.gov/groups/ST/hash/policy.html

Should stop using SHA-1 for digital signatures and other applications that require collision resistance.
May still use SHA-1 for HMAC, KDFs, and random number generators. May use SHA-2 for all
applications that employ secure hash algorithms. SHA-3 may also be used, but this is not required.

http://csrc.nist.gov/groups/ST/hash/policy.html

4
Message authentication code schemes

4.1 Introduction

message authentication code

A message authentication code scheme is a family of functions MACk : {0, 1}∗ → {0, 1}n

parameterized by an `-bit key k, where each function MACk can be efficiently computed.

t = MACk(x) is called the MAC or tag of x with key k.

MAC

k

x
t

MAC schemes are used for providing (symmetric-key) data integrity and data origin authentication.

Alice Bob

secure channel
k

unsecured channel

(x, MACk(x))

To provide data integrity and data origin authentication:

1. Alice and Bob establish a secret key k ∈ {0, 1}`.

2. Alice computes tag t = MACk(x) and sends (x, t) to Bob.

3. Bob verifies that t = MACk(x).

Note:
No confidentiality since the message x is sent in the clear. If confidentiality is required, then one has
to properly combine an encryption scheme with a MAC scheme.

No non-repudiation. This is because when Bob receives a tag message from Alice and the tag is valid,

55

CHAPTER 4. MESSAGE AUTHENTICATION CODE SCHEMES 56

then Bob is convinced that the message came from Alice. However, Bob cannot convince a third
party that the message came from Alice because Bob could have generated the message and its tag
himself. This is the consequence of Alice and Bob sharing the same secret key.

An adversary who captures the message and tag can replay this tag message to Bob at a future point
in time and Bob will accept the tagged message. To avoid replay, add a timestamp or sequence
number.

4.1.1 Security Definition

Let K be the secret key shared by Alice and Bob.

The adversary does not know k, but is allowed to obtain (from Alice or Bob) tags for messages of her
choosing. The adversary’s goal is to obtain the tag of any new message, i.e., a message whose tag she
did not already obtain from Alice or Bob.

secure MAC scheme

A MAC scheme is secure if given some tags MACk(xi) for xi’s of one’s own choosing, it is
computationally infeasible to compute (with non-negligible probability of success) a message-
tag pair (x, MACk(x)) for any new message x.

More concisely, a MAC scheme is secure if it is existentially unforgeable against chosen-message
attack.

Note: A secure MAC scheme can be used to provide data integrity and data origin authentication.

An ideal MAC scheme has the following property:

For each key k ∈ {0, 1}`, the function MACk : {0, 1}∗ → {0, 1}n is a random function.

Ideal MAC schemes are useless in practice. However, when analyzing a generic attack on a MAC
scheme, it is reasonable to assume that the MAC scheme is ideal.

4.2 Generic Attacks on MAC schemes

Guessing the MAC of a message x ∈ {0, 1}∗:

Select y ∈R {0, 1}n and guess that MACk(x) = y.

Assuming that MACk is random function, the probability of success is 1/2n. Note that the adversary
cannot check her guess directly because the adversary does not know the key k. MAC guessing is
infeasible if n ≥ 128.

Exhaustive search on the key space:

Given r known message-tag paris (x1, t1), . . . , (xr, tr), one can check whether a guess k of the key is
correct by verifying that MACk(xi) = ti, for i = 1, 2, . . . , r.

Assume that MACk’s are random functions, the expected number of keys for which the tags verify is

1 + FK = 1 + (2` − 1)/2nr

For example, if ` = 128, n = 128, r = 2, then FK ≈ 1/2128.

Expected number of steps ≈ 2`. Exhaustive search is infeasible if ` ≥ 128.

CHAPTER 4. MESSAGE AUTHENTICATION CODE SCHEMES 57

4.3 MACs Based on Block Ciphers

CBC-MAC

Let E be an n-bit block cipher with key space {0, 1}`.

Assumption: Suppose that plaintext messages all have lengths that are multiplies of n, if not then we
would add some padding to the message.

To compute MACk(x):

1. Divide x into n-bit blocks x1, x2, . . . , xr.

2. Compute H1 = Ek(x1).

3. For 2 ≤ i ≤ r, compute Hi = Ek(Hi−1 ⊕ xi).

4. Then MACk(x) = Hr.

Algorithm 14: CBC-MAC

1 Divide x into n-bit blocks x1, x2, . . . , xr.
2 Compute H1 = Ek(x1).
3 for i = 2, . . . , r do
4 Compute Hi = Ek(Hi−1 ⊕ xi).

5 MACk(x) := Hr

0

x1

Ek

x2

Ek

x3

Ek

· · ·

xr

Ek

MACk(x)

4.3.1 Security of CBC-MAC

CBC MAC comes with a rigorous security analysis from 1994 [Bellare, Kilian & Rogaway 1994]. Here’s
an informal statement of a Theorem:

Informal statement of a Theorem

Suppose that E is an “ideal” encryption scheme. (That is, for each k ∈ {0, 1}`, Ek : {0, 1}n →
{0, 1}n is a ‘random’ permutation.) Then CBC-MAC with fixed-length inputs is a secure MAC
scheme.

CBC-MAC (as described above without additional measures) is not secure if variable length messages
are allowed. Here is a chosen-message attack on CBC-MAC:

1. Select an arbitrary n-bit block x1.

2. Obtain the tag t1 of the one-block message x1 (so t1 = Ek(x1)).

3. Obtain the tag t2 of the one-block message t1 (so t2 = Ek(t1)).

4. Then t2 is the tag of the 2-block message (x1, 0) since t2 = Ek(0⊕ Ek(x1)) = Ek(Ek(x1)) = Ek(t1).

CHAPTER 4. MESSAGE AUTHENTICATION CODE SCHEMES 58

This attack might not be very realistic, but nonetheless it illustrates that CBC MAC does not meet our
very strong notion of security, namely existential unforgeability against chosen message attack.

4.3.2 Encrypted CBC-MAC (EMAC)

One countermeasure for variable-length messages is Encrypted CBC-MAC:

CBC-MAC E

k s

x EMACk,s(x)

Encrypt the last block under a second key s: EMACk,s(x) = Es(Hr), where Hr = CBC-MACk(x).

EMAC has a rigorous security analysis from the year 2000. [Petrank & Rackoff 2000]:

Informal statement of a Theorem

Suppose that E is an “ideal” encryption scheme. Then EMAC is a secure MAC scheme (for
inputs of any length).

4.4 MACs Based on Hash Functions

Hash functions were not originally designed for message authentication; in particular they are not
“keyed” primitives.

Question How to use them to construct secure MACs?

Let H be an iterated n-bit hash function (without the length-block). Let n + r be the input blocklength
of the compression function f : {0, 1}n+r → {0, 1}n. For example, for SHA-256, n = 256, r = 512. Let
k ∈ {0, 1}n. Let K denote k padded with (r− n) 0’s. So K has bitlength r. Thus K = ← 0→︸ ︷︷ ︸

r−n

← k→︸ ︷︷ ︸
n

.

4.4.1 Secret Prefix Method

MAC definition: MACk(x) = H(K, x).

f f f f f· · · MACk(x)
IV H1 H2 H3 Ht

K x1 x2 xt−1 xt

This is insecure. Here is a length extension attack: suppose (x, MACk(x)) is known. Suppose the bitlength
of x is a multiple of r. Then MACk(x ‖ y) can be computed for any y (without knowledge of k).

Also insecure if a length block is postpended to K ‖ x prior to application of H.

CHAPTER 4. MESSAGE AUTHENTICATION CODE SCHEMES 59

4.4.2 Secret Suffix Method

MAC definition: MACk(x) = H(x, K).

The attack on the secret prefix method does not
work here.

Suppose that a collision (x1, x2) can be found for
H (i.e., H(x1) = H(x2)). We assume that x1 and
x2 both have bitlengths that are multiples of r.

Thus H(x1, K) = H(x2, K), and so MACk(x1) =

MACk(x2). Then the MAC for x1 can be re-
quested, giving the MAC for x2. Hence if H is not
CR, then the secret suffix method MAC is insecure.

MACk(x)

x K

H

4.4.3 Envelope Method

MAC definition: MACk(x) = H(K, x, K).

The MAC key is used both at the start and end
of the MAC computation. Thus attacks on the se-
cret prefix method and the secret suffix method do
not work here because the key block is appended
to the left and to the right of the message x.

The envelope method appears to be secure (i.e.,
no serious attacks have been found).

MACk(x)

x K

H

K

4.4.4 HMAC

MAC definition: HMACk(x) = H(K⊕ opad, H(K⊕ ipad, x)).

The most commonly used MAC scheme today is
HMAC. It is “Hash-based” MAC and was de-
signed by Bellare, Canetti & Krawczyk (1996).

Define two r-bit strings (in hexadecimal notation):
ipad = 0x36, opad = 0x5C; each repeated r/8
times. These bytes 0x36 and 0x5C are arbitrarily
chosen. The important thing is that they be fixed
and different from each other.

The main part of the HMAC algorithm is the
secret prefix method, which is highly insecure.
However since the key block is appended to the
left of the resulting hash value and then this two-
block message is hashed once more, the length ex-
tension attack is prevented.

K

ipad

HMACk(x)

x

H

K

opad

H

HMAC comes with a rigorous security analysis.

CHAPTER 4. MESSAGE AUTHENTICATION CODE SCHEMES 60

Informal statement of a Theorem

Suppose that the compression function f used in H is a secure MAC with fixed length messages
and a secret IV as the key. Then HMAC is a secure MAC algorithm.

In practice, one should use HMAC with the SHA-256 hash function. HMAC is specified in IETF1 RFC
2104 and FIPS 198. HMAC is used in IPsec (Internet Protocol Security) and TLS.

Key Derivation Function

HMAC is commonly used as a key derivation function (KDF).

Suppose that Alice has a secret key k, and wishes to derive several session keys (e.g., to encrypt data in
different communication sessions).

Alice computes sk1 = HMACk(1), sk2 = HMACk(2), sk3 = HMACk(3), . . .

Rationale: Without knowledge of k, an adversary is unable to learn anything about any particular
session key sk j , even though it may have learnt some other session keys.

This works because HMAC is existentially unforgeable against chosen-message attack.

4.5 Case study: GSM

Global standards for mobile communications:

• 2G, 2.5G: GSM (Global System for Mobile Communication)

• 3G: UMTS (Universal Mobile Telecommunications System)

• 4G: LTE (Long Term Evolution)

• 5G: in the process of gradually moving on to 5G...

We will sketch the basic security mechanisms in GSM. GSM security is notable since it uses only
symmetric-key primitives. UMTS and LTE security improves upon GSM security in several ways, but
will not be discussed here.

Here is the basic GSM setup2.

9:42 PM 66%

Monday, 15 February 2021
9:42

Wuhan
9°C

Light Rain

PM

8:42 AM 80%

Monday, 15 February 2021
8:42

Waterloo
-6°C

Cloudy

AM

Alice Chris

Bob Dave

air air

Alice’s service
provider (e.g.,
Rogers)

Chris’s service
provider (e.g.,
China Telecom)

cable, internet, etc.

The objective of GSM security is to secure the communications between Alice and Bob, and between
Dave and Chris, i.e., between a cell phone and its nearest base station. GSM does not provide security

1Internet Engineering Task Force
2phone drawings are from https://tex.stackexchange.com/a/479893

https://tex.stackexchange.com/a/479893

CHAPTER 4. MESSAGE AUTHENTICATION CODE SCHEMES 61

for the communications between base stations – this communications could be secured using a variety
of means depending on the service provider, location, country, and so on. And it’s even possible that
no security is used at all.

4.5.1 GSM Security

Cryptographic ingredients:

• Enc: A symmetric-key encryption scheme.

• MAC: A symmetric-key MAC scheme.

• KDF: A key derivation function.

How do Alice and Bob agree upon a shared secret key? The GSM solution is to use SIM cards. A SIM
card manufacturer randomly selects a secret key k, and installs it in a SIM card. A copy of k is given
to the cell phone service provider. When a user purchases cell phone service, she gets the SIM card
which she installs in her phone. Note that A different key k is chosen for each user.

The security objectives of GSM are

1. Entity authentication: Cell phone service provider needs to be assured that entities accessing its
service are legitimate subscribers.

2. Confidentiality: Users need the assurance that their cell phone communications are private.

Here is the basic GSM security protocol. Alice: cell phone user, Bob: cell phone service provider.

Algorithm 15: Basic GSM security protocol

1 Alice sends an authentication request to Bob.
2 Bob selects a challenge r ∈R {0, 1}128, and sends r to Alice.
3 Alice’s SIM card uses k to compute the response t = MACk(r). Alice sends t to Bob.
4 Bob retrieves Alice’s key k from its database, and verifies that t = MACk(r).
5 Alice and Bob compute an encryption key KE = KDFk(r), and thereafter use the encryption

algorithm EncKE to encrypt and decrypt messages for each other for the remainder of the
session.

One drawback with using only symmetric-key crypto is that the SIM card manufacturer and the cell
phone service providers have to securely maintain a large database of SIM keys k.

In 2015, the Snowden leaks revealed that NSA and GCHQ had stolen SIM keys from Gemalto, which
manufactures about 2 billion SIM cards each year. See http://tinyurl.com/NSASIM

http://tinyurl.com/NSASIM

5
Authentic Encryption

A symmetric-key encryption scheme E provides confidentiality, e.g., E = AES, but not authentication.
On the other hand, a MAC scheme provides authentication (data origin authentication and data in-
tegrity), e.g., MAC = HMAC, but not confidentiality. What if confidentiality and authentication are
both required?

First Method: Encrypt-and-MAC

• Alice sends (c, t) = (Ek1(m), MACk2(m)) to Bob, where m is the plaintext and k1, k2 are secret
keys she shares with Bob.

• Bob decrypts c to obtain m = E−1
k1

(c) and then verifies that t = MACk2(m).

Intuitively, this provides authenticated encryption because the ciphertext hides the plaintext and the
tag authenticates the plaintext. However, this generic method might have some security vulnerabilities:
it isn’t clear that the tag also hides the plaintext completely. Indeed, it’s possible that the tag of a
message does leak some bits about the plaintext. This is because MAC schemes were not designed for
confidentiality, but rather for authentication.

Second Method: Encrypt-then-MAC

• Alice sends (c, t) = (Ek1(m), MACk2(Ek1(m))) to Bob, where m is the plaintext and k1, k2 are
secret keys she shares with Bob.

• Bob first verifies that t = MACk2(c) and then decrypts c to obtain m = E−1
k1

(c).

This method has been deemed to be secure, provided of course that the encryption scheme E and the
MAC scheme employed are secure.

Special-Purpose AE Schemes

Many specialized authenticated encryption schemes have been developed, the most popular of these
being Galois/Counter Mode (GCM).

These modes can be faster than generic Encrypt-then-MAC, and also allow for the authentication (but
not encryption) of “header” data. This is a useful feature because in many communications protocols
the data to be transmitted is preceded by some header data which is specified by the communications
protocol. This header data should not be encrypted, but it’s usually desirable to protect its authenticity.

62

CHAPTER 5. AUTHENTIC ENCRYPTION 63

5.1 AES-GCM

This is an authenticated encryption scheme proposed by David McGrew and John Viega in 2004. It
was adopted as a NIST standard in 2007. AES-GCM eses the CTR mode of encryption and a custom-
designed MAC scheme.

5.1.1 CTR: CounTeR Mode of Encryption

Let k ∈R {0, 1}128 be the secret key.

Let M = (M1, M2, . . . , Mu) be a plaintext message, where each Mi is a 128-bit block, u ≤ 232 − 2.

To encrypt M, Alice does the following:

Algorithm 16: CTR: Encryption

1 Select IV ∈R {0, 1}96.
2 J0 := IV ‖ 031 ‖ 1.
3 for i = 1 . . . u do
4 Ji ← Ji−1 + 1 // increment the counter
5 Compute Ci = AESk(Ji)⊕Mi.

6 Send (IV, C1, C2, . . . , Cu) to Bob.

So just like ChaCha20, the counter mode of encryption uses an IV and a counter. This prevents against
the accidental reuse of keystream.

To decrypt, Bob does the following:

Algorithm 17: CTR: Decryption

1 J0 := IV ‖ 031 ‖ 1.
2 for i = 1 . . . u do
3 Ji ← Ji−1 + 1 // increment the counter
4 Compute Mi = AESk(Ji)⊕ Ci.

Note:
1. CTR mode of encryption can be viewed as a stream cipher.

2. As was the case with CBC encryption, identical plaintexts with different IVs result in different
ciphertexts.

3. It is critical that the IV should not be repeated; this can be difficult to achieve in practice.

4. Unlike CBC encryption, CTR encryption is parallelizable.

5. Note that AES−1 is not used.

Multiplying Blocks

Let a = a0a1a2 . . . a127 be a 128-bit block.

We associate the binary polynomial a(x) = a0 + a1x + a2x2 + · · ·+ a127x127 ∈ Z2[x] with a.

Let f (x) = 1 + x + x2 + x7 + x128.

If a and b are 128-bit blocks then define c = a • b to be the block corresponding to the polynomial
c(x) = a(x) · b(x) mod f (x) in Z2[x]. In other words, that is, c(x) is the remainder upon dividing

CHAPTER 5. AUTHENTIC ENCRYPTION 64

a(x) · b(x) by f (x), where coefficient arithmetic is performed modulo 2. This is multiplication in the
Galois Field GF(2128).

Example: 6 bit-blocks, GF(26)

Let f (x) = 1 + x + x6. Let a = 001101 and b = 100111.

Then a(x) = x2 + x3 + x5, b(x) = 1 + x3 + x4 + x5. Thus, c(x) = x2 + x5 and c = a • b = 001001.

Now let’s describe AES-GCM authenticated encryption.

Input:

• Data to be authenticated (but not encrypted) A = (A1, A2, . . . , Av). This might be some header
data.

• Data to be encrypted and authenticated: M = (M1, M2, . . . , Mu).

• Secret key k ∈R {0, 1}128.

Output: (IV, A, C, t), where

• IV is a 96-bit initialization vector.

• A = (A1, A2, . . . , Av) is authenticated data.

• C = (C1, C2, . . . , Cu) is the encrypted/authenticated data.

• t is a 128-bit authentication tag.

5.1.2 AES-GCM Encryption, Decryption/Authentication Procedure

Alice does the following:

Algorithm 18: AES-GCM encryption/authentication

1 L := LA ‖ LM, where LA, LM are the bitlengths of A, M expressed as 64-bit integers. (L is the
length block.)

2 Select IV ∈R {0, 1}96 and let J0 = IV ‖ 031 ‖ 1.
// Encryption

3 for i = 1 . . . u do
4 Ji ← Ji−1 + 1
5 Ci ← AESk(Ji)⊕Mi

// Authentication

6 T := 0128

7 H := AESk(0128).
8 for i = 1 . . . v do
9 T ← (T ⊕ Ai) • H.

10 for i = 1 . . . u do
11 T ← (T ⊕ Ci) • H.

12 T ← (T ⊕ L) • H.
13 t := AESk(J0)⊕ T.
14 Output: (IV, A, C, t).

Note:
A secret key should be used to encrypt at most 232 messages in order to minimize the possibility
of keystream reusage.

CHAPTER 5. AUTHENTIC ENCRYPTION 65

Here is a depiction of AES-GCM when the authentication data A is one-block long (v = 1) and the
plaintext data M is two-blocks long (u = 2). Picture from https://commons.wikimedia.org/wiki/
File:GCM-Galois_Counter_Mode_with_IV.svg

Upon receiving (IV, A, C, t), Bob does the following:

Algorithm 19: AES-GCM decryption/authentication

1 L := LA ‖ LC, where LA, LC are the bitlengths of A, C expressed as 64-bit integers.
// Authentication

2 T := 0128

3 H := AESk(0128).
4 for i = 1 . . . v do
5 T ← (T +⊕Ai) • H.

6 for i = 1 . . . u do
7 T ← (T ⊕ Ci) • H.

8 T ← (T ⊕ L) • H.
9 t′ := AESk(J0)⊕ T.

10 if t′ = t then
11 Proceed to decryption;

12 else
13 Reject.

// Decryption

14 J0 := IV ‖ 031 ‖ 1.
15 for i = 1 . . . u do
16 Ji ← Ji−1 + 1
17 Mi ← AESk(Ji)⊕ Ci

18 Accept and output (A, M).

https://commons.wikimedia.org/wiki/File:GCM-Galois_Counter_Mode_with_IV.svg
https://commons.wikimedia.org/wiki/File:GCM-Galois_Counter_Mode_with_IV.svg

CHAPTER 5. AUTHENTIC ENCRYPTION 66

5.1.3 Insights into Authentication Mechanism

The purpose of GCM authentication is to mix up the bits of the secret key k, the bits of the message
A, the bits of the ciphertext C, and the bits of the length block L, and the IV which is contained in the
counter block J0, to produce the authentication tag t. This is done by these four lines of codes.

• T ← 0128, H ← AESk(0128)

• For i from 1 to v do: T ← (T + Ai)H

T = ((((0 + A1)H + A2)H + A3)H + · · ·+ Av)H

= A1Hv + A2Hv−1 + A3Hv−2 + · · ·+ Av−1H2 + AvH

• For i from 1 to u do: T ← (T + Ci)H.

• T ← (T + L)H

T = A1Hu+v+1 + A2Hu+v + · · ·+ AvHu+2 + C1Hu+1 + · · ·+ Cu H2 + LH = fA,M(H),

where

fA,M(x) = A1xu+v+1 + · · ·+ Avxu+2 + C1xu+1 + · · ·+ Cux2 + Lx ∈ GF(2128)[x]

• Hence, t = AESk(J0)⊕ fA,M(H).

To justify the security of the AES-GCM authentication mechanism, we’ll consider the case where AES-
GCM is used for authentication only.

Consider AES-GCM with no M, so u = 0, LM = 0. The message to be authenticated is A =

(A1, A2, . . . , Av), where v ≤ `. The tag is (IV, t), where IV ∈R {0, 1}96 and t = AESk(J0) + fA(H).
Again, J0 = IV ‖ 031 ‖ 1, H = AESk(0).

Attack goal: this is the one in the security definition for MAC schemes. Eve has message-tag pairs
(for messages of her choosing): (Aj, IV j, tj), 1 ≤ j ≤ r. Her goal is to produce a message-tag forgery
(A∗, IV∗, t∗), where A∗ /∈ {A1, A2, . . . , Ar}.

We can assume that no two IV’s in this list are the same. This is because the IV is produced by the
MACing oracle are 96-bit strings and were randomly generated. We can also assume that Eve does
not know k or H.

Security Argument (Informal)

Now, suppose that Eve outputs a forgery (A∗, IV∗, t∗). The security argument is divided into two
cases.

1. If IV∗ /∈ {IV1, . . . , IVr}, then J∗0 /∈ {J1
0 , . . . , Jr

0}, and so Eve doesn’t know AESk(J∗0), which serve
as a one-time pad for fA∗(H). Thus, the probability that Eve can output a valid tag (i.e., t∗ =

AESk(J∗0) + fA∗(H)) is only 1/2128.

2. Suppose that IV∗ = IV j, for some 1 ≤ j ≤ r, so J∗0 = J j
0. Then

t∗ − tj = AESk(J∗0) + fA∗(H)−AESk(J j
0)− fAj(H) = fA∗(H)− fAj(H)

So, Eve has produced A∗, Aj and α such that α = fA∗(H)− fAj(H), without knowledge of H.
But this can only be done with negligible probability, as the following lemma shows.

CHAPTER 5. AUTHENTIC ENCRYPTION 67

Lemma

For all distinct A, B ∈
(
{0, 1}128)≤` and α ∈ {0, 1}128,

Pr[fA(H)− fB(H) = α] ≤ (`+ 1)/2128

(which is negligible), where the probability is assessed over random choices of H ∈ {0, 1}128.

Proof:
Let A, B ∈

(
{0, 1}128)≤` with A 6= B, and let α ∈ {0, 1}128. Suppose A ∈ {0, 1}128r and B ∈

{0, 1}128w. Then

fA(H)− fB(H)− α = (A1Hv+1 + A2Hv + · · ·+ AvH2 + LA H)

− (B1Hw+1 + B2Hw + · · ·+ BwH2 + LBH)− α,

which is a polynomial in H of degree ≤ max(v, w) + 1 ≤ `+ 1.

Since a nonzero polynomial of degree ≤ `+ 1 can have at most `+ 1 roots, there are at most `+ 1
H ∈ {0, 1}128 satisfying fA(H)− fB(H)− α = 0.

5.1.4 Some Features of AES-GCM

1. Performs authentication and encryption.

2. Supports authentication only (by using empty M).

3. Very fast implementations on Intel and AMD processors because of special AES-NI and
PCLMULQDQ instructions for the AES and • operations.

4. Encryption and decryption can be parallelized.

5. AES-GCM can be used in streaming mode1.

6. Security is justified by a security proof: Original McGrew-Viega security proof (2004) was wrong.
The proof was fixed in 2012 by Iwata-Ohashi-Minematsu.

AES-GCM is widely used today.

1Streaming mode means that both the encryption and the authentication operations can be performed on the blocks of m as
they are received, one at a time. This is useful in streaming applications.

CHAPTER 5. AUTHENTIC ENCRYPTION 68

5.2 Google Encryption

This is from NSA classified documents that were leaked by Snowden in 2013. On the left we see a
bunch of users on the internet accessing Google’s services such as gmail and search, and they do this
by communicating with a Google front-end server GFE. The communications between the computers
and Google’s front-end servers are protected using TLS, also known as SSL. The data transmitted
by the users are decrypted by the Google front-end servers, and then transmitted through Google’s
private network to its data centers situated around the world. Communications between the front-end
servers and data centers and between data centers is through these private links. the slide had two
comments, one noting that SSL is added and removed here, and the other is that traffic in the clear
text is transmitted in the cloud.

GCHQ/NSA MUSCULAR program

Disclosed by Edward Snowden on October 30, 2013. Surveillance program conducted by GCHQ
(British spy agency) in partnership with NSA. An unnamed telecommunications operator provided
GCHQ with secret access to its fibre optic cables that transported data between Google and Yahoo!
data centres. Millions of records collected each day, so that they couldn’t possibly store all of it, so
they had to process and discard a lot of it on the fly. Google was not encrypting user data when
it transported it between data centers. In November 2013, Google and Yahoo! announced they were
encrypting all traffic between their data centres.

5.2.1 Google Data

Google has 21 data centres around the world. A data centre (DC) contains tens of thousands of servers.
It has lots of physical security (cameras, biometric identification, metal detectors, vehicle barriers, etc.)
Communication between these servers and the outside world is all done via Google Front End (GFE)
servers. Servers within a data centre communicate via a LAN (Local Area Network). Servers in
different data centres communicate via a WLAN (Wide Local Area Network).

Broadly speaking, there are three kinds of data to protect:

1. Data communicated between individual users (browsers) and Google (GFEs).

• Data is encrypted and authenticated using TLS.

• TLS uses symmetric-key enc. (e.g., AES), symmetric-key authentication (e.g., HMAC); au-

CHAPTER 5. AUTHENTIC ENCRYPTION 69

thenticated enc. (e.g., AES-GCM); key establishment (e.g., RSA public-key enc., ECDH);
public key certificates (RSA signatures).

• TLS is used by all web servers and browsers (not Google specific).

2. Data communicated between Google servers (perhaps in different data centres).

Data is secured using Google’s version of TLS (Application Layer Transport Security, ALTS).
ALTS handles roughly 1010 remote procedure calls (RPCs) per second.

3. Data stored at data centres.

In the remainder of this section, we’ll just discuss Google’s methods for storing data at its data centers.

5.2.2 Key Management Service (KMS)

All data stored within Google data centres is encrypted with AES256-GCM (GCM = Galois Counter
Mode). AES128-CTR + HMAC-SHA256 (Encrypt-then-MAC) is used in some legacy applications.
However, Google is in the process of moving the encryption for these legacy applications to AES-256

GCM.

What secret keys does Google use to encrypt all this data? At one extreme, Google could use one
secret key to encrypt all the data in its backend. However, this is clearly risky when the adversary gets
his hands on this secret key. Google’s solution is at the other extreme: a unique session key to encrypt
each piece of data. This raised a lot of practical questions, which are addressed by Google’s KMS.

The KMS manages the many AES secret keys that are used to encrypt/decrypt data by the many
storage services within data centres. So the KMS has some very stringent requirements. Some of the
KMS requirements:

• Availability: > 99.9995% requests are served.

• Latency: 99% of requests are served in < 10 ms.

• Scalability: Handle ≈ 107 requests/second.

• Security: Effortless and foolproof key rotation (3 months).

• Efficiency: To minimize number of machines needed.

On January 24, 2014, a KMS configuration file was truncated by error. As a result, the KMS did
not know the secret keys used to decrypt stored data. Gmail, Calendar, Docs, etc. crashed for 25+
minutes. “This got a lot of attention within Google.” Subsequently, Google made many changes to its
KMS.� 99.9999% of KMS requests are served. 99.9% of requests are served in < 200µs.

5.2.3 Google’s Key Hierarchy

1. Storage systems (millions of processes)

Encrypts data with DEKs (Data Encryption Keys).

2. KMS (tens of thousands)

Encrypts DEKs with KEKs (Key Encryption Keys).

3. Root KMS (hundreds)

Encrypts KEKs with KMS Master Keys.

4. Root KMS Master Key Distributor (hundreds)

CHAPTER 5. AUTHENTIC ENCRYPTION 70

Encrypts KMS Master Keys with the Root KMS Master Key.

5. Physical safes (two)

The Root KMS Master Key is backed up on hardware devices.

1. Storage Systems

Suppose that a storage system wishes to encrypt some data item m. The storage system does the
following.

1. Break up m into chunks, m1, . . . , m`.

Each chunk can be up to several Gigabytes in size.

2. Generate ` Data Encryption Keys (DEKs), k1, . . . , k`.

Multiple sources of entropy are sampled (e.g., Intel’s RDRAND instruction; inter-packet arrival
times; measurement of disk seeks) The samples are then combined and hashed using a key
derivation function (KDF) to produce a 256-bit secret key.

3. Encrypt with AES256-GCM: c1 = AESk1(m1), . . . , c` = AESk`(m`),

4. Send the DEKs k1, . . . , k` to a KMS.

This transmission is protected with ALTS, Google’s internal version of TLS.

5. Receive the wrapped (encrypted) keys w1, . . . , w` from the KMS.

The KMS encrypts the DEKs with its Key Encryption Keys (KEKs).

6. Store (c1, w1), . . . , (c`, w`).

These encrypted chunks are replicated and distributed across Google’s storage systems.

When an application needs a piece of data, the stored system needs to decrypt the corresponding
chunk, (cj, wj):

1. The storage system sends the wrapped key wj to the KMS.

2. The KMS decrypts wj using the appropriate KEK, and sends the DEK k j to the storage system.

3. The storage system decrypts cj using k j .

Note:
1. Each data chunk has a unique identifier.

2. The KMS maintains an Access Control List (ACL) to ensure that a data chunk can only be
decrypted by the authorized storage system.

3. Note that each chunk of data is encrypted using a different DEK. This ensures that if a DEK
is compromised, then only one chunk of data is potentially compromised.

4. The storage system does not store the DEKs k1, . . . , k` but rather the wrapped data encryption
keys.

5. If a chunk of data mj is updated, it is re-encrypted with a new DEK k′j rather than using the
old DEK k j. So each data encryption key is only used once.

CHAPTER 5. AUTHENTIC ENCRYPTION 71

2. KMS

Key Management Services (KMSs) generate the AES256-GCM Key Encryption Keys (KEKs), and main-
tain the Access Control Lists (one ACL list for each KEK). The KMS encrypts/decrypts DEKs using
the KEKs, in accordance with the ACL. The KEKs never leave the KMS. The KMS also maintains an
audit trail of when a KEK was used. KEKs are rotated (i.e., changed). The standard rotation frequency
is once every 90 days.

3, 4. Root KMS

The Root KMS wraps KEKs with AES256-GCM KMS Master Keys. There are about a dozen KMS
Master Keys. The Root KMSs are run on dedicated secured machines in Google’s data centres.

The KMS Master Keys are wrapped with the AES256-GCM Root KMS Master Key. The Root KMS
Master Key is stored in RAM on the Root KMS machines. The Root KMS Master Key Distributor
ensures that all Root KMSs always have the same version of the Root KMS Master Key.

5. Physical Safes

The Root KMS Master Key is backed up on two hardware devices stored in physical safes in highly
secured areas in two physically separated Google locations. Fewer than 20 Google employees have
access to these safes. The backups will be used if Google ever has to do a complete reboot.

6
Introduction to Public-Key Cryptography

6.1 Drawbacks with Symmetric-Key Cryptography

Symmetric-key cryptography: Communicating parties a priori share some secret keying information.

Alice Bob

Eve

Unsecured Channel

Secure Channel

The shared secret keys can then be used to achieve confidentiality (e.g., using AES), or authentication
(e.g., using HMAC), or both (e.g., using AES-GCM).

6.1.1 Key Establishment Problem

How do Alice and Bob establish the secret key k?

Method 1 Point-to-point key distribution. (Alice selects the key, sends it to Bob over a secure channel)

A B
k

secure channel

The secure channel could be: A trusted courier, a face-to-face meeting; installation of an authentication
key in a SIM card. This is generally not practical for large-scale applications.

Method 2 Use a Trusted Third Party (TTP) T.

Each user A shares a secret key kAT with T for a symmetric-key encryption scheme E. To establish this
key, A must visit T once. T serves as a key distribution centre (KDC):

72

CHAPTER 6. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 73

A B

T1. Request A, B

2. EkAT (k)

3. EkBT (k)

1. A sends T a request for a key to share with B.

2. T selects a session key k, and encrypts it for A using kAT .

3. T encrypts k for B using kBT .

Drawbacks of using a KDC:

1. The TTP must be unconditionally trusted.

2. The TTP is an attractive target.

3. The TTP must be on-line. Potential bottleneck. Critical reliability point.

6.1.2 Key Management Problem

In a network of n users, each user has to share a different key with every other user.

Each user thus has to store n− 1 different secret keys. The total number of secret keys is (n
2) ≈ n2/2.

6.1.3 Non-Repudiation is Difficult to Achieve

Recall non-repudiation is preventing an entity from denying previous actions or commitments, deny-
ing being the source of a message.

Strictly speaking, symmetric-key techniques cannot be used to achieve non-repudiation. This is be-
cause Alice and Bob share a secret key, so Bob can do with the secret key whatever Alice can do with
that secret key. If Alice uses the secret key to send Bob a message, perhaps say using HMAC, Bob
knows that the message came from Alice but Bob could not prove to a judge that the message came
from Alice because Bob could have generated the message and its authentication tag himself.

6.2 Public-Key Cryptography

public-key cryptography

Communicating parties a priori share some authenticated (but non-secret) information.

CHAPTER 6. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 74

Alice Bob

Eve

Unsecured Channel

Authenticated Channel

Invented by Ralph Merkle, Whitfield Diffie, Martin Hellman in 1975.

Excerpts from Merkle’s CS 244 project proposal (Computer Security, UC Berkeley, Fall 1974)

Secure communications are made possible because of knowledge, known to both peo-
ple, which is not known to anyone else. Usually, both people know this knowledge because
they were able to hold a private conversation with each other before they began to send
encrypted messages over an unsecure channel.

It might seem intuitively obvious that if two people have never had opportunity to
prearrange an encryption method, then they will be unable to communicate securely over
an insecure channel. While this might seem intuitively obvious, I believe it is false. I believe
that it is possible for two people to communicate securely without having made any prior
arrangements that are not completely public.

6.2.1 Merkle Puzzles

This method is meant to be proof-of-concept. It’s not meant to be practical. The goal for Alice and Bob
is to establish a secret session key by communicating over an authenticated (but non-secret) channel.

1. Alice creates N puzzles Pi, 1 ≤ i ≤ N (e.g., N = 109). Each puzzle takes t hours to solve (e.g.,
t = 5). The solution to Pi reveals a 128-bit session key ski and a randomly-selected 128-bit serial
number ni (which Alice selected and stored).

2. Alice sends P1, P2, . . . , PN to Bob.

3. Bob selects j at random from [1, N] and solves puzzle Pj to obtain sk j and nj.

4. Bob sends nj to Alice.

5. The secret session key is sk j.

An eavesdropper has to solve 500,000,000 puzzles on average to determine the puzzle index j (and
thus sk j).

Example:
Pi = AES-CBCki

(ski, ni, ni), where ki = (ri ‖ 088) and ri is a randomly selected 40-bit string. Pi can
be solved in 240 steps by exhaustive key search.

Key Pair Generation for Public-Key Cryptography

Each entity A does the following:

1. Generate a key pair (PA, SA).

2. SA is A’s secret key.

3. PA is A’s public key.

CHAPTER 6. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 75

Security requirement: It should be infeasible for an adversary to recover SA from PA. For example,
SA = (p, q) where p and q are randomly-selected prime numbers; PA = p · q.

6.2.2 Public-Key Encryption

Alice
m

Bob
SB

Eve

Unsecured Channel

Authenticated Channel

PB

c

To encrypt a secret message m for Bob, Alice does:

1. Obtain an authenticated copy of Bob’s public key PB.

2. Compute c = E(PB, m); E is the encryption function.

3. Send c to Bob.

To decrypt c, Bob does:

1. Compute m = D(SB, c); D is the decryption function.

6.2.3 Digital Signatures

Alice
SA

Bob

Eve

Unsecured Channel

Authenticated Channel

PA

(m, s)

To sign a message m, Alice does:

1. Compute s = Sign(SA, m).

2. Send m and s to Bob.

To verify Alice’s signature s on m, Bob does:

1. Obtain an authenticated copy of Alice’s public key PA.

2. Accept if Verify(PA, m, s) = “Accept”.

Suppose that Alice generates a signed message (m, s). Then anyone who has an authentic copy of
Alice’s public key PA can verify the authenticity of the signed message. This authentication property
cannot be achieved with a symmetric-key MAC scheme. Digital signatures are widely used to sign
software updates which are then broadcast to computers around the world.

CHAPTER 6. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 76

6.2.4 Hybrid Schemes

Advantages of public-key cryptography:

• No requirement for a secured channel.

• Each user has only 1 key pair, which simplifies key management.

• A signed message can be verified by anyone.

• Facilitates the provision of non-repudiation services (with digital signatures).

Disadvantages of public-key cryptography:

• Public-key schemes are slower than their symmetric-key counterparts.

Therefore, in practice, symmetric-key and public-key schemes are used together. Here is an example:

To encrypt a secret signed message m, Alice does:

Algorithm 20: Hybrid scheme: encryption of signed message

1 s← Sign(SA, m)

2 Select a secret key k for a symmetric-key encryption scheme such as AES.
3 Obtain an authentic copy of Bob’s public key PB.
4 Send c1 = E(PB, k) and c2 = AESk(m, s).

To recover m and verify its authenticity, Bob does:

Algorithm 21: Hybrid scheme: authenticity verification

1 Decrypt c1 : k = D(SB, c1)

2 Decrypt c2 using k to obtain (m, s).
3 Obtain an authentic copy of Alice’s public key PA.
4 Check that Verify(PA, m, s) = “Accept”.

6.3 Algorithmic Number Theory

Fundamental Theorem of Arithmetic

Every integer n ≥ 2 has a unique prime factorization (up to ordering of factors).

Note that this is an example of unique factorization domain. Check PMATH 347 for more details.

We then have some interesting questions:

• Given an integer n ≥ 2, how do we find its prime factorization efficiently?

• How do we efficiently verify an alleged prime factorization of an integer n ≥ 2?

• Given an integer n ≥ 2, how do we efficiently decide whether n is prime or composite?

6.3.1 Complexity Theory Review

It’s a review because the reader is assumed to be familiar with CS 341 and CS 466.

https://n.sibp.ro/pmath347
https://n.sibp.ro/cs341
https://n.sibp.ro/cs466

CHAPTER 6. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 77

algorithm

An algorithm is a “well-defined computational procedure” (e.g., a Turing machine) that takes a
variable input and eventually halts with some output.

For an integer factorization algorithm, the input is a positive integer n, and the output is the prime
factorization of n.

efficiency

The efficiency of an algorithm is measured by the scarce resources it consumes (e.g. time, space,
number of processors, number of chosen plaintext-ciphertext pairs).

input size

The input size is the number of bits required to write down the input using a reasonable
encoding.

Example:
The size of a positive integer n is blog2 nc+ 1 bits.

running time

The running time of an algorithm is an upper bound as a function of the input size, of the worst
case number of basic steps the algorithm takes over all inputs of a fixed size.

polynomial-time

An algorithm is a polynomial-time (efficient) algorithm if its (expected) running time is O(kc),
where c is a fixed positive integer, and k is the input size.

6.3.2 Basic Integer Operations

Input: Two k-bit positive integers a and b

Input size: O(k) bits.

Operation Running time of naive alg (in bit ops)
Addition: a + b O(k)
Subtraction: a− b O(k)
Multiplication: a · b O(k2)

Division: a = qb + r O(k2)

GCD: gcd(a, b) O(k2)

In 2019, it was proven that k-bit numbers can be multiplied in O(k log k) bit operations. This algorithm
is really complicated and highly inefficient in practice because of the very large constants that are
suppressed by the big O notation. The big open problem is whether k-bit numbers can be multiplied
in O(k) bit operations.

GCD: Can be efficiently computed using the Euclidean Algorithm.

CHAPTER 6. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 78

6.3.3 Basic Modular Operations

Input: A k-bit integer n, and integers a, b, m ∈ [0, n− 1].

Input size: O(k) bits.

Operation Running time of naive alg (in bit ops)
Addition: a + b mod n O(k)
Subtraction: a− b mod n O(k)
Multiplication: a · b mod n O(k2)

Inversion: a−1 mod n O(k2)

Exponentiation: am mod n O(k3)

Note:
x = a−1 mod n means ax ≡ 1 mod n and 1 ≤ x ≤ n− 1. a−1 mod n exists iff gcd(a, n) = 1.
a−1 mod n can be efficiently computed using the Extended Euclidean Algorithm: Find s, t ∈ Z

with as + nt = 1; then x = s mod n.

Modular Exponentiation

Input: A k-bit integer n, and integers a, m ∈ [0, n− 1].
Output: am mod n.

Algorithm 22: Modular exponentiation naive algorithm 1

1 Compute d = am

2 return d mod n

Note the bitlength of d is (approximately) log2 d = log2 am = m · log2 a = O(2kk) since m ≈ 2k. Hence
the algorithm is not polytime.

Algorithm 23: Modular exponentiation naive algorithm 2

1 A← a
2 for i← 2 . . . m do A← A× a mod n ;
3 return A

Let the binary representation of m be m = ∑k−1
i=0 mi2i where mi ∈ {0, 1}. Then

am ≡ a∑k−1
i=0 mi2i ≡

k−1

∏
i=0

ami2i ≡ ∏
0≤i≤k−1

mi=1

a2i
(modn)

This suggests the following repeated square-and-multiply algorithm for computing am mod n:

Algorithm 24: Modular exponentiation: repeated square-and-multiply

1 Write m in binary: m = ∑k−1
i=0 mi2i.

2 if m0 = 1 then B← a;
3 else B← 1;
4 A← a
5 for i← 1 . . . k− 1 do
6 A← A2 mod n
7 if mi = 1 then B← B× A mod n;

8 return B

Analysis: At most k modular squarings and k modular multiplications, so worst-case running time is
O(k3) bit operations (polytime).

7
RSA

7.1 Basic RSA

Ron Rivest, Adi Shamir, Len Adleman

7.1.1 RSA Encryption

Each entity Alice does the following:

Algorithm 25: RSA Key Generation

1 Randomly select two large, distinct primes p, q of the same bitlength.
// This can be done efficiently. In practice, p and q should have bitlength at
least 1024.

2 Compute n = pq and φ = φ(n) = (p− 1)(q− 1).
3 Select arbitrary large e, 1 < e < φ, with gcd(e, φ) = 1.
4 Compute the integer d, 1 < d < φ, with ed ≡ 1 mod φ.
5 Alice’s public key is (n, e); her private key is d.

Note that n is called the RSA modulus; e is the encryption exponent; d is the decryption exponent.

To encrypt a message for Alice, Bob does:

Algorithm 26: RSA Encryption

1 Obtain an authentic copy of Alice’s public key (n, e).
2 Represent the message as an integer m ∈ [0, n− 1].
3 Compute the ciphertext c = me mod n.
4 Send c to Alice.

To decrypt c, Alice does

Algorithm 27: RSA Decryption

1 Compute m = cd mod n.

Example: Toy example on RSA Key Generation/Encryption
Alice does the following for key generation:

1. Select primes p = 23, q = 37.

79

CHAPTER 7. RSA 80

2. Compute n = pq = 851 and φ(n) = (p− 1)(q− 1) = 792.

3. Select e = 631 satisfying gcd(631, 792) = 1.

4. Solves 631d ≡ 1 mod 792 to get d ≡ −305 ≡ 487 mod 792, and selects d = 487.

5. Alice’s public key is (n = 851, e = 631); her private key is d = 487.

To encrypt a plaintext m = 13 for Alice, Bob does:

1. Obtains Alice’s public key (n = 851, e = 631).

2. Computes c = 13631 mod 851 using the repeated-square-and-multiply algorithm:

(a) Write e = 631 in binary: e = 29 + 26 + 25 + 24 + 22 + 21 + 20.

(b) Compute successive squarings of m = 13 mod n:

13 ≡ 13 (mod 851) 132 ≡ 169 (mod 851)

132 ≡ 478 (mod 851) 1323 ≡ 416 (mod 851)

1324 ≡ 303 (mod 851) 1325 ≡ 752 (mod 851)

1326 ≡ 440 (mod 851) 1327 ≡ 423 (mod 851)

1328 ≡ 219 (mod 851) 1329 ≡ 305 (mod 851).

(c) Multiply together the squares 132i
for which the ith bit (where 0 i 9) of the binary repre-

sentation of 631 is 1:

13631 = 1329+26+25+24+22+21+20

= 1329 · 1326 · 1325 · 1324 · 1322 · 1321 · 1320

≡ 305 · 440 · 752 · 303 · 478 · 169 · 13 (mod 851)

≡ 616 (mod 851).

3. Bob sends the ciphertext c = 616 to Alice.

To decrypt c = 616, Alice uses her private key d = 487 as follows:

1. Compute m = 616487 mod 851 to get m = 13.

Theorem (RSA works)

For all integers m, med ≡ m mod n.

Proof:
Since ed ≡ 1 mod φ, we can write ed = 1 + k(p − 1)(q − 1) for some k ∈ Z. Since ed > 1 and
p, q ≥ 2, we have k ≥ 1. We will prove that med ≡ m mod p.

Suppose first that p | m. Then m ≡ 0 mod p, so med ≡ 0 mod p. Hence med ≡ m mod p.

Suppose now that p - m. Then gcd(p, m) = 1, so mp−1 ≡ 1 mod p by Fermat’s Little Theorem.
Rasing both sides to the power k(q− 1) and then multiply by m gives mk(p−1)(q−1)+1 ≡ m mod p.
Hence med = m mod p.

Similarly, med ≡ m mod q. As p, q are distinct primes, gcd(p, q) = 1 and so med ≡ m mod pq.

CHAPTER 7. RSA 81

7.1.2 Basic RSA Signature Scheme

Key Generation Same as for RSA encryption: Algorithm 25.

To sign m ∈ {0, 1}∗, Alice does:

Algorithm 28: RSA Signature Generation

1 Compute M = H(m), where H is a hash function.
2 Compute the signature s = Md mod n. // so se ≡ Med ≡ M mod n
3 Alice’s signed message is (m, s). // the signed message is (m, s)

To verify (m, s), Bob does:

Algorithm 29: RSA Signature Verification

1 Obtain an authentic copy of Alice’s Public key (n, e).
2 Compute M = H(m)

3 Compute M′ = se mod n.
4 Accept (m, s) iff M = M′.

7.2 Case Study: QQ Browser

The Snowden documents suggested that the NSA (and collaborators) were exploiting vulnerabilities
in the UC Browser (a browser for mobile devices that is popular in China) to track users. This
prompted Knockel, Senft and Deibert (UToronto) in 2016 to study the security of browsers used in
China. They studied QQ Browser , a free web browser for Android, Windows, Mac, iOS, developed
by Tencent. QQ Browser is used by hundreds of millions of cell phone users in China.

7.2.1 Version 1

When a user launches the QQ Browser (the client) on Android, the browser makes a series of WUP
requests to QQ Browser’s server (the server).

Via a WUP request, the browser sends personal user data to the server. This data includes: QQ
username, WiFi MAC address of client, MAC addresses of all nearby WiFi access points, URL of each
page visited by the browser... (UC Browser and Baidu Browser also collect similar data.) Of course,
the personal user data needs to be protected as it is transmitted over the internet.

QQ Browser WUP Encryption

1. To encrypt a WUP request m, the client does the following:

(a) Randomly generate a 128-bit AES session key k:

int i = 10000000 + new Random ().nextInt (89999999);

int j = 10000000 + new Random ().nextInt (89999999);

return (String.valueOf(i) + String.valueOf(j)).getBytes ();

Then k = i ‖ j where i, j are 8-byte ASCII strings. So the QQ browser aims to provide the
128-bit security level.

(b) Encrypt k with the server’s RSA public key (n, e): c1 = ke mod n.

Here e = 65537 and n = 245406417573740884710047745869965023463 (128 bits).

(c) Encrypt m: c2 = AES-ECBk(m).

CHAPTER 7. RSA 82

(d) Send (c1, c2) to the server.

2. The server does the following:

(a) Decrypt c1 using its RSA private key d: k = cd
1 mod n.

(b) Decrypt c2: m = AES-ECB−1
k (c2).

(c) Encrypt the WUP response m′: c′ = TEA-CBCk′(m′), 1 where k′ = sDf434ol∗123+-KD
(in ASCII). Send c′.

3. The client decrypts m′ = TEA-CBC−1
k′ (c

′) using the hard-coded 128-bit k′.

WUPS!

1. i and j are each randomly selected integers in the interval [10000000, 99999998], so the total
number of keys k is ≈ 226.4 × 226.4 ≈ 252.8 (not 2128).

2. The server’s RSA public key is easily factored: n = 14119218591450688427× 17381019776996486069.

3. The response uses the fixed key k′ that is hard-coded in all QQ browsers!

4. Don’t use ECB mode! One should always use CBC mode instead.

Summary: The user data is protected using extremely weak cryptography, and thus is very vulnerable
to passive eavesdropping.

7.2.2 Version 2

1. To encrypt a WUP request m, the client does the following:

(a) Randomly generate a 128-bit AES session key k.

(b) Encrypt k with the server’s RSA public key (n, e): c1 = ke mod n. Here, e = 65537 and n is
a 1024-bit RSA modulus.

(c) Encrypt m: c2 = AES-ECBk(m).

(d) Send (c1, c2) to the server.

2. The server does the following:

(a) Decrypt c1 using its RSA private key d: K = cd
1 mod n, and let k be the 128 least significant

bits of K.

(b) Decrypt c2: m = AES-ECB−1
k (c2).

(c) If m is a properly formatted WUP request, then encrypt the WUP response m′: c′ =

AES-ECBk(m′) and send c′. If m is not properly formatted, then don’t respond.

3. The client decrypts m′ = AES-ECB−1
k (c′).

In step 2(a), the integer K is represented as a 1024-bit number, of which the least significant 128-bits
are taken to be k. However, the QQ server software did not check that the remaining 1024− 128 = 896
bits of K are all 0 (as they should be). This flaw can be exploited using a restricted chosen-ciphertext
attack:

(a) The adversary intercepts a ciphertext c = (c1, c2).

(b) She then sends to the QQ server a carefully-chosen modification ĉ = (ĉ1, ĉ2) of c.

1tiny encryption algorithm

CHAPTER 7. RSA 83

(c) Depending on whether the server responds or not, the adversary learns 1 bit of the secret key k.

(d) Steps (b) and (c) are repeated to obtain all the 128 bits of k.

The attack requires 128 interactions with the QQ server and very little computation. (Note that the
RSA private key d is not computed.)

Check https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/ for more details.

7.3 Security of RSA Encryption

Security of RSA Key Generation If an adversary can factor n, then she can compute d from (n, e).
It has been proven that any efficient method for computing d from (n, e) is equivalent to factoring n.

Security of Basic RSA Encryption A basic notion of security is that is should be computationally
infeasible to compute m from c. This is known as the RSA problem:

RSA Problem (RSAP)

Given an RSA public key (n, e) and c = me mod n, where m ∈ [0, n− 1], compute m.

The only effective method known for solving RSAP is to factor n (and then compute d and m). Hence-
forth, we shall assume that RSAP is intractable.

Dictionary Attack Suppose that the plaintext is chosen from a relatively small (and known) set M
of messages. Then, given a target ciphertext c, the adversary can encrypt each message in M until c is
obtained.

Countermeasure: Append a randomly selected 128-bit string (called a salt) to m priory to encryption.
Note that m is now encrypted to one of 2128 possible ciphertexts.

Chosen-Ciphertext Attack Suppose the adversary E has a target ciphertext c intended for Alice.
Suppose also that E can induce Alice to decrypt any ciphertext for her, except for c itself (we say that
Eve has a decryption oracle). Then E can decrypt c as follows:

1. Select arbitrary x ∈ [2, n− 1] with gcd(x, n) = 1.

2. Compute ĉ = c · xe mod n, where (n, e) is Alice’s public key.

Note that ĉ 6= c, unless gcd(c, n) 6= 1.2

3. Obtain the decryption m̂ of ĉ from the decryption oracle.

Note that m̂ ≡ ĉd ≡ (cxe)d ≡ cdxed ≡ m · x mod n

4. Compute m = m̂ · x−1 mod n.

This attack looks very artificial. Indeed, this is a very strong attack. However, if we can design
encryption schemes that resist even this very strong attack, then we’re guaranteed resistance to weaker
forms of attacks that might be practical such as the restricted chosen-ciphertext attack.

Countermeasure: Add some prescribed formatting to m prior to encryption. After decrypting the cipher-
text c, if the plaintext is not properly formatted, then c is rejected (so the decryption oracle does not
return a plaintext).

2If gcd(c, n) 6= 1, then Eve knows a prime factor of n from gcd(c, n), then she totally breaks the RSA encryption scheme.

https://citizenlab.ca/2016/03/privacy-security-issues-qq-browser/

CHAPTER 7. RSA 84

So, RSA encryption should incorporate salting and formatting.

secure public-key encryption scheme

A public-key encryption scheme is secure if it is semantically secure against chosen-ciphertext
attack by a computationally bounded adversary.

To break a public-key encryption scheme, E should do:

1. E is given a challenge ciphertext c (and the public key (n, e)).

2. E has a decryption oracle: she can present any ciphertexts for decryption except for c itself.

3. After a feasible amount of computation, E should learn something about the plaintext m that
corresponds to c (other than its length).

RSA Optimal Asymmetric Encryption Padding (OAEP)

Encryption:

G1

G2

0 0256M r

0 0256M⊕ G1(r) r⊕ G2(s)

s t

= m

c = me mod n

1 ` 256 • k = bitlength of n (e.g., 3072)

• ` = k− 256− 1

• r ∈R {0, 1}256 (salt)

• M plaintext (`− 256 bits)

• G1 : {0, 1}256 → {0, 1}`

• G2 : {0, 1}` → {0, 1}256

G1, G2: masking functions built from H = SHA256.

e.g., G1(r) = H(0, r) ‖ H(1, r) ‖ H(2, r) ‖ · · · .

Decryption: To decrypt c, do the following:

1. Compute m = cd mod n.

2. Parse m: 0︸︷︷︸
1

← s→︸ ︷︷ ︸
`

← t→︸ ︷︷ ︸
256

3. Compute r = G2(s)⊕ t

4. Compute G1(r)⊕ s = ← a→︸ ︷︷ ︸
256

← b→︸ ︷︷ ︸
`−256

5. If a = 0256, then output M = b; else reject c.

Theorem

Suppose that RSAP is intractable. Suppose that G1, G2 are random functions. Then RSA-OAEP
is a secure public-key encryption scheme.

CHAPTER 7. RSA 85

7.4 Integer Factorization

7.4.1 Review from complexity theory

Big-O notation, little-o notation. E.g., 1/n = o(1).

polynomial-time algorithm

One whose worst-case running time function is of the form O(nc), where n is the input size and
c is a constant.

exponential-time algorithm

One whose worst-case running time function is not of the form O(nc).

In this course, fully exponential-time functions are of the form 2cn, where c is a constant, e.g., O(2n/2).

subexponential-time algorithm

One whose worst-case running time function is of the form 2o(n), and not of the form O(nc) for
any constant c, e.g., O(2

√
n).

Roughly speaking, “polynomial-time = efficient”, “fully exponential-time = terribly inefficient”,
“subexponential-time = inefficient, but not terribly so”.

Example: Trial Division
Consider the following algorithm (trial division) for factoring RSA-moduli n. Trial divide n by the
primes 2, 3, 5, 7, . . . , b√nc, If any of these, say `, divides n, then stop and output the factor ` of n.

The running time of this method is at most
√

n trial divisions, which is O(
√

n). Is this a polynomial-
time algorithm for factoring RSA moduli?

NO! The input size is k = O(log n), and the running time is O(
√

n) = O(2k/2), since n = 2k. This
is fully exponential time in k.

Let A be an algorithm whose inputs are elements of the integers modulo n, Zn, or an integer n (so the
input size is O(n log n)). If the expected running time of A is of the form

Ln[α, c] = O
(

exp
(
(c + o(1)) (loge n)α (loge loge n)1−α

))
,

where c is a positive constant, and α is a constant satisfying 0 < α < 1, then A is a subexponential-time
algorithm.

Note that if α = 0, Ln[0, c] = O
(
(log n)c+o(1)

)
, which is polytime. If α = 1, Ln[1, c] = O

(
nc+o(1)

)
, which

is fully exponential time.

7.4.2 Factoring Algorithms

Special-Purpose Factoring Algorithms

Examples: Trial division, Pollard’s p− 1 algorithm, Pollard’s ρ algorithm, elliptic curve factoring algo-
rithm, special number field sieve.

CHAPTER 7. RSA 86

These are only efficient if the number n being factored has a special form (e.g., n has a prime factor p
such that p− 1 has only small factors; or n has a prime factor p that is relatively small).

To maximize resistance to these factoring attacks on RSA moduli, one should select the RSA primes p
and q at random and of the same bitlength.

General-Purpose Factoring Algorithms

These are factoring algorithms whose running times do not depend of any properties of the number
being factored. There have been two major developments in the history of factoring:

1. (1982) Quadratic sieve factoring algorithm (QS): Running time: Ln[
1
2 , 1].

2. (1990) Number field sieve factoring algorithm (NFS): Running time: Ln[
1
3 , 1.923].

7.4.3 History of Factoring

Year Number Bits Method Notes

1903 267 − 1 67 Naive F. Cole (3 years of Sundays).
0.02 secs in Maple (2020)

1988 ≈ 10100
332 QS Distributed computation by

100’s of computers; commu-
nication by email

1994 RSA-129 425 QS 1600 computers around the
world; 8 months

1999 RSA-155 512 NFS 300 workstations + Cray; 5

months
2003 RSA-174 576 NFS
2005 RSA-200 663 NFS (55 years on a single worksta-

tion)
2009 RSA-768 768 NFS 2000 core years
2019 RSA-240 795 NFS 900 core years
2020 RSA-250 829 NFS 2700 core years

The RSA Factoring Challenge: https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

The largest ‘hard’ number factored to date is RSA-250 (250 decimal digits, 829 bits), Feb 28 2020:
2140324650240744961264423072839333563008614715144755017797754920881418023447140136643345519095804679610992851872470914587687396261921557363047454770520805119056493106687691590019759405693457452230589325976697471681738069364894699871578494975937497937

= 64135289477071580278790190170577389084825014742943447208116859632024532344630238623598752668347708737661925585694639798853367× 33372027594978156556226010605355114227940760344767554666784520987023841729210037080257448673296881877565718986258036932062711

RSA-1024 factoring challenge (1024 bits, 309 decimal digits):
135066410865995223349603216278805969938881475605667027524485143851526510604859533833940287150571909441798207282164471551373680419703964191743046496589274256239341020864383202110372958725762358509643110564073501508187510676594629205563685529475213500852879416377328533906109750544334999811150056977236890927563

Equivalent Security Levels

Security in bits Block cipher Hash function RSA log2 n

80 SKIPJACK (SHA-1) 1024

112 Triple-DES SHA-224 2048

128 AES Small SHA-256 3072

192 AES Medium SHA-384 7680

256 AES Large SHA-512 15360

Recall that a cryptographic scheme is said to have a security level of ` bits if the fastest known attack
on the scheme takes approximately 2` operations.

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

CHAPTER 7. RSA 87

Summary Factoring is believed to be a hard problem. However, we have no proof or theoretical
evidence that factoring is indeed hard. However, factoring is known to be easy on a quantum computer
(Shor’s algorithm). The largest number factored with Shor’s algorithm is the number 21. The big open
question is whether large-scale quantum computers can ever be built. 512-bit RSA is considered
insecure today. 1024-bit RSA is considered risky today (but still deployed). Applications are moving
to 2048-bit and 3072-bit RSA.

7.5 RSA Signature Scheme

Recall Algorithm 25 (RSA key generation), Algorithm 28 (RSA signature generation) and Algorithm 29

(RSA signature verification).

We require that RSAP be intractable, since otherwise E could forge A’s signature as follows:

1. Select arbitrary m.
2. Compute M = H(m).
3. Solve se ≡ M (mod n) for s.
4. Then s is A’s signature on m.

If H is not preimage resistant, and the range of H is [0, n− 1], E can forge signatures as follows:

1. Select s ∈R [0, n− 1].
2. Compute M = se mod n.
3. Find m such that H(m) = M.
4. Then s is A’s signature on m.

If H is not 2nd preimage resistant, E could forge signatures as follows:

1. Suppose that (m, s) is a valid signed message.
2. Find an m′, m 6= m′, such that H(m) = H(m′).
3. Then (m′, s) is a valid signed message.

If H is not collision resistant, E could forge signatures as follows:

1. Select m1, m2 such that H(m1) = H(m2), where m1 and m2 are two distinct messages.
2. Induce A to sign m1: s = H(m1)

d mod n.
3. Then s is also A’s signature on m2.

7.5.1 Attack Model

Goals of the adversary:

1. Total break: E recovers A’s private key, or a method for systematically forging A’s signatures (i.e.,
E can compute A’s signature for arbitrary messages).

2. Existential forgery: E forges A’s signature for a single message; E may not have any control over
the content or structure of this message.

Types of attacks E can launch:

1. Key-only attack: The only information E has is A’s public key.

2. Known-message attack: E knows some message/signature pairs.

3. Chosen-message attack: E has access to a signing oracle which it can use to obtain A’s signatures
on some messages of its choosing.

CHAPTER 7. RSA 88

7.5.2 Security of a Signature Scheme

security of a signature scheme

A signature scheme is said to be secure if it is existentially unforgeable by a computationally
bounded adversary who launches a chosen-message attack.

Note: The adversary has access to a signing oracle. Its goal is to compute a single valid message/sig-
nature pair for any message that was not previously given to the signing oracle.

Is the basic RSA signature scheme secure?

NO, if H is SHA-256; 3 YES, if H is a ‘full domain’ hash function.

Full Domain Hash RSA (RSA-FDH)

Same as the basic RSA signature scheme, except that the hash function is H : {0, 1}∗ → [0, n− 1]. In
practice, one could use: H(m) = SHA-256(1, m) ‖ SHA-256(2, m) ‖ · · · ‖ SHA-256(t, m).

Theorem (Bellare & Rogaway, 1996)

If RSAP is intractable and H is a random function, then RSA-FDH is a secure signature scheme.

7.6 RSA PKCS #1 v1.5 Signatures (1993)

To sign m ∈ {0, 1}∗, Alice does:

Algorithm 30: RSA PKCS #1 v1.5 signature generations

1 Compute h ∈ H(m), where H is a hash function from an approved list.
2 Format h:

M = 00 01 FF · · · FF 00 hash
name h

k bytes

15 bytes 20 bytes
(for SHA-1)

// k = byte length of n, e.g., k = 384
3 Compute s = Md mod n.
4 Send (m, s)

To verify the signature, Bob does

Algorithm 31: RSA PKCS #1 v1.5 signature verification

1 Obtain an authentic copy of Alice’s public key (n, e).
2 Compute M = se mod n; write M as a byte string of length k.
3 Check formatting: First byte is 00; Second byte is 01; Consecutive FF bytes, followed by 00 byte.
4 From the next 15 bytes, get the hash name, say SHA-1.
5 Let h = next 20 bytes.
6 Compute h′ = H(m).
7 Accept if h = h′.

3Details not covered in this course.

CHAPTER 7. RSA 89

7.6.1 Bleichenbacher’s Attack (2006)

Breaking RSA signature by hand. OpenSSL had this flaw. Also, Firefox, Adobe Acrobat, SUN’s JRE
library,. . .

Assumptions:

• e = 3, H = SHA-1 (WLOG)

• n is 3072 bits long (WLOG)

• The verifier does not check that there are no bytes after h.

00 01 FF · · · FF 00 name h

k bytes

xxxxx

Algorithm 32: Bleichenbacher’s Attack

1 Select a message m ∈ {0, 1}∗.
2 Compute h = H(m).

3 Let D = 00 hash name h

bytes1 15 20

288 bits

4 Let N = 2288 − D, and check that 3 | N (if not, change m slightly).
5 Let s = 21019 − (234 · N/3).
6 Output (m, s).

We claim that (m, s) will be accepted by the verifier.

Proof:

M = se mod n

= (21019 − 234 N/3)3 mod n

= 23057 − 22072N + 21087 N2/3− (234 N/3)3︸ ︷︷ ︸
garbage

mod n

= 23057 − 22072(2288 − D) + garbage︸ ︷︷ ︸
≥0 and <22072

mod n

= 23057 − 22072(2288 − D) + garbage

= 22360(2697 − 1) + 22072D + garbage

= 00 01 FF · · · FF 00 hash
name h

3072 bits

garbageFF

D

3071 3056 2360 2072 0

697 288

The countermeasure to Bleichenbacher’s attack is to check, in step 5 of Algorithm 32, that there are no
more bytes after the hash value has been extracted.

8
Elliptic Curve Cryptography

8.1 Elliptic Curves

a
=
−

2
a
=
−

1
a
=

0
a
=

1

b = −1 b = 0 b = 1 b = 2

E/R = Y2 = X3 + aX + b

90

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 91

y ∈ Z89

x ∈ Z89••••

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

E/Z89 : Y2 = X3 − 2x + 1, #E(Z89) = 96

Picture from https://www.iacr.org/authors/tikz/.

Let F = R or F = Zp (where p ≥ 5 is prime)

elliptic curve E over F

An elliptic curve E over F is defined by an equation

E/F : Y2 = X3 + aX + b,

where a, b ∈ F with 4a3 + 27b2 6= 0.

This is the “Weierstrass form” of an elliptic curve. The restriction on a and b ensures that the polyno-
mial on RHS has no repeated roots.

F-rational points on E

The set of F-rational points on E is

E(F) = {(x, y) ∈ F× F : y2 = x3 + ax + b} ∪ {∞},

where ∞ is a special point called the point at infinity.

Example:
Consider E/Z11 : Y2 = X3 + X + 6. Then

E(Z11) =
{

∞, (2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9), (7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9)
}

,

so #E(Z11) = 13 where #S = cardinality of S.

Note that #E(Zp) is finite. It’s easy to see that 1 ≤ #E(Zp) ≤ 2p + 1. First, we have the point at ∞.
Then p is because there are p possible choices for x-coordinates; 2 is because for each x, there are at
most 2 y-coordinates on the curve.

In fact, we have the following:

Hasse’s Theorem

Let E be an elliptic curve defined over Zp. Then
(√

p− 1
)2 ≤ #E(Zp) ≤

(√
p + 1

)2.

Hence, #E(Zp) ≈ p.

https://www.iacr.org/authors/tikz/

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 92

8.1.1 Point Addition

There is a ‘natural’ way to add two points in E(F) to get a third point in E(F).

Geometric description of the addition rule

Let E be an elliptic rule over R. Think of ∞ as an imaginary point through which every vertical line
passes (in either direction).

∞

∞

The geometric rule: Let P, Q ∈ E(F). Let T ∈ E(F) be the third point of intersection of the line `

through P and Q with the elliptic curve. Then P + Q is the reflection of T in the X-axis.

O

Neutral element O

•P

•
−P

Inverse element −P

•P •Q •

•
P + Q

Addition P + Q
“Chord rule”

•P •

•
2P

Doubling P + P
“Tangent rule”

Algebraic description of the geometric rule

Let E be an elliptic curve defined over E.

(A1) P + ∞ = ∞ + P = P, for all P ∈ E(F).

(A2) If P = (x, y) ∈ E(F), then −P = (x,−y), also −∞ = ∞. Also, P + (−P) = (−P) + P = ∞, for all
P ∈ E(F).

(A3) (Chord rule) Let P = (x1, y1), Q = (x2, y2) ∈ E(F), with P 6= ±Q. Then P + Q = (x3, y3), where

x3 = λ2 − x1 − x2, y3 = −y1 + λ(x1 − x3), and λ =
y2 − y1

x2 − x1
.

(A4) (Tangent rule) Let P = (x1, y1) ∈ E(F), with P 6= −P. Then P + P = (x3, y3), where

x3 = λ2 − 2x1, y3 = −y1 + λ(x1 − x3), and λ =
3x2

1 + a
2y1

.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 93

Derivation of the addition formula in A3

`

E

P

Q T

P + Q

Let P = (x1, y1), Q = (x2, y2) ∈ E(F), with P 6= ±Q. The equation of the line ` through P and Q is

` : Y = y1 + λ(X− x1), (∗)

where λ = y2−y1
x2−x1

is the slope of `.

To find the third point of intersection of ` with E, we substitute (∗) into E : Y2 = X3 + aX + b to get:[
y1 + λ(X− x1)

]2
= X3 + aX + b,

so, X3 + aX + b −
[
y1 + λ(X − x1)

]2
= 0. This equation has two solutions in F, namely x1 and x2,

Thus, it must have a third solution in F, say x3. Thus we have

X3 + aX + b−
[
y1 + λ(X− x1)

]2
= (X− x1)(X− x2)(X− x3).

Equating coefficients of X2 of both sides gives −λ2 = −(x1 + x2 + x3), so

x3 = λ2 − x1 − x2

The coordinates of T are (x3, y′3), where y′3 = y1 + λ(x3 − x1). Hence the coordinates of P + Q are
(x3, y3) = (x3,−y′3), so

y3 = −y1 + λ(x1 − x3)

Note on A4 The slope of the tangent line ` at P = (x1, y1) is: λ =
3x2

1+a
2y1

. E : Y2 = X3 + aX + b,

2Y · dY
dX = 3X2 + a, so dY

dX = 3X2+a
2Y .

`

P T

P + P

Example:
Consider E/Z11 : Y2 = X3 + X + 6. The set of Z11-rational points on E is:

E(Z11) =
{

∞, (2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 9), (7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9)
}

,

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 94

We have
(2, 4) + (2, 7) = ∞

(2, 4) + (8, 3) = (5, 2)

(2, 4) + (2, 4) = (5, 9)

Note that in the second equation, we find that

λ =
y2 − y1

x2 − x1
=

3− 4
8− 2

= −1
6
= (−1)(2) = −2 = 9

where 6−1 = 2 since 6 · 2 = 1 (mod 11).

(E(F),+) is an Abelian group

The addition rule satisfies the following properties:

(P1) P + ∞ = ∞ + P = P for all P ∈ E(F).

(P2) For each P ∈ E(F), there exists Q ∈ E(F) such that P + Q = Q + P = ∞.

(P3) P + Q = Q + P for all P, Q ∈ E(F).

(P4) (P + Q) + R = P + (Q + R) for all P, Q, R ∈ E(F). 1

8.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Let E : Y2 = X3 + aX + b be an elliptic curve defined over F = Zp. Let n = #E(Zp), and suppose that
n is prime. Note that n ≈ p by Hasse’s Theorem.

point multiplication

Let P ∈ E(Zp) and let k ∈ N. Then kP = P + P + · · ·+ P︸ ︷︷ ︸
k

. Also, 0P = ∞, and (−k)P = −(kP).

This operations is called point multiplication.

Theorem

Let P ∈ E(Zp), P 6= ∞. Then

(i) nP = ∞; and

(ii) The points ∞, P, 2P, 3P, . . . , (n− 1)P are distinct, and so E(Zp) = {∞, P, 2P, . . . , (n− 1)P}.
P is called a generator of E(Zp).

∞
P

2P

3P

4P

−3P = (n− 3)P

−2P = (n− 2)P

−P = (n− 1)P

1this property (associativity) requires proof, but we won’t do this.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 95

Example:
Let p = 23. Consider E/Z23 : Y2 = X3 + X + 4. #E(Z23) = 29. The 29 points in E(Z23) are:

(0, 2) (0, 21) (1, 11) (1, 12) (4, 7) (4, 16) (7, 3)
(7, 20) (8, 8) (8, 15) (9, 11) (9, 12) (10, 5) (10, 18)
(11, 9) (11, 14) (13, 11) (13, 12) (14, 5) (14, 18) (15, 6)
(15, 17) (17, 9) (17, 14) (18, 9) (18, 14) (22, 5) (22, 18)

∞

From the theorem, every point except for ∞ can serve as a generator. Let’s take (0, 2) as a generator:

1P = (0, 2) 11P = (10, 5) 21P = (14, 18)
2P = (13, 12) 12P = (17, 9) 22P = (15, 17)
3P = (11, 9) 13P = (8, 15) 23P = (9, 12)
4P = (1, 12) 14P = (18, 9) 24P = (7, 3)
5P = (7, 20) 15P = (18, 14) 25P = (1, 11)
6P = (9, 11) 16P = (8, 8) 26P = (11, 14)
7P = (15, 6) 17P = (17, 14) 27P = (13, 11)
8P = (14, 5) 18P = (10, 18) 28P = (0, 21)
9P = (4, 7) 19P = (22, 18) 29P = ∞

10P = (22, 5) 20P = (4, 16)

Elliptic curve discrete logarithm problem

The elliptic curve discrete logarithm problem (ECDLP) is the following:

Given E, p, n, P ∈ E(Zp) (with P 6= ∞), and
Q ∈ E(Zp), find the integer ` ∈ [0, n − 1]
such that Q = `P. The integer ` is called the
discrete logarithm of Q to the base P, written
` = logP Q.

P
2P

3P

4P

∞

Q

Example:
ECDLP instance to the last example: Given P = (0, 2) and Q = (10, 18), find ` = [0, 28] such that
Q = `P. Solution is ` = 18.

1. Brute force

The ECDLP can be solved by computing P, 2P, 3P, . . ., until Q is encountered. This attack takes time
O(n) point additions, or O(p) point additions (recall that n ≈ p). This is fully exponential since an
ECDLP instance has size O(log p) bits.

2. Shank’s Algorithm (for solving ECDLP)

Idea Let M = d√ne. By the division algorithm, there exist unique integers q, r with ` = qm+ r, where
0 ≤ r < m and 0 ≤ q < m. Hence `− qm = r. Multiplying both sides by P gives `P− qmP = rP, so

Q− q(mP) = rP

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 96

This equation suggests the following algorithm for finding ` = logP Q:

Algorithm 33: Shank’s algorithm

1 foreach r ∈ [0, m− 1] do
2 Compute rP.
3 Store (rP, r) in a sorted table.

4 Compute M = mP.
5 foreach q ∈ [0, m− 1] do
6 Compute R = Q− qM and look it up in the table.
7 if R = rP then
8 Output “` = qm + r” and STOP.

Runtime: O(m) = O(
√

n) = O(
√

p) point additions. Storage: O(
√

p) points.

3. Pollard’s Algorithm

The ECDLP can be solved in time O(
√

p) point additions and negligible storage. Moreover VW
collisions search can be used to perfectly parallelize Pollard’s algorithm.

Note:
Pollard’s algorithm is fastest method known for solving the ECDLP (except for some very special
elliptic curves that can easily avoided in practice).

4. Shor’s Algorithm

The ECDLP can be solved in polynomial time on a quantum computer.

8.3 Elliptic Curve Cryptography

ECC was invented independently by Neal Koblitz, Victor Miller in 1985.

RSA is a perfectly good public encryption scheme and signature scheme. Why ECC?

RSA Security is based on intractability of integer factorization. Fastest known attacks take subex-
ponential time.

ECC Security is based on intractability of ECDLP. Fastest known attacks take fully exponential
time.

Hence, elliptic curve cryptographic can use smaller parameters than their RSA counterparts, while
achieving the same security level.

Example:

Security level Bitlength of RSA n Bitlength of ECC p
80 1,024 160

112 2,048 224

128 3,072 256

192 7,680 384

256 15,360 512

Smaller parameters −→ faster and smaller

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 97

8.3.1 Elliptic Curves in Practice

Deployments of ECC generally use an elliptic curve that has been standardized (e.g., by NIST). Exam-
ples include: P-256, Curve25519, P-384.

P-256 Elliptic Curve

P-256 is an elliptic curve chosen by the National Security Agency in 1998 for U.S. government use.
P-256 should be used for applications that require the 128-bit security level.

p = 2256 − 2224 + 2192 + 296 − 1 is prime.

P-256 is the elliptic curve E : Y2 = X3 − 3X + b over Zp, where

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291.

We have n = #E(Zp) is prime, where

n = 115792089210356248762697446949407573529996955224135760342422259061068512044369.

Curve25519

Selected by Dan Bernstein in 2005, and developed with Tanja Lange and others. Curve25519 should
be used for applications that require the 128-bit security level.

p = 2255 − 19 is prime.

Curve25519 is the elliptic curve E : Y2 = X3 + 486662X2 + X over Zp. Note: The curve is in ‘Mont-
gomery form’.

#E(Zp) = 8n, where n is the following 253-bit prime:

2252 + 27742317777372353535851937790883648493.

Reference implementation in C: https://cr.yp.to/ecdh.html

P-384 Elliptic Curve

P-384 is an elliptic curve chosen by the National Security Agency in 1998 for U.S. government use.
P-384 should be used for applications that require the 192-bit security level.

p = 2384 − 2128 − 296 + 232 − 1 is prime.

P-384 is the curve E : y2 = X3 − 3X + b over Zp, where

b = 27580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575.

We have n = #E(Zp) is prime, where

n = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643.

8.3.2 Modular Reduction

The primes p = 2256− 2224 + 2192 + 296− 1 and p = 2384− 2128− 296 + 232− 1 used in P-256 and P-384

were chosen because the operation of reduction modulo p can be easily and efficiently implemented
on a 32-bit machine without doing long division. Long division is bit-oriented, so it’s very tedious to
implement in software.

To illustrate this technique, let’s consider reduction modulo the prime p = 2192 − 264 − 1 on a 64-bit
machine. 2

2By a 64-bit machine, prof means a computer with built-in instructions for addition, subtraction, multiplication of 64-bit
integers.

https://cr.yp.to/ecdh.html

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 98

Now p = 2192 − 264 − 1. Suppose that a, b ∈ [0, p− 1]. We wish to compute c = a · b mod p.

We have
a = a22128 + a1264 + a0, and b = b22128 + b1264 + b0,

where a0, a1, a2, b0, b1, b2 are 64-bit integers.

a2 a1 a0

b2 b1 b0

192 bits

64 bits

We first compute d = a · b using ordinary 264-base integer arithmetic. Let

d = d52320 + d42256 + d32192 + d22128 + d1264 + d0,

where each di is a 64-bit integer.

d5 d4 d3 d2 d1 d0

384 bits

64 bits

We now need to reduce d modulo p.

We have

2192 ≡ 264 + 1 (mod p),

2256 ≡ 2128 + 264 (mod p),

2320 ≡ 2192 + 2128 ≡ 2128 + 264 + 1 (mod p).

Hence

c = d mod p

= d52230 + d42256 + d32192 + d22128 + d1264 + d0 mod p

= d5(2128 + 264 + 1) + d4(2128 + 264) + d3(264 + 1) + d22128 + d1264 + d0 mod p

= d5 | d5 | d5 + d4 | d4 | 0 + 0 | d3 | d3 + d2 | d1 | d0 mod p

This suggests the following algorithm for computing c = a · b mod p:

Algorithm 34: c = a · b mod p
Input: a, b ∈ [0, p− 1]
Output: c = a · b mod p where p = 2192 − 264 − 1

1 Compute the 384-bit number d = a · b = (d5, d4, d3, d2, d1, d0); where each di is a 64-bit integer.
2 Define the 192-bit integers:

t1 = (d2, d1, d0), t2 = (0, d3, d3), t3 = (d4, d4, 0), t4 = (d5, d5, d5).

3 Compute c = t1 + t2 + t3 + t4.
4 if c ≥ p then repeatedly subtract p from c until c ∈ [0, p− 1];
5 return c

Note:
No long division is done.

In step 3, we have 0 ≤ c < 4p, so at most three subtractions by p are required in step 4.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 99

8.4 Elliptic Curve Diffie–Hellman (ECDH)

ECDH is the elliptic curve analogue of a key agreement protocol first proposed by Diffie and Hellman
in 1975. The objective is for two communicating parties agree upon a shared secret key k. They can use
k in a symmetric-key scheme such as HMAC or AES-GCM.

ECDH Domain Parameters (these parameters are public)

• An elliptic curve E = Y2 = X3 + aX + b defined over Zp. (e.g., P-256)

• n = #E(Zp), where n is prime.

• A generator P ∈ E(Zp).

• A key derivation function KDF (such as a hash function).

8.4.1 Unauthenticated ECDH

Alice
1. x ∈R [1, n− 1]
2. X = xP
9. K = xY
10. k = KDF(K)

Bob
4. y ∈R [1, n− 1]
5. Y = yP
6. K = yX
7. k = KDF(K)

3. X

8. Y

k is the shared
secret key

Alice and Bob compute the same k since

xY = x(yP) = (xy)P = (yx)P = (yx)P = y(xP) = yX.

An eavesdropper sees X, Y (and the domain parameters). Her goal is to compute K = xY = yX; this
is called the ECDH problem. The fastest way known to solve this problem is to first compute x or y
(ECDLP). Therefore, assuming ECDLP is intractable, ECDH problem is also intractable.

This basic version of ECDH is authenticated because X and Y are not authenticated. When Alice
receives Y from Bob, she isn’t sure that Y was indeed by Bob.

Malicious-Intruder-in-the-Middle (MITM) Attack

This attack is more commonly called a “Man-in-the-Middle” attack, but the instructor sees no reason
why one has to be a man to run the attack. So “Malicious-Intruder-in-the-Middle” is more descriptive.

Since X and Y are not authenticated, unauthenticated ECDH is vulnerable to a MITM attack.

Alice
1. x, X = xP
9. K1 = xY′

9. k1 = KDF(K1)

Bob
5. y, Y = yP
9. K2 = yX′

9. k2 = KDF(K2)

4. X′

6. Y

Eve
3. x′, X′ = x′P
7. y′, Y′ = y′P
9. K1 = y′X, k1

9. K2 = x′Y, k2

2. X

8. Y′

Suppose now that Alice sends c = Ek1(m) to Bob, where E = AES-GCM. Eve intercepts c, computes
m = E−1

k1
(c), c′ = Ek2(m) and sends c′ to Bob. Bob computes m = E−1

k2
(c′). Therefore, Bob and Eve

can both decrypt the plaintext m that Alice sends. Thus Eve has compromised the confidentiality of
Alice’s transmissions. Unbeknown to Alice and Bob, Eve has also computed m.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 100

8.4.2 Authenticated ECDH

Alice sends Bob X, her RSA/ECDSA signature on X, and a certificate3 for her RSA/ECDSA public
key. Bob verifies the certificate, and then uses Alice’s public key to verify the signature on X. Similarly,
Bob signs Y.

Note that MITM attack is thwarted: when Eve replaces Bob’s Y with Y′, Eve is unable to compute the
correct signature on Y′ assuming that the signature scheme is secure, so Alice would reject Y′.

8.5 Case Study: ECDH in Google

In November 2011, Google started using ECDH as its default key establishment mechanism in TLS-
secured applications including Gmail and encrypted search. ECDH was chosen because it provides
forward secrecy. The elliptic curve used was P-256.

8.5.1 TLS (as was commonly implemented)

When a web browser (Alice) visits a secured web page (Bob):

1. Bob sends its certificate to Alice.

2. Alice verifies the signature in the certificate using the (intermediate) Certificate Authority’s RSA
public key. If the certificate verifies, then Alice is assured that she has an authentic copy of Bob’s
RSA public key.

3. Alice selects a random session key k, and encrypts k with Bob’s RSA public key. Alice sends the
resulting ciphertext c to Bob.

4. Bob decrypts c using his RSA private key and obtains k.

5. The session key is used to authenticate (with HMAC) and encrypt (with AES) all data exchanged
for the remainder of the session.

TLS, as described, does not provide forward secrecy.

That is, suppose that an eavesdropper saves a copy of c and the encrypted data. If, at a future point
in time, the eavesdropper is able to break into Bob’s machine and learn his RSA private key, then
the eavesdropper is able to decrypt c and thus recover k and the data that was encrypted with k.
Alternatively, a law enforcement agent could demand that Bob hand over his RSA private key.

A key establishment is said to provide forward secrecy if compromise of long-term secret keys does not
compromise past session keys.

Using ECDH to establish a session key k provides forward secrecy.

8.5.2 TLS as implemented by Google

When a web browser (Alice) visits a secured web page (Bob):

1. Bob sends its certificate to Alice.

2. Alice verifies the signature in the certificate using the (intermediate) Certificate Authority’s RSA
public key. If the certificate verifies, then Alice is assured that she has an authentic copy of Bob’s
RSA public key.

3. Alice selects x ∈R [1, n− 1] and sends X = xP to Bob. (P is a fixed point on P-256.)

3an electronic document that asserts that a public key belongs to Alice

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 101

4. Bob selects y ∈R [1, n− 1], signs Y = yP with its RSA signing key, and sends Y and the signature
to Alice.

5. Alice verifies the signature using Bob’s RSA public key, and is thus assured that Y was sent by
Bob.

6. Both Alice and Bob compute the shared secret K = xY = yX = xyP, and derive a session key k
from K.

7. Alice deletes x. Bob deletes y.

8. The session key is used to authenticate and encrypt (with AES-GCM) all data exchanged for the
remainder of the session.

9. At the end of the session, Alice and Bob delete k.

Note that forward secrecy is provided. If an eavesdropper such as law enforcement has captured the
ciphertext and wishes to decrypt it, law enforcement needs the session key k. However both Alice and
Bob have deleted the session key and all the data used to derive the session key.

For further information, see http://tinyurl.com/GoogleECDH.

RSA vs DL vs ECC Usage in TLS

Credit to Nadia Heninger. Percentage of https connections that use RSA, DL or ECC as of Nov. 2016:

Key exchange Signatures
RSA: 39% RSA: 99%
DH: 10% DSA: > 0%
ECDH: 51% ECDSA: 1%

8.6 The Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA Domain Parameters

• Elliptic curve E, defined over Zp. (e.g., P-256)

• n = #E(Zp) (n prime)

• A generator P ∈ E(Zp).

• A collision-resistant hash function H. (e.g., SHA-256)

To generate keys, Alice does

Algorithm 35: ECDSA key generation

1 Select a ∈R [1, n− 1], and compute A = aP.
2 Alice’s public key is A; her private key is a.

Note that computing a from A is an instance of the ECDLP.

http://tinyurl.com/GoogleECDH
https://cseweb.ucsd.edu/~nadiah/

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 102

To sign a message M ∈ {0, 1}∗, Alice does the following:

Algorithm 36: ECDSA signature generation

1 Compute m = H(M), and interpret m as an integer.
2 Select a per-message secret k ∈R [1, n− 1].
3 Compute R = kP. Let r = x(R) mod n, and check that r 6= 0. // x(R) is x-coord. of R
4 Compute s = k−1(m + ar) mod n, and check that s 6= 0.
5 Alice’s signature on M is (r, s).

We need r 6= 0 because in step 4, a is multiplied by r. s 6= 0 because we need to find inverses of
s mod n in signature verification.

Note that a fresh random k should be selected each time Alice signs a message. Suppose Alice signs
both M1 and M2 using the same k, and assume the adversary learns (r, s1) and (r, s2). From the
signature equation, the only unknowns are k and a, then from these two equations, the adversary can
solve efficiently. Also, k should be securely destroyed after it is used. Otherwise the only unknown is
a, then the adversary can efficiently compute a from k.

Final note that ECDSA is a randomized signature scheme. New per-message secret k is generated
every time she signs a message m.

To verify Alice’s signature (r, s) on M, Bob does:

Algorithm 37: ECDSA signature verification

1 Obtain an authentic copy of Alice’s public key A.
2 Check that 1 ≤ r, s ≤ n− 1.
3 Compute m = H(M).
4 Compute u1 = ms−1 mod n and u2 = rs−1 mod n.
5 Compute V = u1P + u2 A and verify that V 6= ∞.
6 Compute v = x(V) mod n.
7 Accept M, (r, s) iff v = r.

s = k−1(m + ar) mod n

⇐⇒ k ≡ s−1(m + ar) (mod n)

⇐⇒ k ≡ u1 + u2a (mod n)

⇐⇒ kP = u1P + u2aP

⇐⇒ kP = u1P + u2 A

⇐⇒ kP = V

=⇒ x(kP) mod n = x(V) mod n

⇐⇒ r = v

Thus, if Alice generated M, (r, s), then Bob will accept.

ECDSA is believed to be secure, assuming that ECDLP is intractable, and H is a ‘secure’ hash function.

ECDSA vs. RSA RSA-FDH: 3,072-bit n, ECDSA: 256-bit p.

1. In practice, RSA is used with e = 3 or e = 216 + 1. So, RSA signature verification (se mod n) is
generally faster than ECDSA (V = u1P + u2 A).

2. RSA signature generation (H(M)d mod n) is generally slower than ECDSA (R = kP).

3. RSA signatures are 3,072 bits in length; ECDSA signatures have bitlength 512 bits.

CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY 103

Benchmarks using openssl on the instructor’s MacBook Air:

sig. gen. per sec # sig. ver. per sec
ECDSA with P-256 1730 2295
ECDSA with P-384 807 1207
RSA with 2048-bit n 938 17015
RSA with 4096-bit n 125 4489

9
Bluetooth Security

9.1 Introduction

Bluetooth is an industry standard for short-range low-power wireless communication technology. It’s
primarily used to establish wireless personal area networks (WPANs).

Bluetooth v1.0 released in 1999. Bluetooth v5.2 released on December 31, 2019. In 2017, Bluetooth
product shipments were more than 3.6 billion. Four variants: BR (basic rate), EDR (enhanced data
rate), HS (high speed), LE (low energy). The Bluetooth specification is about 3,000 pages long, which
makes a comprehensive security analysis very difficult.

Five basic security services are specified in the Bluetooth standard:

1. Confidentiality: preventing information compromise caused by eavesdropping by ensuring that
only authorized devices can access and view transmitted data.

2. Message Integrity: verifying that a message sent between two Bluetooth devices has not been
altered in transit.

3. Authentication: verifying the identity of communicating devices based on their Bluetooth ad-
dresses.

4. Authorization: allowing the control of resources by ensuring that a device is authorized to use
a service before permitting it to do so.

5. Pairing: creating one or more shared secret keys and the storing of these keys for use in subse-
quent connections in order to form a trusted device pair.

To establish a long-term secure Bluetooth connection, the two devices have to “pair”.

There are three security mechanisms:

1. Legacy

2. Secure Simple Pairing

3. Secure Connections

(Secure Simple Pairing and Secure Connections are very similar)

104

CHAPTER 9. BLUETOOTH SECURITY 105

Secure Connections

Four association models depending on the I/O capabilities of the devices:

1. Numeric Comparison: requires both devices to have displays for 6-digit numbers, and one of
the two devices to have an “OK/Reject” confirmation button.

2. PassKey Entry: requires one device to have input capability (e.g., keyboard), and the other
device to have display (but not input) capability.

3. Just Works: designed for the situation where at least one of the pairing devices has neither a
display nor a keyboard (e.g. headsets).

4. Out-of-Band (vendor specific): designed for devices that support a common additional wireless
(e.g. NFC) or wired technology for the purpose of device discovery and cryptographic value
exchange.

We shall study Numeric Comparison.

9.2 The Bluetooth security protocol - Numeric Comparison

Notation:

P-256 elliptic curve E, p, n, P
Alice the initiating device
Bob the responder device
A, B Alice’s and Bob’s 48-bit Bluetooth addresses
NA, NB Alice’s and Bob’s randomly-selected 128-bit nonces
CB Bob’s commitment (to his nonce)
VA, VB Alice’s and Bob’s 6-digit verification values
EA, EB Alice’s and Bob’s exchange confirmation values
LK link key
SA, SB Alice’s and Bob’s signed responses
ACO authenticated ciphering offset
KE encryption key

To prevent MITM attacks, one must ensure that Alice and Bob select their nonces independently of
each other. This can be achieved by “commitments”. After exchanging the points X and Y, Bob selects
his nonce NB and sends to Alice a commitment of this nonce. The commitment is a value which does
not reveal anything at all about the nonce itself. Later, Bob can prove to Alice that his commitment
corresponds to the nonce NB. But Bob cannot prove to Alice that the commitment corresponds to any
other nonce different from NB. Therefore, after receiving the commitment from Bob, Alice sends her
nonce to Bob, and finally Bob sends his nonce to Alice. Alice checks that the nonce indeed corresponds
to the previous commitment. In this way, Alice and Bob are forced to select nonces independently of
each other.

Phase 1: Public Key Exchange

Purpose: To establish an (unauthenticated) shared secret.

CHAPTER 9. BLUETOOTH SECURITY 106

ECDH is used:

Algorithm 38: Bluetooth security protocol phase 1: public key exchange

1 Alice selects x ∈R [1, n− 1], computes X = xP and sends X to Bob.
2 Bob selects y ∈R [1, n− 1], computes Y = yP, sends Y to Alice.

Bob computes K = the x-coordinate of yX.
3 Alice computes K = the x-coordinate of xY.
4 The shared secret is K (256 bits).

Phase 2: Authentication Stage 1

Purpose: Provide some protection against active MITM attacks.

Algorithm 39: Bluetooth security protocol phase 2: authentication stage 1

1 Bob selects nonce NB ∈R {0, 1}128, computes a commitment CB = HMAC-SHA-256NB(Y, X),
and sends CB to Alice.

2 Alice selects nonce NA ∈R {0, 1}128 and sends NA to Bob.
3 Bob sends NB to Alice.
4 Alice checks if CB = HMAC-SHA-256NB(Y, X).
5 Alice computes verification value

VA = (SHA-256(X, Y, NA, NB) mod 232) mod 106,

and displays this value.
6 Bob computes verification value

VB = (SHA-256(X, Y, NA, NB) mod 232) mod 106,

and displays this value.
7 if VA = VB then the owner presses the “OK” button.

Waiting for “CO 487” to accept pairing.

Make sure code shown on “CO 487” matches the one below.

666666

Bluetooth pairing request

Passkey: 666666

Pair with CO 687?

Cancel OK

Notes on Phase 2:

• The use of the commitment CB means that Alice and Bob each selects their nonces before seeing
the other party’s nonce.

• Failure in step 4 indicates the presence of an attacker, or other transmission error.

CHAPTER 9. BLUETOOTH SECURITY 107

• An active MITM attack will result in the two 6-digit verification values VA, VB being different
with probability 0.999999.

Phase 3: Authentication Stage 2

Purpose: Confirm that both devices have successfully completed the exchange.

Algorithm 40: Bluetooth security protocol phase 3: authentication stage 2

1 Alice computes EA = 128 least significant bits of HMAC-SHA-256K(NA, NB, A, B) and sends
exchange confirmation value EA to Bob.

2 Bob verifies that the 128 least significant bits of HMAC-SHA-256K(NA, NB, A, B) are equal to
EA, computes exchange confirmation value EB = 128 most significant bits of
HMAC-SHA-256K(NB, NA, B, A), and sends EB to Alice.

3 Alice verifies the 128 most significant bits of HMAC-SHA-256K(NB, NA, B, A) are equal to EB.

Phase 4: Link Key Calculation

Purpose: Compute the long-term link key LK.

Algorithm 41: Bluetooth security protocol phase 4: link key calculation

1 Both parties compute LK = 128 most significant bits of HMAC-SHA-256K(NA, NB, A, B).

Notes:

• The link key is the long-term authentication key.

• The link key is used to maintain the pairing.

• The use of nonces in protocol ensure the freshness of the link key even if long-term ECDH values
are used by both sides.

Authentication and Encryption

Purpose: Check that the communicating devices hold the same link key (and thus are paired), and then
derive a shared secret input to the encryption-key generation procedure.

Algorithm 42: Bluetooth security protocol: authentication and encryption

1 Alice generates RA ∈R {0, 1}128 and sends (A, RA) to Bob.
2 Bob generates RB ∈R {0, 1}128 and sends (B, RB) to Alice.
3 Alice and Bob computes:

(a) Device authentication key h = 128 most significant bits of HMAC-SHA-256LK(A, B).
(b) Device authentication confirmation values

t = HMAC-SHA-256h(RA, RB)

SA = leftmost 32 bits of t

SB = next 32 bits of t

ACO = next 64 bits of t

4 Alice sends SA to Bob (signed response)
5 Bob sends SB to Alice (signed response)
6 Alice and Bob compare the signed responses they received with the values they computed.

CHAPTER 9. BLUETOOTH SECURITY 108

The encryption key KE derived may vary in length in single byte increments from 1 byte to 16 bytes.
The length is set during a negotiation process that occurs between the two communicating devices.

For 128-bit keys: KE = 128 most significant bits of HMAC-SHA-256LK(A, B, ACO). For smaller `-bit
keys, take the ` most significant bits, and set the remaining bits to 0.

Encryption is performed using either the E0 stream cipher in Bluetooth version 4.0 and earlier, or
AES-CCM (AES-CTR encryption + Cipher Block Chaining MAC) in Bluetooth version 4.1 and later.

9.3 KNOB Attack

Antonioli-Tippenhauer-Rasmussen (August 2019)

See https://knobattack.com/

The encryption key negotiation protocol is used by two Bluetooth devices to agree on the length of
encryption keys KE. This was introduced to cope with international encryption regulations and to
facilitate security upgrades. However, it turns out that the negotiation is neither authenticated nor
encrypted. So, an active adversary can cause the devices to agree to produce an 8-bit key KE. This key
can then be brute forced in real time (and thus confidentiality is lost).

The attack was implemented, and used to decrypt an encrypted file exchanged over Bluetooth between
a Nexus 5 phone and a Motorola G3 phone. Most Bluetooth chips (Intel, Broadcom, Apple. . .) and
devices were vulnerable to the attack.

Countermeasure: Set the key length to 128 bits.

https://knobattack.com/

10
Key Management

10.1 Public Key Management

Key management

A set of techniques and procedures supporting the establishment and maintenance of keying
relationships between authorized parties.

We will consider management of public keys that are used for public-key encryption, Diffie-Hellman
key agreement, and for verification of digital signatures. It’s instructive to think about two scenarios:

1. Suppose that A wishes to use public-key encryption (or hybrid encryption) to encrypt a message
for B. To do this, A needs an authentic copy of B’s public key.

• Example: A wishes to send B a confidential email.

• Example: A wishes to send her credit number to B while making an online purchase.

2. Suppose that A receives a message purportedly signed by B. To verify the signature on the
message, A needs an authentic copy of B’s public key.

• Example: A person A wishes to verify the authenticity of a software patch that was purport-
edly signed by Microsoft (B).

• Example: The manager B of a bank branch can authorize financial transactions worth up to
$20, 000.

These two scenarios raise some questions and concerns:

• Where does A get B’s public key from?

• How does A know she really has B’s public key?

• How can a bank limit use of B’s public/private key pair?

• What happens if B’s private key is compromised? Who is liable?

• How can a bank revoke B’s public key?

• How can B’s public keys be updated?

109

CHAPTER 10. KEY MANAGEMENT 110

Techniques for Distributing Public Keys

1. Point-to-point delivery over a trusted channel.

Trusted courier. One-time user registration. Voice. Embedded in a browser or operating system.

2. Direct access to a trusted public file.

Digitally signed file. The file could be placed on a public website. Anyone could download the
file and then use the trusted entity’s public signature verification key to verify the authenticity
of the file.

3. Use of an on-line trusted server.

Online Certification Status Protocol (OCSP) is a standardized protocol whereby a user can send
real-time requests to check the authenticity of a public key. A trusted OCSP server would verify
the public key and send a signed confirmation to the user.

4. Off-line certification authority (CA).

We will discuss certification authorities.

10.2 Certification Authorities (CAs)

A CA issues certificates that bind an entity’s identity A and its public key.

A’s certificate CertA consists of:

1. Data part DA: A’s identity, her public key, and other information such as validity period.

2. Signature part ST : The CA’s signature on the data part.

B obtains an authentic copy of A’s public key as follows:

1. Obtain an authentic copy of the CA’s public key (e.g., shipped in browsers or in an operating
system).

2. Obtain CertA (over an unsecured channel).

3. Verify the CA’s signature ST on DA.

Note that the CA does not have to be trusted with users’ private keys. The CA has to be trusted to not
create false certificates.

10.3 Public-Key Infrastructures (PKI)

PKI A collection of technologies and processes for managing public keys, their corresponding private
keys, and their use by applications.

Some components of a PKI

• Certificate format.

• The certification process.

• Certificate revocation.

• Trust models.

• Certificate distribution.

CHAPTER 10. KEY MANAGEMENT 111

• Certificate policy: Details of intended use and scope of a particular certificate.

• Certification practices statement (CPS): Practices and policies followed by a CA.

Although conceptually very simple, there are many practical problems that are encountered when
deploying PKI on a large scale. Many of these problems arise from business, legal, and useability
considerations.

The problems include

• Interoperability (alleviated by standards and certificate formats).

• Certificate revocation.

It is estimated that � 500, 000 TLS private keys were compromised due to the Heartbleed bug
(discovered in 2014). Lots of certificates needed to be revoked.

• Liability.

• Trust models.

10.4 Case Study: TLS

SSL (Secure Sockets Layer) was designed by Netscape. TLS is an IETF version of SSL. SSL/TLS is used
by web browsers to protect web transactions.

There are many versions of SSL/TLS: SSL 2.0 (1995), SSL 3.0 (1996), 1 TLS 1.0 (1999), TLS 1.1 (2006),
TLS 1.2 (2008), TLS 1.3 (2018). Google removed SSL 3.0 from Chrome only in 2014.

The main components of TLS are:

1. Handshake protocol: Allows the server to authenticate itself to the client, and then negotiate
cryptographic keys.

2. Record protocol: Used to encrypt and authenticate transmitted data.

10.4.1 TLS Handshake Protocol

Phase 1 Establish security capabilities.
Negotiate protocol version, cryptographic algorithms, security levels, etc.

Phase 2 Server authentication and key exchange.
Server sends its certificate, and key exchange parameters (if any).

Phase 3 Client authentication and key exchange.
Client sends its certificate (if available) and key exchange parameters.

Phase 4 Finish.

The main key establishment schemes are:

1. RSA key transport: The shared secret k is selected by the client and encrypted with the server’s
RSA public key. (Not allowed in TLS 1.3)

2. Elliptic Curve Diffie-Hellman (ECDH)
1almost identical to SSL 2.0

CHAPTER 10. KEY MANAGEMENT 112

• The server selects a one-time EC Diffie-Hellman public key X = xP and signs it with its
RSA or ECDSA signature key.

• The client selects a one-time EC Diffie-Hellman public key Y = yP.

• The session key is K = KDF(xyP).

Note that in both RSA key transport and ECDH, the authentication is one-way: from server to client.

10.4.2 TLS 1.2 Record Protocol

Suppose that client and server share a MAC secret key and a session encryption key.

Application data

Fragment Fragment Fragment

Compress

Data MAC

Encrypt

header

16384 bytes

• MAC: HMAC-SHA-1, HMAC-MD5, HMAC-SHA256, ...

• Symmetric-key encryption: RC4, ChaCha20, Triple-DES, AES, ...

• Authenticated encryption: MAC-then-encrypt, AES-GCM, ChaCha20 + Poly1305
2.

10.4.3 TLS 1.3

TLS 1.3, approved by IETF in August 2018, was a major overhaul of TLS 1.2. Some of the changes
made in TLS 1.3 were:

• Removed RC4, Triple-DES, CBC-mode.

• Removed MAC-then-encrypt.

• Removed MD5 and SHA1.

• Removed RSA key transport.

• Mandates AES-GCM (and optionally ChaCha20 + Poly1305).

• All public-key exchanges are based on ephemeral elliptic curve Diffie-Hellman.

• Elliptic curves include P-256, Curve25519 and P-384.

10.5 Public Key Management in TLS

Root CA keys are pre-installed in browsers. Root CAs certify public keys of Intermediate CAs.

Web servers get their public keys certified by Intermediate CAs (perhaps for a fee).

2a MAC scheme similar to GCM

https://www.ietf.org/

CHAPTER 10. KEY MANAGEMENT 113

• DigiCert’s web server certification business: https://www.digicert.com/

• Let’s Encrypt. https://letsencrypt.org/: Non-profit CA, that provides free web certificates.
Automatic certificate issuance; relies on domain validation.

Clients (users) can obtain their own certificates. However, most users do not have their own certificates.
If clients do not have certificates, then authentication is only one-way (the server authenticates itself to
the client).

10.5.1 Example of an X.509 Certificate

Go to https://www.cibc.com and click on the padlock.

Certificate
Standard
• •

www.cibc.com
Issued by: DigiCert SHA2 Secure Server CA
Expires: Friday, May 13, 2022 at 8:00:00 AM Eastern Daylight Time
X This certificate is valid

Details

Subject Name
Country or Region

State/Province
Locality

Organization
Organization Unit

Common Name

CA
Ontario
Toronto
Canadian Imperial Bank of Commerce
DT:OLB:PROD:WEB:AK
www.cibc.com

Issuer Name
Country or Region

Organization
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not Valid After

US
DigiCert Inc
DigiCert SHA2 Secure Server CA

08 E9 7A 69 30 02 DA FF 41 92 9D AF 13 58 2E BB
3
SHA-256 with RSA Encryption (1.2.840.113549.1.1.11)
None

Wednesday, April 22, 2020 at 8:00:00 PM Eastern Daylight Time
Friday, May 13, 2022 at 8:00:00 AM Eastern Daylight Time

Public Key Info
Algorithm

Parameters
Public Key

Exponent
Key Size

Key Usage

Signature

RSA Encryption (1.2.840.113549.1.1.11)
None
256 bytes : 9B 19 A1 ... 07
65537
2,048 bits
Encrypt, Verify, Wrap, Derive

256 bytes : C6 57 31 ... 2D

Fingerprints
SHA-256

SHA-1
6F D9 7F ... 8F
5C F1 C7 ... 69

https://www.digicert.com/
https://letsencrypt.org/
https://www.cibc.com

CHAPTER 10. KEY MANAGEMENT 114

When a client (a person using a web browser) Alice visits CIBC’s website/server (Bob), three public
keys are used:

1. CIBC’s RSA public key: (nC, eC), private key: dC. CIBC’s public key is certified by the interme-
diate CA DigiCert-S (full name: “DigiCert SHA2 Secure Server CA”).

2. DigiCert-S’s RSA public key: (nS, eS), private key: dS. DigiCert-S’s public key is certified by the
root CA DigiCert-G (full name: “DigiCert Global Root CA”).

3. DigiCert-G’s RSA public key: (nG, eG), private key: dG. DigiCert-G’s RSA public key is certified
by itself (i.e., it is self-signed), and is embedded in all browsers.

Handshake-1

When Alice visits https://www.cibc.com, CIBC sends Alice the following:

1. CIBC’s certificate which contains CIBC’s name, RSA public key (nC, eC), etc., and DigiCert-S’s
RSA signature s1 on this data.

2. DigiCert-S’s certificate which contains DigiCert-S’s name, RSA public key (nS, eS), etc., and DigiCert-
G’s RSA signature s2 on this data.

3. DigiCert-G’s certificate which contains DigiCert-G’s name, RSA public key (nG, eG), etc., and
DigiCert-G’s RSA signature s3 on this data.

4. A randomly selected point X (= xP) on the elliptic curve P-256, and CIBC’s RSA signature s4 on
this point.

Handshake-2

Upon receiving the three certificates and (X, s4), Alice does:

1. Verify DigiCert-G’s signature s3 using DigiCert-G’s public key (which is embedded in Alice’s
browser).

2. Verify DigiCert-G’s signature s2 using DigiCert-G’s public key (nG, eG), thereby authenticating
DigiCert-S’s public key.

3. Verify DigiCert-S’s signature s1 using DigiCert-S’s public key (nS, eS), thereby authenticating
CIBC’s public key.

4. Verify CIBC’s signature s4 using CIBC’s public key (nC, eC), thereby obtaining an authentic copy
of X.

5. Select a random y and send Y = yP to CIBC.

6. Compute the session key k = KDF(yX).

Handshake-3

CIBC receives Y and computes the session key k = KDF(xY).

Alice and CIBC now share a session key k which is used to encrypt and authenticate (with AES-GCM)
all communications for the remainder of the session.

DigiCert

Alice and CIBC are relying on DigiCert to do its job well, which includes:

https://www.cibc.com

CHAPTER 10. KEY MANAGEMENT 115

• Carefully check the identify of the certificate holder (CIBC’s name and url), and not issue certifi-
cates to imposters (e.g., https://www.c1bc.com).

• Carefully guard its private keys dG and dS from disclosure.

• Carefully guard misuse of its private keys dG and dS by company employees.

To engender confidence and trust in its certification practice, DigiCert publishes its Certification Prac-
tices Statement and has its security practices audited by external parties (such as Deloitte or KPMG).

Even though CIBC might have full confidence in DigiCert, there remains the possibility of another
Root CA or Intermediate CA issuing fraudulent certificates.

There are several hundred root CA public keys in a browser.

• Mistakenly-issued certificate.

• Maliciously-issued certificate.

• Maliciously-requested certificate.

CAB (CA/Broswer Forum) Voluntary consortium of CAs and browser vendors that prepares and
maintains industry guidelines concerning the issuance and management of certificates. https://
cabforum.org/

Common CA Database (managed by Mozilla) is a repository of information about CAs whose root
and intermediate certificates are included in browsers. https://ccadb.org

CA Breaches

DigiNotar was a Netherlands-based CA, whose root CA public key was embedded in all browsers.
DigiNotar issued TLS certificates as well as certificates for government agencies in the Netherlands.
In July 2011, DigiNotar issued several hundred fraudulent certificates for domains including aol.com,
microsoft.com, and *.google.com. Shortly after, ≈ 300, 000 gmail users from Iran were redirected
to websites that looked like the gmail site. The fraudulent web sites would appear to be valid and
secured to the gmail users (and the users would establish a secret key with the fraudulent web site
using TLS). Presumably, the fraudulent web site then captured the gmail userids and passwords of
the users. See http://tinyurl.com/SlateDigiNotar. It is suspected that the DigiNotar attack was
mounted by an individual or organization in Iran, but this has not been proven.

In 2015 Google discovered that the root CA CNNIC (China Internet Network Information Center) had
issued an intermediate CA certificate to an Egyptian company MCS Holdings, which in turn issued
fraudulent certificates for several Google domains. See: http://tinyurl.com/GoogleCNNIC.

In 2016, it was discovered that the Chinese root CA WoSign had issued fraudulent certificates for
several domains including GitHub and Alibaba. See: http://tinyurl.com/GoogleWoSign.

In response to the CA breaches, DigiNotar, CNNIC and WoSign’s root CA keys were removed from
the list of trusted root CA keys in browsers.

Root CA’s had to meet certain requirements to qualify for Extended Validation (EV) status.

Another effort is Google’s Certificate Transparency. This is a certificate logging mechanism to allow
anyone to check which certificates a CA has issued. Auditors monitor CAs to watch for malicious
behaviour. Domain name owners monitor the logs to check for certificates issues for their domains.
https://certificate.transparency.dev/

https://www.digicert.com/wp-content/uploads/2020/10/DigiCert-CPS-V.5.4.1.pdf
https://www.digicert.com/wp-content/uploads/2020/10/DigiCert-CPS-V.5.4.1.pdf
https://cabforum.org/
https://cabforum.org/
https://ccadb.org
http://tinyurl.com/SlateDigiNotar
http://tinyurl.com/GoogleCNNIC
http://tinyurl.com/GoogleWoSign
https://certificate.transparency.dev/

11
Random Bit Generation

11.1 Introduction

random bit generator

A random bit generator (RBG) is a device that outputs s a sequence of independent and unbi-
ased bits.

Some applications of RBGs in cryptography:

1. To generate secret cryptographic keys. Examples: secret key k for AES, HMAC and AES-GCM;
primes p and q in RSA; secret key in ECDSA.

2. To generate per-message secrets k in ECDSA.

3. Padding bits for schemes such as RSA-OAEP.

Main security requirement: The random bits should be unpredictable to an active adversary.

How to generate random bits in practice? Purely random bits must come from some physical process.
In other words, they cannot be generated by some mathematical algorithm. The mathematician John
von Neumann famously said

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.

Physical processes that can generate random bits include

• Repeated tossing of a fair coin.

• Elapsed time between emission of particles during radioactive decay.

• Timing between user key strokes or mouse button clicks.

• Samples from I/O buffers.

• Sample bits from a microphone.

• RDRAND: instruction for obtaining random numbers from Intel/AMD on-chip hardware ran-
dom number generators.

116

CHAPTER 11. RANDOM BIT GENERATION 117

Recommendation Sample as many “random” sources as possible, and hash the concatenation of the
samples.

11.2 Cloudflare Random Bit Generation

Cloudflare is a company in California and they handle about 10% of web traffic around the world. If
we visit a website that’s a customer of Cloudflare, our web traffic is directed to Cloudflare servers. The
servers decrypt our TLS traffic, check the plaintext for malware, viruses and so on, and then re-encrypt
the data and pass it on to the web server. So as we can imagine Cloudflare has great needs for random
bits.

If we go to the lobby of Cloudflare’s headquarters in California, we’ll see this wall of lava lamps. Each
lamp has this blob in it which rises to the surface of the liquid when the blob gets heated by light
at the base of the lamp. When the blob cools, it then returns to the base and so on. A camera in
the lobby is constantly taking pictures of these lava lamps. These pictures are then concatenated and
hashed to produce the random bits needed for Cloudflare’s applications. We can learn more about
this application by watching https://youtu.be/1cUUfMeOijg. The video features Nick Sullivan who
is the Head of Research at Cloudflare. Nick is a C&O/PMath grad from Waterloo, and took Alfred’s
CO 487 class about 15 years ago.

11.3 Weak Random Bit Generation

Security often fails in practice because of the use of poor RNGs. Let’s examine two examples.

One is from the paper: Lenstra et al. (2012) https://eprint.iacr.org/2012/064.

A 1024-bit RSA moduli is a product of 512-bit prime numbers. If picking at random, the probability
of two users picking the same prime number is essentially zero. However, if n1 = p1q and n2 = p2q
where p1 6= p2, then gcd(n1, n2) = q. This factors n1 and n2 easily. By taking GCDs as described,
0.27% of publicly available 1024-bit RSA keys n can be factored.

A second example is from the paper: Bernstein et al. (2013) https://eprint.iacr.org/2013/599.

Efficiently factored 184 distinct 1024-bit RSA keys from Taiwan1’s national “citizen digital certificate”
database. These keys were generated by government-issued smart cards that have built-in hardware
random number generators. It appears that the smart card was first generating a random 512-bit
number, and then looking for the first prime after that number. It turns out that 103 of these keys
shared primes.

One prime factor appears 46 different times with different second primes:

0xC002F9

This is the first prime after 2511 + 2510. The next common prime, repeated 7 times is

0xC92424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424E5

In binary, the prime is:

11001001001001000010010010010010001001001001001010010010010010011001001001001001010010010010010001001001001001000010010010010010001001001001001010010010010010011001001001001001010010010010010001001001001001000010010010010010001001001001001010010010010010011001001001001001010010010010010001001001001001000010010010010010001001001001001010010010010010011001001001001001010010010010010001001001001001000010010010010010001001001001001010010010010010011001001001001001010010010010010001001001001001000010010011100101

If we examine2 the binary representation of the prime number, we can see patterns. For example, 100
appears too often.

1Province of China; Province de Chine
2you need to zoom in to see

https://youtu.be/1cUUfMeOijg
https://eprint.iacr.org/2012/064
https://eprint.iacr.org/2013/599

CHAPTER 11. RANDOM BIT GENERATION 118

11.4 Pseudorandom Bit Generation

Random bit generation can be very slow. So, in practice, a random bit string is used to seed a pseudo-
random bit generator.

HMAC can be used to derive many pseudorandom bit strings s1, s2, . . . from a “random” bit string s:

s1 = HMACs(1), s2 = HMACs(2), s3 = HMACs(3), . . .

12
FIDO U2F

FIDO = Fast IDentity Online

U2F = Universal 2nd Factor authentication

FIDO U2F is developed by the FIDO alliance. Members include Amazon, Bank of America, Google,
Microsoft, Facebook, PayPal, Samsung, VISA, . . .

FIDO mission Reduce the world’s reliance on passwords to better secure the web.

Some of the many problems with passwords:

• Selection of weak passwords.

• Reuse of passwords.

• Too many passwords to remember.

• Forgotten passwords.

• Phishing attacks.

• Servers have to securely store many passwords.

Many of these problems can be alleviated to some degree by using a password manager. However, they
still have their own security risks, and still vulnerable to phishing attacks. Another countermeasure to
phishing attacks is second authentication factor: something we know (e.g., password, PIN), something
we have (e.g., phone, token), or something we are (e.g., fingerprint, eye). However, phishing attacks
can sometimes be launched by sophisticated adversaries even if a second authentication factor is used.
See more on https://citizenlab.ca/2015/08/iran_two_factor_phishing/.

12.1 U2F Protocol

1. Authenticator Registration

• Alice generates a public-private key pair (for ECDSA with the P-256 elliptic curve).

• Alice registers her userid, password, and public key with a web service.

2. User Authentication

• Alice visits the web site (via her web browser).

119

https://citizenlab.ca/2015/08/iran_two_factor_phishing/

CHAPTER 12. FIDO U2F 120

• She enters her userid and password (which the web server verifies).

• The web server sends Alice a random challenge r.

• Alice uses her private key to sign a message m comprising of r, the web server’s URL, and
the TLS channel ID of the connection (optional); the signature s is transmitted to the sever.

• The server verifies (m, s) using Alice’s public key.

Alice has one public-private key pair for each account. All her private keys can be securely stored on a
single security token. The ECDSA signature operations are performed by the security token; the private
keys never leave the token. Alice can also use different userids for each of her accounts; there is then
no linkability between accounts. This makes it easier for Alice to maintain anonymity.

Therefore U2F is phishing-resistant. U2F also resists MITM attacks.

12.2 Google’s Titan Security Key

It implements the FIDO U2F standard for two-factor authentication. It’s compatible with popular
browsers including Chrome.

The tokens are built with a tamper-resistant hardware chip that includes firmware engineered by
Google. This helps to ensure that the keys haven’t been physically tampered with. It’s also built into
Pixel 3, 3a, 4, 4a, 5 phones featuring the tamper-resistant Titan M security chip.

To activate the Titan security key, press a button on a Bluetooth/USB device or tap over NFC. This
physical “test of user presence” ensures that a signature happens only with the user’s consent. It also
ensures that malware cannot sign messages when the user is not present.

12.3 FIDO2

It’s “Passwordless” authentication. It consists of CTAP2 and WebAuthn.

CTAP2 is Client-to-Authenticator-Protocol specified by FIDO alliance. It uses ECDH with P-256.
WebAuthn is W3C’s Web Authentication protocol.1 This uses RSA-PKCS-1-v1.5 and RSA-PSS.

Passwords (or PINs) are only used in an initialization phase, when a user registers their security device
to a browser (rather than to a website). Thus no password use when a user registers with a website,
or authenticates to the website.

Support in major browsers (Chrome, Firefox, Safari,)
Native platform support (Windows, Android, iOS,)

FIDO2 is exciting because it has the potential to eliminate passwords from the web and replace them
with a more secure and usable authentication method.

1W3C = World Wide Web Consortium

13
The Signal Protocol

13.1 Introduction

The Signal Protocol was designed by Moxie Marlinspike and Trevor Perrin.

It is free, open source, and is used in:

• Signal (free messaging app).

• Facebook Messenger (“secret conversations” optional feature in the Messenger app on iOS and
Android).

• Skype (“private conversations” optional feature).

• WhatsApp.

WhatsApp is owned by Facebook. Has over 2 billion users (India, Brazil, Mexico, France, UK, ...),
and handles 10’s of billions of messages everyday. Is banned, or has been temporarily blocked, in
several countries. Has very low revenues (it’s free, works over WiFi, no advertisements, and no user
data to mine except metadata). In Jan 2019, Facebook announced plans to tightly integrate WhatsApp,
Facebook Messenger, and Instagram into a single “privacy-focused platform”: http://tinyurl.com/
NYTWhatsApp. A new privacy policy will be enforced on May 15, 2021.

13.2 Signal Objectives

Participants: Alice, Bob, WhatsApp, ThirdParty (E)

1. Long-lived sessions. Alice and Bob establish a long-lived secure communications session. The
session lasts until events such as app reinstall or device change.

2. Asynchronous setting. Alice can send Bob a secure message even if Bob is offline. Messages can
be delayed, delivered out of order, or can be lost entirely without problem.

3. Fresh session keys. Each message is encrypted/authenticated with a fresh session key.
Encrypt-then-MAC: c = AES-CBCk1(m), t = HMACh1(c), where k1 and h1 are each 256-bits.

4. Immediate decryption. Bob can decrypt a ciphertext as soon as he receives it.

5. End-to-end encryption. WhatsApp and E do not possess any of Alice’s or Bob’s secret keys, nor
do they get access to any plaintext.

121

http://tinyurl.com/NYTWhatsApp
http://tinyurl.com/NYTWhatsApp

CHAPTER 13. THE SIGNAL PROTOCOL 122

However, WhatsApp (but not E) does get all the metadata, e.g., who sent a message to whom
and when, your contacts, your profile name, etc.

6. Forward secrecy. If a party’s state is leaked, then none of the previous messages should be
compromised (assuming they have been deleted from the state).

7. Post-compromise security. Parties recover from a state compromise (if the attacker remains
passive).

13.3 Signal Protocol

Here are the cryptographic ingredients used in Signal.

1. AES-CBC: 128-bit IV, 256-bit key.

2. HMAC: with SHA-256, and a 256-bit key.

3. KDF: A key derivation function (either HMAC or HKDF, but we will not get into the details).

4. Curve25519: See page 97.

5. Elliptic curve key pairs: (X, x).
x ∈R [1, n− 1] is a secret key and X = xP is the corresponding public key.

6. ECDH.

7. EdDSA: (an ECDSA-like signature scheme).

Three stages: registration, root key establishment and message transmission.

Note:
All of Alice’s and Bob’s message are sent via WhatsApp’s servers.

All communication between Alice/Bob and WhatsApp is encrypted/authenticated using a TLS-like
protocol.

Alice (and Bob) always deletes a secret key as soon as she no longer needs it.

13.3.1 Registration

1. After Alice has downloaded the WhatsApp app, she sends WhatsApp:

• IDA: her identifier (cell phone number)

• A: her long-term public key

• U: her medium-term public key

• SignA(U): her signature on U

• S1, S2, . . . , S`: one-time public keys (and Alice securely stores her secret keys a, u, s1, s2, . . . , s`).

2. Similarly, Bob sends WhatsApp: IDB, B, V, SignB(V), T1, T2, . . . , T`.

13.3.2 Root Key Establishment

Alice (initiator) wishes to connect with Bob (responder).

1. Alice→ WhatsApp: request to create session with Bob.

2. WhatsApp→ Alice: B, V, SignB(V), T1 (and deletes T1).

CHAPTER 13. THE SIGNAL PROTOCOL 123

3. Alice does the following:

(a) Verify (V, SignB(V)) using B.

(b) Select an ephemeral key pair (X1, x1).

(c) Compute root key root0 = KDF(aV, x1B, x1V, x1T1). (root0 has bitlength 256 bits).

Note that given A and X1, Bob can compute root0 = KDF(vA, bX1, vX1, t1X1). Also note that What-
sApp or any other third party cannot compute any of the four ECDH shared secrets vA, bx1, vX1 and
t1X1, and thus cannot compute root0.

Why use four ECDH shared secrets to derive root0? This is done to give Alice and Bob protection even
if some of their secret key material is compromised.

What remains in the root key establishment stage
is for Alice and Bob to verify that they have both
computed the same root key, and that no one else
can compute root0. In other words, that Alice and
Bob were not the victim of a malicious intruder-
in-the-middle attack. Indeed, WhatsApp could
launch a malicious intruder-in-the-middle attack
by sending to Alice and Bob its own set of public
keys and claiming that these are Alice’s and Bob’s
public keys.

How can Alice and Bob verify that they indeed
have authentic copies of each other’s long-term
public keys A and B? In WhatsApp, the authen-
ticity of long-term public keys is done manually.

QR codes and 60-digit numbers encode identi-
fiers and long-term public keys; (Alice, A) and
(Bob, B). Alice and Bob should verify these prior
to sending each other messages. This verification
is done in order to ensure that WhatsApp is not
performing a malicious intruder in-the-middle at-
tack. However, this verification is rarely done in
practice.

Verify security code
You, Sibelius



12:40 AM 80%

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Scan the code on your contact’s phone, or ask
them to scan your code, to verify that your
messages and calls to them are end-to-end

encrypted. You can also compare the number
above to verify. Learn more.

SCAN CODE

13.3.3 Message Transmission

The main security properties of message transmission are end-to-end encryption, forward secrecy and
post-compromise security.

Forward Secrecy

Suppose that Alice and Bob share a secret key k. They can ratchet k and derive message encryption
keys mk1, mk2, mk3, . . . as follows:

KDF
k k1

mk1

KDF
k2

mk2

KDF
k3

mk3

KDF
k4

mk4

CHAPTER 13. THE SIGNAL PROTOCOL 124

Keys are deleted as soon as they are no longer needed. For example, k is deleted as soon as k1 and mk1 are
computed. Also, mk1 is deleted as soon as it is used to encrypt (or decrypt) a message.

To see why forward secrecy is achieved, suppose that E learns k2 and mk2 (by gaining access to Alice’s
device). Then E can compute k3, mk3, k4, mk4, But E cannot compute mk1 because KDF is assumed
to be preimage resistant. Thus, ciphertext that was generated using mk1 cannot be decrypted by E.

Post-Compromise Security

In order to achieve post-compromise security, a fresh ECDH shared secret established by Alice and
Bob is used each time the KDF is applied.

KDF
k k1

mk1

KDF
k2

mk2

KDF
k3

mk3

KDF
k4

mk4

DH0 DH1 DH2 DH3

Here, DHi = ECDH(Xi, Yi), where Xi is contributed by Alice, and Yi is contributed by Bob.

Suppose that E learns k2 and mk2. Then E cannot compute k3, mk3 unless she also learns x2 (or y2).

Message Transmission Description

Now let’s complete the description of message transmission. Alice maintains three key chains:

1. A root key chain (used to seed the other two chains).

2. A sending key chain (to generate message sending keys).

3. A receiving key chain (to generate message receiving keys).

Bob also maintains three key chains:

1. A root key chain (the same one as Alice’s).

2. A receiving key chain (the same as Alice’s sending chain).

3. A sending key chain (the same as Alice’s receiving chain).

13.3.4 Example of Message Transmission

Consider the following example:

1. Alice→ Bob: M1
11, M2

11, M3
11, M4

11.

(Alice’s first sending chain of 4 messages)

2. Alice← Bob: M1
12, M2

12.

(Alice’s first sending chain of 2 messages)

3. Alice→ Bob: M1
22.

(Alice’s first sending chain of 1 messages)

4. Alice← Bob: M1
23, M2

23, M3
23.

(Alice’s first sending chain of 3 messages)

Note that the superscript is the number of a message within a sending chain or a receiving chain.

CHAPTER 13. THE SIGNAL PROTOCOL 125

We will use the following notation throughout the rest of this example:

sk chaining key for sending key chain
rk chaining key for receiving key chain
msk message sending key
mrk message receiving key

Alice’s root key chain

KDF
root0 root11

sk0
11

KDF
root12

rk0
12

KDF
root22

sk0
22

KDF
root23

rk0
23

DH11 DH12 DH22 DH23

· · ·

Alice’s first sending key chain

KDF
sk0

11 sk1
11

msk1
11

KDF
sk2

11

msk2
11

KDF
sk3

11

msk3
11

KDF
sk4

11

msk4
11

Alice’s first receiving key chain

KDF
rk0

12 rk1
12

mrk1
12

KDF
rk2

12

mrk2
12

Alice’s second sending key chain

KDF
sk0

22 sk1
22

msk1
22

Alice’s second receiving key chain

KDF
rk0

23 rk1
23

mrk1
23

KDF
rk2

23

mrk2
23

KDF
rk3

23

mrk3
23

The ECDH shared secrets are defined as follows:

CHAPTER 13. THE SIGNAL PROTOCOL 126

Alice’s root key chain Alice’s sending key chains Alice’s receiving key chains

1. DH11 = ECDH(X1, Y1), Y1 = V
2. KDF(root0, DH11)→ root11, sk0

11 3. KDF(sk0
11)→ sk1

11, msk1
11

4. KDF(sk1
11)→ sk2

11, msk2
11

5. KDF(sk2
11)→ sk3

11, msk3
11

6. KDF(sk3
11)→ sk4

11, msk4
11

7. Receive Y2

8. Compute DH12 = ECDH(X1, Y2)

9. KDF(root11, DH12)→ root12, rk0
12

10. KDF(rk0
12)→ rk1

12, mrk1
12

11. KDF(rk1
12)→ rk2

12, mrk2
12

12. Select X2

13. Compute DH22 = ECDH(X2, Y2)

14. KDF(root12, DH22)→ root22, rk0
22 15. KDF(sk0

22)→ sk1
22, msk1

22

16. Receive Y3

17. Compute DH23 = ECDH(X2, Y3)

18. KDF(root22, DH23)→ root23, rk0
23 19. KDF(rk0

23)→ rk1
23, mrk1

23
20. KDF(rk1

23)→ rk2
23, mrk2

23
21. KDF(rk2

23)→ rk3
23, mrk3

23

Finally, let us describe how a message is encrypted and decrypted. Consider Alice sending Mj
ii:

Cj
ii = AE

mskj
ii
((A, B, Xi, j, Li−1), Mj

ii), where Li−1 is the length of Alice’s (i− 1)th sending chain.

Recall A, B are long term public keys, Xi is her ephemeral key. The message index j is included so that
Bob knows which key to use even if messages are dropped or delivered out of order. The length Li−1

of Alice’s previous sending chain is included so that Bob knows when he has received all of Alice’s
messages from that sending chain, and so can delete the corresponding receiving key chain. This helps
with post-compromise security.

Here AEk(T, M) = AES-CBCIV, k1(M), where k = (IV, k1, k2) with IV ∈ {0, 1}128, k1, k2 ∈ {0, 1}256. She
then computes the HMAC tag of the resulting ciphertext: HMACk2(AES-CBCIV, k1(M), T), T.

13.4 References

1. The Double Ratchet Algorithm http://tinyurl.com/DoubleRatchet

2. Signal source code http://tinyurl.com/SignalProtocol

3. WhatsApp Encryption Overview http://tinyurl.com/WhatsAppEnc

4. A formal security analysis of the Signal Messaging Protocol https://eprint.iacr.org/2016/
1013

http://tinyurl.com/DoubleRatchet
http://tinyurl.com/SignalProtocol
http://tinyurl.com/WhatsAppEnc
https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2016/1013

14
Post-Quantum Cryptography

14.1 Quantum Computers

Conceived by Yuri Manin (1980) and Richard Feynman (1981), quantum computers are devices that use
quantum-mechanical phenomena such as superposition, interference, and entanglement to perform
operations on data.

A qubit is the quantum analogue of a classical bit, and can be in two states at the same time, each
with a certain probability. An n-qubit register can be in 2n states at the same time, each with a certain
probability. When a function f is applied to an n-qubit register, it is simultaneously evaluated at all
2n states. In contrast, on a classical computer the function would be evaluated on each state one at a
time, for a total time of 2n.

However, when the n-qubit register is measured, it reverts to being in one of the 2n states according to
its underlying probability distribution. So, quantum computers are not “massively parallel machines.”

The challenge in designing quantum algorithms is to exploit properties of superposition, interference
and entanglement so that at the end of a computation the probability is very close to 1 that the state is
the one that gives a solution to a problem.

14.2 The Threat of Quantum Computers

14.2.1 Shor

The public-key systems used in practice are:

• RSA: Security is based on the hardness of integer factorization.

• DL: Security is based on the hardness of the discrete logarithm problem.

• ECC: Security is based on the hardness of the elliptic curve discrete logarithm problem.

Shor’s Algorithm: In 1994, Peter Shor discovered a very efficient (polytime) quantum algorithm for
solving these three problems.

So, all RSA, DL and ECC implementations can be totally broken by quantum computers.

127

CHAPTER 14. POST-QUANTUM CRYPTOGRAPHY 128

14.2.2 Grover

Let F : {0, 1}n → {0, 1} be a function such that

(i) F is efficiently computable; and

(ii) F(x) = 1 for exactly p inputs x ∈ {0, 1}n.

Grover’s Algorithm

Grover’s Algorithm (1996) is a quantum algorithm for finding an x ∈ {0, 1}n with F(x) = 1 in
2n/2/p1/2 evaluations of F.

Exhaustive key search: Consider AES with an `-bit key. Suppose we have t known plaintext-ciphertext
pairs (mi, ci), where t is such that the expected number of false keys is very close to 0.

Define F : {0, 1}` → {0, 1} by F(k) = 1 if AESk(mi) = ci for all 1 ≤ i ≤ t; and F(k) = 0 otherwise.

Then Gover’s algorithm (with p = 1) can find the secret key in 2`/2 operations. Thus, 256-bit AES keys
should be used in order to achieve a 128-bit security against quantum attacks.

When will quantum computers be built?

• 1998: (Jones & Mosca) 2-qubit quantum computer

• 2000: 7 qubits

• 2011: 14 qubits

• 2017: 50 qubits (IBM) http://tinyurl.com/IBMqc50

• 2019: 53 qubits (Google)

The largest number factored using Shor’s algorithm on a quantum computer is 21 = 3× 7.

Note that larger numbers have been factored on adiabatic quantum computers (e.g., DWAVE comput-
ers), but these implementations do not scale.

The cryptographically interesting question is will we ever build quantum computers that can factor large
numbers? For example, 2048-bit RSA moduli. A quantum computer that can factor a 2048-bit RSA
modulus using Shor’s algorithm will need (at least) 2048-qubit registers.

These qubits will have to be fault tolerant, i.e., be error resistant, because qubits suffer from quantum
decoherence. The physical qubits that have been built so far are not fault tolerant. So, the plan is
to use quantum error correction to combine many (imperfect) physical qubits into one (almost perfect)
logical qubit. Optimistic estimates are that thousands of physical qubits will be needed to build one
logical qubit. So, factoring 2048-bit RSA moduli might need millions of physical qubits.

14.3 Quantum Supremacy

In Oct 2019, Google announced that they had achieved quantum supremacy: Perform some task (not
necessarily useful, but not too contrived) on a quantum computer much faster than is possible on
classical computers.

Google’s task was to apply a random quantum circuit to the all-0 53-qubit initial state; it did this in
3 minutes. On the other hand, Google estimated that a classical supercomputer would take 10,000

years to perform the same task. Later, IBM researchers lowered that estimate to 2.5 days using a
different classical technique. Moreover, the quantum circuit that Google used was not a purely random

http://tinyurl.com/IBMqc50
https://www.nature.com/articles/d41586-019-03213-z

CHAPTER 14. POST-QUANTUM CRYPTOGRAPHY 129

circuit, rather a specially constructed circuit that could in fact be evaluated efficiently on the classical
computer. So it’s still very far from achieving the ultimate goal of doing something useful with
quantum computer.

It is important to note that Google’s 53-qubit quantum computer is not fault tolerant. So, while it
is major scientific achievement, it does not in any way threaten the security of presently-deployed
cryptosystems. The next major milestone is to build a single logical qubit.

It’s still too early to be able to predict when scalable quantum computers will be built.

It is highly unexpected that a quantum computer that can factor 2048-bit RSA numbers will
be built within the next decade.

On the other hand, there is no fundamental reason why a large, fault-tolerant quantum computer
cannot be built.

14.4 The Threat of Shor and Grover cont’d

What does this mean for internet security? It will be compromised including automatic software
updates which rely on digital signature schemes, and TLS which relies on signature schemes, RSA
encryption and ECDH. Should we care? Yes. Because the NSA and other organizations are capturing
and storing large amounts of internet traffic right now. They can decrypt the data when they have
access to large-scale quantum computers.

What, if anything, should we do to mitigate the threat? When should we take action? Now? In 5

years? In 10 years? In 15 years?

One reason to take action sooner rather than later is that it’s very difficult to update cryptographic
algorithms across the internet and across all kinds of products that use cryptography. According to
the National Security Agency:

Algorithms often require 20 years to be fully deployed on National Security Systems (NSS).
NSS equipment is often used for 30 years or more. National security information intelli-
gence value is often 30 years (sometimes more), although it may vary depending on classi-
fication, sensitivity, and subject.

Recommendation: Information security systems should be crypto-agile. In other words, they should be
designed so that new cryptographic primitives can be employed without significant change to system
infrastructure.

NSA’s August 2015 Announcement

IAD will initiate a transition to quantum resistant algorithms in the not too distant
future. Based on experience in deploying Suite B, we have determined to start planning and
communicating early about the upcoming transition to quantum resistant algorithms. Our
ultimate goal is to provide cost effective security against a potential quantum computer.
We are working with partners across the USG, vendors, and standards bodies to ensure
there is a clear plan for getting a new suite of algorithms that are developed in an open
and transparent manner that will form the foundation of our next Suite of cryptographic
algorithms.

Until this new suite is developed and products are available implementing the quantum
resistant suite, we will rely on current algorithms. For those partners and vendors that have
not yet made the transition to Suite B elliptic curve algorithms, we recommend not making
a significant expenditure to do so at this point but instead to prepare for the upcoming
quantum resistant algorithm transition.

CHAPTER 14. POST-QUANTUM CRYPTOGRAPHY 130

See A riddle wrapped in an enigma

14.4.1 PQC Standardization

U.S. National Institute of Standards and Technology (NIST)

In response to the NSA announcement, NIST began to solicit proposals for quantum-resistant signa-
ture and encryption (key encapsulation) algorithms.

• Nov 30, 2017: 69 submissions in Round 1.

• Jan 30, 2019: 26 submissions selected for Round 2.

• Jul 22, 2020: 7+8 submissions selected for Round 3.

• Evaluation and standardization are expected to take 2+ years.

14.5 Quantum-Safe Candidates

• (Classical) symmetric-key cryptography

• Hash-based signatures

• Code-based public-key encryption (e.g., Error-correcting codes in CO 331)

• Lattice-based public-key encryption and signatures

• Multivariate polynomials signatures

• Isogeny-based key agreement (e.g., SIKE)

• Quantum key distribution

Large-scale experiments

1. Google’s ongoing experiment with quantum-safe cryptography in its Chrome browser: ECDH +
Lattice-based key agreement

2. Cloudflare’s ongoing experiment with quantum-safe cryptography in TLS 1.3: ECDH + Lattice-
based key agreement, ECDH + SIKE

3. Amazon’s AWS Key Management Service now supports hybrid post-quantum TLS.

Commercialization

• ISARA (Waterloo): https://www.isara.com

• evolutionQ (Waterloo): https://www.evolutionq.com

• Crypto4A (Ottawa): https://www.crypto4a.com

• Infosec Global (Toronto): https://www.infosecglobal.com

• ID Quantique (Switzerland): https://www.idquantique.com

• Post-Quantum (UK): https://post-quantum.com

• PQShield (UK): https://pqshield.com

• CryptoNext (France): https://cryptonext-security.com

https://eprint.iacr.org/2015/1018.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/
https://n.sibp.ro/co331
https://sike.org/
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://www.isara.com
https://www.evolutionq.com
https://www.crypto4a.com
https://www.infosecglobal.com
https://www.idquantique.com
https://post-quantum.com
https://pqshield.com
https://cryptonext-security.com

15
Bitcoin

15.1 Paper Cash

Coins (including paper bills) are issued by the Bank of Canada in accordance with an economic policy.

Suppose that Alice wishes to give a coin to Bob (in return for some goods or services). Bob can examine
the coin to ensure that it is valid (i.e., not a forgery). Double spending is not a concern because Alice
cannot give the same (valid) coin to two different parties. Payer anonymity (during payment) and
payment untraceability (after payment) are facilitated.

15.1.1 Features of Paper Cash

• Recognizable (as legal tender)

• Portable (easily carried)

• Transferable (without involvement of the financial network)

• Divisible (has the ability to make change)

• Unforgeable (difficult to duplicate)

• Anonymous (no record of who spent the money)

• Untraceable (difficult to keep a record of where money is spent)

Note: Many of these features are not available with credit card payments.

15.2 Bitcoin

Bitcoin is an electronic cash scheme invented by Satoshi Nakamoto (a pseudonym) in 2008. The first
remarkable property of Bitcoin is that its inventor is anonymous.

Bitcoin is decentralized, i.e., no central authority such as a “Bank” or “Government” is required.

Who creates coins? Anyone can create Bitcoins. Well, if anyone can create Bitcoins, how can the creation of
coins be regulated, without using a central authority that everyone must trust? The creation of Bitcoins
is self-regulating, as we shall see. Since a Bitcoin is a digital object and not a physical object, how does
the recipient of a Bitcoin ensure that the Bitcoin has not already been spent?

131

CHAPTER 15. BITCOIN 132

Anyone can use Bitcoin: Download a wallet from http://bitcoin.org. Obtain bitcoins by “mining”
or from an exchange such as Coinbase or kraken.

Note that payer anonymity and payment untraceability are not primary goals of Bitcoin.

The first bitcoins were generated by Satoshi Nakamoto on Jan 3 2009. The basic unit of bitcoin currency
is 1 BTC. Each BTC can be divided into 100 million pieces, the smallest of which, i.e., 0.00000001 BTC,
is a satoshi. Bitcoins can be generated (i.e., mined) by anyone. They are generated at the rate of R BTC
every 10 minutes (on average). Initially, R = 50. On Nov 28 2012, R was lowered to 25. On July 9 2016,
R was lowered to 12.5. On May 11 2020, R was lowered to 6.25. R will be halved over time, until the
year 2140, when a total of 21 million BTC will have been generated. As of March 25 2021, around 18.5
million BTC have been generated.

One drawback of Bitcoin is that the US dollar value of 1 BTC has fluctuated wildly:

Date Value Date Value
May 22 2010† $0.0025 Jan 1 2014 $747.56
Jul 17 2010 $0.08 Jan 3 2015 $289.86
Jan 1 2011 $0.30 Jan 2 2016 $433.23
Feb 9 2011 $1.00 Mar 29 2017 $1183.65
Jun 8 2011 $31.91 Dec 17 2017 $19205.11
Jan 1 2013 $13.30 Apr 2 2018 $7083.80
Apr 9 2013 $223.10 Mar 20 2019 $4087.11
Jul 6 2013 $69.31 Apr 7 2020 $7366.26
Nov 30 2013 $1128.82 Mar 25 2021 $51955

†10,000 BTC for a $25 pizza order

15.2.1 Reasons to use Bitcoin

Why use Bitcoin?

1. It’s decentralized.

• Not under the control of any government.

• Not under the control of any bank, credit card company, or other financial institution.

• Anyone can use it (even if you don’t have a credit history).

• It’s (relatively) easy to use.

2. Bitcoin’s monetary policy is fixed and public.

3. Transactions are irreversible.

4. Transaction fees are low (even across borders).

5. Transactions can be anonymous (with a bit of care).

Of course, there are many reasons not to use Bitcoin. Depending on the point of view, some of these
could be interpreted as good reasons to use Bitcoin.

1. The price of Bitcoin has been highly volatile.

2. You have to carefully store and manage your Bitcoin private keys.

3. Bitcoin isn’t really decentralized any more. Most mining is done by a handful of mining con-
glomerates; see https://www.buybitcoinworldwide.com/mining/pools/.

http://bitcoin.org
http://bitcointalk.org/index.php?topic=137.0
https://www.buybitcoinworldwide.com/mining/pools/

CHAPTER 15. BITCOIN 133

4. Bitcoin mining uses a lot of energy, which isn’t good for the environment.

5. The Bitcoin network can only process 7 transactions per second.

6. Bitcoin isn’t suitable for instantaneous transactions, such as buying a coffee.

15.2.2 Distributed Ledger

The most important contribution of Bitcoin was the implementation of a public decentralized storage
system (also known as a distributed ledger) in the form of a blockchain.

Blockchain is a sequence of data organized in blocks with the following properties:

• public: readable by everyone.

• consensus: all participants agree on the data.

• liveliness: writeable by everyone.

• persistence: unchangeable by anyone

15.2.3 Elements of Bitcoin

1. Transaction: The transferring of a coin from one user to another. All transactions are public and
are broadcast to all users.

2. Peer-to-peer network: The users of Bitcoin are organized in a peer-to-peer network.

3. Blocks: Every 10 minutes or so, the latest transactions are verified and collected in a block. This
block is hashed and (cryptographically) linked with previous blocks. The block is broadcast to
the peer-to-peer network.

4. Blockchain: The list of blocks is called the blockchain. It contains a record of all past transactions.

5. Mining: The process of verifying transactions and compiling a block is called mining. A suc-
cessful miner receives a reward (new bitcoins).

6. Proof-of-work: To successfully compile a block and receive a reward, the miner has to solve a
cryptographic challenge.

Main Cryptographic Ingredients

SHA-256 hash function and ECDSA with secp256k1 elliptic curve:

E : Y2 = X3 + 7 over Zp,

where
p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

n = #E(Zp) is a 256-bit prime. P 6= ∞ is a fixed point in E(Zp).

Each user selects a ∈R [1, n − 1] and computes the elliptic curve point A = aP. The user’s ECDSA
private key is a; the user’s ECDSA public key is A. We will denote Alice’s key pair by (a, A), Bob’s
key pair by (b, B), Chris’s key pair by (c, C), etc.

In Bitcoin, a user’s public key A serves as a pseudonym for the user Alice. More generally, a user can
select a different key pair for each transaction. See http://bitaddress.org for a JavaScript client-side

http://bitaddress.org

CHAPTER 15. BITCOIN 134

key pair generator.

The first bitcoins were generated by Satoshi Nakamoto on Jan 3 2009. Here, S is Satoshi Nakamoto’s
public key.

T0

S, 50 BTC

The genesis block is created by Satoshi Nakamoto (S) on Jan 3 2009. Block 0 is embedded in the
Bitcoin software.

T0

Block0

S Nonce SHA-256

0000000xxxx

15.3 Transactions

A transaction is the transfer of a coin from one user to another user.

Suppose that Alice has a coin, say of value 1 BTC. The transaction in which Alice obtained this bitcoin
is represented by the string TXA. Suppose Alice wishes to give this coin to Bob. The transaction is
represented as follows:

TAB = {T̃XA, A, B, 1 BTC}A,

where m̃ denotes the hash of m, and {M}A denotes a message M and its ECDSA signature with respect
to the public key A.

This transaction is broadcast to the entire network. Bob (and anyone else) can verify the authenticity of
the ECDSA signature using the public key A.

15.3.1 Transaction Chain for the First Bitcoins

T0

S, 50 BTC

TSA

S, A, 50 BTC

SHA-256

S’s signature

TAB

A, B, 50 BTC

SHA-256

A’s signature

Note: The transaction chain contains Alice’s and Bob’s public keys, but not their names.

How can the recipient verify that a coin has not been double-spent? (without using a trusted central
authority.) How are the other bitcoins generated?

CHAPTER 15. BITCOIN 135

T0

S, 50 BTC

TSA

S, A, 50 BTC

SHA-256

S’s signature

TAB

A, B, 50 BTC

SHA-256

A’s signature

TAC

A, C, 50 BTC

SHA-256

A’s signature

Suppose for example, Alice tries to spend her coins twice in a transaction with Bob and in a transaction
with Chris. Only one of the transactions TAB, TAC should be accepted as valid; the other transaction
should be rejected. To accomplish this, all transactions are stored in the public blockchain.

Recall that all transactions are broadcast to all users. Any user (called a miner) with public key W can
volunteer to collect all transactions T1, T2, . . . , Tn that it received in an interval of time, say the previous
10 minutes. The user W verifies that these transactions are valid and that the corresponding coins have
not been previously spent. The user forms a block consisting of the hash of the previous block, the
user’s public key W, a nonce, and T1, . . . , Tn. The nonce is incremented until a hash value that begins
with t zeros is obtained.

previous
hash

T1 T2 · · · Tn

Block

W Nonce
SHA-256

0000000xxxx

The block is broadcast to the network.

Users will accept a block if all the transactions in it are valid, if the coins have not been previously
spent, and if the hash value begins with t zeros. Users show their acceptance of the block by using its
hash as the “previous hash” for the next block, thereby growing the blockchain. The blockchain serves
as a public decentralized ledger that records all transactions.

Block 0

TAB

TAC

There is a possibility that two blocks are created around the same time by two different users. This
causes a fork in the blockchain. To remedy the fork, users will trust the longest chain and continue
to grow that chain. More precisely, users will trust the chain that that was most difficult to generate.
The blocks that are not part of the longest chain are dropped and the valid transactions in them are
returned to the miners’ memory pool of unverified transactions.

We can check now that the blockchain has the properties of being public, having consensus, having
liveliness, and persistence.

CHAPTER 15. BITCOIN 136

It’s clear why the blockchain is public, because all the transactions in all the blocks are public knowl-
edge. Miners agree to grow the longest chain, and in this way the blockchain has consensus. Anyone
can broadcast a transaction on the Bitcoin peer-to-peer network, provided that the transaction is valid
it will be added in the latest block and this gives the blockchain the property of liveliness. Finally, the
blockchain has the property of persistence.

Suppose that an entity wishes to modify a transaction, let’s say TXY that occurred in the past. If the
entity modifies even a single bit in TXY, it modifies the corresponding block and therefore with high
probability the hash of the block will not begin with t zeros. Then the entity would need to compute
a new nonce for the block such that the hash of the block begins with t zeros. Now that the hash in
this block has changed the entity also needs to compute a new nonce for that block to get a valid hash
value, and so on. Therefore, we see that changing a single bit in any previous block causes the hash
of the block to be invalid. This hashing will take a lot of time, and in the meantime the rest of the
Bitcoin community will have grown the blockchain even further. And so it’s very difficult for an entity
to modify even a single bit in any transaction that occurred in the past, unless the entity has more
computing power than the rest of the Bitcoin network combined.

To incentivize miners, the block creator (W) is awarded R BTC (currently, R = 6.25) [mining]. The
work factor (target) t is updated every 2016 blocks (2 weeks) to ensure that the average time it takes to
generate a block is 10 minutes. Currently, the bitcoin network is generating hashes at the rate of ap-
proximately 267.1 per second. The hash difficulty is approximately t = 77. A PC can do approximately
222 hashes per second. So, one PC will take about 700, 000, 000 years to generate one block. Thus PC
does not have a chance to mine a block in 10 mins. Instead, mining pools have been formed. Users
form mining pools and share an award.

Security Notes

If A gives B a coin, then B should complete the transaction with A only after the transaction TAB

appears in the blockchain, perhaps followed by several more blocks (e.g., six blocks). Transactions are
not instantaneous. If the transaction is accepted instantaneously, B has to accept the risk that A might
double spend the coin.

Since all transactions are public, payer anonymity and payment untraceability are not guaranteed.
However, Alice can take some measures to increase the privacy of the transactions.

It’s difficult to give a precise and meaningful definition of Bitcoin’s security. However, informally,
Bitcoin is “secure” as long as honest users collectively control more CPU power than any cooperating
group of users.

Bitcoins can be combined and split.

Suppose that Alice (A): received 25 BTC from
Bob (B) in Transaction TBA, received 20 BTC from
Chris (C) in Transaction TCA. Suppose that Alice
wishes to: give 30 BTC to David (D) leave 14 BTC
to herself as change give 1 BTC as a transaction
fee. The transaction fee is claimed by the miner
who validates this transaction. Here is the corre-
sponding transaction:

TBA

A, D, 30 BTC
A, A, 14 BTC

SHA-256

A’s signature

TCA

Here is the second example. Suppose that Bob owns two public keys, B and H. Suppose that Bob
received 9 BTC in transactions T1 and T2:

T1: 1 BTC from A to B

CHAPTER 15. BITCOIN 137

3 BTC from D to E
2 BTC from C to H

T2: 5 BTC from C to F
6 BTC from G to B

Suppose Bob wishes to give 2.5 BTC to F, 3 BTC to I, 1.5 BTC as change to B, 1.75 BTC as change to
H, and offer a transaction fee of 0.25 BTC. He forms the transaction T3:

Inputs: (T̃1, 1), (T̃1, 3), (T̃2, 2)

Outputs: (F, 2.5), (I, 3.0), (B, 1.5), (H, 1.75)

T3 has 3 signatures, with public keys B, H, B.

Bitcoin users have to be very careful to protect their ECDSA private keys. If an attacker obtains a copy
of Alice’s wallet (and thus her private key a), then the attacker can spend the coins associated to A. If
Alice deletes (or loses) her private key a, then all her coins corresponding to A are lost forever.

Alice could store her bitcoins at an exchange, but that brings considerable risk.

• Mt. Gox, a Bitcoin exchange based in Tokyo, “lost” 850,000 BTC and declared bankruptcy in
February 2014. Later, it “found” 200,000 BTC.

• In early December 2018, the founder of Canadian cryptocurrency exchange QuadrigaCX died.
Apparently he was the only person who knew the password to access $190 million worth of
QuadrigaCX’s customer cryptocurrencies (including bitcoin). See http//tinyurl.com/WPQuadrigaCX

Alice could use a hardware wallet (e.g. Ledger) or a cosigner service (e.g. BitGo).

Miscellaneous Notes

• Scalability: The maximum size of a block limits the number of transaction to about 7 per second.
In contrast, VISA processes about 2,000 transactions per second.

• Mining costs: Mining requires hardware and electricity. Energy costs per transaction: ≈ Cdn $25.

• Proof-of-stake:

– Miners put up collateral (stake) and are chosen based on the size of their stake.

– Misbehaving miners are penalized (e.g. by slashing their stake).

– Examples: Algorand, Cardano, Tendermint, EOS, Casper.

Several technical details have been omitted including:

• A public key is identified by its 160-bit hash value.

• Merkle trees are used to minimize the size of a block.

• Simplified payment verification (SPV).

The Future of Bitcoin

Today, Bitcoin is rarely used for (legal) transactional purposes. It is mostly used:

• illegal transactions (moving funds out of a country, illegal purchases on the internet, ransomware,
etc.);

• as a mechanism for storing value in countries that are experiencing hyperinflation (easier to store

http//tinyurl.com/WPQuadrigaCX

CHAPTER 15. BITCOIN 138

and use than gold or diamonds);

• as a (highly) speculative investment.

The future of Bitcoin is uncertain, and many challenges remain: technological, economic, government
regulations. Nonetheless, Bitcoin has been a remarkably successful proof-of-concept, and there is now
a very high rate of innovation in the cryptocurrency/blockchain space.

We can explore bitcoin via the links below:

• Bitcoin magazine: http://bitcoinmagazine.com

• Download a wallet: http://bitcoin.org

• Live blockchain: http://blockchain.info

• Bitcoin Blocks: http://explorer.btc.com

• Genesis Block: http://tinyurl.com/BTCBlock0

• Block 1: http://tinyurl.com/BTCBlock1

• Block 100,000: http://tinyurl.com/BTCBlock100000

15.4 Ethereum

Ethereum was invented by Vitalik Buterin in 2013. At a very high level, it is a blockchain-based
decentralized computing platform. The underlying cryptocurrency in Ethereum is called ether. It
supports a Turing-complete programming language, which can be used to describe so-called smart
contracts. It permits full smart contract functionality. It also permits the development of Potential
Decentralized Applications (DAPPs), including:

• Timestamping and notarization of documents.

• Record asset ownership (domain names, stocks, student transcripts, home ownership, etc.).

• Contract signing (without a “trusted” lawyer).

• Crowdfunding (a.k.a. Kickstarter).

• Democratic autonomous organizations (DAOs).

Enterprise Ethereum Alliance (EEA) members include: Microsoft, Intel, Cisco, J.P.Morgan, Credit
Suisse, PriceWaterhouseCoopers, Ernst & Young

Their mission statement says (Feb 28, 2017):

Together, we will learn from and build upon the only smart contract supporting blockchain
currently running in real-world production – Ethereum – to define enterprise-grade soft-
ware capable of handling the most complex, highly demanding applications at the speed
of business.

If we have an interest in learning more about cryptocurrencies, below are some selected topic:

• Zcash: Anonymous cryptocurrency.

• Algorand: Proof-of-stake blockchain platform.

• Diem: Facebook’s proposed cryptocurrency.

• Filecoin: Cryptocurrency-incentivized decentralized and verifiable file storage network.

http://bitcoinmagazine.com
http://bitcoin.org
http://blockchain.info
http://explorer.btc.com
http://tinyurl.com/BTCBlock0
http://tinyurl.com/BTCBlock1
http://tinyurl.com/BTCBlock100000
https://www.nytimes.com/2017/10/01/technology/what-is-ethereum.html
https://entethalliance.org/

16
Wrap-up

16.1 Boring Crypto

This course has been about BORING CRYPTO: Cryptography that is well studied, widely standard-
ized, and widely deployed.

MAIN PROBLEM Alice and Bob wish to communicate securely.

They encrypt/authenticate data using: AES-GCM or ChaCha20/Poly1305. They establish a shared
secret key using: ECDH (or RSA key transport). The public keys need to be authenticated:

• Certificates issued by a CA. (e.g. TLS).

• Preinstallation of a public key (e.g. in an operating system).

• Visual inspecting each other’s public keys (e.g. Bluetooth, WhatsApp).

So is cryptography a solved problem? OF COURSE NOT! A lot of challenges remain:

• The possibility of cryptanalytic advances

• The threat of quantum computers

• Efficient implementation

• Secure implementation

• Key management

• The insecurity of the Internet of Things (IoT)

• Balancing the privacy rights of individuals and the needs of law enforcement

16.2 Cool Crypto

• Lightweight cryptography

• Quantum-safe cryptography

– Lattice-based cryptography

– Isogeny-based cryptography

139

CHAPTER 16. WRAP-UP 140

• Cryptocurrencies

• Differential privacy (e.g. Google’s RAPPOR)

• Multi-party computation

• Computing with encrypted data

– Fully homomorphic encryption

– Encrypted databases

– Privacy-preserving machine learning

Index

C
collision-resistant hash function 43

confidentiality . 8

D
data integrity . 8

data origin authentication 8

E
elliptic curve E over F . 91

exponential-time algorithm 85

F
F-rational points on E . 91

G
generic attack . 46

H
hash function . 41

I
input size . 77

K
Key management . 109

M
message authentication code 55

N
non-repudiation . 8

P
point multiplication . 94

polynomial-time . 77

polynomial-time algorithm 85

preimage resistance hash function. 42

public-key cryptography 73

R
random bit generator . 116

running time . 77

S
second-preimage resistance hash function . . 43

secure MAC scheme . 56

secure public-key encryption scheme. 84

security level of a cryptographic scheme . . . 14

security of a signature scheme 88

security of SKES . 13

subexponential-time algorithm 85

symmetric-key encryption scheme 11

141

	Preface
	List of Algorithms
	Introduction
	Secure Web Transactions
	The TLS Protocol

	Cryptography in Context

	Symmetric-Key Cryptography
	Basic concepts
	The Simple Substitution Cipher
	Security of SKES
	Polyalphabetic Ciphers

	The One-Time Pad
	Stream Ciphers
	The RC4 Stream Cipher
	Case Study: Wired Equivalent Privacy
	Fluhrer-Mantin-Shamir Attack

	ChaCha20 Stream Cipher
	ChaCha20 Quarter Round Function

	Block Ciphers
	Brief History of Block Ciphers
	Some Desirable Properties of Block Ciphers
	The Data Encryption Standard (DES)
	Double-DES
	Triple-DES
	The Advanced Encryption Standard (AES)
	Block Cipher Modes of Operation

	Hash Functions
	Introduction
	Hash Functions from Block Ciphers
	Desirable security properties for hash functions
	Relationships between PR, 2PR, CR

	Generic Attacks
	Find Preimages
	Find Collisions
	VW Parallel Collision Search

	Iterated Hash Functions (Merkle Meta-Method)
	Collision Resistance of Iterated Hash Functions
	Provable Security

	MDx-Family of Hash Functions
	SHA
	SHA-1
	SHA-2 Family
	Description of SHA-256
	SHA-3
	NIST’s Policy on Hash Functions

	Message authentication code schemes
	Introduction
	Security Definition

	Generic Attacks on MAC schemes
	MACs Based on Block Ciphers
	Security of CBC-MAC
	Encrypted CBC-MAC (EMAC)

	MACs Based on Hash Functions
	Secret Prefix Method
	Secret Suffix Method
	Envelope Method
	HMAC

	Case study: GSM
	GSM Security

	Authentic Encryption
	AES-GCM
	CTR: CounTeR Mode of Encryption
	AES-GCM Encryption, Decryption/Authentication Procedure
	Insights into Authentication Mechanism
	Some Features of AES-GCM

	Google Encryption
	Google Data
	Key Management Service (KMS)
	Google’s Key Hierarchy

	Introduction to Public-Key Cryptography
	Drawbacks with Symmetric-Key Cryptography
	Key Establishment Problem
	Key Management Problem
	Non-Repudiation is Difficult to Achieve

	Public-Key Cryptography
	Merkle Puzzles
	Public-Key Encryption
	Digital Signatures
	Hybrid Schemes

	Algorithmic Number Theory
	Complexity Theory Review
	Basic Integer Operations
	Basic Modular Operations

	RSA
	Basic RSA
	RSA Encryption
	Basic RSA Signature Scheme

	Case Study: QQ Browser
	Version 1
	Version 2

	Security of RSA Encryption
	Integer Factorization
	Review from complexity theory
	Factoring Algorithms
	History of Factoring

	RSA Signature Scheme
	Attack Model
	Security of a Signature Scheme

	RSA PKCS #1 v1.5 Signatures (1993)
	Bleichenbacher's Attack (2006)

	Elliptic Curve Cryptography
	Elliptic Curves
	Point Addition

	Elliptic Curve Discrete Logarithm Problem (ECDLP)
	Elliptic Curve Cryptography
	Elliptic Curves in Practice
	Modular Reduction

	Elliptic Curve Diffie–Hellman (ECDH)
	Unauthenticated ECDH
	Authenticated ECDH

	Case Study: ECDH in Google
	TLS (as was commonly implemented)
	TLS as implemented by Google

	The Elliptic Curve Digital Signature Algorithm (ECDSA)

	Bluetooth Security
	Introduction
	The Bluetooth security protocol
	KNOB Attack

	Key Management
	Public Key Management
	Certification Authorities (CAs)
	Public-Key Infrastructures (PKI)
	Case Study: TLS
	TLS Handshake Protocol
	TLS 1.2 Record Protocol
	TLS 1.3

	Public Key Management in TLS
	Example of an X.509 Certificate

	Random Bit Generation
	Introduction
	Cloudflare Random Bit Generation
	Weak Random Bit Generation
	Pseudorandom Bit Generation

	FIDO U2F
	U2F Protocol
	Google’s Titan Security Key
	FIDO2

	The Signal Protocol
	Introduction
	Signal Objectives
	Signal Protocol
	Registration
	Root Key Establishment
	Message Transmission
	Example of Message Transmission

	References

	Post-Quantum Cryptography
	Quantum Computers
	The Threat of Quantum Computers
	Shor
	Grover

	Quantum Supremacy
	The Threat of Shor and Grover cont'd
	PQC Standardization

	Quantum-Safe Candidates

	Bitcoin
	Paper Cash
	Features of Paper Cash

	Bitcoin
	Reasons to use Bitcoin
	Distributed Ledger
	Elements of Bitcoin

	Transactions
	Transaction Chain for the First Bitcoins

	Ethereum

	Wrap-up
	Boring Crypto
	Cool Crypto

