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1
Neuron Models

1.1 Neurons

A neuron is a special cell that can send and receive signals from other neurons.

A neuron can be quite long, sending its signal over a long distance; up to 50m long! But most are
much shorter.

axon

soma (body)

signal

dendrites

• Soma: 体细胞.

• Axon: 轴突. The electrical signal generated
by soma travels along the axon.

• Dendrites: 树突. The electrical excitation is
collected in the dendrites.

• Synapse: 突触. Structure that permits a neu-
ron (or nerve cell) to pass an electrical or
chemical signal to another neuron or to the
target effector cell (wiki).

1.2 Neuron Membrane Potential

Ions(离子) are molecules or atoms in which the number of electrons (-) does not match the number of
protons (+), resulting in a net charge. Many ions float around in your cells. The cell’s membrane, a
lipid bi-layer, stops most ions from crossing. However, ion channels embedded in the cell membrane
can allow ions to pass.

5

https://whyevolutionistrue.com/2011/05/28/the-longest-cell-in-the-history-of-life/


CHAPTER 1. NEURON MODELS 6

zoom in

Sodium channel
钠离子通道

Na+

K+

Potassium channel
钾离子通道

2K+

3Na+

Sodium-Potassium Pump
钠钾泵

Sodium-Potassium Pump exchanges 3 Na+ ions inside the cell for 2 K+ ions outside the cell.

• Causes a higher concentration of Na+ outside the cell, and higher concentration of K+ inside the
cell.

• It also creates a net positive charge outside, and thus a net negative charge inside the cell.

This difference in charge across the membrane induces a voltage difference, and is called the mem-
brane potential.

Neurons have a peculiar behaviour: they can produce a spike of electrical activity called an action
potential(动作电位). This electrical burst travels along the neuron’s axon to its synapses, where it passes
signals to other neurons.

1.3 Hodgkin-Huxley Model

Alan Lloyd Hodgkin and Andrew Fielding Huxley received the Nobel Prize in Physiology or Medicine
in 1963 for their model of an action potential (spike). Their model is based on the nonlinear interaction
between membrane potential (voltage) and the opening and closing of Na+ and K+ ion channels.

Both Na+ and K+ ion channels are voltage-dependent, so their opening and closing changes with the
membrane potential.

Let V be the membrane potential. A neuron usually keeps a membrane potential of around � 70mV.

The fraction of K+ channels that are open is n(t)4, where dn
dt = 1

τn(V) (n∞(V) � n). Here n is a dynamic
variable, and n∞(V) is the equilibrium solution constant.

The fraction of Na+ ion channels is (m(t))3h(t), where m and h are each themselves dynamic variables
that also depend on the voltage.

dm
dt

=
1

τm(V)
(m∞(V) � m)

dh
dt

=
1

τh(V)
(h∞(V) � h)
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h(v)
n(v)

m(v)

m( � 40) = 0.5

These two channels allow ions to flow into/out of the cell, inducing a current. . . which affects the
membrane potential, V. Here is a differential equation which governs the membrane potential.

C
dV
dt

= Jin � gL (V � VL)
| {z }

leak current

� gNam3h (V � VNa)
| {z }

sodium current

� gKn4 (V � VK)
| {z }
potassium current

• C: capacitance.

• dV
dt : rate of change in voltage, or current.

• Jin: input current, usually from other neurons.

• VL, VNa, VK: zero-current potentials.

• gL, gNa, gK: max conductance.

This system of four differential equations (DEs) governs the dynamics of the membrane potential.
Notice what happens when the input current is: negative, zero, slightly positive, very positive.

Here we can model this model in python. We have already seen these as functions of voltage.

These are the τ’s in case you are interested.
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Here is the input current. At the beginning, we have negative current, then way to 0.6, which is fed in
to the model.

Then this is how neuron behaves.

At the beginning, membrane potential goes to around � 120. As we increase the input current, the
membrane potential kinda goes higher. At 0.1, it’s high enough that causes regular action potentials.
As we increase input current even more, the action potentials continue to occur even faster. The firing
rate of neurons goes up, the number of spikes per second goes up.

The HH model is already greatly simplified:

• a neuron is treated as a point in space

• conductances are approximated with formulas

• only considers K+ , Na+ and generic leak currents

• etc.
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But to model a single action potential (spike) takes many time steps of this 4-D system. However,
spikes are fairly generic, and it is thought that the presence of a spike is more important than its
specific shape. So instead of modelling spikes themselves, we are going to offload that to some generic
spike phenomenon and look at the sub-threshold membrane potential model that.

1.4 Leaky Integrate-and-Fire Model

The leaky integrate-and-fire (LIF) model only considers the sub-threshold membrane potential (volt-
age), but does NOT model the spike itself. Instead, it simply records when a spike occurs (i.e., when
the voltage reached the threshold). So here is the model.

C
dV
dt

= Jin � gL(V � VL)

• C: capacitance.

• gL: conductance and gL = 1
R where R is resistance.

• Jin: input current.

If we multiply both sides by R, we get

RC|{z}
τm

dV
dt

= RJin � (V � VL).

• τm: time constant which dictates how quick things happen.

• RJin: by Ohm’s Law, let Vin = RJin.

Thus, the voltage can be modelled as

τm
dV
dt

= Vin � (V � VL) for V < Vth.

So this is the dynamics of the sub-threshold membrane potential. Change of variables: v = V� VL
Vth � VL

,
then v ! 0 if vin = 0 and v = 1 is the threshold. Then we end up with a DE:

τm
dv
dt

= vin � v.

We integrate the DE for a given input current (or voltage) until v reaches the threshold value of 1.
Then we record a spike at time t1. After it spikes, we wait a little bit, τre f , refractory time. It remains
dormant during its refractory period, τre f (often just a few milliseconds). After that time, we integrate
again from zero.

v

t

1

t1

tre f

Let’s put this in the context of the Hodgkin-Huxley model. If we zoom in on some little spikes here
(between 0.72, 0.73). We can see as follows:
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So the Hodgkin-Huxley model does model the spike itself.

LIF Firing Rate

Suppose we hold the input, vin, constant. We can solve the DE analytically between spikes.

Claim

v(t) = vin
�
1 � e� t

τ
�

is a solution of the IVP: τ dv
dt = vin � v, v(0) = 0.

Proof:
Plug in the solution to the DE and show LHS = RHS.

What does the solution look like? It will approach vin asymptotically.

Importantly, for the neuron to fire an potential, vin has to bigger than 1.

t

vin

1

t

vin

1

tisi

τre f t�

where tisi stands for interspike interval.

It can be shown that the steady-state firing rate for a constant input vin is

G(vin) =

8
<

:

1
τre f � τm ln

�
1� 1

vin

� for vin > 1

0 for vin � 1

The graph plots the function above. It is called
Tunning curve, because it tells us about how the
neuron reacts to different input currents. In fact,
eventually it would go asymptotic at a certain
value.

Typical values for cortical neurons(神经元):

• τre f = 0.002s

• τm = 0.02s

Let’s take a look at even simpler neurons.
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1.5 Activation functions

As we’ve seen, the activity of a neuron is very low, or zero, when the input is low, and the activity goes
up and approaches some maximum as the input increases. This general behaviour can be represented
by a number of different activation functions. In general, we call these sigmoidal shape.

z

σ

1

Logistic Curve σ(z) = 1
1+ e� z

0.5

z

σ

π/2

Arctan σ(z) = arctan(z)
� π/2

1

Hyperbolic Tangent σ(z) = tanh(z)
� 1

z

σ

tanh(2z)

1

Threshold σ(z) =

(
0 if z < 0

1 if z � 0
� 1

z

σ

two versions

Rectified Linear Unit (ReLU): This is just a line that gets clipped below at zero. Leaky ReLU (LeReLU).
Another version in green, which changes the slope when negative/at the origin.

z

ReLU(z) = max(0, z)

LeReLU

Multi-Neuron Activation Functions: Some activation functions depend on multiple neurons. Here
are two examples.

SoftMax

~z i

zi
eziSoftMax is ike a probability distribution (or probability vector),

so its elements add to 1. If ~z is the drive (input) to a set of
neurons, then

SoftMax(~z) i =
ezi

∑j ezj

Then by definition, ∑i SoftMax(~z) i = 1.

For example, ~z = [ 0.6, 3.4, � 1.2, 0.05] softmax==== ) ~y = [ 0.06, 0.9, 0.009, 0.031]
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One-Hot

One-Hot is the extreme of the softmax, where only the largest element remains nonzero, while the
others are set to zero.

For example, ~z = [ 0.6, 3.4, � 1.2, 0.05] one-hot==== ) ~y = [ 0, 1, 0, 0]

1.6 Synapses

To get an overview of how neurons pass information between them, and how we can model those
communication channels.

So far, we’ve just looked at individual neurons, and how they react to their input. But that input
usually comes from other neurons. When a neuron fires an action potential (the wave of electrical
activity) travels along its axon.

dendrites

soma axon

synapses

The junction where one neuron communicates with the next neuron is called a synapse.

1

2

3

4

a pre-synaptic
action potential...

... causes the release
of neurontransmitter
(神经递质)

... which binds to
receptors on the
post-synaptic neuron

... opening ion channels
& changing the membrane
potential

Even though an action potential is very fast, the synaptic processes by which it affects the next neuron
takes time. Some synapses are fast (taking just about 10 ms), and some are quite slow (taking over 300

ms). If we represent that time constant using τs, then the current entering the post-synaptic neuron
can be written

h(t) =

(
ktne� t

τs if t � 0 for some n 2 Z� 0

0 if t < 0

where k is chosen so that
Z ∞

0
h(t)dt = 1 =) k =

1
n!τn+ 1

s
.

The reason we have a split at zero is because the spike arrives at the synapse at time t = 0, and then
we are looking what’s happening after that.
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100 200 300

τs = 10ms

AMPA
GABA

τs = 50 � 150ms NMDA

Some neurontransmitters are fast, like AMPA. Some are slow, like NMDA. The area under these curves
are 1.

The function h(t) is called a Post-Synaptic Current (PSC) filter, or (in keeping with the ambiguity
between current and voltage) Post-Synaptic Potential (PSP) filter.

Multiple spikes form what we call a “spike train", and can be modelled as a sum of Dirac delta
functions,

a(t) =
3

∑
p= 1

δ(t � tp)

if we have three spikes at t1, t2, t3.

Dirac Delta Function

Dirac Delta Function is defined as

δ(t) =

(
∞ if t = 0

0 otherwise

and
Z ∞

� ∞
δ(t)dt = 1 and

Z ∞

� ∞
f (t)δ(T � t)dt = f (T).

How does a spike train influence the post-synaptic neuron?

Answer: You simply add together all the PSC filters, one for each spike. This is actually convolving
the spike train with the PSC filter.

spike train

a(t)

t
PSC filter

h(t)

t
� =

filtered spike train

s(t)

t

That is,
s(t) = ( a � h)( t) = ∑

p
h(t � tp) = sum of PSC filters, one for each spike

1.7 Connection Weight

The total current induced by an action potential onto a particular post-synaptic neuron can vary
widely, depending on:
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• the number and sizes of the synapses,

• the amount and type of neurotransmitter,

• the number and type of receptors,

• etc.

We can combine all those factors into a single number, the connection weight. Thus, the total input to
a neuron is a weighted sum of filtered spike-trains.

A

B

C

common way of writing
synaptic connections

wCA

wCB

Weight Matrices

When we have many pre-synaptic neurons, it is more convenient to use matrix-vector notation to
represent the weights and activities.

Suppose we have 2 populations, X and Y, X has N nodes, Y has M nodes (neurons). If every node in
X sends its output to every node in Y, then we will have a total of N � M connections, each with its
own weight.

x1

x2

y2

w11
y1

y3

w21

w31

w 12

w22

w32

X Y

W =

2

64
w11 w12

w21 w22

w31 w32

3

75 2 RM� N

Storing the neuron activities in vectors,

~x =

"
x1

x2

#

, ~y =

2

64
y1

y2

y3

3

75 .

We can compute the input to the nodes in Y using

~z = W~x + ~b,

where ~b holds the biases for the nodes (neurons) in Y. Bias is sort of a catch-all for influences on the
neuron that are not accounted for the connections that we are modelling.

Thus ~y = σ(~z) = σ(W~x + ~b).

Another way to represent the biases,~b,
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x1

x2

y2

w11
y1

y3

w21

w31

w 12

w22

w32

X Y

1

b1 b2

b3

So W~x + ~b =
�

W j~b
�

"
~x
1

#

= Ŵ

"
~x
1

#

.

Implementing Connections between Spiking Neurons

For simplicity, let n = 0: h(t) = 1
τs

e� t
τs , which happens to be the solution of the IVP:

τs
ds
dt

= � s, s(0) =
1
τs

.

Full LIF Neuron Model

wij
si(t) vi(t)

axon

Differential equations: 8
><

>:

τm
dvi
dt

= si � vi if not refracting

τs
dsi
dt

= � si

If vi reaches 1 (threshold). . .

1. start refractory period,

2. send spike along axon,

3. reset membrane potential v to 0.

If a spike arrives from neuron j, increase si: si  si + wij
τs

. The amount of current that it injects into the
post-synaptic neuron is proportional to the weight, and we divide it by τs, which is the normalizing
factor so that the total amount of current that eventually gets injected is the weight.



2
Formulation of Learning

2.1 Neural Learning

Getting a neural network to do what you want usually means finding a set of connection weights that
yield the desired behaviour. That is, neural learning is all about adjusting connection weights.

There are three basic categories of learning problems:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

In supervised learning, the desired output is known so we can compute the error and use that error
to adjust our network.

Example:
Given an image of a digit, identify which digit it is.

Input Target

[0 0 0 0 1 0 0 0 0 0]

In unsupervised learning, the output is not known (or not supplied), so cannot be used to generate
an error signal. Instead, this form of learning is all about finding efficient representations for the
statistical structure in the input.

Example:
Given spoken English words, transform them into a more efficient representation such as phonemes,
and then syllables.

Or, cluster points into categories.

In reinforcement learning, feedback is given, but usually less often, and the error signal is usually
less specific.

16



CHAPTER 2. FORMULATION OF LEARNING 17

Example:
When playing a game of chess, a person knows their play was good if they win the game. They
can try to learn from the moves they made.

In this course, we will mostly focus on supervised learning. But we will also look at some examples
of unsupervised learning.

Supervised Learning

Our neural network performs some mapping from an input space to an output space.

Example:

Input is
(x1, x2) 2 R2

Output is y1 2 R

target t

We are given training data, with many MANY examples of input/target pairs. This data is (presum-
ably) the result of some consistent mapping process. For example, handwritten digits map to numbers.
Or, XOR dataset. On the left, we have the inputs (A, B) 2 f 0, 1g2, and the output y 2 [0, 1] and the
target t 2 f 0, 1g.

A B XOR(A, B)
1 1 0
1 0 1
0 1 1
0 0 0

Our task is to alter the connection weights in our network so that our network mimics this mapping.
Our goal is to bring the output as close as possible to the target. But what, exactly, do we mean by
“close"? For now, we will use the scalar function L(y, t) as an error (or “loss”) function, which returns
a smaller value as our outputs are closer to the target.

Two common types of mappings encountered in supervised learning are regression and classification.

Regression

Output values are a continuous-valued function of the inputs. The outputs can take on a range of
values.
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Example: Linear regression

y, t 2 R

Outputs fall in
a range of values

Classification

Outputs fall into a number of distinct categories.

Example: MNIST
MNIST stands for Modified National Institute of Standards and Technology database.

Inputs Targets Inputs Targets
[0 0 0 0 0 0 0 1 0 0] [0 0 0 0 0 1 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0] [0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 0 0 0 1]

Example: CIFAR-10

Inputs Targets

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Optimization

Once we have a cost function, our neural-network learning problem can be formulated as an optimiza-
tion problem.

Let our network be represented by the mapping f so that y = f (x; θ) where θ represents all the weights
and biases. Neural learning seeks

min
θ

Ex2data
�
L( f (x; θ), t(x))

�
,

In other words, find the weights and biases that minimize the expected cost (or error, or loss) between
the outputs and the targets, over the dataset.

2.2 Universal Approximation Theorem

Can we approximate any function using a neural network?
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Given a function f (x), can we find weights ωj, αj,
and biases θj, j = 1, . . . , N such that

f (x) =
N

∑
j= 1

αj σ(wjx + θj)| {z }
hj

to arbitrary precision?

x h2

h1

hN

y

w1 α1

α2w2

wN αN...

Theorem 2.1: Universal Approximation Theorem

Let σ be any continuous sigmoidal function. Then finite sums of the form

G(x) =
N

∑
j= 1

αjσ(wjx + θj)

are dense in C( In). In other words, given any f 2 C( In) and ε > 0, there is a sum, G(x), of the
above form, for which

jG(x) � f (x) j < ε 8x 2 In.

Here C( In) denotes the continuous functions on In, and In can be In = [ 0, 1]n.

A function σ is “sigmoidal” if σ(x) =

(
1 as x ! ∞

0 as x ! � ∞

The theorem states that 9N, and 9wj, θj, αj for j = 1, . . . , N such that jG(x) � f (x) j < ε.

Proof:

Suppose we let wj ! ∞ for j = 1, . . . , N, then σ(wjx)
wj ! ∞
���!

(
0 for x � 0

1 for x > 0
. We can visualize it

by, for example, logistic function, and crank up that w:

x

1

0
0

Or let’s look at a shifted version of it: σ(wj(x � bj))
wj ! ∞
���!

(
0 for x � bj

1 for x > bj
.

x

1

0
bj

This is the same as the Heaviside step function, H(x) = lim
w! ∞

σ(wx).

Define H(x; b) := lim
w! ∞

σ(w(x � b)) which has two inputs: x and the shift b.

We can use two such functions to create a piece, P(x; b, δ) := H(x; b) � H(x; b + δ)

x
b + δb
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Then,

x
b + δb

P(x; b, δ) =

Since f (x) is continuous, lim
x! a

f (x) = f (a), 8a 2 In. Then there exists an interval, (aj, aj + ∆x) such

that j f (x) � f (aj) j < ε 8x 2 (aj, aj + ∆x).

x
aj

∆x

ε

ε

Choose bj = aj, δj = ∆x, and αj = f (aj). Therefore,

j f (x) � f (aj) j < ε for aj � x � aj + δj

j f (x) � αjP(x; bj, δj) j < ε for aj � x � aj + δj

x
aj

δj

ε

ε

aj + δj

f

αj P(x; bj , δj)
Max error in [aj, aj + δj] is less than ε.

Repeat this process for x = aj+ 1 = bj + δj. Construct

G(x) =
N

∑
j= 1

αjP(x; bj, δj)

as desired.

This theorem shows that with a single hidden layer you can get arbitrarily close to modeling any
functions you want. So, why would we ever need a neural network with more than one hidden layer?
The theorem guarantees existence, but makes no claims about N, the number of hidden neurons N
might grow exponentially as ε gets smaller.

2.3 Loss Functions

We have to choose a way to quantify how close our output is to the target. For this, we use a “cost
function”, also known as an “objective function”, “loss function”, or “error function”. There are many
choices, but here are two commonly-used ones.

Suppose we are given a dataset
�

xi, ti
	 N

i= 1. For input xi, the network’s output is yi = f (xi; θ).

2.3.1 (Mean) Squared Error

L(y, t) =
1
2

ky � tk2
2
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Taking the expectation (mean) over the entire dataset,

E =
1
N

N

∑
i= 1

L(yi, ti).

The use of MSE as a cost function is often associated with linear activation functions, or ReLU. This
loss-function/activation-function pair is often used for regression problems.

2.3.2 Cross Entropy (Bernoulli Cross Entropy)

Consider the task of classifying inputs into two categories, labelled 0 and 1. Our neural-network model
for this task will output a single value between 0 and 1.

x f (x; θ) y 2 (0, 1)

where the true class is expressed in the target, t, is either 0 or 1.

If we suppose that y is the probability that x ! 1 (is of class 1), y = P(x ! 1jθ) = f (x; θ), then we can
treat it as a Bernoulli distribution:

P(x ! 1jθ) = y i.e., t = 1
P(x ! 0jθ) = 1 � y i.e., t = 0

The likelihood of our data sample given our model is

P(x ! tjθ) = yt(1 � y)1� t,

which works for both classes.

The task of “learning" would be finding a model (θ) that maximizes this likelihood. Or, we could
equivalently minimize the negative log-likelihood

L(y, t) = �
�
t log y + ( 1 � t) log(1 � y)

�
,

and this log-likelihood formula is the basis of the cross-entropy loss function.

The expected cross entropy over the entire dataset is

E = � E
�
ti log yi + ( 1 � ti) log(1 � yi)

�
over the dataset

= �
1
N

N

∑
i= 1

ti ln yi + ( 1 � ti) ln(1 � yi)

Cross entropy assumes that the output values are in the range [0, 1]. Hence, it works nicely with the
logistic activation function.

2.3.3 Categorical Cross-Entropy (Multinoulli Cross-Entropy)

Consider a classification problem that has K classes (K > 2). Given an input, the task of our model is
to output the class of the input. For example, given an image of a digit, determine the digit class.

Suppose our model is given the input x, then the the network’s output is y = f (x; θ) 2 [0, 1]k. For
example, y = [ 0.2, 0.1, 0.4, 0.3]. We interpret yk as the probability of x being from class k. That is, y is

the distribution of x’s membership over the K classes. Note that
K
∑

k= 1
yk = 1.

Under that distribution, suppose we observed a sample from class k̄, the likelihood of that observation
is P(x 2 Ck̄ jθ) = yk̄ where Ck̄ = f xjx is from class k̄g.
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Note that y is a function of the input x, and the model parameters θ (the prof put this statement in
there for a reason that is not relevant now).

If we represent the target class using the one-hot vector

t = [ 0, 0, . . . , 1

k̄

, 0, . . . , 0],

then we can write the likelihood as

P(x 2 Ck̄ jθ) =
K

∏
k= 1

ytk
k .

Thus, the negative log-likelihood of x is

� log P(x 2 Ck̄ jθ) = �
K

∑
k= 1

tk log yk.

This loss function is known as categorical cross-entropy:

L(y, t) = �
K

∑
k= 1

tk log yk.

The expected categorical cross-entropy for a dataset of N samples is

E = � E
�
L(yi, ti)

�
dataset = �

1
N

N

∑
i= 1

K

∑
k= 1

t(i)
k log y(i)

k

where the superscript (i) is for the sample i.

Since ∑
k

yk = 1, this cost function works well with SoftMax which outputs discrete distributions.



3
Error Backpropagation

3.1 Gradient Descent Learning

The operation of our network can be written y = f (x; θ) where θ are connection weights and biases.
So, if our loss function is L(y, t), where t is the target, then neural learning becomes the optimization

problem minθ E(θ) where E(θ) = E
h

L
�

f (x; θ), t(x)
� i

x2 data
. We can apply gradient descent to E, using

the gradient r θE =
h

∂E
∂θ0

∂E
∂θ1

� � � ∂E
∂θp

i T
.

3.1.1 Gradient-Based Optimization

If you want to find a local maximum of a function, you can simply start somewhere, and keep walking
uphill. For example, suppose you have a function with two inputs, E(a, b). You wish to find a and b
to maximize E. We are trying to find the parameters ( ā, b̄) that yield the maximum value of E, i.e.,
( ā, b̄) = argmax(a,b) E(a, b). No matter where you are, “uphill" is in the direction of the gradient vector,

r E(a, b) =
�

∂E
∂a

∂E
∂b

� T
.

E

a
br E

23



CHAPTER 3. ERROR BACKPROPAGATION 24

Image from https://commons.wikimedia.org/wiki/File:2D_Wavefunction_(2,1)_Surface_Plot.
png .

Gradient ascent is an optimization method where you step in the direction of your gradient vector.
If your current position is (an, bn), then (an+ 1, bn+ 1) = ( an, bn) + kr E(an, bn) where k is your step
multiplier.

Gradient descent aims to minimize your objective function. So, you walk downhill, stepping in the
direction opposite the gradient vector. Note that there is no guarantee that you will actually find the
global optimum. In general, you will find a local optimum that may or may not be the global optimum.

3.1.2 Approximating the Gradient Numerically

We can estimate the partial derivatives in the gradient using finite-differencing.

Finite-Difference Approximation

For a function E(θ), we can approximate dE
dθ using

dE
dθ

�
E(θ + ∆θ) � E(θ � ∆θ)

2∆θ

θ � ∆θ θ θ + ∆θ

E(θ)

E(θ � ∆θ)

E(θ + ∆θ)

2∆θ

As an example, consider this network (assume logistic activation function):

Input

Output

target

1

θ1

It’s a neural network, with connection weights and biases shown. Recall we seek minθ E(θ). We will
use cross entropy.

Consider θ1 on its own. With θ1 = � 0.509, our network output is y = 0.301. This gives E( � 0.509) =
1.201. What if we perturb θ1, so that θ1 = � 0.509 + 0.1

∆θ

= � 0.409. The our output is y = 0.302. This
yields E( � 0.409) = 1.198.

If, instead, we perturb θ1 so that θ1 = � 0.509 � 0.1

� ∆θ

= � 0.609, then our output is y = 0.302, which
gives E( � 0.609) = 1.204.

Then we can estimate ∂E
∂θ1

using

∂E
∂θ1

�
E( � 0.409) � E( � 0.609)

2 � 0.1
= � 0.0292

https://commons.wikimedia.org/wiki/File:2D_Wavefunction_(2,1)_Surface_Plot.png
https://commons.wikimedia.org/wiki/File:2D_Wavefunction_(2,1)_Surface_Plot.png
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Obviously, increasing θ1 seems to be the right thing to do. Then θ1  θ1 � k

positive constant

� ( � 0.0292).

3.2 Error Backpropagation

The goal here is to find an efficient method to compute the gradients for gradient-descent optimization.
We can apply gradient descent on a multi-layer network, using chain rule to calculate the gradients of
the error with respect to deeper connection weights and biases.

Consider the network:

W M
t1

t2

x1

x2

x3

h1

h2

h3

h4

y1

y2

α1

α2

α3

α4

β1

β2

targets

E(y, t)

RX RH RY

αi is the input current to hidden node i. β j is the input current to the output node j. For our cost (loss)
function, we will use E(y, t). For learning, suppose we want to know ∂E

∂M41
, where M41 is going from

h4 to β1. We can represent this by a computation/dependency graph.

E

y1

β1

M11 M21 M31 M41

y2

β2

M12 M22 M32 M42

σ σ

Recall, E(y, t) = E(σ(hM + b| {z }
β1

), t). Therefore, ∂E
∂β1

= ∂E
∂y1

∂y1
∂β1

. Thus, ∂E
∂M41

= ∂E
∂β1

∂β1
∂M41

.

Recall, β1 =
4
∑

i= 1
hi Mi1 + b1, then ∂β1

∂M41
= h4. Therefore, ∂E

∂M41
= ∂E

∂β1
h4.

OK, that works for the connection weights between the top two layers. What about the connection
weights between layers deeper in the network? Say if we want to find ∂E

∂W21
. First, we draw a depen-

dency graph.
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E

y1

β1

h1

α1

W11 W21 W31

h2

α2

y2

β2

h3

α3

h4

α4

σ σ

First note that α1 =
3
∑

j= 1
xjWj1 + a1. Therefore, ∂α1

∂W21
= x2. And

∂E
∂α1

=
∂E
∂h1

dh1

dα1

=
�

∂E
∂β1

∂β1

∂h1
+

∂E
∂β2

∂β2

∂h1

�
dh1

dα1

=
�

∂E
∂β1

M11 +
∂E
∂β2

M12

�
dh1

dα1
(� )

=
�

∂E
∂β1

,
∂E
∂β2

�
� (M11, M12)

dh1

dα1
.

( � ): assume ∂E
∂β1

, ∂E
∂β2

are known because these gradients were used to compute the loss with respect to
the weights in the top layer already and we are doing backpropagation.

Then ∂E
∂W21

= ∂E
∂α1

∂α1
∂W21

= � � � using the results above.

More generally, x 2 RX , h 2 RH , y, t 2 RY, M 2 RH� Y,

∂E
∂αi

=
dhi
dαi

h
∂E
∂β1

� � � ∂E
∂βY

i
�
h

Mi1 � � � MiY

i
=

dhi
dαi

h
∂E
∂β1

� � � ∂E
∂βY

i
�

2

664

Mi1
...

MiY

3

775

T

For all elements,

h
∂E
∂α1

� � � ∂E
∂αH

i
=

h
dh1
dα1

� � � dhH
dαH

i
�

h
∂E
∂β1

� � � ∂E
∂βY

i
2

664

M11 � � � MH1
...

...
M1Y � � � MHY

3

775

where � is the Hadamard product: (A � B) ij = ( A) ij(B) ij. Then

r αE =
dh
dα

�
�
r βE � MT �

.

The most general, in going down a layer, from layer ‘ + 1 down to ‘ .

Note that in the network below, superscripts denote the layer.
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W( ‘ � 1) z( ‘ )
...

W( ‘ ) z( ‘ + 1)
...

� � �

Layer ‘ Layer ‘ + 1

h( ‘ ) h( ‘ + 1)
r z( ‘ ) E r z( ‘ + 1) E

Suppose we have r z( ‘ + 1) E = ∂E
∂z( ‘ + 1) . Let h(l+ 1) = σ(z( ‘ + 1) ) = σ(h( ‘ )W( ‘ ) + b( ‘ + 1) ). Then in our context,

r z( ‘ ) =
dh( ‘ )

dz( ‘ ) �
h
r z( ‘ + 1) E �

�
W( ‘ ) � T

i

Then, to compute ∂E
∂W( ‘ )

ij

,

∂E

∂W( ‘ )
ij

=
∂E

∂z( ‘ + 1)
j

∂z( ‘ + 1)
j

∂W( ‘ )
ij

=
∂E

∂z( ‘ + 1)
j

h( ‘ )
i = h( ‘ )

i
∂E

∂z( ‘ + 1)
j

Note that, one term depends on i, the other depends on j, and there’s no entity having both i and j.
Then this can be written simply for all elements by picking hi and zj that we want.

∂E
∂W( ‘ ) =

2

64
"

h( ‘ )

#

3

75
h
 r z( ‘ + 1) E !

i

Note that this is an outer product between two vectors. The result is a matrix, same size as W( ‘ ) .

Summary

Suppose we have r z( ‘ + 1) E, we want to calculate r z( ‘ + 1) E and r W( ‘ ) E. Here σ is the activation function
between z( ‘ ) and h( ‘ ) .

r z( ‘ ) E = σ0(z( ‘ ) ) �
h
r z( ‘ + 1) E �

�
W( ‘ ) � T

i

r W( ‘ ) E = [ h( ‘ ) ]Tr z( ‘ + 1) E

Note that by default h( ‘ ) is a row vector.



4
Automatic Differentiation

4.1 Theory

Consider f = sin(x)
| {z }

a

+ xy
|{z}

b

.

1 x = var
2 y = var
3 a = sin(x)
4 b = x * y
5 f = a + b

Let’s draw the computation graph/expression graph.

f

+

a b

sin �

x y

depends on

We refer the yellow line by “creator” pointer/reference: a was created from the sine function.

We will build a data structure to represent the expression graph using two different types of objects:
Variables & Operations

28
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x +val

Var Op

creator

Op = x.creator Var Var

a b  args

Let’s do another example: f = a � b. Given Var objects a and b, then

a b

�

f 1. Create the Op object

2. Save references to the args (a, b)

3. Create a variable for the output ( f )

4. Sent f.creator to this Op

4.1.1 Evaluate

We can use the expression graph to evaluate the expression. Each type of object has an evaluate
function.

1 # Var.evaluate
2 if creator is None:
3 return val
4 else:
5 return creator.evaluate()
6

7 # Op.evaluate
8 call evaluate on all the args.
9 compute & return the value

Here is how we do evaluate on the previous example: f = sin(x) + xy

f.evaluate()
return f.creator.evaluate()

f.creator.evaluate()
return a.evaluate() + b.evaluate()

a.evaluate()
return a.creator.evaluate()

a.creator.evaluate()
return sin(x.evaluate())

x.evaluate()
return x.val

b.evaluate()
return b.creator.evaluate()

b.creator.evaluate()
return x.evaluate() * y.evaluate()

y.evaluate()
return y.val
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4.1.2 Differentiate

The expression graph can also be used to compute the derivatives. Each Var stores the derivative of
the expression w.r.t. itself. It stores it in its member grad .

Consider f = F(G(H(x))) . For simplicity, denote h = H(x), g = G(h), f = G(g). We want to find
x.grad = ∂ f

∂x , which is partial derivative of the full expression with respect to variable x.

∂ f
∂x

=
∂F
∂g

∂G(H(x))
∂x

=
∂F
∂g

∂G(h)
∂h

∂H(x)
∂x

=
∂ f
∂g

∂g
∂h

∂h
∂x

F

G

H

f f .grad = ∂ f
∂ f = 1

h h.grad = ∂ f
∂h = ∂ f

∂g
∂g
∂h

g g.grad = ∂ f
∂g

x x.grad = ∂ f
∂x = ∂ f

∂g
∂g
∂h

∂h
∂x

∂ f
∂g

= F0(g)

∂g
∂h

= G0(h)

∂h
∂x

= H0(x)

Starting with a value of 1 at the top, we work our way down through the graph, and increment
grad of each Var as we go. Here “increment” does not necessarily mean “add”; in chain rule, it
means multiplying. Each Op contributes its factor (according to chain rule), and passes the updated
derivative down the graph.

Let’s revisit the example above: f = sin(x) + xy.

f

+

a b

sin �

x y

∂ f
∂ f = 1

∂(a+ b)
∂b = 1

∂ f
∂b = 1

∂(xy)
∂y = x

∂(xy)
∂x = y

∂ f
∂y

= ( 1)x = x
∂ f
∂x

= ( 1) cos x + ( 1)y

= cos x + y

∂ sin x
∂x = cos x

∂ f
∂a = 1

∂(a+ b)
∂a = 1

Each object has a backward() method that processes the derivative and passes it down the graph.

1 class Var:
2 # self.var, self.grad, and s all have to be the same shape
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3 def backward(s):
4 self.grad += s
5 self.creator.backward(s)
6

7 class Op:
8 # s must match the shape of the operator ' s output
9 def backward(s):

10 for x in self.args:
11 x.backward(s � ∂Op/∂x)

Here, s is the accumulated derivative of the part of the expression above the Var /Op.

4.2 Neural Networks with Auto-Diff

4.2.1 Optimization

Consider a scalar function E that depends (possibly remotely) on some variable v. Suppose we want
to minimize E with respect to v, i.e., minv E(v). We can use gradient descent: v  v � kr vE(v).

Algorithm 1: Gradient Descent (using AD)

1 initialize v, k
2 construct an expression graph for E
3 while not converged do
4 evalaute E at v
5 set gradients to zero (i.e., r vE = v.grad = 0)
6 propagate derivatives down (increment v.grad)
7 v  v � k � v.grad

4.2.2 Neural Learning

We use the same process to implement error backpropagation for neural networks, and we optimize
w.r.t. the connection weights and biases.

To accomplish this, our network will be composed of a series of layers, each layer transforming the
data from the layer below it, culminating in a scalar-valued cost function.

Two types of operations in the network:

1. multiply by connection weights (including add bias)

2. apply activation function

Finally, a cost function takes the output of the network, as well as the targets, and returns a scalar.

Consider this (very) small network:
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X W

T

Cost
d

a b
c

X: input. Gray region represents the input current for that given layer. From the gray area to the
outlined box, is the activation function, which we called a. Then we go through the connection weights,
and we call it b. Then similarly c is the activation function. Lastly, we call the cost function d. Given
dataset (X, T),

a = identity

b = ( λz : z � W) (multiply by W)

c = logistic

d = Cost

X x z y

T

E
a b c

d

Each layer can be called like a function:

x = a(X) e.g. a(X) = X

z = b(x) e.g. b(x) = x � W

y = c(z) e.g. c(z) = σ(z)

E = d(y, T) e.g. d(y, T) = E
h

1
2 ky � Tk2

2

i

Each layer, including the cost function, is just a function in a nested mathematical expression.

E = d
�

c
�

b
�
a(X)

� �
, T

�

Given that, neural learning is
W  W � κr W E

and in this case, W is a part of b function.

We construct our network using objects from our AD classes (Variables and Operations) so that we can
take advantage of their backward() methods to compute the gradients. Net is basically a sequence of
operations. For example, net � (a, b, c). And

y = net(x) = c(b(a(x)))

E = d(y, T)

These two is called the forward pass, which sets the state of the network. State of the network means
all the activations and input currents take on particular values. Given an input, and feed through the
network, then all these input currents and neuron activations have actual values, which corresponds
to that input, and corresponds to the output and the error.

Then we take gradient steps:
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• set the gradients to zero: E.zero_grad() ,

• then call E.backward() .

These two is called backward pass which sets all the gradients.

Algorithm 2: Neural learning using AD

1 Given dataset (X, T), and network model net, with parameters θ, and cost function “Cost”
2 for epochs... do

// these two is the feedforward pass
3 y = net(X)
4 loss = Cost(y, T)

// Backprop
5 loss.zero_grad()
6 loss.backward()

// Gradient descent
7 θ  θ � κ � θ.grad

4.2.3 Matrix AD

To work with neural networks, our AD library will have to deal with matrix operations. For example,
matrix addition. Suppose our scalar function involved a matrix addition. We have the cost function
L( . . . , A, B, . . .) where A, B 2 RM� N . What is r AL and r BL?

Let y = A + B 2 RM� N , then
r AL = r yL

| {z }
s

�r Ay = s � 1M� N

which is of the same shape as A. L is a scalar function, and we take the gradient of the gradient with
respect to every element in A,thus its shape is the same as A. Similarly,

r BL = r yL � r By = s � 1M� N

which is of the same shape as B.

So the implementation:

+ .backward(s)
A.backward(s � 1M� N)
B.backward(s � 1M� N)

Note that s is the same shape as y , the output of the operation.

Now let’s talk about the matrix multiplication. Suppose we have the cost function L( . . . , A, B, . . .)
where A 2 RM� N , B 2 RN� K. Let y = A � B 2 RM� K. What is r AL and r BL?

r AL
M� N

= r yL
M� K

� r Ay
K� N

= s � BT

r BL
N� K

= r By
N� M

� r yL
M� K

= AT � s

The implementation would be

�.backward(s)
A.backward(...)
B.backward(...)
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This is basically what you need now to apply a matrix type of library of automatic differentiation
routines or classes, and apply them to neural networks. So the neural network is neural learning, or
essentially backprop by constructing your network of a whole bunch of matrix variables and matrix
operations, each of which has a backward function and knows how to contribute its derivative to a
chain. So if you build your network out of these functions, it constructs the computation graph for you,
and you can just call backward and it’ll go down through the graph and populate all the gradients,
and then you can pull out and use those gradients to do gradient descent.



5
Generalizability

5.1 Overfitting

Suppose you have a dataset of drug dosage vs. your blood-sugar level. Your doctor would like to train
a neural network so that, given a dose, she can predict your blood sugar. That dataset has 6 samples.
And since this is a regression problem, we will use a linear activation function on the output, and MSE
as a loss function.

Your doctor creates a neural network with 1 input node, two hidden layers, each with 250 ReLU nodes,
and 1 output node, and trains it on your dataset for 2000 epochs.

The doctor want to give you a dose of 0.65, so she uses the network to estimate what your blood sugar

35
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will be. The model says the blood sugar is 1.0043. Does this seem reasonable? If we take a look at
the plot, this point is too close to the fifth point. So we don’t necessarily want to fit all those points
specifically, instead, we want to model the underlying phenomenon.

Suppose the doctor takes 300 more blood samples from you, at a variety of different doses. Once
you’re drained of blood, she runs the dataset through her model to see what the MSE loss is. This
time, MSE loss is 0.018.

That’s orders of magnitude worse than the 1.5 � 10� 10 on the training dataset. The false sense of
success we get from the results on our training dataset is known as overfitting or overtraining.

If your model has enough flexibility and you train it long enough for enough epochs, it will start to fit
the specific points in your training dataset, rather than fit the underlying phenomenon that produced
the noisy data.

Recall that our sole purpose was to create a model to predict the output for samples it hasn’t seen.
How can we tell if we are overfitting?

A common practice is to keep some of your data as test data which your model does not train on.

So we see the train data gets down as epochs go up. But in terms of the test data, we see it goes down
first and then creeps up again. That’s because the model is working so hard to fit the training data,
including the noise of the training data, at the expense of fitting the test data. Thus divergence like
this is a sign of overfitting.

5.2 Validation

If we want to estimate how well our model will generalize to samples it hasn’t trained on, we can
withhold part of the training set and try our model on that “validation set". Once our model does
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reasonably well on the validation set, then we have more confidence that it will perform reasonably
well on the test set.

It’s common to use a random subset of the training set as a validation set.

Neural Network Model

Hyperparameters

Connection
weights & biases

Update using
training set

epochs

Evaluate using
Validation set

Evaluate using
Test set

5.3 Combatting Overfitting

We saw that if a model has enough degrees of freedom, it can become hyper-adapted to the training
set, and start to fit the noise in the dataset. In that case, we see the training error is very small. This is
a problem because the model does not generalize well to new samples: test error is much larger than
training error. There are some strategies to try to stop our network from trying to fit the noise.

5.3.1 Regularization

Weight Decay

We can limit overfitting by creating a preference for solutions with smaller weights, achieved by adding
a term to the loss function that penalizes for the magnitude of the weights. So let’s our loss function
before was E, now we are going to create a different one:

Ẽ(y, t, θ) = E(y, t, θ) +
λ̄

2
kθk2

F

where
kθkF =

r
∑

j
θ2

j

is the Frobenius norm.

How does this change our gradients, and thus our update rule?

r θi Ẽ = r θi E + λ̄θi �! θi  θi � κr θi E � (λ̄κ)
| {z }

λ

θi

where the last term is decay term, which pulls it a bit closer down towards zero.

Now when apply this updated weight decay regularized update rule, we can see that our fit of small
blood sugar data set is far less precisely hitting those points.
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overfit

regularized

We don’t really care about the training loss. Instead, we care about the test loss. After we run this two
models with the test data, we get the original test loss is 0.01728 and weight decay test loss is 0.01219,
which is smaller. If we take a look at weights themselves, the unregularized version: kθk2

F = 254.4
and the regularized version: kθk2

F = 7.1. We are limiting the solution we can achieve by preferring the
smaller connection weights and biases.

Note that λ controls the weight of the regularization term.

One can also use different norms. For example, it is common to use the L1 norm,

L1(θ) = ∑
i

jθi j,

The L1 norm tends to favour sparsity (most weights are close to zero, with only a small number of
non-zero weights).

5.3.2 Data Augmentation

Another approach is to include a wider variety of samples in your training set, so that the model is
less likely to focus its efforts on the noise of a few.

For example, in our blood sugar/dose dataset, 6 points obviously is not a very comprehensive view
of the underlying phenomenon. Thus we would want to have more points. If we train the model with
300 training samples, we get a more robust model.

Original test loss is 0.01728 while augmented test loss is 0.00934.

Where does this extra data come from? For image-recognition datasets, one can generate more samples
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by shifting or rotating the images. Those transformations presumably do not change the labelling.
More generally, we can make aby changes to whatever it is we want to make our model invariant to.

5.3.3 Dropout

The last method we will talk about is the most bizarre. While training using the dropout method, you
systematically ignore a large fraction (typically at least half) of the hidden nodes for each sample. That
is, given a dropout probability, α, each hidden node will be dropped with probability α. A dropped
node is temporarily taken off-line and set to zero.

Original Net
α fraction of hidden nodes removed

h

1 � N

y = σ(z)
1 � K

h̄

h̄ =

(
0 with prob. α

hn with prob. 1 � α

y = σ(z)

where z̄ is the new input current after we perform dropouts.

We do both a feedforward and backprop pass with this diminished network.

Consider the absolute input to the nodes in the output layer. Without dropout,

Z =
K

∑
k= 1

jzk j =
K

∑
k= 1

�� [hW]k
��

With dropout, the expected absolute input

K

∑
k= 1

j z̄k j =
K

∑
k= 1

�� [h̄W]k
�� =

K

∑
k= 1

�� [(1 � α)hW]k
�� = ( 1 � α)Z

Thus, a dropout rate α of reduces the expected input to the next layer by a factor of 1 � α, which could
affect the behaviour of the next layer.

0 z z

Change in input
causes change
in next layer

After training, we want the network to work without dropped nodes. The weights learned with
dropout will not work properly in the full network.

Solution: We scale the output of the dropout layer up by a factor of 1
1� α . For example, if α = 0.8, then

1
1� α = 5, then

z̄ =
1

1 � α
h̄W =)

K

∑
k= 1

j z̄k j = Z.
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We can accomplish all of this by adding another layer to the network.

Dropout layer

h h̄

The activation function of the dropout layer is

d(h) =
1

1 � α
f hgα where f hgα =

(
0 with prob. α

h with prob. 1 � α

During backprop, the gradients have to go back through this layer.

h̄ = d(h), r hL = r h̄L
dh̄
dh

where
dh̄
dh

=

(
0 if h was dropped

1
1� α if h was not dropped

Now after we have implemented this, we obtain

Original test loss is 0.01543 and dropout test loss is 0.01147.

Why does dropout work?

• It’s akin to training a bunch of different networks and combining their answers. Each diminished
network is like a contributor to this consensus strategy.

• Dropout disallows sensitivity to particular combinations of nodes. Instead, the network has to
seek a solution that is robust to loss of nodes.

See https://arxiv.org/abs/1207.0580

https://arxiv.org/abs/1207.0580


6
Optimization Considerations

Now in this chapter, or in this week, we are going to discuss deep neural networks. We’ve looked
at neural networks with a hidden layer, input layer, hidden layer, output layer, and now we’re going
to ask the question: what about adding more hidden layers? What are the pros and cons? So the
goal is to see the advantages and disadvantages of deep neural networks and it’s basically weighing
representational power versus vanishing or exploding gradients. How many layers should our neural
network have? Recall

Universal Approximation Theorem

Let σ be any continuous sigmoidal function. Then finite sums of the form

G(x) =
N

∑
j= 1

αjσ(wjx + θj)

are dense in C( In). In other words, given any f 2 C( In) and ε > 0, there is a sum, G(x), of the
above form, for which

jG(x) � f (x) j < ε 8x 2 In.

Thus, we really only ever need one hidden layer. But is that the best approach, in terms of number
of nodes, or learning efficiency? No, it can be shown that such a shallow network could require an
exponentially large number of nodes (i.e., A really big N) to work.

So, a deeper network is preferred in many cases. So, why don’t we always use really deep networks?

Let us visit one problem: vanishing gradients.

6.1 Vanishing Gradients

Suppose the initial weights and biases were large enough that the input current to many of the nodes
was not too close to zero. As an example, consider one of the output nodes.

41
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Layer 0 1 2 3

z(3)
1

W(2)

Let’s say z(3)
1 = 5, and this node is logistic node, then y1 = σ

�
z(3)

1
�

= 1
1+ e� 5 = 0.9933. Therefore,

dy1

dz(3)
1

= y1(1 � y1) = 0.0066, which is small. Because the input current is high, then the derivative is

small. Let’s demonstrate it in a plot.

z
slope � 0

slope � 0

5

sweet spot where
slope � 0

Compare that to if the input current was 0.1, then y1 = σ(0.1) = 0.525, and dy1

dz(3)
1

= y1(1 � y1) = 0.249,

which is almost 40 times bigger than before. Hence, the updates to the weights will be smaller when
the input currents are large in magnitude.

What about the next layer down? Suppose r z(3) E � 0.01. What if the inputs to the penultimate layer
were around 4 in magnitude? Then the corresponding slopes of their sigmoid functions will also be
small. In particular, σ(4) = 0.982, σ0(4) = 0.0177. Recall that

r z(2) E = σ0� z(2) � �
�

r z(3) E �
�
W(2) � T

�
� 0.0177 �

�
0.01 �

�
W(2) � T

�
= 0.000177

�
W(2) � T

Thus the gradient gets smaller and smaller as you go deeper. When this happens, learning comes to a
halt, especially in the deep layers. This is often called the vanishing gradient problem.

Here is another way to look at it. Consider this simple, but deep network.

x h(1) h(2) h(3) h(4) y
W(0)

b(1)

W(1)

b(2)

W(2)

b(3)

W(3)

b(4)

W(4)

b(5)

where W(i) are weights and b(i) are biases. Let’s start with the loss on the output side: E(y, t). The
gradient with respect to the input current of the output node is

∂E
∂z(5) = y � t.

Then using backprop, we can compute a single formula for

∂E
∂z(4) = ( y � t)W(4)σ0� z(4) � .

Going deeper... we have

∂E
∂z(1) = ( y � t)W(4)σ0� z(4) � W(3)σ0� z(3) � W(2)σ0� z(2) � W(1)σ0� z(1) � .

What is the steepest slop that σ(z) attains? σ0(z) = σ(z)(1 � σ(z)) for 0 < σ(z) < 1. All else being
equal, the gradient goes down by a factor of at least 4 each layer. We can see this if we look at the
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norm of the gradients at each layer, i.e.,

 r z(i) E
 2 = ∑

j

 
∂E

∂z(i)
j

! 2

.

Consider this particular example below:

5 layers (include input & output)

layer 4 norm = 0.7598 [0.76]

layer 3 norm = 0.7598 [� 0.038, � 0.217, � 0.039, � 0.039]

layer 2 norm = 0.7598 [0.018, � 0.018, � 0.007, 0.018]

layer 1 norm = 0.0094 [� 0.004, 0.002, 0.001, 0.008]

x

y

We can see they start reasonably sized ,but they get smaller and smaller and smaller as we go down.
We have the same number of nodes four at each layer, but they’re getting smaller in value. This is just
because the connection weights aren’t big enough to compensate for the factor of 1/4 that σ0 lays on
each layer.

6.2 Exploding Gradients

This is a similar, though less frequent phenomenon can result in very large gradients.

1
2

1
2

1
2

1
2

1
2

y0 0 0 0 0
8 8 8 8 8

� 4 � 4 � 4 � 4 � 4

∂E
∂z(5)

∂E
∂z(4)

∂E
∂z(3)

∂E
∂z(2)

∂E
∂z(1)

� 2� 2� 2� 2

σ0 = 1
4 because the input current is zero, which is the steepest part of logistic function. Then we mul-

tiply the weight, which is 8. Thus finally, we get a factor of 2. Therefore, we have

∂E
∂z(1) = 16 �

∂E
∂z(5) .

This situation is more rare since it only occurs when the weights are high and the biases compensate
so that the input current lands in the sweet spot of the logistic curve.

6.3 Enhancing Optimization

6.3.1 Stochastic Gradient Descent

Computing the gradient of the cost function can be very expensive and time-consuming, especially if
you have a huge dataset. Remember the cost is the expected loss over the whole dataset. Assume we
have D training samples, then the loss is

E(Y, T) =
1
D

D

∑
d= 1

L(yd, td).
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Rather than compute the full gradient, we can try to get a cheaper estimate by computing the gradient
from a random sampling. Let γ be a random sampling of B elements from f 1, 2, . . . , Dg. Then we
estimate E(Y, T) using

E(Y, T) � E(Ỹ, T̃) =
1
B

B

∑
b= 1

L(yγb , tγb ).

We refer to
�

(yγ1 , tγ1 ), . . . , (yγB , tγB )
	

as a batch. We use the estimate from this batch to update our
weights, and then choose subsequent batches from the remaining samples. This method is called
Stochastic Gradient Descent.

6.3.2 Momentum

Consider gradient descent optimization in these situations...

Case 1

First let’s consider the level curves of the objective function. Here x is the minimum we want to
achieve, and we are starting at the � .

�

We can see it does a lot of oscillations and it will eventually work its way down. It’s doing a lot of
jumping back and forth across the valley, making hesitant progress along the bottom, but what we
really really need to go is to go down the valley. This type of oscillation can be inefficient.

Case 2

In this case, we have a higher local minimum on the left. Using the conventional gradient descent, we
would just move down to that higher local minimum and say “yay done”. However, if we take a look
at the side profile, what we really want to do is to get down in the lower value down on the right.
The optimization stops in the shallow local minimum, but we would prefer to get into the deeper
minimum.

�

A technique to improve our prospects in both situations is momentum. Thus far, we have been moving
through parameter space by stepping in the direction of the gradient:1

θn+ 1  θn � κr θn E.

1Note that here prof used a quite confusing notation: θn is the old set of weights and biases, while θn+ 1 is the new set of
weights and biases. This is different from θi before, which is a particular weight/bias.
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But what if we thought of the gradient as a force that pushes us? Recall from physics, θ is our position,
then,

dθ

dt
= V (velocity),

dv
dt

= A (acceleration).

So we have these two differential equations, and we can solve them numerically using Euler’s method:

θn+ 1 = θn + ∆tVn (6.1)

Vn+ 1 = ( 1 � r)Vn + ∆tAn (6.2)

where r is the resistance from friction.

But we treat our error gradients as A, and integrate and gain velocity, V, and thus momentum. It’s
like our weights are dictated by our location in parameter space, and we move around weight space,
accelerated by the error gradients. We build speed if we get a lot of acceleration in the same direction.
We gain momentum.

For each weight Wij, we also calculate Vij. Or, in matrix form, for each W( ‘ ) , we have V( ‘ ) :

V( ‘ )  (1 � r)V( ‘ ) + ηr W( ‘ ) E.

Or, as is commonly used2,
V( ‘ )  βV( ‘ ) + r W( ‘ ) E.

Then, update out weights using
W( ‘ )  W( ‘ ) � κV( ‘ ) .

Not only does this smooth out oscillations, but can also help to avoid getting stuck in local minima.

Check https://ruder.io/optimizing-gradient-descent/ for the performance of different gradi-
ent descent optimization algorithms.

2another variation is V( ‘ )  βV( ‘ ) + ( 1 � β)r W( ‘ ) E

https://ruder.io/optimizing-gradient-descent/


7
Special Architectures

7.1 Autoencoders

An autoencoder is a neural network that learns to encode (and decode) a set of inputs. It’s called an
autoencoder because it learns the encoding automatically.

x x0z

encoder decoder

code

outputinput

“Code” layer in the middle is often called latent representation or embedding space. Notice input and
output are basically the same size. In the training process, we compare the output to the decoder and
the input to the encoder. So our loss will be L(x0, x). Also note that the “code” layer is smaller than
the input/output layers. Input and output are high dimension spaces, so there’s a lot of information
contained in the dataset. However, presumably, some of them are redundant. The “actual” information
is actually lower dimensional. So the objective of an autoencoder is to squeeze the input and force
the autoencoder to come up with a more efficient representation/representation. Therefore, they can
be used to find efficient codes for high-dimensional data. For example, suppose I have the following
dataset:

[ 1 0 1 0 0 1 1 0 ]
[ 0 1 0 1 0 1 0 1 ]
[ 0 1 1 0 1 0 0 1 ]
[ 1 0 0 0 1 0 1 1 ]
[ 1 0 0 1 0 1 0 1 ]

Here we have a bunch of binary strings, and we want to encode these strings more efficiently. Even
though the vectors are 8-D (so could take on 256 different inputs), the actual dataset has only 5
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patterns. We can, in principle, encode each of them with a unique 3-bit code. But we can choose the
dimension of the encoding layer.

We can also think of our autoencoder is just 2 layers, and we can “unfold" it (or “unroll" it) to 3 layers,
where the input layer and output layer are the same size, and have the same state. Instead of

encode decode

code

W M

We use

tied weights

W WT

W

WT

�

If we allow W and M to be different, then it’s just a 3-layer (or more) network. However, if we enforce
that M = WT , then we say the weights are “tied”.

After training, we get the following 3-bit code.

[ 1 0 1 0 0 1 1 0 ] �! [ 0.00 1.00 1.00 ]
[ 0 1 0 1 0 1 0 1 ] �! [ 1.00 0.00 0.00 ]
[ 0 1 1 0 1 0 0 1 ] �! [ 0.00 0.00 0.00 ]
[ 1 0 0 0 1 0 1 1 ] �! [ 0.00 1.00 0.00 ]
[ 1 0 0 1 0 1 0 1 ] �! [ 1.00 1.00 0.00 ]

Suppose we encounter the input
h
1 0 1 1 0 1 1 0

i
. Can we figure out which 3-bit encoding

it should have? Can our learned network handle such cases? Now let’s switch to a demonstration of
Python.

We are going to use PyTorch as usual.

1 import numpy as np
2 import torch
3 import torch.nn as nn
4 import matplotlib.pyplot as plt
5 from tqdm import tqdm

And we got this dataset:

1 A = torch.tensor([[1,0,1,0,0,1,1,0],
2 [0,1,0,1,0,1,0,1],
3 [0,1,1,0,1,0,0,1],
4 [1,0,0,0,1,0,1,1],
5 [1,0,0,1,0,1,0,1]], dtype=torch.float32)
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1 class BinaryWorld(torch.utils.data.Dataset):
2 def __init__(self, A, noise=0.):
3 super().__init__()
4 self.x = A.clone() + torch.normal(torch.zeros_like(A))*noise
5 self.y = A.clone()
6

7 def __len__(self):
8 return len(self.x)
9

10 def __getitem__(self, idx):
11 return self.x[idx], self.y[idx]
12

13 def inputs(self):
14 return self.x
15

16 def targets(self):
17 return self.y

1 >>> train = BinaryWorld(A)
2 >>> train.targets()
3 tensor([[1., 0., 1., 0., 0., 1., 1., 0.],
4 [0., 1., 0., 1., 0., 1., 0., 1.],
5 [0., 1., 1., 0., 1., 0., 0., 1.],
6 [1., 0., 0., 0., 1., 0., 1., 1.],
7 [1., 0., 0., 1., 0., 1., 0., 1.]])

Now let’s create a neural network model. Here is our autoencoder.

1 class AE(nn.Module):
2 def __init__(self, input_dim=8, latent_dim=3):
3 super().__init__()
4 self.encoder = nn.Sequential(
5 nn.Linear(input_dim, latent_dim),
6 nn.Sigmoid(),
7 )
8

9 self.decoder = nn.Sequential(
10 nn.Linear(latent_dim, input_dim),
11 nn.Sigmoid(),
12 )
13

14 def forward(self, x):
15 self.h = self.encoder(x)
16 return self.decoder(self.h)

Then we are going to use the standard learning functionality that we have been using all along:

1 # Let ' s wrap up the learning loop in a function
2 def learn(net, ds, epochs=5000):
3 x = ds.inputs()
4 t = ds.targets()
5 for epoch in tqdm(range(epochs)):
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6 y = net(x)
7 loss = loss_fcn(y, t)
8 optim.zero_grad()
9 loss.backward()

10 optim.step()
11 losses.append(loss.item())
12 plt.figure(figsize=(4,4))
13 plt.plot(losses);

Then we train it:

1 net = AE(input_dim=8, latent_dim=3)
2 loss_fcn = nn.BCELoss(reduction= ' mean' )
3 optim = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9)
4 losses = []
5

6 learn(net, train)

Now let’s see how well it worked.

1 >>> y = net(train.inputs())
2 >>> print(torch.round(y*100.)/100)
3 tensor([[0.9800, 0.0200, 0.9700, 0.0200, 0.0200, 0.9900, 0.9700, 0.0300],
4 [0.0200, 0.9800, 0.0200, 0.9900, 0.0100, 0.9900, 0.0000, 1.0000],
5 [0.0000, 1.0000, 0.9800, 0.0100, 0.9900, 0.0100, 0.0100, 0.9900],
6 [1.0000, 0.0000, 0.0100, 0.0100, 0.9800, 0.0100, 0.9800, 0.9900],
7 [0.9900, 0.0100, 0.0000, 0.9900, 0.0100, 0.9900, 0.0200, 1.0000]],
8 grad_fn=<DivBackward0>)

This is running the inputs through my dataset and getting my outputs. Instead, we can take a look at
its binary picture with plt.imshow(y) :



CHAPTER 7. SPECIAL ARCHITECTURES 50

and plt.imshow(train.targets()) :

Each row represents one of the inputs, the binary strings. Autoencoder works because we see these
two images are very similar.

What is the latent representation for each of the inputs?

1 >>> print(net.h)
2 tensor([[0.5172, 0.0010, 0.0061],
3 [0.9963, 0.9976, 0.4119],
4 [0.0024, 0.9959, 0.0119],
5 [0.0032, 0.0385, 0.9929],
6 [0.9971, 0.4381, 0.9867]], grad_fn=<SigmoidBackward>)

and plt.imshow(net.h) :
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Now we can see that the weights are not tied in this case:

1 >>> net.encoder[0].weight
2 Parameter containing:
3 tensor([[ 0.1523, -0.0825, -1.5311, 3.1758, -3.3803, 3.5465, -1.4689, -0.4140],
4 [-3.0331, 3.2471, -0.3690, 1.5603, 0.7227, -0.6746, -2.8058, 1.9095],
5 [ 1.9931, -2.6727, -4.8877, 1.5643, 1.1234, -1.2633, -0.1961, 2.7582]],
6 requires_grad=True)
7 >>> net.decoder[0].weight
8 Parameter containing:
9 tensor([[ 0.3821, -9.5563, 4.5215],

10 [ -0.4445, 9.5668, -4.4650],
11 [ -3.9848, -1.5246, -10.0008],
12 [ 7.8282, 3.3358, 3.0833],
13 [-10.4939, 2.9761, 2.8876],
14 [ 10.5077, -3.0260, -2.9358],
15 [ -3.8019, -9.9677, -1.0282],
16 [ -2.0190, 7.3370, 6.9832]], requires_grad=True)

Now let’s try with tied weights and train.

1 net = AE(input_dim=8, latent_dim=3)
2 loss_fcn = nn.BCELoss(reduction= ' mean' )
3 optim = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9)
4 losses = []
5 # Make both weight matrices point to the same tensor.
6 net.encoder[0].weight = nn.Parameter(net.decoder[0].weight.transpose(1,0))
7 learn(net, train)
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and plt.imshow(net(train.inputs())) :

Now if we take a look at the weights of encoder and decoder, we can see they are transpose of each
other:

1 >>> net.encoder[0].weight
2 Parameter containing:
3 tensor([[ 8.5663, -8.6749, -3.4743, -1.1455, -2.3520, 2.0711, 3.9378, -2.5786],
4 [-3.6461, 3.3503, -3.6631, 7.3721, -2.3771, 2.0927, -8.4669, 7.4328],
5 [-1.3521, 1.2097, -0.0176, -8.7309, 9.3475, -9.3840, 1.7481, 7.2931]],
6 requires_grad=True)
7 >>> net.decoder[0].weight
8 Parameter containing:
9 tensor([[ 8.5663, -3.6461, -1.3521],

10 [-8.6749, 3.3503, 1.2097],
11 [-3.4743, -3.6631, -0.0176],
12 [-1.1455, 7.3721, -8.7309],
13 [-2.3520, -2.3771, 9.3475],
14 [ 2.0711, 2.0927, -9.3840],
15 [ 3.9378, -8.4669, 1.7481],
16 [-2.5786, 7.4328, 7.2931]], requires_grad=True)
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7.2 Your Visual System

Mammalian visual system, which is the basis for many neural-network vision systems. Most of the
networks we have looked at assume an all-to-all connectivity between populations of neurons, like
between layers in a network. But that’s not the way our brains are wired, thankfully. If every one
of your 86 billion neurons was connected to every other neuron, your head would have to be MUCH
bigger. As an example of the wiring in your brain, here are some fascinating features of your visual
system:

It’s Layered

Although the details are more complicated, your visual system is roughly arranged into a hierarchy
of layers.

Pic from Kubilius, Jonas (2017): Ventral visual stream. figshare. Figure. https://doi.org/10.6084/
m9.figshare.106794.v3

It’s Topological

Topology, in general, means there’s a continuous spatial mapping between two different spaces. Neu-
rons close to each other in the primary visual cortex process parts of the visual scene that are close to
each other. Let’s discuss in a number of different ways.

http://vision.ucsf.edu/hortonlab/ResearchProgram%20Pics/retinotopicMap.jpg

https://doi.org/10.6084/m9.figshare.106794.v3
https://doi.org/10.6084/m9.figshare.106794.v3
http://vision.ucsf.edu/hortonlab/ResearchProgram%20Pics/retinotopicMap.jpg
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This shows how the visual scene is spatially arranged. It is also spatially arranged on our cortex(大脑
皮层). Half of each eyeball goes to one hemisphere and the other half goes to the opposite hemisphere.
Both eyeballs project to both hemisphere.

Now let’s look into its detail. The top left picture shows a part of the visual cortex, opened up. We
can see the two black dots. This dot in the visual field only excites a small patch of neurons in V1. We
can see that more resources concentrated in the center of the vision, and fewer on periphery.

http://vision.ucsf.edu/hortonlab/ResearchProgram%20Pics/retinotopicMap.jpg

Here is a visual field. Each neuron in V1 is only activated by a small patch in the visual field.

This neuron only
reacts to content
in this region of
the visual field.

Conversely, each patch in the visual field excites only a small neighbourhood of neurons in V1. This
topological mapping between the visual field and the surface of the cortex is called a retinotopic
mapping. Moreover, neurons in V1 project to the next layer, V2, and again, the connections are

http://vision.ucsf.edu/hortonlab/ResearchProgram%20Pics/retinotopicMap.jpg 
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retinotopically local.

V1 V2 IT: “inferior temporal”

The footprint of a region in the visual field gets
larger as the data progresses up the layers

The neurons in
the last layer are
influenced by the
entire visual field.

Finally, the visual system is a bit like a filter bank. In the lower levels of the hierarchy, the neurons
seem to respond to standard patterns of input. Each little square corresponds to one V1 neuron, and
shows the pattern that most activates that neuron. The picture below is a bunch of receptive fields: a
configuration for the image that excites a particular neuron.

Derived from: Zylberberg, Joel; Timothy Murphy, Jason; Robert DeWeese, Michael (2015): SAILnet
learns receptive fields (RFs) with the same diversity of shapes as those of simple cells in macaque
primary visual cortex (V1).. PLOS Computational Biology. Figure. https://doi.org/10.1371/
journal.pcbi.1002250.g003

7.3 Convolutional Neural Networks

In CNN, we can take advantage of some of our visual system’s features in artificial neural networks.
Inspired by the brain’s topological (retinotopic) connectivity, and in an effort to reduce the number of
connection weights that need to be learned, scientists devised the Convolutional Neural Network.

Let’s first review convolution. In a continuous domain, f , g : R ! R convolution is

( f � g)( x) =
Z ∞

� ∞
f (x) � g(x � s)ds

In a discrete domain, f , g 2 RN , then

( f � g)m =
N� 1

∑
n= 0

fn � gm� n

How does it looks like in images?

https://doi.org/10.1371/journal.pcbi.1002250.g003
https://doi.org/10.1371/journal.pcbi.1002250.g003
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Image f “Feature map”
“Activation map”

� �

conv.kernel g

In 2D, discrete convolution is
( f � g)m,n = ∑

i,j
fij � gm� i,n� j ,

or
( f ~ g)m,n = ∑

i,j
fij � gi� m,j� n .

For the rest of this chapter, please check http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture5.pdf . The original lecture video is available at https://youtu.be/bNb2fEVKeEo . The de-
tailed notes is available at https://cs231n.github.io/convolutional-networks/ .

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf
https://youtu.be/bNb2fEVKeEo
https://cs231n.github.io/convolutional-networks/


8
Hopfield Networks

8.1 Batch Normalization

Consider a dataset in which you are trying to estimate if someone is a vegetarian from their age and
income.

Age (years) Income ($) Veg?
27 31,000 yes
52 126,000 no
16 10,000 no

...

Then we can plot it:

age

income10, 000

We can see from the plot that vast majority of variance is along the income axis. Then if we have these
two inputs, age and income, to neural network, and connection weights W. Of course, the connection
weights can accommodate the differences in scale: the weights coming from the income are small,
and weights coming from the age are bigger. But, to do so will result in weights with vastly different
scales. These weights are spanning 3 orders of magnitude, in our example. This forces us to use a
small learning rate.

Alternatively, we can rescale our data. Before feeding this data into our network, we might be inclined
to rescale the inputs:

Age (years) Income ($1k) Veg?
27 31 yes
52 126 no
16 10 no

...

and the plot

57
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age

income100

50

Why don’t we rescale out feature inputs so that they are centered at zero? In the plot below, * means
rescaled. In particular, we aim for zero mean and unit variance along each axis.

age*

income*

This is the idea behind a method called Batch Normalization.

Consider a mini-batch of D samples,
n

(x(1) , t(1) ), . . . , (x(D) , t(D) )
o

, and the corresponding outputs of

a layer, f h(1) , . . . , h(D)g where h(d) =
h

h(d)
1 � � � h(d)

N

i
. Now consider a single node i in that layer,

x(1) , . . . , x(D) � � � i h(1)
i , . . . , h(D)

i

node i

We want to normalize that batch of outputs so that its mean is 0 and its variance (and hence standard
deviation) is 1:

µi =
1
D

D

∑
d= 1

h(d)
i , σ2

i =
1
D

D

∑
d= 1

�
h(d)

i � µi

� 2
.

Then we rescale those inputs to normalize the batch,

ĥ(d)
i =

h(d)
i � µi

σi
or ĥ(d)

i =
h(d)

i � µiq
σ2

i + ε
for some small ε > 0.

Finally, we rescale that output with learnable parameters γi, βi : y(d)
i = γi ĥ

(d)
i + βi. We can depict as

follows:

i Normalization γ, β
h ĥ y

BN

Batch normalization has a profound affect on the rate of convergence for learning. In the picture
below, we compare normal learning and batch normalization:
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Epochs

Loss

Why does it work? It’s debated, but here are some ideas. It helps mitigate vanishing/exploding
gradients: If we rescale our data, it will help avoid bizarrely large output currents coming from a
particular neuron.

It helps guard against internal covariate shift. What does this mean? Imagine we have a deep neural
networks, where we have two kinds of layers: deep layers (close to the input layer) and shallow layers
(or top layers, close to the output). Gradients tends to be bigger towards the output size of the network,
thus shallow layers tend to learn more quickly. However, we have a problem. Shallow layers come
up with a model after learning quickly, but over time, deep layers start to change or shift, which
invalidates the solution established by the shallow layers. Then batch normalization would stop the
deep layers from having large shifts.

8.2 Hopfield Networks

8.2.1 Content-Addressable Memory

First let’s fill in the blanks:

intelligent irreplaceable 123456789

Here we took a partial pattern and we filled in with the most likely completion with the help of our
memory. Because these are patterns you have in memory, you can fill in the missing pieces. In fact,
you can also detect errors:

1 2 3 8

4

5 6 7 8 9 nue

eu

roscience V

W

aterloo

A content-addressable memory (CAM) is a system that can take part of a pattern, and produce the
most likely match from memory.

In 1982, John Hopfield published a famous paper:

In it, Hopfield proposed a method for using a neural network as a CAM. The network learns the
patterns, and converges to the closest pattern when shown a partial pattern.
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x4

x3x5

x1

x6 x2

Wij is the connection strength from node i to node j. Assume Wij = Wji. Each node in the network
can be a � 1 or a 1, 1 xj 2 f� 1, 1g, j = 1, . . . , N. Or we can think of it as a binary string of length N.
Suppose each node wants to change its state so that

xj =

(
� 1 if ∑j6= i xiWij < � bj

1 otherwise.

For the rest of this section, we assume bj = 0 for now.

If we have a pattern that we would like the network to recall, we could set the weights such that:

Wij

(
> 0 between any 2 nodes in same state,

< 0 between any 2 nodes that differ.

For example,

1

x1

-1 x2

1

x3

-1x4 W =

2

6664

0 � 1 1 � 1
� 1 0 � 1 1
1 � 1 0 � 1

� 1 1 � 1 0

3

7775

� 11� 1

� 1

1

� 1

How can we find the connection matrix W that works for the set of “memories” we want to encode?
Hopfield’s answer is as follows: Given M target network states f x(1) , . . . , x(M)g, then we choose con-
nection weights

Wij =
1
M

M

∑
s= 1

x(s)
i x(s)

j for i 6= j,

Here Wij is the average co-activation between nodes i and j. In particular,

Wii = 0 =
1
M

M

∑
s= 1

x(s)
i x(s)

i � 1.

1there’s a equivalent derivation for xj 2 f 0, 1g
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Notice,

W =
1
M

M

∑
s= 1

x(s) � x(s) � T � I

=
1
M ∑

s
� I

=
1
M

h
� + � + � � � + �| {z }

M rank 1 matrices

i
� I

This method works best if the network states, f x(1) , . . . , x(M)g, are all mutually orthogonal.

Hopfield recognized a link between these network states and the Ising model in physics. It has to do
with a lattice of interacting magnetic dipoles. Each dipole can be “up” or “down”. Which state it’s in
depends on its neighbours. Just like the Ising model, we can write the energy of the system using a
Hamiltonian function.

For our neural network, assuming W is symmetrical, and Wii = 0 for all i, then

E = �
1
2 ∑

j6= i
xiWijxj � ∑

j
bjxj

= �
1
2

xTWx � bT

is called Hopfield Energy.

The gradient is
∂E
∂xj

= � ∑
i6= j

xiWij � bj .

Using it for gradient descent, 2

dxj

dt
= κ

�

∑
j6= i

xiWij + bj

�
,

which agrees with

xj =

(
� 1 if ∑j6= i xiWij < � bj

1 otherwise.

Similarly, we have
∂E

∂Wij
= �

1
2

xixj ,
∂E
∂bj

= � xj ,

and
dWij

dt
= κxixj , i 6= j ,

dbj

dt
= κxj .

Hopfield energy drives a lot of the theory and the practice behind unsupervised learning. We don’t
have an output so we can’t compute a loss and therefore we can’t compute gradients to update our
connection weights and biases. Instead, we come up with this idea of energy and we want to minimize
energy, giving us something to optimize. Now we can start changing our network state, our connection
weights and biases to minimize energy.

8.3 Hopfield Demonstration

First we have preamble:

2This is another representation of update rule: xj  xj � t( � � � ).
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1 import numpy as np
2 import matplotlib.pyplot as plt
3 plt.rcParams[ ' figure.dpi ' ] = 600 # this ensures the plot is in high resolution
4 import copy

and some helper functions:

1 # Useful functions
2 def IsScalar(x):
3 if type(x) in (list, np.ndarray,):
4 return False
5 else:
6 return True
7

8 def Thresh(x):
9 if IsScalar(x):

10 val = 1 if x>0 else -1
11 else:
12 val = np.ones_like(x)
13 val[x<0] = -1.
14 return val
15

16 def Hamming(x, y):
17 '''
18 d = Hamming(x,y)
19

20 Hamming distance between two binary vectors x and y.
21 It ' s the number of digits that differ.
22

23 Inputs:
24 x and y are arrays of binary vectors, and can be either {0,1} or {-1,1}
25

26 Output:
27 d is the number of places where the inputs differ
28 '''
29 d = []
30 for xx, yy in zip(x,y):
31 dd = 0.
32 for xxx,yyy in zip(xx,yy):
33 if xxx==1 and yyy!=1:
34 dd += 1.
35 elif yyy==1 and xxx!=1:
36 dd += 1.
37 d.append(dd)
38 return d
39

40 def Perturb(x, p=0.1):
41 '''
42 y = Perturb(x, p=0.1)
43

44 Apply binary noise to x. With probability p, each bit will be randomly
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45 set to -1 or 1.
46

47 Inputs:
48 x is an array of binary vectors of {-1,1}
49 p is the probability of each bit being randomly flipped
50

51 Output:
52 y is an array of binary vectors of {-1,1}
53 '''
54 y = copy.deepcopy(x)
55 for yy in y:
56 for k in range(len(yy)):
57 if np.random.rand()<p:
58 yy[k] = Thresh(np.random.randint(2)*2-1)
59 return y

8.3.1 Toy Dataset

Here is a toy dataset:

1 # 4 Orthogonal Vectors
2 X = np.array([[ 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1],
3 [ 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1],
4 [ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1],
5 [ 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1],
6 ])
7 N = np.shape(X)[1]
8 n = 4

and X.shape is (4, 16) . Or we can use random dataset (not used in the demo):

1 # Random
2 N = 50
3 n = 6
4 X = Thresh(np.random.normal(size=(n,N)))

Then we compute connection weights and biases:

1 b = np.zeros((1,N))
2 b = np.sum(X, axis=0) / n # the avg activity throughout those different memories
3 W = ( X.T @ X ) / n - np.eye(N)
4 W0 = copy.deepcopy(W)

There’s another way to compute W:

1 W1 = np.zeros_like(W)
2 for x in X:
3 W1 += np.outer(x, x)/n
4 W1 -= np.identity(N)
5

6 print(np.max(W.flatten()-W1.flatten())) # gives 0.0

Then we can take a look at the connection weights matrix via
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1 plt.subplot(121); plt.imshow(W, cmap= ' gray ' ); plt.axis( ' off ' );

It’s 16 � 16, and a bunch of zeros along diagonals.

Note that X@Wreturns a multiple of X:

1 >>> print(X@W) # just change the length of vector, not the direction
2 [[ 3. 3. 3. 3. 3. 3. 3. 3. -3. -3. -3. -3. -3. -3. -3. -3.]
3 [ 3. 3. 3. 3. -3. -3. -3. -3. 3. 3. 3. 3. -3. -3. -3. -3.]
4 [ 3. -3. 3. -3. 3. -3. 3. -3. 3. -3. 3. -3. 3. -3. 3. -3.]
5 [ 3. 3. -3. -3. 3. 3. -3. -3. 3. 3. -3. -3. 3. 3. -3. -3.]]

Then we define energy function and update function:

1 def Energy(W, b, X):
2 E = []
3 for xx in X:
4 blah = - 0.5 * (xx @ W)@xx.T + b@xx.T
5 E.append(blah)
6 return E
7

8 def Update(W, x, b):
9 xnew = x @ W - b

10 return Thresh(xnew)

Let’s first generate a sample and set initial network state:

1 k = np.random.randint(len(X)) # randomness here
2 Y = Perturb( X , p=0.4 )
3 x = Y[k:k+1,]
4 err = Hamming(x, X[k:k+1,:])
5 print( ' Class ' +str(k)+ ' with ' +str(err)+ ' errors ' ) # Class 1 with [1.0] errors
6 x_orig = copy.deepcopy(x)
7 print(x_orig) # [[ 1 1 1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1]]
8

9 # Notice how the inner product of the perturbed vector is almost
10 # orthogonal to all the other equilibria. i.e., relatively close to zero
11 print( ' Inner Products: ' +str(x@X.T)) # Inner Products: [[ 2 14 2 -2]]
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Now we iterate in our network: set network state to that corrupted sample and iterate our network
until it settles down to some equilibrium.

1 if True: # a version
2 x = copy.deepcopy(x_orig)
3 n_iters = 10
4 for k in range(n_iters):
5 #print(x)
6 x_new = Update(W, x, b)
7 print(Hamming(x, x_new))
8 x = x_new
9 else: # another version

10 x = copy.deepcopy(x_orig)
11 n_iters = 40
12 for count in range(n_iters):
13 node_idx = list(range(N))
14 np.random.shuffle(node_idx)
15 for k in node_idx:
16 ic = x@W[:,k] - b[k]
17 x[0,k] = Thresh(ic)

This gives us [1.0] [0.0] ... [0.0] . We fix it during the iterations and it remains unchanged.

How close are we to recalling a memory?

1 for idx,t in enumerate(X):
2 d = Hamming(x, [t])[0]
3 print( ' Memory ' +str(idx)+ ' has error ' +str(d))
4 # Memory 1 has error 0.0

8.3.2 Letters Example

Let’s look at a more interesting dataset.

1 from imageio import imread
2

3 letters = []
4 letters.append(imread( ' images/A.png ' ))
5 letters.append(imread( ' images/B.png ' ))
6 letters.append(imread( ' images/C.png ' ))
7 letters.append(imread( ' images/E.png ' ))
8 n = len(letters)
9 N = len(letters[0].flatten())

10 X = np.zeros((n, N))
11 for idx,img in enumerate(letters):
12 X[idx,:] = Thresh(np.array([img.flatten()-0.5]))
13

14 plt.figure(figsize=(16,4))
15 for k in range(n):
16 plt.subplot(1,n,k+1);
17 plt.imshow(np.reshape(X[k], (6,6)), cmap= ' tab20c_r ' ); plt.axis( ' off ' );
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We can see that they are not totally orthogonal:

1 >>> X@X.T
2 array([[36., 0., 0., 8.],
3 [ 0., 36., 0., 4.],
4 [ 0., 0., 36., 8.],
5 [ 8., 4., 8., 36.]])

We then compute connection weights and biases:

1 b = np.zeros((1,N))
2 b = np.sum(X, axis=0) / n
3 W = ( X.T @ X ) / n - np.eye(N)
4 W0 = copy.deepcopy(W)

Now let’s create a corrupted version of one of those images:

1 k = np.random.randint(n)
2 Y = Perturb( X , p=0.2)
3 x = Y[k:k+1,]
4 x[0,24:] = -1.
5 err = Hamming(x, X[k:k+1,:])
6 print( ' Class ' +str(k)+ ' with ' +str(err)+ ' errors ' )
7 x_orig = copy.deepcopy(x)
8 #plt.imshow(np.reshape(x,[28,28]), cmap= ' gray ' ); plt.axis( ' off ' );
9 plt.imshow(np.reshape(x,[6,6]), cmap= ' tab20c_r ' ); plt.axis( ' off ' );

Class 1 with [6.0] errors

Let’s see if we can reconstruct that. We present two methods:

1 xs = copy.deepcopy(x_orig)
2 xa = copy.deepcopy(x)
3 # Synchronous updating, described in previous sections
4 n_iters = 2
5 for idx in range(n_iters):
6 xs = Update(W, xs, b)



CHAPTER 8. HOPFIELD NETWORKS 67

7 # Asynchronous updating: randomly select one neuron then update it
8 n_iters = 10
9 for count in range(n_iters):

10 node_idx = list(range(N))
11 np.random.shuffle(node_idx)
12 for idx in node_idx:
13 ic = xa@W[:,idx] - b[idx]
14 xa[0,idx] = Thresh(ic)

So these two methods both work in this case:

1 print( ' Correct class is ' +str(k))
2 print( ' Synchronous updating ' )
3 for idx,t in enumerate(X):
4 ds = Hamming(xs, [t])[0]
5 print( ' Memory ' +str(idx)+ ' has error ' +str(ds))
6 print( ' Asynchronous updating ' )
7 for idx,t in enumerate(X):
8 da = Hamming(xa, [t])[0]
9 print( ' Memory ' +str(idx)+ ' has error ' +str(da))

Correct class is 1
Synchronous updating
Memory 0 has error 18.0
Memory 1 has error 0.0
Memory 2 has error 18.0
Memory 3 has error 16.0
Asynchronous updating
Memory 0 has error 18.0
Memory 1 has error 0.0
Memory 2 has error 18.0
Memory 3 has error 16.0

We can then plot:

1 plt.subplot(1,2,1); plt.imshow(np.reshape(xs,[6,6]), cmap= ' tab20c_r ' ); plt.title( '
Synchronous ' ); plt.axis( ' off ' );

2 plt.subplot(1,2,2); plt.imshow(np.reshape(xa,[6,6]), cmap= ' tab20c_r ' ); plt.title( '
Asynchronous ' ); plt.axis( ' off ' );
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VAE

9.1 Helpful Resources

Note Below are some helpful resources:
• hands on ml introduces the basic first, and implementation.
• https://youtu.be/uaaqyVS9-rM by Ali Ghodsi.
• CS 480 Fall 20 by Pascal Poupart.
• towardsdatascience with no implementation.

9.2 Variational Autoencoders

We would like to be able to reconstruct the samples in our dataset. In fact, we would like to be
able to generate ANY valid sample. In essence, we would like to sample the distribution p(x), the
distribution of inputs.1 We generate samples by choosing elements from some lower-dimensional
latent space, z � p(x). For example, z could represent digit class, line thickness, slant, etc... which are
features specifying particular samples.

Then from those latent representations, we generate samples:

z x p(x) =
Z

pθ(x j z) p(z) dz
x � d(z, θ)

pθ(x j z)

Note that running the random variable z through d gives a distribution p(z j z).

1 p(x) kinda has two purposes. First, given an x, it acts like a function which tells us the probability or probability density of
x. Second, we can sample it: here is the distribution, please give us a sample that reflects the underlying distribution p(x).
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https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://youtu.be/uaaqyVS9-rM
https://cs.uwaterloo.ca/~ppoupart/teaching/cs480-fall20/slides/cs480-lecture21.pdf
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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p(z)

z

pθ(x j z)

x

d

But, even for a fixed z, we assume p(x j z) is a distribution.

z x

d

d(z j θ)

We have a dataset of samples, X, and we want to find θ to maximize the likelihood of observing X.

If we assume pθ(x j z) is Gaussian, with µ = d(z, θ) and σ, then

� ln pθ(X j z) =
1

2σ2 kX � d(z, θ)k2 + C

So, given samples z, we have a way to learn d(z, θ) to maximize Ez� p(z) [pθ(x j z)]. d(z, θ) is our
decoder, producing x̂. The problem is that we don’t know how to z � p(z).

Let’s try to illustrate this. Suppose we train an AE on a dataset of simple shapes:  , 4 , �.

The latent space is 2D, and the clusters are well separated. However, latent vectors between the clusters
generate samples that don’t look like our training samples.

Another example would be MNIST. Below is MNIST 2D latent space, picture taken from towardsds .
The picture on the right is the result after we apply decoder to those “in-between” points.

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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What’s happening? Why is our generator so bad? This is because we are choosing improbable z
samples, where p(z) � 0.

We would like to sample only z’s that yield reasonable samples with high probability. We are now
placing requirements on the distribution in our latent space. Can we get away with this?

Let’s assume that we can choose the distribution of z’s in the latent space; call it q(z). Then

p(x) = Ez� p[p(x j z)]

= ∑
z� p

p(x j z) p(z)

�= ∑
z� q

p(x j z)
p(z)
q(z)

q(z)

= Ez� q

�
p(x j z)

p(z)
q(z)

�

Then negative log likelihood is

� ln p(x) = � Eq

�
ln p(x j z) + ln

p(z)
q(z)

�

= � Eq[ln p(x j z)]
| {z }

(2)

+ KL
�
q(z) k p(z)

�

| {z }
(1)

where KL(P k Q) = � ∑
i

P(i) ln
Q(i)
P(i)

is Kullback–Leibler divergence between two distributions.

First consider (1). Let’s choose a latent distribution that is convenient for us: p(z) � N (0, I). Then
our aim is to design q(z) so that it is close to N (0, I), i.e., min KL

�
q(z) k N (0, I)

�
.

How do we design our latent representations to achieve this? The answer is we design an encoder,
and ask its outputs to be N (0, I). And we keep pressuring the encoder to give us µ = 0 and σ = I.

Picture taken from hands-on-ml.

These Gaussians are convenient because there is a closed-form expression for

KL
�
N (µ, σ) k N (0, I)

�
=

1
2

(σ2 + µ2 � ln σ2 � 1).

We want to minimize this, but there are other forces at play.

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
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Now consider (2). The other term in the objective, Eq[ln p(x j z)], is our reconstruction loss, which can
be written as Eq[ln p(x j x̂)], where z = µ(x, θ) + εσ(x, θ), ε � N (0, I) and x̂ = d

�
µ(x, θ) + εσ(x, θ), θ

�
.

µ(x, θ) and σ(x, θ) is the encoder part as shown in the picture. This is a deterministic decoder.

Let’s have some intuition. Think of a cloud of matter floating in space, but collapsing in by its own
gravity,2 but eventually forming a star.

1. coalesce 2. heats up

All points are
pulled in.

Interactions between
points start to be a factor.

3. balance

Repulsion between points
is equal to pull of gravity.

Here is the process for VAEs: start with θ,

• encode x by computing µ(x, θ) and σ(x, θ) using neural networks.

• sample z = µ + εσ, ε � N (0, I).

• calculate KL loss = 1
2 (σ2 + µ2 � ln σ2 � 1).

• decode x̂ using another neural network x̂ = f (x, θ) = d
�
µ(x, θ) + εσ(x, θ)

�
.

• calculate reconstruction loss L(x, x̂).

E.g., 1
2 kx � x̂k2 for Gaussian p(x j x̂). Or ∑ x ln x̂ for Bernoulli p(x j x̂).

• both terms of our objective function are differentiable with respect to θ:

E = Ex[L(x, x̂)] + β(σ2 + µ2 � ln σ2 � 1)

where x̂, σ, µ all depend on θ, β adjusts the relative importance of reconstruction loss vs. KLD
loss. So we can do gradient descent on θ.

+

�

ε � N (0, I)

x x̂

µ

σ

encoder decoder

θ
θ θ

Because the VAE seeks a distribution in the latent space that is close to N (0, I), there are fewer holes.
Take the previous simple shape example, we have

2Check this link on Is There Gravity in Space?

https://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-microgravity-58.html
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So now there are no (or fewer) gaps in the latent space.



10
RNN

10.1 Recurrent Neural Networks

We have already seen one in the form of Hopfield networks. Thus far, we have mostly focussed on
feedforward neural networks. There are no loops in a feedforward network. But there are reasons
that we might want to allow feedback connections that create loops. For example, we recently looked
at recurrent continuous-time networks to implement dynamics. Another example is that we want to
build a running memory into our network behaviour.

Consider the task of predicting the next word in a sentence.

1. Emma’s cat was sick, so she took her to the vet.

2. I’ll work it out with pencil and paper.

3. She picked up the object, studied it, then put it down.

4. 0, 2, 4, 6, 8.

5. 1, 2, 4, 8, 16.

In each case, the word you predict depends - in very complex ways - on the words that precede it.
Thus, a network will probably have to encode an ordered sequence of words to solve this problem.
How do we deal with a sequence of input?

Solution 1

Design the network so that the entire sequence is input all at once.

Consider the 4th example above, we design a network with 4 input neurons, accepting inputs [0 2 4 6]
and one output neuron, which will give us 8. So this would work and there are times when this is the
perfectly legitimate thing to do.

However, there are several problems:

1. The network can only consider fixed-length sequences.

2. No processing can occur until the entire sequence is given.
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Solution 2

Allow the state of the network to depend on new input, as well as its previous state, namely, let the
network be recurrent.

Output

Hidden

Input

U

V

W

The picture on the left shows a possible structure of recurrent neural network. At the bottom, we
have an input neuron, to which we can give 0, 2, 4, 6, in a sequence. In the middle, we have hidden
layers. The black edges indicate the neurons are connected to each other, forming recurrent part of the
network. On the top, it is an output neuron. Given an input, we are expecting it to output the next
number in the sequence. For example, input 0, output 2; input 2, output 4 and so on.

The picture on the right is a simpler version. U is the connection weight matrix between input and
hidden, V is the connection weight matrix between hidden and output and W is the recurrent connec-
tion weight matrix back into the hidden layer. The black square indicates that it takes one time step
for the feedback to happen.

This is a recurrent neural network (RNN). In an RNN, the state of the hidden layer can encode the
input sequence, and thus have the information it needs to determine the proper output.

How do we train such a network?

10.1.1 Backprop through time (BPTT)

First, we unroll the network, similar to what we did for autoencoders. But this is unrolling through
time.

x1

h1

y1

W

U

V

x2

h2

y2

W

U

V

x3

h3

y3

W

U

V

x4

h4

y4

W

U

V

� � �

R1� X

R1� H

R1� Y

0 2 4 6

2 4 6 ?

hi = σ(

si
z }| {
xiU + hi� 1W + b)

yi = σ(hiV + c| {z }
zi

)

Like before, we will have targets, ti, and a loss function L. This unrolled network is a feedforward
network. The expression graph is a DAG. Therefore, we can use Backprop.
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x1

h1

y1

x2

h2

y2

xi

hi

yi

xτ

hτ

yτ

� � � � � �

Let τ be the number of time steps. Then the loss, or error, it the sum of all the loss functions,

E(y1, . . . , yτ , t1, . . . , tτ) =
τ

∑
i= 1

L(yi, ti) αi

we can put different weights
on parts of the sequence

And as usual, we aim to minimize the expected cost over our dataset with respect to the connection
weights and biases: θ = f U, V, W, b, cg, minθ E

�
E(y1, . . . , yτ , t1, . . . , tτ)

�
y,t .

Just like in Backprop, we start with a forward pass. Then we can start at the last output, and propagate
the error gradients down through the network. Gradients can be calculated as follows:

r zk E = r zk

� τ

∑
i= 1

L(yi, ti)
�

=
τ

∑
i= 1

r zk L(yi, ti)

= r zk L(yk, tk) only yk depends on zk

= r yk L(yk, tk) � σ0(zk)

where yk = σ(zk).

Once we descend down to the hidden layer, it gets more interesting because each unrolled hidden
layer depends on the one before it. So, we start at τ and work out way back in time. We first define

Ek =
τ

∑
i= k

L(yi, ti).

Notice that variables before time step k do not depend on variables after time step k, i.e., hk depends
on hk� 1, not on hk+ 1. By dependencies, we have

r hk E = r hk

τ

∑
i= k

L(yi, ti) = r hk Ek.

Thus r hτ E = r hτ Eτ . By chain rule, we have

r hτ E = r zτ EτVT

Note that all paths between Ek and variables xi, si, hi, i � k, must pass through hk. This makes sense
because in RNN, the only link to the future is the hidden stage.
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x1

h1

y1

x2

h2

y2

xk

hk

yk

xτ

hτ

yτ

� � � � � �

Suppose we have already computed r hi+ 1 E. We can then compute

r hi E = r hi Ei

= r hi
�

L(yi, ti) + Ei+ 1�

= r hi L(yi, ti) + r hi Ei+ 1

=
�

r yi L(yi, ti) � σ0(zi)
�

VT + r hi+ 1 Ei+ 1 ∂hi+ 1

∂hi

=
�

r yi L(yi, ti) � σ0(zi)
�

VT +
�

r hi+ 1 E � σ0(si+ 1)
�

WT

Once we have r hi E, i = 1, . . . , τ, we can compute the gradient of the cost with respect to the weights
and biases: r W E, r V E, r UE, r bE, r cE.

10.1.2 Long Short-Term Memory (LSTM)

Check CS 885 for more details. Two main takeaways from there: mitigate gradient vanishing and
facilitate long term memory.

The benefit of an RNN is that it can accumulate a hidden state that encodes input over time. For
example, a properly trained RNN could complete the sentence,

To ride a bicycle, put your feet on the pedals.

However, one difficulty with an RNN is that it can be very difficult to train it to maintain information
in its hidden state for a long time. It would have trouble completing this paragraph,

A bicycle is an efficient mode of transportation. . . . To get started, pick one up and put your feet
on the .

This instability was first pointed out by Bengio et al. in 1994. They show that the longer you need to
keep information in memory, the harder it is to train. The BPTT algorithm becomes unstable because
of exploding or vanishing gradients. Recall the formula for r hi E, we then can expand the gradient
inside:

r hi E =
�

r hi+ 1 E � σ0(si+ 1)
�

WT +
�

r yi L(yi, ti) � σ0(zi)
�

VT

=
� �

r hi+ 2 E � σ0(si+ 2)
�

WT � σ0(si+ 1)
�

WT + ( other stuff )

= r hi+ 1 E � σ0(si+ 1)WT � � � σ0(sτ� 1)WTσ0(sτ)WT + � � �

The first term shown contributes to vanishing/exploding gradients.

To combat this gradient decay, Hochreiter & Schmidhuber (1997) proposed an additional hidden state
that persists from step to step. It does not pass through an activation function or get multiplied by the
connection weights at each time step.

https://notes.sibeliusp.com/mdf/1205/cs885/#long-short-term-memory-lstm
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h

x

y

c

x

y

W

h

output gate

standard RNN LSTM

input gate

forget gate

There are various ways h and c can interact:

• h and x can increment c (input),

• h and x can erase c (forget),

• h and x control the output of c (output).

Putting it together, we have 1

forget
ft

input: it

output: ot
Wf Wi Wc

W0

where W’s are weight matrices.

Forget Gate

or unforgotten state, or “persistence gate”

ft = σ
�
[ht� 1 xt]W f + b f

�

If this gate equals 1, persist; equals 0, forget.

Input Gate

it = σ
�
[ht� 1 xt]Wi + bi

�

If equals 1, input; equals 0, don’t input.
1picture from https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png

https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png
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The input is

c̃t = tanh
�
[ht� 1 xt]Wc + bc

�

Combining the input with the non-forgetten state,

ct = ft � ct� 1 + it � c̃t

Output Gate

ot = σ
�
[ht1 xt]W0 + b0

�

If equals 1, output; 0, no output.

The actual output is

ht = ot � tanh(ct)

Denote xt = [ ht� 1 xt]. Then after all that, we have

ct = σ(xtW f + b f )ct� 1 + σ(xtWi + bi) tanh(xtWc + bc)

How does this make a difference?
ct = ft � ct� 1 + it � c̃t� 1

How does r ct� 1 E depend on r ct E?

r ct� 1 E = r ct E � ft + other stuff

As long as ft is close to 1, there is little decay of the gradient.

10.2 Our memory systems

There are three types of memories or memory systems that you have or that all mammals have. We
basically have three different memory systems.

1. The shortest will is called working memory. It’s like we’re remembering a phone number and we
keep repeating it to ourselves, then it sort of stays in our mind. However, as soon as we get
distracted, we forget that number and it’s gone. That seems to be implemented in the collective
activity of populations of neurons, as long as they’re maintaining their firing pattern.



CHAPTER 10. RNN 79

2. The next level is short-term memory. It’s actually longer than working memory. It’s like where
we can remember what we ate for breakfast this morning. That seems to be implemented in our
hippocampus, which is a medial temporal lobe. They’re stored basically by changing the efficacy
of the synapses and the neurons. It’s not the activity of the neurons that’s storing the information.
Instead, it’s the short-term changes in the excitability of the synapses in the neurons. Those can
maintain those memories for a 24-48 hour period.

It seems that what happens when we’re sleeping or dreaming is that some of those memories
get encoded into long-term memory.

3. Long-term memory is things like remembering our parents names. Those types of memories get
encoded in the actual wiring, or the connections between our neurons in our cortex. The connec-
tions between those neurons seem to encode our long-term memories. That’s like changing the
connection weights and biases in our cortical neural network.



11
Adversarial Attack and Defense

11.1 Adversarial attack

Suppose we are given a dataset, D =
�

(x, t) j x 2 X, t = 1, . . . , k
	

, where X � X, X is the whole space,
and t the class of x, i.e., index.

Suppose we are given a classifier network for that dataset, f : X ! Pk, where Pk is a space of
probability vectors: Pk :=

�
y 2 Rk j 0 � yi � 1, ∑i yi = 1

	
. For example, y = Softmax(z).

We can measure its classification errors using the loss function:

R( f ) := ED

�
1

counts the # of events

�
argmaxi(yi) 6= t

�� (x, t) 2 D, y 2 f (x)
	 �

Let’s define the ε-ball (neighbourhood) of an input x as

B(x, ε) =
�

x0 2 X j kx0� xk � ε
	

.

We ask ourselves, given an (x, t) 2 D, is there x0 2 B(x, ε) such that argmaxi(y0) 6= t, y = f (x0). In
words, is there a very nearby input that would fool the network and yield an incorrect classification?

xε

decision boundary

x � class t

x0
x0� class t

This situation happens remarkably often. These adversarial examples can be found quite easily. This
is called an adversarial attack.

How do we generate examples to fool our neural network model? There’re two basic classes of attacks:

• whitebox attack: the attacker has access to the parameters of the neural network (weights and
biases, etc.)

• blackbox attack: the attacker only has access to the inputs and outputs of the network.
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We will describe a common whitebox attack method. Recall, learning is done by gradient descent,
θ  θ � kr θE where E is our loss function.

W0 W1 W2

z1 z2 z3
y tx H1

Using backpropagation, we propagate the gradient of the cost function down through the layers of the
network. We start at the top and work our way down down down, for example, down to z1, we get
the gradient r z1 E. What about r xE? where x is the input. In order to calculate r xE, we use r z1 E.
We have z1 = xW0 + b1, therefore,

r xE = r z1 E
∂z1

∂x
= r z1 E � (W0)T .

This gives us the gradient of the loss with respect to the input. This gradient tells us how to adjust our
input in order to decrease/increase our loss:

x = x + κr xE
�

f (x, θ), t(x)
�

,

which is gradient ascent: pushing input in direction to increase loss. Or

x = x � κr xE
�

f (x, θ), ‘
�

for ‘ 6= t(x) ,

which is gradient descent for incorrect target.

These two different adversarial attacks are called untargeted and targeted. This first one is untargeted,
because we are just pushing it away from something and we don’t have a target. The second one is
targeted because we would like to have our input to like a specific target.

For example, a change in pixel intensity of 1 in an 8-bit image is imperceptible to the human eye. If
we want to perturb our image by 1 for each pixel, then we let the perturbation be ∆x = sign(r xE),
i.e., ∆x = � 1, so k∆xk ∞ = 1.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. In Proc. of ICLR.

The image on the right here is an adversarial image.

One can even look for the smallest image perturbation that will result in a particular class.
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Input x ∆x “ostrich"

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intriguing properties of neural networks. arXiv, 1312.6199v4.

Overcoming this problem is a very active field of research.

Why are classification networks “easily fooled"? Consider the input space; for 28 � 28 for MNIST, dimen-
sion of input is 784. That’s a lot of axes, and a lot of space. The classification network partitions this
high-dimensional space into regions, for example, 10 regions for MNIST. It turns out that most points
are not too far away from a decision boundary.

Picture from Hongyang Zhang.

We can see the network has managed to separate these two classes. Now let’s take a look at the
neighbourhood of points in the input space and feature space correspondingly. Red ball looks ok, but
note that blue ball (using infinity norm) crosses the decision boundary. So we end up getting the green
point is on the wrong side of decision boundary.

In summary, learning is minθ ED
�
L( f (x), t)

�
, while adversarial attack is

max
x02B(x,ε)

L( f (x0), t) , or min
x02B(x,ε)

L( f (x0), ‘ ) for ‘ 6= t .

Here are some examples from MNIST. First let’s see some untargeted.

https://arxiv.org/abs/1312.6199
https://hongyanz.github.io/
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Then consider some targeted attacks.

For example, in terms of the first image, it’s a picture of 9, but we change it so that it’s more like a 7.
Similar for the other two images.

11.2 Adversarial defence

To combat adversarial attacks, there are several ways to train our neural networks so that they are not
so easily fooled.

11.2.1 Adversarial training

Picture from medium.com. Also from this article, which the instructor didn’t focus on:

Adversarial training (Goodfellow et al., 2014) is a defence method used to increase ad-
versarial robustness by retraining a model on adversarial examples. In adversarial training,
adversarial examples are generated at each iteration based on current state of the model,

https://medium.com/element-ai-research-lab/securing-machine-learning-models-against-adversarial-attacks-b6cd5d2be8e2
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and are used to retrain the model.
Gradient masking (Papernot et al., 2016a; Papernot et al., 2016b; Tramèr et al., 2017):

the practice of altering a model to hide its original gradients from an attacker. In other
words, the defence methods mask the gradients of the model’s output with respect to its
inputs.

Consider a different idea: What if we incorporate a miniature adversarial attack into every gradient
step while training?

11.2.2 TRADES

which stands for TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization. The paper
is Theoretically Principled Trade-off between Robustness and Accuracy, which has quite a lot theory.1

Consider a model (NN) f : X ! R, data set D = ( X, T), where inputs X � X, targets T 2 f� 1, 1g.
Then sign( f (x)) is the class of X. Therefore, classification is correct if f (X)T > 0. The classification
loss (natural classification error) can be written

R nat := ED
�
1f f (X)T � 0g

�
.

We can picture it as follows: even if the decision boundary seems reasonable,

there will be errors even
with the ideal boundary.

If we want to consider how our model will perform under adversarial attack, we consider the robust
loss:

R rob( f ) := ED

h
1
�

9X0 2 B(X, ε)
�� f (X0)T � 0

	 i
.

It has a built-in pessimism, that looks for the worst-case in the neighbourhood of X.

x0
R rob counts both
of these cases

From paper, we note that the two errors satisfy R rob( f ) � R nat( f ) for all f ; the robust error is equal
to the natural error when ε = 0.

For theoretical reasons that I won’t go into (read, “I don’t understand”), we use a surrogate loss
function, φ, instead of using the binary classifier criterion.

0 α

1(α < 0)

0 α

φ(α)

1

and convert our learning task to min f ED
�
φ( f (X)T)

�
. Then we try to train a robust model using the

1The instructor will elude to it but he won’t go into it. As he jokingly says in his notes later on, he doesn’t go into it because
he doesn’t understand it. So later he will outline the part that he understands.

http://proceedings.mlr.press/v97/zhang19p/zhang19p.pdf
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combined loss:
min

f
ED

h
φ( f (X)T)
| {z }

(1)

+ max
X02B(X,ε)

φ( f (X) f (X0)) /λ

| {z }
(2)

i

(1) For accuracy. Try to ensure that each X is correctly classified. In other words, from paper, this
term encourages the natural error to be optimized by minimizing the “difference” between f (X)
and T.

(2) Regularization for robustness. Add a penalty for models f that put X within ε of the decision
boundary. In paper’s words, this term encourages the output to be smooth, that is, it pushes the
decision boundary of classifier away from the sample instances via minimizing the “difference”
between the prediction of natural example f (X) and that of adversarial example f (X0).

Here λ > 0 is a regularization parameter, which the instructor has left out, but later added on in
the implementation.

The implementation is as follows:

For each gradient-descent step:

– run several steps of gradient ascent to find X0 then fix X0

– evaluate the joint loss:
loss = φ( f (X)T) + β � φ

�
f (X) f (X0)

�

where β is a regularization parameter.

– use gradient of loss for gradient step.

The result is as follows (picture from paper):

Left figure: decision boundary learned by natural training method. Right figure: decision boundary
learned by our adversarial training method, where the orange dotted line represents the decision
boundary in the left figure. It shows that both methods achieve zero natural training error, while our
adversarial training method achieves better robust training error than the natural training method.

The code is available at https://github.com/yaodongyu/TRADES .

The TRADES method won the NeurIPS’18 Adversarial Vision Challenge. As of March 2021, in Ro-
bustBench, 5 of the top 5, and 9 of the top 10 methods are all based on TRADES.

https://github.com/yaodongyu/TRADES
https://robustbench.github.io/
https://robustbench.github.io/


12
GANs

12.1 Introduction

A Generative Adversarial Network (GAN) is comprised of two networks that are competing against
each other.

Generative Network Discriminative Network

random seed z “airplane”

A GAN links them together:

G D

z
real

fake

ds

The Generative network is trying to fool the Discriminative network into misclassifying “fake”(generated)
inputs. Meanwhile, the Discriminative network is also learning how to classify inputs as “fake” or
“real”, i.e., does it come from a dataset, or from the Generative network?

z 2 pz
G, φ

F

D, θ

R
x 2 R

probability that the
input was real

~ 1 for real
~ 0 for fake

D(x; θ) outputs the probability that x is from the real data, i.e., x 2 R, and we set t = 1. G(z; φ) creates
an input sample from random noise z with distribution pz, i.e., x0 = G(z; φ) 2 F, and we let t = 0.
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12.2 Loss Function for a GAN

The loss for the GAN has two parts:

E(θ, φ) = ER,F

h
L

�
D( x

real or fake inputs

; θ ) , t

target =

(
1 if x 2 R

0 if x 2 F

� i
+ Ez

h
L

�
D(G( z

fake input

; φ ), θ), 1

wrong target

for fake inputs

� i

The first term is to minimize with respect to θ to make D better at detecting real vs. fake inputs. The
second term is to minimize with respect to φ to make G better at producing fake inputs that fool D.

12.3 Training the Discriminative Network

Training
Inputs

G

Dθ

R = ( x, t)

F = ( x0, t)

z

1

0

y � � �
1 real

0 fake

L(y, t)

Gradients propagate down through D only

We aim to minθ ER,F
�
L(y, t)

�
.

Train D to distinguish real from fake inputs, and θ  θ � κr θ L(y, t).

12.4 Training the Generative Network

Training
Inputs

Gφ

D

F = ( x0, t)

z

1

y � � � 1 “real”

Gradients first go through D,
then go down through G

We aim to minφ EF
�
L(y, 1)

�
.

This is like a targetted Adversarial attack with target set to 1. Then φ  φ � κr φL(y, 1).

12.5 Examples

See example from https://thispersondoesnotexist.com/ .

Also see examples from freecodecamp.org .

https://thispersondoesnotexist.com/
https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/


13
Vector Embeddings

13.1 Introduction

We wish to use an efficient and semantic strategy to encode large input spaces. We have been using
vectors to represent inputs and outputs. For example,

“2” =
h
0 0 1 0 0 0 0 0 0 0

i
2 f 0, 1g10

“e” =
h
0 0 0 0 1 0 0 � � � 0

i
2 f 0, 1g26

What about words? Consider the set of all words encountered in a dataset. We will call this our
vocabulary. Let’s order and index our vocabulary and represent words using one-hot vectors, like
above. Let wordi be ith word in vocabulary. For example,

“cat” � v 2 W ,

where W = f 0, 1gNv � RNv , and Nv is the number of words in our vocabulary (e.g., 70,000). Then

vi =

(
0 if wordi 6= “cat”,

1 if wordi = “cat”.

This is nice, but when we are doing Natural Language Processing (NLP), how do we handle the
common situation in which different words can be used to form a similar meaning? For example, 1

“CS 479 is interesting”

“CS 479 is fascinating”

We could form synonym groups, but where do we draw the line when words have similar, but not
identical, meanings? For example, content, happy, elated, ecstatic. These issues reflect the semantic
relationships between words. We would like to find a different representation for each word, but one
that also incorporates their semantics. For example, we could create a happiness scale:

happiness

content happy elated ecstatic

How can we tease out the complex, semantic relationships between words?

1I just copied what the notes said... and change CS 489 to CS 479 because in the future, the course number will become 479
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13.2 Predicting Word Pairs

We can get a lot of information from the simple fact that some words often occur together (or nearby)
in sentences. For example, 2

Trump returned to Washington Sunday night, though his wife Melania Trump stayed
behind in Florida.

where color indicates pairs. Another example: 3

Human activity is degrading the landscape, driving species to extinction and worsening
the effects of climate change.

For the purposes of this topic, we will consider “nearby” to be within d words. For example, let d = 2,

Trump returned to
�

Washington Sunday night , though his
�

wife Melania Trump
stayed behind in Florida.

This gives us the word parings:

(night, Washington), (night, Sunday), (night, though), (night, his)

Here is another example of d = 2:

Our approach is to try to predict these word co-occurrences using a 3-layer neural network:

• Its input is a one-hot word vector, and

• its output is the probability of each word’s co-occurrence.

Our neural network performs
y = f (v, θ) ,

where v 2 W and
y 2 PNv =

n
p 2 RNv

��� p is a probability vector
o

,

i.e., 0 � pi � 1 and ∑i pi = 1.

Then yi equals the probability that v is nearby: 4

2https://www.cbc.ca/news/world/stormy-daniels-trump-threat-1.4594060
3https://www.cbc.ca/news/thenational/national-today-newsletter-russia-diplomats-biodiversity-1.

4592950
4The circle is hand-drawn and the connections are drawn randomly in accordance with the drawing in the notes.

https://www.cbc.ca/news/world/stormy-daniels-trump-threat-1.4594060
https://www.cbc.ca/news/thenational/national-today-newsletter-russia-diplomats-biodiversity-1.4592950
https://www.cbc.ca/news/thenational/national-today-newsletter-russia-diplomats-biodiversity-1.4592950
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...

...

...

cat

dog

fur

wood

truck

cat

dog

fur

wood

truck

v y

where the output layer uses softmax.

This hidden-layer squeezing forces a compressed representation, requiring similar words to take on
similar representations. This is called an embedding.

13.3 Word2vec

Word2vec is a popular embedding strategy for words (or phrases, or sentences). It uses additional
tricks to speed up the learning:

1. Treats common phrases as one word. For example, “New York” is one word.

2. (Randomly) ignores common words. For example, “the car hit the post on the curb”. Pf the 56

word pairs, only 20 don’t involve the word “the”. Thus we can argue that the word “the” carries
grammatical meaning, but not so much semantic meaning.

3. Negative Sampling. Backprops only some of the negative cases.

The embedding space is a relatively low-dimensional space where similar inputs are mapped to similar
locations. We have seen this in MNIST autoencoder.

Why does this work? Words with similar meaning will likely co-occur with the same set of words, so
the network should produce similar outputs, thus similar hidden-layer representation.

13.4 Geometry of word2vec

Cosine angle is often used to measure “distance” between two vectors in embedding (latent) space.

θ2

θ1

θ3

cos θ1= 0.81

cos θ2= � 0.05

cos θ3= � 0.36
kick

ball

building

botanists

To some extent, we can do a sort of vector addition on these representations. For example:

king � man + woman �= queen

king

queenman

woman
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13.5 Python demo

First we read in some texts.

In [1]: import numpy as np
from gensim import corpora, models, similarities
from gensim.models import word2vec, Word2Vec

In [2]: sentences = word2vec.Text8Corpus( ' text8 ' )

Then we create and train the model.

In [3]: model = word2vec.Word2Vec(sentences, size=300)
model.save( ' text8.model ' )
model = Word2Vec.load( ' text8.model ' )

How many words in our vocabulary?

In [4]: len(model.wv.vocab)

Out[4]: 71290

What window size was used for determining co-occurrence?

In [5]: model.window

Out[5]: 5

Now let’s try using this model.

In [6]: model.wv.get_vector( ' man' )

Out[6]: array([-3.21492732e-01, 1.19205225e+00, 8.09926540e-02, 1.66398913e-01,
...
1.82009205e-01, -3.74050856e-01, -2.08382472e-01, 8.63545656e-01],

dtype=float32)

We can measure the similarity between word encodings.

In [7]: model.wv.similarity( ' man' , ' woman' )

Out[7]: 0.6751615

It’s just the cosine of the angle between the vectors. Or cos θ = ~u�~v
k~uk k~vk

In [8]: from numpy.linalg import norm
u = model.wv.get_vector( ' man' )
v = model.wv.get_vector( ' woman' )
np.dot(u, v) / norm(u) / norm(v)
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Out[8]: 0.6751615

So we can try some vector operations.

In [9]: model.wv.similarity( ' ball ' , ' kick ' )

Out[9]: 0.81387967

In [10]: model.wv.similarity( ' ball ' , ' building ' )

Out[10]: 0.0018998506

In [11]: model.wv.similarity( ' ball ' , ' botanists ' )

Out[11]: -0.29937774

In [12]: model.wv.similar_by_word( ' ball ' )

Out[12]: [( ' kick ' , 0.8138796091079712),
( ' cue ' , 0.7960497736930847),
( ' batter ' , 0.7874829769134521),
( ' snap ' , 0.7654155492782593),
( ' balls ' , 0.7120139002799988),
( ' stick ' , 0.7081071138381958),
( ' foul ' , 0.6925913095474243),
( ' tackle ' , 0.6907328367233276),
( ' dealer ' , 0.6715814471244812),
( ' kicking ' , 0.6691585779190063)]

In [13]: model.wv.similar_by_word( ' interesting ' )

Out[13]: [( ' unusual ' , 0.6928797960281372),
( ' obvious ' , 0.6644794344902039),
( ' important ' , 0.6543409824371338),
( ' accurate ' , 0.6231821775436401),
( ' attractive ' , 0.6216129064559937),
( ' elegant ' , 0.608924925327301),
( ' informative ' , 0.5994871854782104),
( ' useful ' , 0.5986381769180298),
( ' impressive ' , 0.5972234010696411),
( ' incomplete ' , 0.5899901390075684)]

In [14]: model.wv.similar_by_vector(model.wv.get_vector( ' him ' )
-model.wv.get_vector( ' her ' )
+model.wv.get_vector( ' she ' )
)
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Out[14]: [( ' he ' , 0.7215795516967773),
( ' him ' , 0.693230390548706),
( ' she ' , 0.6433897018432617),
( ' himself ' , 0.5919608473777771),
( ' elisha ' , 0.5489803552627563),
( ' personally ' , 0.5301251411437988),
( ' leto ' , 0.5248771905899048),
( ' herself ' , 0.5216164588928223),
( ' secretly ' , 0.49310579895973206),
( ' baldrick ' , 0.4808269739151001)]

In [15]: model.wv.doesnt_match("breakfast truck milk cereal".split())

Out[15]: ' truck '

In [16]: model.wv.similar_by_vector(model.wv.get_vector( ' hot ' )
-model.wv.get_vector( ' freezing ' )
+model.wv.get_vector( ' cool ' ),
topn=3)

Out[16]: [( ' hot ' , 0.9366112351417542),
( ' cool ' , 0.8631991147994995),
( ' warm' , 0.7375720739364624)]

In [17]: model.wv.similar_by_vector(model.wv.get_vector( ' run ' )
-model.wv.get_vector( ' walk ' )
+model.wv.get_vector( ' slow ' ),
topn=5)

Out[17]: [( ' slow ' , 0.7185351848602295),
( ' run ' , 0.6514052152633667),
( ' fast ' , 0.5557305812835693),
( ' inefficient ' , 0.5512914657592773),
( ' accelerated ' , 0.5477301478385925)]

In [18]: model.wv.similar_by_vector(model.wv.get_vector( ' hand ' )
-model.wv.get_vector( ' branch ' )
+model.wv.get_vector( ' twigs ' ),
topn=3)

Out[18]: [( ' hand ' , 0.8025344014167786),
( ' fingers ' , 0.5618672370910645),
( ' wrist ' , 0.49851638078689575)]

In [19]: model.wv.similar_by_vector(model.wv.get_vector( ' queen ' )
-model.wv.get_vector( ' woman' )
+model.wv.get_vector( ' man' ),
topn=3)
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Out[19]: [( ' queen ' , 0.7480891942977905),
( ' king ' , 0.6133782863616943),
( ' prince ' , 0.6031099557876587)]

In [20]: model.wv.similar_by_vector(model.wv.get_vector( ' camera ' )
-model.wv.get_vector( ' eye ' )
+model.wv.get_vector( ' ear ' ),
topn=3)

Out[20]: [( ' camera ' , 0.7428203225135803),
( ' microphone ' , 0.6444481611251831),
( ' cassette ' , 0.6156808733940125)]



14
Predictive Coding

Backprop is amazing, but can a real brain do backprop?

14.1 Biological Plausibility

A real brain is constrained by physics and chemistry. It means that synaptic updates can only be based
on local information. Also, connection weights cannot be copied to other connections. Let’s look at a
specific case: comparing normal backprop and biology.

r L
r L

r L

y

L

t

W

W  W � κr W L

Backprop Biology

y tLW

In backprop, the error gradients are somehow propagated down through the network. How can
the error signal have influence on the connection weight W in our biology model? There are some
architectures that implement something like backprop, but in a biologically plausible way.

14.2 Predictive Coding Idea

In predictive coding, predictions/commands are sent one way through the network, and errors/devi-
ations are sent the other way. For example, military chain of command: 1

1The instructor doesn’t know much about military, so he is just kind of guessing here.
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General

Colonel Lieutenant

MajorCaptain

Soldier Soldier Soldier

“attack on the west coast”
“tighten border security”

“ammunition
shortage”

“delay”

“stock
ammunition”

“move troops west”

“fly plane”“drive truck” “load truck”

So this is the idea behind predictive coding network which is fairly efficient because the commands
flow in one direction and there’s no need for information flow in the other direction except when
there’s an exception or error.

Now let’s compare it with feedforward network.

FF Network PC Network

x1
1

x1
2

x1
3

ε2
1

ε2
2

x2
1

x2
2

ε3
1 x3

1

Prediction

Errors

hidden layer

Note that the circle at the end of the connection means inhibitory, or negative connections. In a PC
network, each node is split into two parts:

ε x

“error node” “state” or
“value node”

Let’s represent a whole layer as a single circle.

X ε(1) x(1) ε(2) x(2) ε(n� 1) x(n� 1)� � � ε(n) x(n) Y

µ2 µn� 1 µn

M1

W1

Mn� 1

Wn� 1

input target

β

Note that β controls input to output node. µi is the prediction being sent up to layer i:

µi = σ(xi� 1)Mi� 1.

For now, assume Wi = ( Mi)T .

Error node εi is the difference between xi and µi:

εi =
xi � µi

νi (14.1)
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where νi is a constant. Now let’s turn it into a differential equation for which that is the equilibrium
solution:

τ
dεi

dt
= xi � µi � νiεi

At equilibrium, we get (14.1). This DE tells us on how error nodes are updated.

Goal for training the PC Network: given dataset (X, Y), θ = f Mi, Wigi= 1,...,n, we want to maxθ p
�
Y(X), θ

�
,

where

p
�
Y(X), θ

�
= p

�
Y(X) j θ

�
p(θ)

= p(Y j µn) p(xn� 1 j µn� 1) � � � p(x2 j µ2) p(θ)

Now consider p(xi j µi). Assume xi � N (µi, νi), normally distributed. Then

p(xi j µi) =
1
�

e� kxi � µik
2

2νi

� ln p(xi j νi) = c +
1

2νi kxi � µik
2

Therefore, we have

� ln p
�
Y(X), θ

�
∝

n

∑
i= 1

kxi � µik 2

2νi

which means minimizing the log probability is the same as minimizing the sum.

This leads us to a Hopfield function:

F =
n

∑
i= 1

νi

2
kεik

2
.

Now we show that the network activity acts to decrease the Hopfield energy. Consider taking gradient
of Hopfield function for some layer ‘ . First note that x‘ appears in ε‘ and ε‘ + 1:

ε‘ =
1
ν‘ (x‘ � ν‘ )

ε‘ + 1 =
1

ν‘ + 1 (x‘ + 1 � ν‘ + 1) =
1

ν‘ + 1 (x‘ + 1 � σ(x‘ )M‘ )

Therefore,
r x‘ F = ε‘ � σ0(x‘ ) �

�
ε‘ + 1(M‘ )T �

.

Thus, gradient descent gives us differential equation:

τ
dx‘

dt
= σ0(x‘ )ε‘ + 1W ‘ � ε‘

This DE tells us how state nodes are updated.

To train the network, we clamp the input on both ends: clamp X, set Y and set β = 0. When β = 0, x(n)

is fixed to the value Y, i.e., x(n) = Y. Then we hold those inputs and run the network to equilibrium:
dε‘

dt = dx‘

dt = 0. Running to equilibrium allows all the nodes to interact with each other globally. At
equilibrium, we can derive

τ
dx‘

dt
= σ0(x‘ )ε‘ + 1W ‘ � ε‘ = 0 =) ε‘ = σ0(x‘ )ε‘ + 1W ‘ or ε‘ = σ0(x‘ ) �

�
ε‘ + 1(M‘ )T �
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14.3 Link to Backpop

Let’s start with the top gradient,

r µn F =
νn

2
r µn kεnk 2 = � εn

But we also derived that, at equilibrium,

ε‘ = σ0(x‘ ) �
�
ε‘ + 1(M‘ )T �

.

Compare to the backprop formulas in previous chapters:

r z( ‘ ) E = σ0(z( ‘ ) ) �
�

r z( ‘ + 1) E �
�

M( ‘ ) � T
�

Thus � ε‘ is the gradient of the output error with respect to the prediction µ‘ .

What about gradients of Hopfield function? We can derive that

r M‘ F = � σ(x‘ ) 
 ε‘ + 1

Likewise
r W ‘ F = � ε‘ + 1 
 σ(x‘ )

Then we can write DEs governing the dynamics of different connection weight matrices:

γ
dM‘

dt
= σ(x‘ ) 
 ε‘ + 1

γ
dW ‘

dt
= ε‘ + 1 
 σ(x‘ )

Note that these learning rules only use info from the nodes they connect, thus they are using local
rules, satisfying that biological plausibility constraint.

These weight update formulas are the same type of “delta” rule used in backprop. Recall from chapter
3 (this is an outer product):

∂E
∂W( ‘ ) =

2

64
"

h( ‘ )

#

3

75

| {z }
σ(x‘ )

h
 r zE !

i

| {z }
ε‘ + 1

So our learning rules and these differential equations are mirroring the same thing as the backprop
updating rules.

The time constant for the weights γ is larger than the time constant for the nodes τ. This allows the
value nodes and error nodes to converge to equilibrium faster, setting up the pieces needed for the
weight updates. The full system of differential equations is,

τ
dεi

dt
= xi � µi � νiεi

τ
dx‘

dt
= σ0(x‘ )ε‘ + 1W ‘ � ε‘

γ
dM‘

dt
= σ(x‘ ) 
 ε‘ + 1

γ
dW ‘

dt
= ε‘ + 1 
 σ(x‘ )

‘ = 1, . . . , n.

All 4 DEs can run simultaneously.
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14.4 Testing the PC Network

To run (test) it, clamp the input X and run the network to equilibrium. Once at equilibrium, xn is the
network’s output.

The results can be found: James C. R. Whittington, Rafal Bogacz; An Approximation of the Error
Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity.
Neural Comput 2017; 29 (5): 1229–1262. doi: https://doi.org/10.1162/NECO_a_00949

test error

training error

https://doi.org/10.1162/NECO_a_00949


A
Implementation of Neural Network

The Layer class is an abstract base class for a number of different derivative classes: Population ,
Connection , and DenseLayer .

The Population class takes input current as input, and outputs neuron activities.

1 class Population(Layer):
2 def __init__(self, nodes, act=Identity()):
3 self.nodes = nodes
4 self.z = None # input
5 self.h = None # output
6 self.act = act # activation function
7 self.params = []
8

9 def __call__(self, x=None):
10 if x is not None:
11 self.z = x
12 self.h = self.act(x)
13 return self.h

The Connection class represents all-to-all connections between two populations of neurons.

1 class Connection(Layer):
2 def __init__(self, from_nodes=1, to_nodes=1):
3 super().__init__()
4 # weights and biases
5 self.W = np.random.randn(from_nodes, to_nodes) / np.sqrt(from_nodes)
6 self.b = np.zeros(to_nodes)
7 self.params = [self.W, self.b]
8

9 def __call__(self, x=None):
10 if x is None:
11 return
12 if len(x) > 1:
13 return x@self.W + np.outer(np.ones(len(x)), self.b)
14 else:
15 return x@self.W + self.b

100
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The DenseLayer consists of one Connection layer, and followed by one Population layer.

1 class DenseLayer(Layer):
2 '''
3 L1 a Connection layer of connection weights, and
4 L2 a Population layer, consisting of nodes that receives current
5 from the Connection layer, and apply the activation function
6 '''
7

8 def __init__(self, from_nodes=1, to_nodes=1, act=Logistic()):
9 self.L1 = Connection(from_nodes=from_nodes, to_nodes=to_nodes)

10 self.L2 = Population(from_nodes, act=act)
11

12 def __call__(self, x=None):
13 if x is None:
14 return self.L2.h
15 else:
16 return self.L2(self.L1(x))

Then a network consists of a sequence of layers. We can define a method add_layer for the class Net .



B
PyTorch

PyTorch is an open source, free programming library that’s particularly useful for implementing neural
networks. So here we will demonstrate some of the features.

First, we are going to have some libraries.

In [1]: import numpy as np
import torch
import matplotlib.pyplot as plt
import copy

B.1 PyTorch Tensors

Instead Mat type we created for AD, PyTorch has its own variable type, called a Tensor .

In [2]: x = torch.tensor([[1,2],[3,4.]], dtype=torch.float)
print(x)

tensor([[1., 2.],
[3., 4.]])

PyTorch has a whole library of operations to apply to tensors. Let’s try to feed it to the log:

In [3]: y = torch.log(x)
print(y)

tensor([[0.0000, 0.6931],
[1.0986, 1.3863]])

PyTorch has auto-differentiation functionality.

Below, z is a node in the expression graph that yields y .

102

https://pytorch.org/docs/stable/torch.html#math-operations
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In [4]: z = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
y = torch.prod(z) # y = z[0]*z[1] = 1*2
y.backward()
z.grad # dy/dz = [2,1]

Out[4]: tensor([2., 1.])

Note that if we don’t have requires_grad=True , it won’t offer backward function.

We can also temporarily suspend autograd.

In [5]: z = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
y1 = torch.prod(z) # dy1/dz = [2,1]
with torch.no_grad():

y2 = torch.sum(z) # dy2/dz = [1,1]
y = y1 + y2
y.backward()
print(z.grad)

tensor([2., 1.])

Without no_grad , this gives us

In [6]: z = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
y1 = torch.prod(z) # dy1/dz = [2,1]
y2 = torch.sum(z) # dy2/dz = [1,1]
y = y1 + y2
y.backward()
z.grad

Out[6]: tensor([3., 2.])

It’s pretty easy to convert back and forth between numpy arrays and torch tensors. For example, let’s
convert an array to a tensor:

In [7]: zn = np.array([1,2], dtype=float)
zt = torch.tensor(zn) # makes a copy
print(f ' torch version: {zt} ' )

torch version: tensor([1., 2.], dtype=torch.float64)

It’s also simple to convert a tensor to an array:

In [8]: zt = torch.tensor([1,2], dtype=torch.float)
zn = zt.numpy() # does NOT make a copy
print(f ' numpy version: {zn} ' )
zn[0] = -1000.
print(zt)

numpy version: [1. 2.]
tensor([-1000., 2.])
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Another thing to keep in mind is when we want to turn a tensor into a numpy array, we might run into
trouble:

In [9]: zt = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
zn = zt.numpy()
print(f ' numpy version: {zn} ' )

---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-8-dfae4b9d9e05> in <module>

1 zt = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
----> 2 zn = zt.numpy()

3 print(f ' numpy version: {zn} ' )
RuntimeError: Can ' t call numpy() on Tensor that requires grad. Use tensor.detach

().numpy() instead.

This is because numpy can’t handle all these gradient information. Instead, we have to detach the
tensor from the expression graph:

In [10]: zt = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
zn = zt.detach().numpy() # detaches zt from the expression graph, so grad is

gone
print(f ' numpy version: {zn} ' )

numpy version: [1. 2.]

When a tensor is used in multiple calculations, its gradients are be added together (when you specify
retain_graph=True ).

In [11]: z = torch.tensor([1,2], dtype=torch.float, requires_grad=True)
y = torch.prod(z) # dy/dz = [2,1]
y.backward(retain_graph=True)
z.grad

Out[11]: tensor([2., 1.])

In [12]: b = torch.sum(z) # db/dz = [1,1]
b.backward()
z.grad

Out[12]: tensor([3., 2.])

B.2 Classification Dataset

We will use PyTorch’s Dataset class.

In [13]: from torch.utils.data import Dataset, DataLoader
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In [14]: B = torch.eye(3)
A = 3.*(torch.rand((3, 6)) - 0.5)
print( ' Input vectors ' )
print(A)
print( ' Target vectors ' )
print(B)

Input vectors
tensor([[ 0.1695, -0.6379, 1.1819, -1.1269, 0.1993, 0.9056],

[ 0.5666, 0.9875, -0.5361, -0.0247, -0.6599, -0.9286],
[-0.9427, 0.7889, 0.2329, -0.7094, -0.8587, 1.2391]])

Target vectors
tensor([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

1 class DiscreteMapping(Dataset):
2 def __init__(self, A, B, n=300, noise=0.1):
3 self.samples = []
4 self.n_classes = len(A)
5 self.input_dim = len(A[0])
6 for i in range(n):
7 r = np.random.randint(self.n_classes)
8 t = B[r]
9 sample = [A[r]+noise*torch.randn_like(A[r]), t]

10 self.samples.append(sample)
11

12 def __getitem__(self, idx):
13 return self.samples[idx]
14

15 def __len__(self):
16 return len(self.samples)
17

18 def inputs(self):
19 x = []
20 for s in self.samples:
21 x.append(s[0])
22 return torch.stack(x)
23

24 def targets(self):
25 t = []
26 for s in self.samples:
27 t.append(s[1])
28 return torch.stack(t)
29

30 def classes(self):
31 c = []
32 for s in self.samples:
33 k = torch.argmax(s[1])
34 c.append(k)
35 return torch.tensor(c, dtype=torch.long)
36

37 def plot(self, labels=[], idx=(0,1), equal=True):
38 X = self.inputs()
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39 if len(labels)==0:
40 labels = self.classes()
41 colour_options = [ ' y ' , ' r ' , ' g' , ' b' , ' k ' ]
42 cidx = self.classes()
43 colours = [colour_options[k] for k in cidx]
44 plt.scatter(X[:,idx[0]], X[:,idx[1]], color=colours, marker= ' . ' )
45

46 if equal:
47 plt.axis( ' equal ' );

Let’s now create a dataset and plot it:

In [15]: ds = DiscreteMapping(A, B)
ds.plot

We can look at the inputs, targets and classes:

In [16]: print(ds.inputs()[:5])

tensor([[-0.8952, 0.7936, 0.2177, -0.6641, -0.8912, 1.4255],
[-0.9150, 0.7036, 0.3080, -0.6799, -0.8924, 1.2295],
[-1.0364, 0.7557, 0.2925, -0.6936, -0.7641, 1.0148],
[-0.9716, 0.9182, 0.0657, -0.7514, -0.8784, 1.2783],
[-0.9381, 0.7768, 0.3066, -0.8127, -0.8658, 1.1553]])

In [17]: print(ds.targets()[:5])
print(ds.classes()[:5])

Out[17]: tensor([[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.]])

tensor([2, 2, 2, 2, 2])

B.3 Neural Networks with PyTorch

Now let’s make some neural networks. We can use the torch.nn module. The simplest version is
using Sequential . Here we assume that each layer is connected to the previous layer.
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In [18]: net = torch.nn.Sequential(
torch.nn.Linear(6,10),
torch.nn.ReLU(),
torch.nn.Linear(10,5),
torch.nn.ReLU(),
torch.nn.Linear(5,3),
torch.nn.LogSoftmax(dim=1))

We have more flexibility with Module , since we get to specify the forward function.

1 class mynet(torch.nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.lyr = torch.nn.ModuleList() # self.lyr = [] DOES NOT WORK
5 self.lyr.append(torch.nn.Linear(6,10, bias=False))
6 self.lyr.append(torch.nn.Sigmoid())
7 self.lyr.append(torch.nn.Linear(10,5))
8 self.lyr.append(torch.nn.Sigmoid())
9 self.lyr.append(torch.nn.Linear(5,3))

10 self.lyr.append(torch.nn.LogSoftmax(dim=1))
11

12 def forward(self, x):
13 # Here is where you can be creative.
14 y = x
15 for l in self.lyr:
16 y = l(y)
17 return y

Then we can create the network model:

In [19]: net = mynet()

Now we need a loss funciton.

In [20]: # loss = torch.nn.CrossEntropyLoss(reduction= ' mean' )
loss_fcn = torch.nn.NLLLoss(reduction= ' mean' ) # <=== Choose a cost function

Then we can push our datasets input through the network and compute the loss. Notice that NLLLoss
wants the class index/label indices.

In [21]: y = net(ds.inputs())
loss = loss_fcn(y, ds.classes())
print(loss)

tensor(1.1449, grad_fn=<NllLossBackward>)

Then we can look at the output of the network:

In [22]: y[:5]

https://pytorch.org/docs/stable/nn.html#loss-functions


APPENDIX B. PYTORCH 108

Out[22]: tensor([[-1.0762, -0.8393, -1.4825],
[-1.0756, -0.8402, -1.4815],
[-1.0744, -0.8415, -1.4809],
[-1.0752, -0.8400, -1.4824],
[-1.0747, -0.8413, -1.4807]], grad_fn=<SliceBackward>)

which will be the log of SoftMax , and the corresponding classes:

In [23]: ds.classes()[:5]

Out[23]: tensor([2, 2, 2, 2, 2])

Currently, the network hasn’t been trained yet.

Network weights and biases are accessible through net.parameters() .

In [24]: for p in net.parameters():
print(p.shape)

torch.Size([10, 6])
torch.Size([5, 10])
torch.Size([5])
torch.Size([3, 5])
torch.Size([3])

Another way to look at it:

In [25]: params = list(net.parameters())
print(params[3])

Parameter containing:
tensor([[-0.0914, 0.3753, -0.2202, 0.4185, 0.2414],

[ 0.1765, -0.1317, 0.2861, -0.4356, 0.0747],
[ 0.2268, 0.2098, -0.0616, 0.1838, 0.0474]], requires_grad=True)

Now let’s train the classification model myself. We can access the parameter gradients and implement
gradient descent ourselves.

In [26]: x = ds.inputs()
targets = ds.targets()
classes = ds.classes()

In [27]: net = mynet()
lrate = 1.
n_epochs = 200
losses = []
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In [28]: for epoch in range(n_epochs):

y = net(x)

err = loss_fcn(y, classes) # for CE

losses.append(err.item())

net.zero_grad()

err.backward()

with torch.no_grad():

for p in net.parameters():

p -= lrate * p.grad

plt.plot(losses);

After we trained the network,

In [29]: y = net(x)

print(y[:5])

print(torch.exp(y[:5]))

tensor([[-5.2551, -4.5457, -0.0160],

[-5.0389, -4.5073, -0.0177],

[-5.1426, -4.4260, -0.0180],

[-5.6008, -4.4353, -0.0157],

[-5.0945, -4.4847, -0.0176]], grad_fn=<SliceBackward>)

tensor([[0.0052, 0.0106, 0.9842],

[0.0065, 0.0110, 0.9825],

[0.0058, 0.0120, 0.9822],

[0.0037, 0.0119, 0.9845],

[0.0061, 0.0113, 0.9826]], grad_fn=<ExpBackward>)

which matches the targets:

In [30]: targets[:5]

Out[30]: tensor([[0., 0., 1.],

[0., 0., 1.],

[0., 0., 1.],

[0., 0., 1.],

[0., 0., 1.]])

If we plot it using the output as the labels, ds.plot(labels=y) :
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