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Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CS 341 during Spring 2021 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

I couldn’t create a good set of notes from Winter 2020 (the term I was in), so I decided to create a set
of notes based on Prof. Lau’s version. The notes is solely based on his written course notes, not his
videos, not his PPTs. Because I am familiar with the concepts, I might skip lots of details in the notes.
Please use this set of notes at your own risk.

The main focus of the course is on the design and analysis of efficient algorithms, and these are
fundamental building blocks in the development of computer science. We will cover

¢ divide and conquer and solving recurrence,
¢ simple graph algorithms using BFS and DFS,
¢ greedy algorithms,
* dynamic programming,
® bipartite matching,
¢ NP-completeness and reductions.
The idea of reduction can also be found in CS 365 and CS 360.
There are three reference books and we refer to them using the following shorthands:
e [DPV] Algorithms, by Dasgupta, Papadimitriou and Vazirani.
o [KT] Algorithm design, by Kleinberg and Tardos.
e [CLRS] Introduction to algorithms, by Cormen, Leiserson, Rivest, and Stein.
Note that Ronald Rivest is one of the creators of RSA cryptosystem. See CO 487 for more details.

The notes after DP for graphs are less detailed. Please refer to the lecture notes for proofs and exam-
ples.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Slbliss Fong


https://cs.uwaterloo.ca/~lapchi/cs341/
https://n.sibp.ro/cs365
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https://notes.sibeliusp.com/
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Introduction

To introduce you to the course, different instructors use different examples. Stinson uses 3SUM prob-
lem. During Fall 2019, Lubiw & Blais (and possible for several future offerings) develop algorithms
for merging two convex hulls, which is quite interesting. However, in Winter 2020, the motivating
example was max subarray problem, which was studied already in CS 136, maybe not in CS 146. Now
let’s dive into Spring 2021 offering.

1.1 Two Classical Problems

We are given an undirected graph with n vertices and m edges, where each edge has a non-negative
cost. The traveling salesman problem asks us to find a minimum cost tour to visit every vertex of the
graph at least once (visit all cities). The Chinese postman problem asks us to find a minimum cost
tour to visit every edge of the graph at least once (visit all streets).

A naive algorithm to solve the TSP is to enumerate all permutations and return the minimum cost
one. This takes O(n!) time which is way too slow. By using dynamic programming, we can solve it in
O(2") time, and this is essentially the best known algorithm that we know of.

We will prove this problem is “NP-complete”, and probably efficient algorithms for this problem do
not exist. However, people may design some approximation algorithms, which will be covered in CS
466 and CO 754.

Surprisingly, the Chinese postman problem, which looks very similar, can be solved in O(n*), using
techniques from graph matching.

1.2 Time Complexity

How do we define the time complexity of an algorithm?

Roughly speaking, we count the number of operations that the algorithm requires. One may count
exactly how many operations. The precise constant is probably machine-dependent and may be also
difficult to work out. So, the standard practice is to use asymptotic time complexity to analyze algo-
rithms.

Asymptotic Time Complexity

Given two functions f(n),g(n), we say


https://cs.uwaterloo.ca/~dstinson/Stinson-CS341Slides.pdf
https://algorithmtutor.com/Computational-Geometry/An-efficient-way-of-merging-two-convex-hull/
https://en.wikipedia.org/wiki/Maximum_subarray_problem
https://n.sibp.ro/cs136
https://n.sibp.ro/cs146
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e (upper bound, big-O) ¢(n) = O(f(n)) if nlgrc}ojg(
8

< ¢ for some constant ¢ (independent of n).

(lower bound, big-Q) g(n) = Q(f(n)) if lim > ¢ for some constant c.

M Fn)
* (same order, big-©) g(n) = O(f(n)) if nll_I}I;lo (jngZ; = ¢ for some constant c.
¢ (loose upper bound, small-0) g(n) = o(f(n)) if nlglgo gEZ) =0
¢ (loose lower bound, small-w) g(n) = w(f(n)) if nlgr;o ?EZ% =00

Worst Case Complexity

We say an algorithm has time complexity O(f(n)) if it requires at most O(f(n)) primitive operations
for all inputs of size n (e.g., n bits, n numbers, n vertices, etc). By adopting the asymptotic time
complexity, we are ignoring the leading constant and lower order terms.

“Good” Algorithms

For most optimization problems, such as TSP, there’s a straightforward exponential time algorithm.
For those problems, we are interested in designing a polytime algorithm for it.

1.3 Computation models

Note that this section often appears in the short answer questions from in-person midterms, in order
to trick the student...

When we say that we have an O(n*)-time algorithm, we need to be more precise about what are
the primitive operations that we assume. In this course, we usually assume the word-RAM model,
in which we assume that we can access an arbitrary position of an array in constant time, and also
that each word operation (such as addition, read/write) can be done in constant time. This model is
usually good in practice, because the problem size can usually be fit in the main memory, and so the
word size is large enough and each memory access can be done in more or less the same time.

For problems like computing the determinant, we usually consider the bit-complexity, i.e., how many
bit operations involved in the algorithm. So please pay some attention to these assumptions when
we analyze the time complexity of an algorithm, especially for numerical problems. That said, the
word-complexity and bit-complexity usually don’t make a big difference in this course (e.g., at most a
log(n) factor) and so we just use the word-RAM model.

However, in some past midterms, the questions might trick you on this. Also, it does make a difference
when we analyze an algorithm in terms of the input size. Read the trial division example in Section
7.4.1 of CO 487.

1.4 3SUM

3SUM

We are given n + 1 numbers a3, 4y, . .., a4, and ¢ and we would like to determine if there are i, j, k
such that a; +a; + a; = c.


https://notes.sibeliusp.com/pdf/1211/co487.pdf
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Algorithm 1 Enumerate all triples and check whether its sum is c. Time: O(n>).

Algorithm 2 Observe that a; + a; + a; = ¢ can be rewritten as ¢ — a; — a; = a;. We can enumerate all
paris a; + a; and check whether ¢ — a; — a; is equal to some ay.

To do this efficiently, we can first sort the # numbers so that 4y < ap < --- < a,. Then checking
whether ¢ — a; — a; = a; for some k via binary search in O(log 7). So the total complexity is

O(nlogn + n?logn) = O(n*logn).
[ 1

sorting binary search

for each pair

Algorithm 3 We can rewrite the condition: a; +4; = ¢ — a;. Suppose again that we sort n numbers
so that a; <ap < --- < ay,. The idea is that given this sorted array and the number b := ¢ — a5, we can
check whether there are i, j such that a; + a; = b. In other words, the 2-SUM problem can be solved
in O(n) time given the sorted array. If this is true, we then get an O(n?)-time algorithm for 3-SUM,
by trying b := ¢ — ay for each 1 < k < n. That is, we reduce the 3-SUM problem to # instances of the
2-SUM problem.

Algorithm 1: 2-SUM

1 L:=1,R:=n

2 while L < R do

if a; + agr = c then

3

4 | DONE

5 else if a; + ag > c then
6 | | R«R-1

7 else

8 LL+L+1

Proof of correctness If there are no i,j such that 4; +a; = b, then we won’t find them. Now suppose
aj+aj = b for some i < j. Since the algorithm runs until L = R, there is an iteration such that L = i
or R = j. WLOG, suppose that L = i happens first, and R > j; the other case is symmetric. As long as
R > j, we have a; +ag > a; +a; = b, and so we will decrease R until R = j, and so the algorithm will
find this pair. O

Time Complexity O(n)m because R — L decrease by one in each iteration, so the algorithm will stop
within n — 1 iterations.



Divide and Conquer

2.1 Merge Sort

Sorting is a fundamental algorithmic task, and merge sort is a classical algorithm using the idea of
divide and conquer. This divide and conquer approach works if there is a nice way to reduce an
instance of the problem to smaller instances of the same problem. The merge sort algorithm can be

summarized as follows:

Algorithm 2: Merge sort

1 Function Sort(A[l, n]:
2 if n =1 then

3 L return

4 | Sort(A[L[51D

5 Sort(A [[5]+1,1])

6 merge(A 1,151, A[[5]+ 1,n])

The correctness of the algorithm can be proved formally by a standard induction. We focus on analyz-
ing the running time. We can draw a recursion tree as shown in the course note. Then the asymptotic
complexity of merge-sort is O(nlogn). This complexity can also be proved by induction, by using the
“guess and check” method.

2.2 Solving Recurrence
By drawing the recursion tree and discussing by cases, we can derive the master theorem:

Master Theorem
If T(n) = aT (%) 4 n° for constants @ > 0,b > 1,¢ > 0, then
O(n°) if ¢ > log, a

T(n) = { O(nlogn) if c =log,a
O(n'°8%) if ¢ < log,a
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Single subproblem
This is common in algorithm analysis. For example,
* T(n) =T (%) +1, we have T(n) = O(log 1), binary search.
* T(n) =T (%) + n, we have T(n) = O(n), geometric sequence.
e T(n) = T(y/n) +1, we have T(n) = O(loglog n), counting levels.

i , 1
(In level i, the subproblem is of size n> . When i = loglogn, it becomes ns" = O(1).)

Non-even subproblems

We will see one interesting example later.
e T(n)=T(%)+T (%) +n Wehave T(n) = O(nlogn).
* T(n) =T (%) +T(4)+n. Wehave T(n) = O(n).

Exponential time

T(n) = 2T(n —1) + 1. We have T(n) = O(2"). Can we improve the runtime if we have T(n) =
T(n—1)+ T(n—2)+1? This is the same recurrence as the Fibonacci sequence. Using “computing
roots of polynomials” from MATH 249, it can be shown that

T(n) =0 (( ! 2“5)") = 0(1618"),

faster exponential time.

Consider the maximum independent set problem:
Maximum independent set

Given G = (V,E). We want to find a maximum subset of vertices S C V suc that there are no
edges between every pair of vertices u,v € S.

A naive algorithm is to enumerate all subsets, taking ()(2") time. Now consider a simple variant.
Pick a vertex v with maximum degree.
e If v ¢ S, delete v and reduce the graph size by one.

e If v € S, we choose v, and then we know that all neighbors of v cannot be chosen, and so we can
delete v and all its neighbors, so that the graph size is reduced by at least two.

SoT(n) <T(n—1)+ T(n—2)+O(n), and it is strictly smaller than O(2" - n).

2.3 Counting Inversions

Input: n distinct numbers, aq,4ay,...,a,
Output: number of paris with i < j but a; > g;

For example, given (3,7,2,5,4), there are five pairs of inversions (3,2), (7,2), (7,5), (7,4), (5,4).

We can think of this problem as computing the “unsortedness” of a sequence. We may also imagine
that this is measuring how different are two rankings.


https://n.sibp.ro/math249
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For simplicity, we again assume that n = 2 for k integer. Using the idea of divide and conquer, we try
to break the problem into two halves. Suppose could count the number of inversions in the first half,
as well as in the second half. Would it then be easier to solve the remaining problem?

[3]o]2]4ef1]7]s]

\ N J
Y Y

3 pairs 1 pair

It remains to count the number of inversions with one number in the first half and the other number
in the second half. These “cross” inversion pairs ar easier to count, because we know their relative
positions. In particular, to facilitate the counting, we could sort the first half and the second half,
without worrying losing information as we already counted the inversion pairs with each half.

2[3]a]o]  [1]e]7]s]

Now, for each number ¢ in the second half, the number of “cross” inversion pairs involving c is
precisely the number of numbers in the first half that is larger than c. In this example, 1 is involved
in 4 cross pairs, 6,7,8 are all involved in 1 cross pair (with 9), and so the number of “cross” inversion
pairs is 7.

How to count the number of cross inversion pairs involving a number 4; in the second half efficiently?
Idea 1 as the first half is sorted, we can use binary search to determine how many numbers in the

first half are greater than a;. This takes O(logn) time for one a;, and totally O(nlogn) time for all
numbers in the second half. This is not too slow, but we can do better.

Idea 2 Observe that this information can be determined when we merge the two sorted list in merge
sort. When we insert a number in the second half to the merged list, we know how many numbers in
the first half that are greater than it.

For example,
2[3]4]o] [fef7]s] = [1]2]3[4]6] | |
t t

we know that there is only one number in the first half that is greater than 6. As in merge sort, this

can be done in O(n) time.

Algorithm 3: Count cross inversions

1 Function count (A[l, n)):
2 if n = 1 then return 0
3 count(A [1, 5]

4 count(A [§ +1,n])

5 merge-and-count-cross-inversions (A 1,3],A[5+1, n])

Total time complexity is T(n) = 2T (%) + O(nlogn). Solving this will give T(n) = ©(nlog®n).

The sorting step is the bottleneck and unnecessary as we have sorted them in the merge step. As it
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turns out, we can just modify the merge sort algorithm to count the number of inversion pairs.

Algorithm 4: Count cross inversions (final version)

1 Function count-and-sort(A[1,n]):

2 if n = 1 then return 0

3 $1 < count-and-sort(A [1,5])

4 sy < count-and-sort(A [5 +1,1])

5 s3 < merge-and-count-cross-inversions (A 1,43],A[5+1, n])

6 return s; + sy +s3

Total time complexity T(n) = 2T (%) 4+ O(n). Solving this will give us T(1n) = O(nlogn).

2.4 Maximum Subarray

See CLRS 4.1. Skipped. O(n) solution is using dynamic programming.

2.5 Finding Median

Input: n distinct numbers ay,ay, ..., a,.
Output: the median of these numbers.

It's clear thar problem can be solved in O(nlogn) time by first sorting the numbers, but it turns out
that there is an interesting O(n)-time algorithm. To solve the median problem, it is more convenient
to consider a slightly more general problem.

Input: n distinct numbers a;,ay,...,4, and an integer k > 1.
Output: the k-th smallest number in a4, ..., a,.

The reason is that the median problem doesn’t reduce to itself (and so we can’t recurse), while the k-th
smallest number lends itself to reduction as we will see.

The idea is similar to that in quicksort (which is a divide and conquer algorithm). We choose a number
a;. Split the n numbers into two groups, one group with numbers smaller than a;, called it S;, and the
other group with numbers greater than a;, called it S,.

Let r be the rank of g;, i.e., a; is the r-th smallest number in a4, ..., a,.
e If r = k, then we are done.
e If r > k, the nwe find the k-th smallest number in S;.
e If r < k, then find the (k — r)-th smallest number in Sj.

Observe that when r > k, the problem size is reduced to r — 1 as |S1| = r — 1, and when r < k, the
problem size is reduced to n —r as |Sp| = n —r. So if somehow we could choose a number “in the
middle” as a pivot as in quicksort, then we can reduce the problem size quickly and making good
progress, but finding a number in the middle is the very question that we want to solve. But obverse
that we don’t need the pivot to be exactly in the middle, just that it is not too close to the boundary.

Suppose we can choose a; such that its rank satisfies say 5 < r < %‘, then we know that the problem
size would have reduced by at least 75, as |Si| =7 —1 < 3% and |Sy| = n —r < J£. So, the recurrence
relation for the time complexity is T(n) < ($2) + P(n) + cn, where P(n) denotes the time to find a
good pivot and cn is the number of operations for splitting. if we manage to find a good pivot point
in O(n) time, i.e., P(n) = O(n), the it implies that T(n) = O(n). We have made some progress to the
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median problem, by reducing the problem of finding the number exactly in the middle to the easier
problems of finding a number not too far from the middle.

It remains to figure out a linear time algorithm to find a good pivot.
Randomized solution If we have seen randomized quicksort before, then we would have guessed

that keep choosing a random pivot would work. This is indeed the case and we can take a look at
[DPV 2.4] for a proof. Details not included in this course, but in CS 761.

Deterministic solution There is an interesting deterministic algorithm that would always return a
number a; with rank 3% < r < 7% in O(n) time. As seen above, this means P(1n) = O(n) and it follows
that T(n) = O(n).
Finding a good pivot The idea of the algorithm is to find the median of medians.

1. Divide the n numbers into £ groups, each of 5 numbers. Time: O(n).

2. Find the median in each group. Call them by, b, . .., b%. Time: O(n).

3. Find the median of these # medians by, by, ...,bs. Time: O(n).
5 5
Lemma

Let r be the rank of the median of medians. Then % <r< %.

Proof:
O O (@] (@] O o o @] o
INA IA VAN A INA INA IN AN IN
O O (@] (@] O o o @] o
IN IN IA IN INA IN IN IN INA
e <o <e0c< < o </e|< @< <e<e<e
IN IN IN IN IN VAN IN [A IN
o o o] @] O O O (@] O
INA IN IN IN INA IN IA IA IA
0] 0] o O 0] 0] 0] O 0]

The square is the median of the medians.

In the picture, we sort each group, and then order the groups by an increasing order of the medians.
We emphasize that this is just for the analysis, and we don’t need to do sorting in the algorithm.
It should be clear that the square is greater than the numbers in the top-left corner, and is smaller
than the numbers in the bottom-right corner.

There are about 3 - {5 = % numbers in the top-left and bottom-right corners. This implies that

3n n
M4 O

This lemma proves the correctness of the pivoting algorithm.

Time complexity

We have P(n) = T(%) + cin, where ¢; is a constant. By the reduction above,

n

T(n) < T(1o

) +P(n) +con = T(%) + T(g) +(c1+c2)n

Then T(n) = O(n).


https://cs.uwaterloo.ca/~lapchi/cs761/
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2.6 Closest Pair

Input: n points (x1,v1), (x2,¥2), - .., (Xn,yn) on the 2D-plane.
Output: 1 < i < j < n that minimizes the Euclidean distance \/ (xi = %)%+ (vi —y;)?

It is clear that this problem can be solved in O(n?) time, by trying all pairs. We use the divide and
conquer approach to given an improved algorithm.

Q R
Line L
o o
o o
o
(e} o (e] (e]
&£ °
(e]
(e}
o
o
o
o

We find a vertical line L to separate the point set into two halves: call the set of points on the left of
the line Q, and the set of points on the right of the line R. For simplicity, we assume that every point
has a distinct x-value. We leave it as an exercise to see where this assumption is used and also how to
remove it. The vertical line can be found by computing the median based on the x-value, and put the
first [ 5] points in Q, and the last | 5 | points in R.

It doesn’t seem that the closest crossing pair problem is easier to solve. The idea is that we only need
to determine whether there is a crossing pair with distance < é. This allows us to restrict attention
to the points with x-value within ¢ to the line L, but still all the points can be here. We divide the
narrow region into square boxes of side length % as shown in the picture. Here comes the important
observations.

Line L

Observation 1 Each square box has at most one point.
Proof:

If two points are in the same box, their distance is at most (g)z + (%)2 = \% < 6. This would
contradict that the closes pairs within Q and within R have distance > ¢. O

Observaion 2 Each point needs only to compute distances with points within two horizontal layers.
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Proof:
For two points which are separated by at least two horizontal layers, then their distance would be
more than J and would not be closest. O

With observation 2, every point only needs to compute distances with at most eleven other points, in
order to search for the closest pairs (i.e., pairs with distance < §). This cuts down the search space
from Q(n?) to O(n) pairs.

Algorithm 5: Finding the minimum distance

1 Find the dividing line L by computing the median using the x-value.

2 Recursively solve the closest pair problem in Q and in R. Get J.

3 Using a linear scan, remove all the points not within the narrow region defined by .
4 Sort the points in non-decreasing order by their y-value.

5 For each point, we compute its distance to the next eleven points in this y-ordering.

6 Return the minimum distance found.

The correctness of the algorithm is established by the two observations, justifying that it suffices for
each point to compute distance to O(1) other points as described in step 5.
Time complexity T(n) = 2T (%) + O(nlogn). Solving this gives us T(n) = O(nlog? n).

Note that the bottleneck is in the sorting step and it is not necessary to do sorting within recursion. We
can sort the points by y-value once in the beginning and use this ordering throughout the algorithm.
This reduces the time complexity to T(n) = 2T(5) +O(n) = T(n) = O(nlogn).

Similarly, we don’t need to compute the medians within the recursion. We can sort the points by
x-value once in the beginning and use it for the dividing step. This would not improve the worst case
time complexity but would improve its practical performance.

Questions:
1. Where did we use the assumption that the x-values are distinct?
2. What do we need to change so that the algorithm would work without this assumption?

There is a randomized algorithm to find a closest pair in expected O(#n) time.

2.7 Arithmetic Problems

Arithmetic problems are where the divide and conquer approach is most powerful. Many fastest
algorithms for basic arithmetic problems are based on divide and conquer. Today we will see some
basic ideas how this approach works, but unfortunately we will not see the fastest algorithms as they
require sme background in algebra.

Integer Multiplication

Given two n-bit numbers a = aqay - - -a, and b = bib; - - - by, we would like to compute ab efficiently.
The multiplication algorithm learnt in elementary school takes @(n?) bit operations.

Let’s apply the divide and conquer approach to integer multiplication. Suppose we know how to
multiply n-bit numbers efficiently, we would like to apply it to 2n-bit numbers.

Given two 2n-bit numbers x and y, we write x = x1x and y = y1y2, where xq,y; are higher-order
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n-bits and xy, i, are the lower-order n-bits. In other words, x = x1 - 2" +xp and y = y1 - 2" + y2. Then
xy = (x1-2" +x2) (1 - 2" +y2) = xay1 - 22+ (vy2 + xay1) 2" + Xy

Since x1, X2, Y1, Y2 are n-bit numbers, then the products here can be computed recursively. Therefore,
T(n) = 4(%) + O(n), where the additional O(n) bit operations are used to add the numbers. (Note
that x;y7 - 22" is simply shifting x1y; to the left by 2n bits; we don’t need a multiplication operation.)
Solving the recurrence will give T () = O(n?), not improving the elementary school algorithm.

This should not be surprising, since we haven’t done anything clever to combine the subproblems, and
we should not expect that just by doing divide and conquer, some speedup would come automatically.

Consider Karatsuba's algorithm, which is a clever way to combine the subproblems. Instead of com-
puting four subproblems, Karatsuba’s idea is to use three subproblems to compute x;y1, x> and
(x1 + x2)(y1 + y2). After that we can compute the middle term x;1y, + x,y1 by noticing that

(x1 +x2) - (Y1 +y2) — X1y1 — XoY2 = X1Y1 + X1Y2 + X2Y1 + XoY2 — X1Y1 — XoYo = X1Y2 + X2V -

That is, the middle term can be computed in O(n) bit operations after solving the three subproblems.
Therefore, the total complexity is T(n) = 3T (%) + O(n), and it follows from master theorem that

T(n) = O(n'83) = O(n'¥).

This is the first and significant improvement over the elementary school algorithm.

Polynomial Multiplication

n . n .
Given two degree n polynomials, A(x) = Y a;x' and B(x) = Y b;x’. We can use the same idea to
i=0 i=0

19) word operations, where we assume that 4;b; can be computed in O(1)

compute A - B(x) in O(n
word operations.

Matrix multiplication

We have already known O(n®) word operations algorithm to multiply two n x n matrices. If we use
divide and conquer, namely divide a matrix into 4 blocks, and get 8 subproblems. Then we still get
O(n®) complexity because we haven’t done anything clever.

See Strassen’s algorithm for O(n*8) complexity. After that, O(n*%) was achieved. Some researchers
believe that it can be done in O(n?) word operations. This is currently of theoretical interest only, as
the algorithms are too complicated to be implemented. Strassen’s algorithm can be implemented and
it will be faster than the standard algorithm when #n 2 5000.

There are many combinatorial problems that can be reduced to matrix multiplication, and Strassen’s
result implies that they can be solved faster than O(n>) time. As an example, the problem determining
whether a graph has a triangle can be reduced to matrix multiplication, and we leave it as a puzzle
to you to figure out how. There are many combinatorial problems in the literature where the fastest
algorithm is by matrix multiplication.

Faster Fourier Transform

This is a very nice algorithm to solve integer multiplication and polynomial multiplication in O(n logn)
time. See [DPV 2.6] or CS 371.


https://de.wikipedia.org/wiki/Strassen-Algorithmus
https://n.sibp.ro/cs371

Graph Algorithms

We study simple graph algorithms based on graph searching. There are two most common search
methods: breadth first search (BFS) and depth first search (DFS).

3.1 Graphs Basics

Many problems in computer science can be modeled as graph problems.

3.1.1  Graph Representations

Let G = (V,E) be an undirected graph. We use throughout that n = |V| and m = |E|. There are two
standard representations of a graph. One is adjacency matrix: an n x n matrix A with

. 1 ifijeE
Aljl=9q o
0 ifij¢ E
Another is the adjacency list, where each vertex maintains a linked list of its neighbors.

We will mostly use the adjacency list representation, as its space usage depends on the number of
edges, while we need to use ®(n?) space to store an adjacency matrix. Only the adjacency list repre-
sentation allows us to design algorithms with O(m + n) word operations.

3.1.2 Graph Connectivity

Given a graph, we say two vertices are connected if there is a path from u to v. A subset of vertices
S C V is connected if u,v € S are connected for all u,v € S. A graph is connected if 5,t € V are
connected for all s,t € V. A connected component is a maximally connected subset of vertices.

AN

Some of the most basic question about a graph are:

3 components

1. to determine whether it is connected.

17
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2. to find all the connected components.
3. to determine whether u, v are connected for given u,v € V.
4. to output a shortest path between u and v for given u,v € V.

Breadth first search (BFS) can be used to answer all these questions in O(n + m) time.

3.2 Breadth First Search

To motivate breadth first search, imagine we are searching for a person in a social network. A natural
strategy is to ask our friends, and then ask our friends to ask their friends, and so on. A basic version
of BFS is described as follows.

Algorithm 6: Breadth First Search (basic version)
Input: G=(V,E),s €V
Output: all vertices reachable from s
1 visited[v] = False for allv € V
2 Qo
enqueue(Q,s)
visited[s] = True
while Q # @ do
u < dequeue(Q)
foreach neighbor v of u do
if visited[v] = False then
9 L enqueue(Q, v)

visited[v] = True

a U s W

® 3

10

Each vertex is enqueued at most once (when visited[v] = False). When a vertex is dequeued, the for
loop is executed for deg(v) iterations. So, the total time complexity is

O (n + ) deg(v)) =0(n+m).

veV

Lemma

There is a path from s to v if and only if visited[v] = True at the end.

Proof:
Skipped. O

The correctness of BES is supported by the lemma. With this claim, we see that this basic version of
BFS can already be used to answer:

* whether the graph is connected or not, by checking visited[v] = True for allv € V.
e the connected component containing s, by returning all the vertices with visited[v] = True.
e whether there is a path from s to v, by checking whether visited[v] = True.

Then we can find all connected components of the graph in O(n + m) time.
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3.2.1 BFS Tree

How to trace back a path from s to v (if such a path exists)? This follows from the proof of the lemma
above, although not presented here. We can add an array parent[v]. When a vertex v is first visited,
within the for loop of vertex u, then we set parent[v] = 1. Now, to trace out a path from v to s, we just
need to write a for loop that starts from v, and keep going to its parent until we reach vertex s.

For all vertices reachable from s, the edges (v, parent[v]) from a tree, called the BFS tree/ Why is it
a tree in the connected component containing s? Say the connected component has n vertices. Every
vertex has one edge to its parent. These edges can’t form a cycle because the parent of a vertex is
visited earlier. So these edges form an acyclic subgraph and there are n — 1 edges (as s has no parent).
Therefore, the edges (v, parent[v]) must form a tree in the component containing s.

An example of BFS tree is shown below:

3.2.2 Shortest Paths

Not only can we trace back a path from v to s using a BFS tree, this path is indeed a shortest path from
s to v!

To see this, let’s think about how a BFS tree was created. These edges record the first edges to visited
a vertex. Initially, s is the only vertex in the queue, and then every neighbor of s is visited within s
being their parent, and these edges are put in the BFS tree. At this time, all vertices with distance one
from s are visited and are put in the queue, before all other vertices with distance at least two from s
are put in the queue.

A vertex v is said to have distance k from s if the shortest path length from s to v is k.

Then, all vertices with distance one will be dequeued, and then all vertices with distance two will be
enqueued before all other vertices with distance at least three.

Repeating this argument inductively will show that all the shortest path distances from s are computed
correctly, and a shortest path can be traced back from the BFS tree.

This is also very intuitive (friends before friends etc). Being able to compute the shortest paths from s
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is the main feature of BFS. We summarize below the BFS algorithm with shortest path included.

Algorithm 7: Breadth First Search (with shortest path distances)

Input: G = (V,E),s€V

Output: all vertices reachable from s and their shortest path distance from s
1 visited[v] = False for all v € V.

2 Qg

3 enqueue(Q,s)

4 visited([s] = True

5 distance[s]| =0

6 while Q # @ do

7 u < dequeue(Q)

8 foreach neighbor v of u do

9 if visited[v] = False then
10 enqueue(Q, v)

11 visited[v] = True

12 parent[v] = u

13 distance[v] = distance[u] + 1

3.2.3 Bipartite Graphs

One application of BFS is to check whether a graph is bipartite or not. There is not much freedom
allowed to design an algorithm for checking bipartiteness. Given a vertex s, all its neighbors must be
on the other side, and then neighbors of neighbors must be on the same side as s, and so on. With this
observation, we can run the BFS algorithm above and put all vertices with even distance fro ms on the
same side as s and all other vertices on the other side.

Algorithm 8: Check bipartiteness using BFS

1 L:={v € V|dist(s,v) is even}
R:={v € V|dist(s,v) is odd}

3 if de=wuvs.t. u,v € Loru,v € R then
4 ‘ return “non-bipartite”
5
6

N

else
L return “bipartite” and (L, R) as the bipartition

Note that we assume the graph is connected, as otherwise we can solve the problem in each compo-
nent. The time complexity is O(m + n) as we just do a BFS and then check every edge once.
Correctness

It is clear that when the algorithm says “bipartite” it is correct, as (L, R) is indeed a bipartition. The
more interesting part is to show that when the algorithm say “non-bipartite”, it is also correct. When
can we say for sure that a graph is non-bipartite?

An iff condition is when the graph has an odd cycle from MATH 249. Thus we would like to show
when the graph says “non-bipartite”, the graph has an odd cycle.

Suppose WLOG that there is an edge uv between two vertices u,v € L. We look at the BFS tree T.


https://n.sibp.ro/math249
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odd odd

Puw va

W  odd/even

S

Let w be the lowest common ancestor of #,v in T. Since dist(s,u) and dist(s,v) are both odd (i.e.,
having the same parity), regardless of whether dist(s, w) is even or odd, the same of the path lengths
of uw and vw on T is an even number. This implies Py, U Py U {uv} is an odd cycle.

This provides an algorithmic proof that a graph is bipartite iff it has no odd cycles. This also provides
a linear time algorithm to find an odd cycle of an undirected graph. Having an odd cycle is a “short
proof” of non-bipartiteness, which is much better than saying “we tried all bipartitions but all failed”.

3.3 Depth First Search

Depth first search is another basic search method in graphs, and this will be useful in identifying more
refined connectivity structures.

Motivating Example

Last time we imagined that we would like to search for a person in a social network, and BFS is a
very natural strategy (asking friends, then friends of friends, and so on). There are other situations
that using depth first search is more natural. Imagine that we are in a maze search for the exit. We
could model this problem as a s — t connectivity problem in graphs. Each square of the maze is a
vertex, and two other vertices have an edge if and only if the two squares are reachable in one step.
Then finding a path from our current position to the exit is equivalent to finding a path between two
specified vertices in a graph (or determine that none exists).

Photo by Mitchell Luo on Unsplash

How would we search for a path in the maze? There are no friends to ask, and it doesn’t look efficient
anymore to explore all vertices with distance one, then distance two and so on (as we have to move
back and forth).

Assuming we have a chalk and can make marks on the ground. Then it is more natural to keep going


https://unsplash.com/@mitchel3uo
https://unsplash.com/
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on one path bravely until we hit a dead end, and make some marks on the way and also on the way
back so that we won’t come back to this dead end again, and only explore yet unexpected places. This
is essentially depths first search (DFS).

As for BFS, we define DFS by an algorithm. DFS is most naturally defined as a recursive algorithm.

Algorithm 9: Depth First Search
Input: an undirected graph G = (V,E), a vertexs € V
Output: all vertices reachable from s

1 visited[v] = False forallv € V

2 visited[s] = True

explore(s)

Function explore(u):
foreach neighbor v of u do
if visited[v] = False then
L visited[v] = True

a U1 s W

@

explore(v)

o

Time Complexity The analysis of the time complexity is similar to that in BFS. For each vertex u,
the recursive function explore(u) is called at most once. When explore(u) is called, the for loop is
executed at most deg(u) times. Thus the total time complexity is O(n + L,cy deg(v)) = O(n + m)
word operations.

There is a way to write DFS non-recursively using the idea of stack.

The basic lemma about graph connectivity still holds for DFS.

Lemma

There is a path from s to ¢ if and only if visited[t]| = True at the end.

The lemma shows that DFS can also be used to check s — t connectivity, to find the connected com-
ponent containing s, and to check graph connectivity, all in O(m + n) time. As we can also find all
connected components in O(m + n) time using DFS.

The main difference from BFS is that DFS cannot be used to compute the shortest path distances, and
this is the main feature of BFS. But as we shall see, DFS can solve some interesting problems that BFS
cannot solve.

3.3.1 DEFS Tree

As for BFS, we can construct a DFS tree to trace out the path from s. Again, when a vertex v is first
visited when we explore vertex u, we say vertex u is the parent of vertex v.

By the same argument as in BFS, these edges (v, parent[v]) form a tree, and we can use them to find a
path to s. We call this a DFS tree of the graph. Note that a graph could have many different DFS trees
depending on the order of exploring the neighbors of vertices. The same can be said for BFS trees.
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Definitions/Terminology for DFS trees
e The starting vertex s is regarded as the root of the DFS tree.

* A vertex u is called the parent of a vertex v if the edge uv is in the DFS tree, and u is closer to
the root than b is to the root.

* A vertex u is called an ancestor of a vertex b if u is closer to the root than v, and u is on the path
from v to the root. In this situation, we also say v is a descendant of vertex u.

¢ A non-tree edge uv is called a back edge if either u is an ancestor or descendant of v. It is called
a back edge because this edge is from the descendant to the ancestor.

In the above example, b is an ancestor of ¢ and f, but c is neither an ancestor nor descendant of f. The
following example is simple but has an important property that we will use.

Property (back edges)

In an undirected graph, all non-tree edges are back edges.

Proof:

Suppose by contradiction that there is an edge between u and v but # and v are not an ancestor-
descendant pair. WLOG assume that u is visited before v. Then, since uv € E, v will be explored
before u is finished, and thus u will be an ancestor of v, a contradiction. O

Starting Time and Finishing Time

We record the time when a vertex is first visited and the time when its exploring is finished. These
information will be very useful in design adn analysis of algorithms. To be precise, we include the
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pseudocode in the following.

Algorithm 10: Depth First Search (with timer)
Input: an undirected graph G = (V,E), a vertexs € V
Output: all vertices reachable from s

1 visited[v] = False for allv € V

2 time =1

visited[s] = True
explore(s)

N U1 s W

Function explore(u):
start[u] = time

8 time < time + 1

9 foreach neighbor v of u do

N

10 if visited[v] = False then
11 visited[v] = True

12 explore(v)

13 | finish[u] = time

14 time < time+1

Property (parenthesis)

The intervals [start(u), finish(1)] and [start(v), finish(v)] for two vertices 1 and v are either disjoint
or one is contained in another.

The latter case happens when u, v are an ancestor-descendant pair.

3.4 Cut Vertices and Cut Edges

Suppose an undirected graph is connected. We would like to identify vertices and edges that are
critical in the graph connectedness. A vertex v is a cut vertex (aka an articulation point, or a separating
vertex) if G — v is not connected, i.e., removal of v and its incident edges disconnects the graph. An
edge e is a cut edge (aka a bridge) if G — ¢ is not connected. See examples in CO 342.

The idea is to use a DFS tree to identify all cut vertices and cut edges. Consider a vertex v which is
not the root. We would like to determine whether v is a cut vertex. When we look at the DFS tree, all
the subtrees below v are connected, as well as the complement of the subtree at v.

complement

e

\

«— connected

The main observation is the property that all the non-tre edges are back edges (proved above), and so
the only way for a subtree below v to be connected outside is to have edges going to an ancestor of v.


https://n.sibp.ro/co342
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Claim A subtree T; below v is a connected component in G — v if and only if there are no edges with
one endpoint in T; and another endpoint in a (strict) ancestor of v.

Proof:
< By the back edge property, all the non-tree edges are back edges, so there are no edges going
to another subtree below v nor edges going to another subtree of the root. So, if there are no
such edges going to a (strict) ancestor of v, then T; must be a component in G — v.

= On the other hand, if such edges exist, then T; is connected to the complement even after v is
removed, and so T; won't be a connected component in G — v. O

The same argument applies to each subtree below v gives the following characterization of a cut vertex.

Lemma

For a non-root vertex v in a DFS tree, v is a cut vertex if and only if there is a subtree below v
with no edges going to an ancestor of v.

Proof:
= If every subtree below v has some edges going to an ancestor of v, then every subtree is
connected to the complement.

So, G — v is connected and thus v is not a cut vertex.

< If some subtree T; below v has no edges going to an ancestor of v, then T; will be a connected

component in G — v by the previous claim, and thus v is a cut vertex. O

It remains to consider the root vertex of the DFS tree.
Lemma

For the root vertex v of a DFS tree, v is a cut vertex if and only if v has at least two children.

With these lemmas, we then know how to determine if a vertex a cut vertex by looking at a DFS tree.

We are ready to use the above lemmas to design a O(n + m) time algorithm to report all cut vertices.
To have an efficient implementation, the idea is to process the vertices of a DFS following a bottom
up ordering, and keep track of how “far up” the back edges of a subtree can go (i.e., how close to the
root). By the lemma, for a non-root vertex v, v, v is not a cut vertex if and only if all subtrees below v
have an edge that goes above v.

What would be a good parameter to keep track of how far up we can go? The starting time would be
a good measure, because an ancestor always has an earlier/smaller staring time than its descendants.
(We could also do it in other ways, e.g., by recording the distance to the root instead.)
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Let us define a value low[v] for each vertex on the DFS tree:

low([v] := min{start[v], min{start[w} + descendant of o or 1 —

uw is a back edge with u being } }

Informally, low[v] records how far up we can go from the subtree rooted at v. We will be done if we
can prove the following two things:

1. We can compute low[v] for all v € V in O(n + m) time.
2. We can identify all cut vertices in O(n + m) time using the low array.

For 1, we compute the low values from the leaves of the DFS tree to the root of the DFS tree. The
base case is when v is a left. Then we can compute low[v] by considering all the edges incident on v
and taking the minimum of the starting time of the other endpoint. This takes O(deg(v)) time. By
induction, suppose the low values of all children of v are computed. Then to compute low[v], we just
need to take the minimum of the low value of its children, as well as the start time for all back edges
involving v. This takes O(deg(v)) time.

In the example given in the picture, low[v] = min{low[u1], low[u;], low[u3], start[x], start[y]}. It should
be clear that low[v] is computed correctly, assuming the low values of all its children are correct, and
so the correctness can be established by induction. By this bottom-up ordering, every vertex on the
tree is only processed once, and thus the total time complexity is O(n + Y ,c deg(v)) = O(n + m).

For 2, to check whether a non-root vertex v is a cut vertex, we just need to check whether low[u;] <
start[v] for all children u; of v. If so, then v is not a cut vertex, as all subtrees rooted at u; will be a
connected component in G — v, and thus v is a cut vertex. These arguments are covered in the first
lemma. The root vertex is handled using the other lemma.

This completes the description of a linear time algorithm to identify all cut vertices given the low array.

3.5 Directed Graphs

In a directed graph, each edge has direction. When we say uv is a directed edge, we mean the edge
is point from u to v, and u is called the tail and v is called the head of the edge. Given a vertex v,
indeg(v) denotes the number of directed edges with v as the head and we call them incoming edges
to v. Similarly, outdeg(v) denotes the number of directed edges with directed edges with v as the tail
and we call them outgoing edges of v.

Directed graphs are useful in modeling asymmetric relations (e.g., web page links, one-way streets,
etc). We are interested in studying the connectivity properties of a directed graph.

We say t is reachable from s if there is a directed path from s to . A directed graph is called strongly
connected if for every pair of vertices u,v € V, u is reachable from v and v is reachable from u.
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Y -

strongly connected not strongly connected

A subset S C V is called strongly connected if for every pair of vertices u,v € S, u is reachable from v
and v is reachable from u.

A subset S C V is called a strongly connected component if S is a maximally strongly connected
subset, i.e., S is strongly connected but S 4 v is not strongly connected for any v € S.

\ 4
[ ]

Y
2 strongly connected components

A directed graph is a directed acyclic graph (DAG) if there are no directed cycles in it. Note that a
directed acyclic graph, unlike its undirected counterpart, could have many edges.

o R

undirected acyclic graph directed acyclic graph

We are interested in designing algorithms to answer the following basic questions:
1. Is a given graph strongly connected?
2. Is a given graph directed acyclic?
3. Find all strongly connected components of a given directed graph.

As in undirected graphs, it will turn out that there are O(n + m)-time algorithms to solve these prob-
lems, but they are not as easy as the algorithms for undirected graphs.

3.5.1 Graph Representations

Both adjacency matrix and adjacency list can be defined for directed graphs. In the adjacency matrix
A, if ij is a directed edge, then A;; = 1; otherwise A;; = 0. In the adjacency list, if ij is an edge, then j
is on 7’s linked list. As in undirected graphs, we will only use adjacency list in this part of the course,
as only this allows us to design O(n + m)-time algorithms.

3.5.2 Reachability

Before studying the above questions, we first study a simpler question of checking reachability. Given
a directed graph and vertex s, both DFS and BFS can be used to find all vertices reachable from s in
O(n+ m) time. Both BFS and DFS are defined as in for undirected graphs, except that we only explore
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out-neighbors.

Algorithm 11: Depth First Search for directed graphs

Input: a directed graph G = (V,E), a vertexs € V
Output: all vertices reachable from s

1 visited[v] = False for allv € V

2 time =1

visited[s] = True

explore(s)

N U1 A W

Function explore(u):

start[u] = time

8 time < time 41

9 foreach out-neighbor v of u do

N

10 if visited[v] = False then
11 visited[v] = True

12 explore(v)

13 | finish[u] = time

14 time < time+1

The time complexity is O(n 4+ m), and a vertex ¢t is reachable from s if and only if visited[t] = True.
When we look at all vertices reachable from s, the subset form a “directed cut” with no outgoing edges
(but could have incoming edges into the subset). We can define BFS for directed graphs analogously,
by only exploring out-neighbors. An important property of BFS is that it computes the shortest path
distances from s to all other vertices.

3.5.3 BFS/DEFS Trees

As in for undirected graphs, when a vertex v is first visited, we remember its parent as the vertex u
when v is first visited from. The edges (v, parent[v]) form a tree, and both BFS trees and DFS trees are
defined in this way.

BEFS trees

By setting dist[v] = dist[parent[v]] + 1, we compute all shortest path distances from s. In undirected
graphs, for all non-tree edges uv, dist[v] — 1 < dist[u] < dist[v] + 1. In directed graphs, there could be
non-tree edges with large difference between dist[u]| and dist[v], but in this case, it must be dist[u] >
dist[v] as they must be “backward edges”.

S
1 \1 ‘ 1
: o\
2 2 2 é« 2
3 3 3 3 3
undirected BFS tree directed BFS tree

DES trees

In undirected graphs, all non-tree edges are back edges. In directed graphs, some non-tree edges are
“cross edges” and “forward edges”.
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forward edge

undirected DFS tree directed DFS tree

Structured in directed graphs are more complicated.

3.5.4 Strongly Connected Graphs

We are ready to consider the first problem of checking whether a directed graph is strongly connected.
From the definition, we need to check Q)(n?) pairs and see if there is a directed path between them.
In undirected graphs, it is enough to pick an arbitrary vertex s, and check whether all vertices are
reachable from s. So we just check reachability for O(n) pairs.

What would be a corresponding “succinct” condition to check in directed graphs? It is easy to find
examples for which just checking reachability from s is not enough. Checking reachability from every
vertex would work, but it would take Q(n(n + m)) time, too slow. The following observation allows
us to reduce the number of pairs to check to O(n).

Observation G is strongly connected if and only if every vertex v is reachable from s and s is reach-
able from every vertex v, where s is an arbitrary vertex.

Proof:
= is trivial by the definition for strong connectedness.

Now let’s prove <=. For any u, v, by combining a path from u to s and a path from s to v, we obtain
a path from u to v, so G is strongly connected. O

We know how to check whether all vertices are reachable from s in O(n + m) time by BFS or DFS.
How do we check whether s is reachable from all vertices efficiently? There is simple trick to do it, by
reversing the direction of the edges.

Claim Given G, we reverse the direction of all the edges to obtain GR. There is a directed path from
v to s in G if and only if there is a directed path from s to v in GR. So, s is reachable from all vertices
in G if and only if every vertex is reachable from s in GX.

With this claim, we can check whether s is reachable from every vertex in G by doing one BFS/DFS in
GR from s.

To summarize, we have the following algorithm.

Algorithm 12: Strong Connectivity

1 Check whether all vertices in G are reachable from s by one BFS/DFS.

> Reverse the direction of all edges in G to obtain GX.

3 Check whether all vertices in GR are reachable from s by one BFS/DFS.

4 If both yes, return “strongly connected”; otherwise return “not strongly connected”.

The correctness of the algorithm follows from the observation and the claim above. The time complex-
ity is O(n + m) time. Note that we can construct GR in linear time.
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3.5.5 Direct Acyclic Graphs

Direct acyclic graphs are directed graphs without directed cycles. They are useful in modeling de-
pendency relations (e.g., course prerequisites, software installation). In such situations, it would be
useful to find an ordering of the vertices so that all the edges go forward. This is called a topological
ordering of the vertices (e.g., an ordering to take the courses).

Proposition

A directed graph is acyclic if and only if there is a topological ordering of the vertices.

Proof:
<« Since all the directed edges go forward, there are no directed cycles.

= We will prove that any directed acyclic graph has a vertex v of indegree zero. Since G — v is
also acyclic, there is a topological ordering of G — v by induction on the number of vertices,
and we are done.

It remains to argue that every directed acyclic graph has a vertex of zero indegree.

Suppose by contradiction that every vertex has indegree at least one. Then we start from an
arbitrary vertex u, and go to an in-neighbor u; of u, and then go to an in-neighbor u; of 1, and
so on. It is always possible since every vertex has in-degree at least one. If some in-neighbor
repeats, then we find a directed cycle, a contradiction. But it must repeat at some point, since

the graph is finite. O

There are at least two approaches to find a topological ordering of a directed acyclic graph efficiently.

Approach 1 Keep finding a vertex of indegree zero in the remaining graph and put it in the beginning
of the ordering. The algorithm is in O(n + m) time.

Approach 2 This is perhaps less intuitive, but the ideas will be useful later. The idea is to do a DFS
on the whole graph (i.e., start a DFS on an arbitrary vertex, but if not all vertices are visited, start a
DFS on an unvisited vertex, and so on, until all vertices are visited, just like what we would do in
finding all connected components of an undirected graph). Note that this DFS can be done in any
ordering of vertices. In particular, we don’t need to start at a vertex of indegree zero nor do we need
any information about a topological ordering.

In the following proof, we use that the parenthesis property of starting and finishing time holds for
directed graphs as well.

Lemma

If G is directed acyclic, then for any directed edge uv, finish[v] < finish[u] for any DFS.

Proof:
We consider two cases.

Case 1 start[v] < start[u]. Since the graph is acyclic, u is not reachable from v. So u cannot be a
descendant of v. By the parenthesis property, the intervals [start[v], finish[v]] and [start[u], finish[u]]
must be disjoint. The only possibility left is start[v] < finish[v] < start[u] < finish[u], proving the
lemma in this case.

Case 2 start[u] < start[v]. Then, since v is unvisited when is started and uv is an edge, v will be a
descendant of u in the DFS tree. This is the same as the argument used in the back edge property.
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| By the parenthesis property, we have start[u] < start[v] < finish[v] < finish[u]. O

Algorithm 13: Topological ordering / directed acyclic graphs

1 Run DFS on the whole graph.
2 Output the ordering with decreasing finishing time.
3 Check if it is a topological ordering. If not, return “not acyclic”.

Correctness The lemma proves that if the graph is acyclic, then all edges go forward in this ordering.
On the other hand, if the graph is not acyclic, then there is no topological ordering by the proposition.

Time Complexity The algorithm can be implemented in O(n + m) time. Note that we don’t need to
do sorting for the second step. Just put a vertex in a queue when it is finished, by adding one line in
the code.

3.5.6 Strongly Connected Components (SCC)

Finally, we consider the more difficult problem of finding all strongly connected components. We wil
combine and extend the previous ideas to obtain an O(n + m) time algorithm. First, let’s get a good
idea about how a general directed graph looks like.

Observation Two strongly connected components are vertex disjoint. If two strongly connected
components C; and C; share a vertex, then C; U C; is also strongly connected, contradicting maximality
of Cl, Cz.

In the picture (adapted from [DPV 3.4]), when every strongly connected component is “contracted”
into a single vertex, then the resulting directed graph is acyclic. This is true in general. So, a general
directed graph is a directed acyclic graph on its strongly connected components.

Idea1 Suppose we start a DFS/BFS in a “sink component” C (a component with no outgoing edges),
then we can identify the strongly connected component C. This is because every vertex in C is reach-
able from the starting vertex, but no vertices outside. So, just read off vertices with visited[v] = True
will identify C.

This suggests the following strategy.
1. FInd a vertex v in a sink component C.

2. Do a DFS/BFS to identify C.
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3. Remove C from the graph and repeat.
So, now, the question is how to find a vertex in a sink component efficiently? It doesn’t look easy.
Idea 2 Do “topological sort”. As discussed above, if each strong component is “contracted” to a

single vertex, the resulting graph is acyclic. From the previous section about directed acyclic graphs,
we know that if we do a DFS on the whole graph, the node with the earliest finishing time is a sink.

This suggests the following strategy.
1. Run DFS on the whole graph and obtain an ordering in increasing finishing time.
2. Use this ordering in the previous strategy in idea 1 to take out one sink component at a time.

This is a very nice strategy, but unfortunately it doesn’t work. Consider a counterexample

44

If we start the DFS at s, then node ¢ has the earliest finishing time, but ¢ is not a sink component.

Idea 3 The natural strategy doesn’t work, but a modification of it may still work. The observation si
that the DFS ordering still gives us useful information about a topological ordering of components. In
particular, although we couldn’t say that a vertex with smallest finishing time is in a sink component,
we can say that a vertex with the largest finishing time is in a source component. The proof of the
following lemma is similar to the proof of the lemma in topological ordering.

Lemma

If C and C’ are strongly components and there are edges from C to C’, then the largest finishing
time in C is bigger than the largest finishing time in C’

Proof:
Again, we consider two cases.

Case 1 The first vertex v visited in C U C’ is in C’. Note that vertices in C are not reachable from
v but all vertices in C’ are reachable from v. By the time when v is finished, all vertices in C" are
finished, while all vertices in C haven't started.

Case 2 The first vertex v visited in C U C’ is in C. Since vertices in C U C’ are reachable from v, all
vertices in C U C’ will be finished before v is finished, and so v € C will have the largest finishing
time in CUC'. m

With this lemma, we know that if we first do a DFS adn order the vertices in decreasing order finishing
time, and then do a DFS again using this ordering, then we will visit “ancestor components” before we
visited “descendant components”. But this not what we want, as we want to start in a sink component
and cut it out first.

Idea 4 Reverse the graph so that sources become sinks!

First observe that the strong components in G are the same as the strong components in GR. Very
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important for us, source components in G become sink components in GR and vice versa. Therefore,
the ordering we have in G following a topological ordering of the components from sources to sinks
becomes an ordering in GR following a topological ordering of the components from sinks to sources.
Now, we can just follow this ordering to do the DFS in GR to cut out sink components one at a time,
as we wished in idea 1 and idea 2.

Finally, we can summarize the algorithm.

Algorithm 14: Strong Components

1 Run DFS on the whole graph G using an arbitrary ordering of vertices.

2 Order the vertices in decreasing order of finishing times obtained in step 1.

3 Reverse the graph G to obtain the graph GK.

4 Follow the ordering in step 2 to explore the graph G to cut out the components one at a time.

To be more precise, we expand step 4 in more details.

Algorithm 15: Strong Components (step 4)

1 Let i be the vertex of i-th largest finishing time in step 2.
2 Letc=1

3 forl <i<mndo

4 | if visited[i] = False then

5 DFS(GR, 1)
6 Mark all the vertices reachable from i in GR in this iteration to be in component C.
7 c+—c+1

The proof of correctness follows from the discussion above. All the steps can be implemented in
O(n + m) time.



Greedy Algorithms

4.1 Interval Scheduling

Input: n intervals [s1, f1], [s2, f2], -- -, [Sn, fu)-
Output: a maximum set of disjoint intervals.

For example, in the picture below,

the highlighted intervals form a maximum set of disjoint intervals. There are multiple optimal solu-
tions in this example.

For this problem, we can imagine that we have a room, and there are people who like to book our room
and they tell us the time interval that they need the room, and our objective is to choose a maximum
subset of activities with no time conflicts.

Generally speaking, greedy algorithms work by using simple and/or local rules to make decisions
and commit on them. An analogy is to make maximum profit in short term.

There are multiple natural greedy strategies for this problem including
¢ earliest starting time (choose the interval with min; s;),
e earliest finishing time (choose the interval with min; f;),
e shortest interval (choose the interval with min; f; —s;),

e minimum conflicts (choose the interval that overlaps with the minimum number of other inter-
vals).

It turns out that only one of these strategies would work.

Earliest starting time is the easiest to find counterexamples, because the interval with earliest starting
time could be very long, e.g.,

It is not difficult to find counterexamples for shortest intervals, e.g.,

34
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It’s a bit harder to find counterexamples for minimum conflicts, e.g.,

There are no counterexamples for earliest finishing time. The intuition is that we leave maximum
space for future intervals. But how could we argue that this will always give an optimal solution (that
there are no solutions better)?

Algorithm 16: Interval Scheduling

1 Sort the intervals so that f; < f, < --- < f,,. Current solution S = @.
2 forl1 <i<mndo

3 if interval i [s;, f;] has no conflicts with other intervals in S then

L | S« su{i}

4

5 return S

Correctness The idea is to argue that any (optimal) solution would do no worse by using the interval
with earliest finishing time. Let [s;, fi,] < [si,, fi,] < --+ < [sj, fi,] be the solution returned by the
greedy algorithm. Let [s;, f;,] < [s,, fj,] < --- < [sj,, fj,] be an optimal solution with £ > k. Since
fiy < fj, <sj, (the first inequality is because i; = 1 and is the interval with earliest finishing time, and
the second inequality is because [s;,, f;, ] and [s},, f,] are disjoint), so [s;,, f,] < [sj,, fi,] < -+ < [sj,, fj,]
is still an optimal solution. Thus we have the following claim, showing that it is no worse by choosing

[s1, f1]-

Claim There exists an optimal solution with [s1, f1] chosen.

We will use this argument inductively to prove the following lemma.

Lemma

[siafisllsiufisluccnlsSiafil, [sjkﬂ,jfjkﬂ], ey, [sjé,fjg] is an optimal solution with f; < fj,.

Informally, the lemma says that the greedy solution always “stays ahead”. Before we prove the lemma,
let’s see how it implies that the greedy solution is optimal. Suppose, by contradiction, that the greedy
solution is not optimal, i.e., £ > k. Since f; < fjk < Sji,, We see that the interval [sjk 1 fjk +1] has no
overlapping with the greedy solution, and it should have been added to the greedy solution by the
greedy algorithm, a contradiction that the greedy algorithms only finds k disjoint intervals.

Proof of lemma:

The base case holds because of the previous claim. Assume the claim is true for ¢ > 1, and we are
to prove the inductive step. Since [s; , fi,], ..., [si., fi.l, [8j..1/ fici1 ) - - -/ [8j,, fj,] is an optimal solution
by the induction hypothesis with f; < f;, we have f; | < f; | as the interval [s; , f;.,] has
no overlapping with [sy, f1],...,[si, fi.] and the greedy algorithm chooses the next interval with
earliest finishing time. As f; =~ < f; ., by replacing [s; , fj..,] with [s; ,, fi ], the resulting
solution [s;,, fi,], -+, [Si.,1/ fi1)r [Sjsar fisals - -/ [8,, fi,] i feasible and optimal. O

Time complexity O(nlogn).

4.2 Interval Coloring

Input: n intervals [s1, f1], [s2, f2],- - -, [Sn, fu]
Output: use the minimum number of colors to color the intervals, so that each interval gets one color
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and two overlapping intervals get two different colors.

We can imagine this is the problem of using the minimum number of rooms (colors) to schedule all
the activities (intervals).

Our natural greedy algorithm is to use the previous algorithm to choose a maximum subset of disjoint
intervals and use only one color for them, and repeat. However, this algorithm won’t work. There is
another greedy algorithm that will work.

Algorithm 17: Interval coloring

1 Sort the intervals by starting time so that s; < sy < --- <sy.
2 forl1<i<ndo
3 use the minimum available color c; to color the interval i.

Suppose the algorithm uses k colors. To prove the correctness of the algorithm, we must prove that
there are no other ways to color the intervals using at most k — 1 colors. How do we argue that?

A nice and simple way is to show that when the algorithm uses k colors, there exists a time f such
that it is contained in k intervals. Since these k intervals are pair wise overlapping. We need at least k
colors just to color them, and therefore a (k — 1) coloring doesn’t exist.

Proof of correctness:

Suppose the algorithm uses k colors. Let interval ¢ be the first interval to use color k. This implies
that interval £ overlaps with intervals with colors 1,...,k — 1. Call then [s; , fi, ], ..., [si_,, fi,_,]- As
we sort the intervals with increasing order of starting time, we have Si; <spforalll <j<k-1
Since all these intervals overlap with [sy, fy], we also have sy < fij for all 1 < j <k — 1. Therefore,

s¢ is a time contained in k intervals. This implies that there is no k — 1 coloring. O

4.3 Minimizing Total Completion Time

Input: n jobs, each requiring processing time p;.
Output: An ordering of the jobs to finish so as to minimize the total completion time.

The completion time of a job is defined as the time when it is finished. For example, given four jobs
with processing times 3,4, 6,7, and if we process the jobs in this order, then the completion times are
3,7,13,20, and the total completion time is 43.

It is very intuitive that we should process the jobs in increasing order of processing time. (Imagine we
are in a supermarket with four customers with 3,4, 6,7 items.) But how do we are argue that there are
no better solutions? Here we use an “exchange argument” to show that the greedy solution is optimal
(Again, we imagine that we have 1 item but the customer in front of us has 10 items.)

Proof of correctness:

Consider a solution which is not sorted by non-decreasing processing time. This implies there is an
“inversion pair”: the i-th job and the j-th job with i < j but p; > p;. This implies that there exists
i <k < jwith px > pry1. By swapping the jobs k and k + 1, we will prove that the total completion
time is smaller. Note that all the completion times, except for k and k + 1, are unchanged.

Let c be the completion time of job k — 1. Before swapping, the completion times of job k and k + 1
are ¢ + py and ¢ + px + px.1 respectively, and the total of these two jobs are 2c + 2py + py41. After
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swapping, the total of these two jobs are 2c + 2py. 1 + pi. Since pyi1 < pi, it is clear that the solution
after swapping is better. So, any ordering which is not sorted by non-decreasing processing times
is not optimal. O

The exchange argument is quite nice and useful.

4.4 Huffman Coding

This is a well-known greedy algorithm that gives an optimal prefix code. The idea might has been
covered CS 240 without motivation.

Compression

Suppose a text has 26 letters a,b,¢,...,z. A standard way to represent the letters using bits is to use
[log, 26| = 5 bits for each letter, e.g., a = 00000, b = 00001, ¢ = 00010, ..., z = 11010. So we use five
bits to represent each letter. In general, we cannot do much better if each letter appears equally likely.

What if we scan the text once and notice that the letters appear with quite different frequencies? E.g.,
“a” appears 10% of the time. Can we hope to do better by using variable-length encoding scheme?
The idea is to use fewer bits for more frequent letters, and more bits for less frequent letters, so that

the average number of bits used is fewer.

Prefix Coding

When we use fixed-length bit strings to represent the letters, it is easy to decode. Say if we use five
bits to encode the 26 letters, we just need to read five bits at a time, to decode one letter at a time. It is
not as clear how to decode if we use variable-length encoding.

Say suppose we encode the five letters as five letters as a = 01, b = 001, ¢ = 011, d = 110, ¢ = 10.
Then, when we read a compressed text such as 00101110, it could be decode as “bce”, but it could
also be decoded as “bad”. To avoid ambiguity in decoding, we will construct prefix codes, so that no
encoded string is a prefix of another encoded string.

"1

In the above example, the ambiguity arises because the string representing “a” is a prefix of the
string representing “c”, i.e,, a = 01 and ¢ = 011. Now, suppose we use a prefix code for the five
letters, a = 11, b = 000, c = 001, d = 01, e = 10. Then we encode the text “cabed” using the string
001110001001. When the decoder reads this string, it will read from left to right and unambiguously

decode the text “cabed”. In short, prefix coding allows easy and efficiently encoding decoding.

Decoding Tree

It is useful to represent a prefix code as a binary tree. In the example above, the prefix code can be
represented by the tree as shown below.

To decode, we start from the root, read a bit, move to the corresponding branch, until we reach a leaf,
then we return the letter associated to the leaf, and go back to the root and repeat.

As another example, 1 =0, b =0, c = 101, d = 110, e = 111, then the tree is


https://n.sibp.ro/cs240
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This is useful when frequency of “a” is very high.

It should be clear that each prefix code has a binary tree representation and each binary tree represen-
tation corresponds to a (unique) prefix code.

Objective

Suppose we are given the frequencies of the five letters, say f; = 0.8, f, = fc = f; = f. = 0.05. Then
the average length of a letter (in the second example) is

0.8x1 + 005x3 +0.05x34+0.05x34+0.05x3=14
—— ——
1 bit for “a” 3 bits for “b”

In the three representation, the length of an encoded string is equal to the depth of the corresponding
leaf, and the objective becomes } f; - depth(i).
i

Optimal Prefix Code

n
Input: n symbols with frequencies fi,..., fy so that )} f; = 1.
i=1
Output: a binary tree T with 1 leaves that minimizes } f; - depth (i)
i

This problem doesn’t look so easy as the output space is quite complicated, as there are exponentially
many possible binary trees. It is also not clear how the algorithm can make a decision greedily.

Let’s first think about how an optimal solution should look like. We say a binary tree is full if every
internal node has two children. We start with a simple observation.

Observation The binary tree of an optimal solution is full.

Proof:
If there is an internal node with only one child, then we can directly connect its child to its parent
and decrease the depth of some leaves, getting a better solution. O

Corollary There are at least two leaves of maximum depth that are siblings (having the same parent).

Proof:
Look at a leaf of maximum depth. If it has no sibling, then the tree is not full. O

Suppose we know the shape of an optimal binary tree (which we don’t know yet). Then it is not
difficult to figure out how to assign symbols to the leaves. We should assign symbols with highest
frequencies to the leaves with smallest depth, and assign symbols with lowest frequencies to the leaves
with largest depth. Otherwise, if one symbol of higher frequency is of a larger depth than another
symbol of lower frequency, then we could “exchange” the two symbols and decrease the objective
value. This exchange argument leads to the following observation.

Observation There is an optimal solution in which the two symbols with lowest frequencies are
assigned to leaves of maximum depth, and furthermore they are siblings.
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Proof:

By the corollary, there are two leaves of maximum depth that are siblings. By the exchange argu-
ment, we can assign them with the symbols with lowest frequencies without increasing the objective
value (just exchange with the symbols there. So, the new solution is still optimal and satisfies the
properties as stated. O

Huffman’s Algorithm

So far, we have deduced very little information about the optimal solutions. We just know that there
are two leaves of maximum depth that are siblings, adn we can assign two symbols with lowest
frequencies there. but we still don’t know how to use the frequencies to make decisions.

Huffman figured out that this little information is already enough to design an efficient algorithm.
The idea is to “reduce” the problem size by one, by identifying/combing two symbols with lowest
frequencies into one, knowing that they can be assumed to be siblings of maximum depth. How the
tree should look like will become apparent when the problem size becomes small enough, and then
we can construct back a bigger tree from a smaller tree one step at a time.

Algorithm 18: Huffman Code
Input: a set S of n symbols, with frequencies f, ..., fu
Output: an optimal binary tree T, with leaves associated to symbols in S

1 if |S| = 2 then
2 ‘ encode one symbol using 0 and another symbol using 1, and return the tree.
3 else

4 Let y and z be two symbols with lowest frequencies, denoted by f, and f.

5 Delete symbols ¢ and z from S. Add a new symbol w with frequency f, + f..
6 Solve this new problem (with #n — 1 symbols) recursively and get an optimal tree T'.
7 In T/, look at the leaf associated with w, add two leaves to it (so that w becomes an internal

node), and associate y and z with the two new leaves.

The scheme is summarized as follows.

original problem reduced problem
nsymbols: a, b, x, @, ..., y, z = n—1symbols:a, b, x, @ ..., w
faZbef*Z"'nyZfz fathZf*Z"'ny‘f‘fz
A3 solve (recursively),

PN AN

* a R <: * a e

Yy z @ b @ b
optimal solution for optimal solution for
the original problem? the reduced problem

Let’s do some examples to be familiar with Huffman'’s algorithm.



CHAPTER 4. GREEDY ALGORITHMS 40

Example:
Five symbols: 4, b, ¢, d, ¢, with f, = 0.3, f, =0.2, f. =04, f; = 0.05, fo = 0.05

Reduce to four symbols: 4, b, ¢, (d,e) with f, = 0.3, f, = 0.2, f, =04, flaey =01
Reduce to three symbols: a, (b, (d,¢)), c with f, = 0.3, f(, (4.)) = 0.3, fc = 0.4
Reduce to two symbols: (a, (b, (d,e))), c with f(, 5 (a,))) = 0.6, fc = 0.4

Now construct trees.

root root
0 1 0 1
€ (@(b(de) ¢ N
T (b(de)
Example:
Five symbols: 4, b, ¢, d, e, with f, = 0.18, f, = 0.24, f. = 0.26, f; = 0.2, f. = 0.12. Then the tree is

root

Correctness proof The most natural way to analyze a recursive algorithm is to use induction. We
will use the same terminology as described in the algorithm.

Clearly, the output of the base case when there are only two symbols is optimal. Denote the objective
value of the solution returned by Hoffman’s algorithm by Sol(n). By induction, we have computed
correctly an optimal binary tree T’ for the n — 1 symbols, with y and z replaced by w, and f,, = f, + fz.
Let Obj(T”) be the objective value of T".

What is the relationship between Sol(1) and Obj(T’)? We just add two leaves to T’ to form T. Recall
that the objective is ) f; - depth(i). Every other leaf has the same contribution to the objective value
i

of T and T'. So, just focus on the change of deleting w and then adding y and z back. Then
Sol(n) = Obj(T") — fu - depthy (w) + fy - (depthy (w) +1) + f; - (depthy (w) + 1)
= Obj(T") + fy + f=,
since fiy = fy + f: by our construction.

Next, we would like to argue that any optimal solution must have objective value at least Obj(T") +
fy + fz, and this would imply that the solution returned by Hoffman’s algorithm is optimal.

Let T* be an optimal solution for the original problem. By the lemma using the exchange argument,
we can assume that i and z are leaves of maximum depth in T* and furthermore they are siblings. We
define T*' as obtained from T* by deleting y and z and define f,, = f, + f. where w is the parent of y
and z.

By the same calculation above, Obj(T*) = Obj(T*') + f, + fz. Now, observe that T*' is a solution to the
reduced problem of size n — 1. By the induction hypothesis, T’ is an optimal solution to the reduced
problem, and hence it must hold that Obj(T’) < Obj(T*'). Putting together, we have

Obj(T*) = Obj(T*') + f, + f= > Obj(T') + f, + f- = Obj(T) = Sol(n),

proving that T is an optimal solution.
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Implementation

In every iteration, we need to find two symbols with lowest frequencies, delete them and add a new
symbol with the frequency as their sum. A straightforward Implementation takes ®(n) time to find
two symbols with lowest frequencies.

We can use a heap to do these operations in O(logn) time. Recall that a heap support the operations
of insert and extract-min in O(logn) time. So, each iteration can be implemented in O(nlogn)
time, after initially inserting all #n frequencies in the heap in O(nlogn) time. Therefore, the total time
complexity is O(nlogn).

4.5 Single source shortest paths

This section is typically covered in graph algorithm part of other offerings, as they cover graph algo-
rithm later than greedy algorithm.

Shortest Paths

Input: A directed graph G = (V,E) with a non-negative length /, for each edge ¢ € E, and two
vertices s,t € V.
Output: A shortest path from s to t, where the length of a path is equal to the sum of edge lengths.

We can think of the graph as a road network, and the edge length represents the time needed to drive
pass the road (may depend on traffic). Then the problem is to find a fastest way to drive from point s
to point ¢, which is the type of queries that Google Maps answers every day. It will be more convenient
to solve a more general problem.

Input: A directed graph G = (V,E) with a non-negative length /, for each edge ¢ € E and a vertex
seV.
Output: A shortest path from s to v, for every vertex v € V.

The problem seems to be harder, because each path could have ()(n) edges, and so the output size
could already be Q(n?). But it will turn out that there is a succinct representation of these paths and
this single source shortest path problem can be solved in the same time complexity as the shortest s-
path problem.

Breadth First Search and Dijkstra’s Algorithm

We have seen previously that BFS can be used to solve the single-source shortest paths problem, when
every edge has the same length (so we count the number of edges on the paths). It is not difficult
to reduce the non-negative edge length problem to this same-length special case. Let’s say all edge
lengths are positive integers. We can reduce our problem to the special case by replacing each edge of
length ¢, by a path of /, edges.

G G
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Then there is an s-t path of length k in G if and only if there is an s-t path of length k in G’. And
then we can solve the problem in G’ by simply doing BFS starting from s. The only problem of this
reduction is that it may not be efficient as G’ may have many more vertices. The number of vertices
in G is n+ Y ,cp(¢ — 1), so when /, is large then G’ has many more vertices, and then a linear time
algorithm for G’ does not correspond to a linear time algorithm for G.

Physical Process

To design an efficient algorithm through this reduction, instead of constructing G’ explicitly and run
BFS on it, we just keep G’ in mind and try to simulate BFS on G’ efficiently. We can think of the
process of doing BFS on G’ as follows.

e We start a fire at vertex s at time 0. The fire wil spread out.

e It takes one unit of time to burn an edge in G'.

G G’ at time t =3

To simulate this process efficiently, the idea is that we just need to be able to keep finding out what
is the next vertex to be burned and when (rather than simulating it faithfully on the paths). Initially,
it is the source vertex s. Then, knowing that s is burned at time 0, in the example above, we know
that b, ¢, g, f will be burned in at most time 3, 2,5, 1 respectively. Then, the next vertex to be burned is
vertex f. Knowing that f is burned at time 1, we know that g, i, e will all be burned in at most 2 times
units (by time step 3) through the edges fg, fh, fe.

In the above example, we update the upper bound on g to be burned to be 3 (replacing the initial value
of 5 which was set when s was burned), as vertex g will be burned earlier through the fire from g than
the fire from s. Then, with this updated information after g is burned, we find out the next vertex
to be burned (in this example c) and then update the upper bound on the neighbors of c as the fire
can now go from c to its neighbors. Repeating this (i.e., find out next vertex, update upper bound on
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neighbors) gives us an efficient simulation of the process of G’, and this exactly Dijkstra’s algorithm.

Algorithm 19: Dijkstra’s Algorithm (or BFS simulation)

1 dist(v) = oo for every v € V
2 dist(s) =0
3 Q = make-priority-queue(V)

4 while Q is not empty do
5 u = delete-min(Q)

6 foreach (out-)neighbor v of u do

7 if dist(u) + £, < dist(v) then
8 dist(v) = dist(u) + £y

9 decrease-key(Q,v)

10 parent(v) = u

Dijkstra’s algorithm is very similar to that of the BFS algorithm, except that we use a priority queue
(which can be implemented by a min-heap) to replace a queue.

Correctness It’s clear that the algorithm is an efficient simulation of BFS in G’. Also we argued before
that shortest paths from s in G’ are shortest paths from s in G. So, the correctness of this algorithm in
G just follows from the correctness of using BFS to solve shortest paths in G’ (where every edge is of
the same length), which we proved before. Anyway, we will do a more traditional and formal proof
as well.

Time complexity Each vertex is enqueued once (in the beginning) and dequeued once (when it
is burned). When a vertex is dequeued, we check every edge uv once and may use the value
dist(u) + ¢, to update the value of dist(v) using a decrease-key operation. All the enqueue, dequeue,
decrease-key operations can be implemented in O(logn) time by a min-heap, and thus the total time
complexity is O((n + Y, outdeg(v)) log n) = O((n + m)logn) time. So, the cost of simulating BFs in
the big graph is just an extra factor of logn. With more advanced data structures (namely Fibonacci
heaps), the runtime could be improved to O(nlogn + m).

Here we present a more traditional approach to prove the correctness of Dijkstra’s algorithm. Besides
being more formal, the proof technique is also useful in analyzing other problems, e.g., MST. The
algorithm will turn out to be the same, but the way of thinking about it is slightly different. This is
also the way we think of Dijkstra’s algorithm as a greedy algorithm.

The idea is to grow a subset R C V so that dist(v) for v € R are computed correctly. Initially, R = {s},
and then at each iteration we add one more vertex to R. Which vertex to be added in an iteration? We
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will add the vertex which is closest to R, so in this sense we are growing R greedily.

Algorithm 20: Dijkstra’s algorithm (set version)

1 dist(v) = oo forallv e V
2 dist(s) =0
3 R=g
4 while R # V do
5 | pick the vertex u ¢ R with smallest dist(u)
6 | R+ RU{u}
7 | foreach edge uv € E do
8 if dist(u) + yp < dist(v) then
L | dist(v) = dist(u) + Lo

Equivalently, u# ¢ R is the vertex with dist(u) = minygg per{dist(w) 4 fwy }. Then it’s easy to see that
these two versions of Dijkstra’s algorithm are equivalent.

We prove the correctness by induction, maintaining the following invariant.
Invariant: For any v € R, dist(v) is the shortest path distance from s to v.
Base case: It is true when R = {s}.

Induction step: Assume that the invariant holds for the current R. We would like to prove that
the invariant remains true after a new vertex u is added to R. We need to argue that dist(u) =
min,¢ g ,er{dist(w) + Lyo } is the shortest path distance from s to u.

Let w € R be the vertex in a minimizer, i.e., dist[u] = dist[w] 4 £y, < dist[a] + ¢, Va € Rand b ¢ R.
Since dist[w] is the shortest path distance from s to w, the shortest path distance from s to u is at most
dist[w] + lyy (ie., using the path from s to w and edge wu). So it remains to prove that the shortest
path distance from s to u is at least dist[w] + {yy.

Consider any path P from s to u. Since s € R and u ¢ R, there must be an edge xy in P such that x € R
and y ¢ R. (Note that x could be w and/or y could be u.) The length of path P is at least dist|[x] + £y,
as dist[x] is computed correctly by the invariant.

Here observe that we crucially use the fact that the length of each edge is non-negative. But we know
that dist[w] + £y < dist[x] + £y, as (w, u) is a minimizer. Therefore, we conclude that

length(P) > dist(x) + £y, > dist[w] 4 Loy, = dist[u] .

This inequality is true for any path from s to u, and thus the shortest path distance from s to u is at
least dist[u].

Note that the proof applies to directed graphs as is.

Shortest Path Tree

Now, we think about how to store the shortest paths from s for all v € V. From the proof, when a
vertex v is added to R, any vertex u that minimizes dist[u] + ¢,, is parent on a shortest path from s
to v. We keep track of this parent information throughout Dijkstra’s algorithm, by always keeping a
vertex that attains the minimum of dist[u] + ¢, for u € R as the current parent, and will update when
new vertex is put in R and makes this value smaller. After the algorithm finished (i.e., R = V), by
tracing the parents until we reach the source s, we can find a shortest path from s to v. Every vertex
can do the same to find a shortest path from s.

As in BFS tree, the edges (v, parent[v]) form a tree. So, we have a succinct way to store all the shortest
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paths from s, using only n — 1 edges to store n paths. This shortest path tree is very useful.

Clearly, the algorithm will fail if there are some negative edge lengths. We will come back to this more
difficult setting when we study dynamic programming algorithms.



Dynamic Programming

On a high level, we can solve a problem problem by dynamic programming if there is a recurrence
relation with only a small number of subproblems (i.e., polynomially many). This is a general and
powerful technique, and also simple to use once we learnt it well.

To illustrate the idea using a toy example, consider the problem of computing the Fibonacci sequence
F(n) =F(n—1)+ F(n—2);F(1) = F(2) = 1. The function is defined recursively with the base cases
given. It is then natural to compute it using recursion, but if we trace the recursion tree, we find out
that it is huge.

F(n—1) F(n—2)
e S
(n—3) F(n—23) F(n—4)

F(n—-3) Fn—4) Fmn-4) Fn-5) Fmn—4) Fmn-5 Fn-5 Fn-e6)

If we solve the recurrence relation (MATH 249), then we find out the runtime of this algorithm is
©(1.618"). Observe that the recursion tree is highly redundant, many subproblems are computed over
and over again. There are only n subproblems. Why do we waste so much time? There are two
approaches to solve the problem efficiently.

46
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Top-Down Memorization

As in BFS/DFS, we use an array visited[i] to ensure that we only compute each subproblem at most
once, and we use an array answer|i] to store the value F(7) for future lookup.

Algorithm 21: Top-Down Memorization

1 Function Main(n):
2 L visited[i] = False for 1 <i <mn

3 F(n)

5 Function F(i):

6 | if visited[i{] = True then
7 L return answeri]

8 ifi =1o0ri =2 then
9 L return 1

10 answer[i] = F(i-1) + F(i-2)

1 | visited[i] = True
12 | return answer|i]
Time Complexity Each subproblem is only computed once, when visited[i] = False. When it is

computed, it looks up two values. So, the total time complexity is O(n). Alternatively, we can think of
a graph search on a directed acyclic graph, with only n vertices and 2(n — 1) edges.

Bottom-up Computation

For Fibonacci sequence, there is a straightforward algorithm to solve the problem in O(n) time.

Algorithm 22: Bottom-Up Computation
1 F(1) =F(2) =1

2 for3<i<ndo

5 | F)=F(i—1)+F(i—2)

It is clear that this solves the problem in O(n) additions.

Note that the values grow exponentially in 7, so we cannot assume that each addition can be done in
O(1) time.

Dynamic Programming

So, basically, this is the framework of dynamic programming, to store the intermediate values so that
we don’t need to compute it again. From the top-down approach, it should be clear that if we write
a recursion with only polynomially many subproblems with additional polynomial time processing,
then the problem can be solved in polynomial time. In this viewpoint, designing an efficient dynamic
programming algorithm amounts to coming up with a nice recursion. This is similar to what we have
done in designing divide and conquer algorithms, coming up with a right recursion. We will see
that many interesting and seemingly difficult problems have a nice recurrence relation. Of course, it
requires some skills and practices to write a nice recursion to solve the problems, and this is what we
will focus on in many examples to follow.

In practice, the bottom-up implementation is preferred as it is non-recursive and usually more efficient.
In some cases, it will be easy to translate a top-down solution into a bottom-up solution. In some cases,
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however, it requires clear thinking to find a correct ordering to compute the subproblems, especially
when the recurrence relation is complicated, although in principle we just need a topological ordering.
Our main focus will be to come up with the right recurrence, as that would already imply an efficient
algorithm. We will also mention the bottom-up implementations as much as possible.

5.1 Weighted Interval Scheduling

Input: n intervals [s1, f1], [s2, f2], - - ., [Sn, fu] With weights wq, ws, ..., w, € R.
Output: a subset S of disjoint intervals that maximizes Y w;.

i€S
This is a generalization of the interval scheduling problem previously, when w; = 1 for all i. We can
think of the intervals are requests to book our room from time s; to f;, and the i-th request is willing
to pay w; dollars if the request is accepted. Then, our objective is to maximize our income, while
ensuring that there are no conflicts for the accepted requests.

Unlike the special case when w; = 1 for all i, there are no known greedy algorithms for this problem.

Exhaustive Search

To come up with a good recursion for this problem, we start by running an exhaustive search algorithm
and see why it is wasteful and how to improve it.

1 3 5

6 —_—
2 4 _

First, we make a decision on interval 1, either choose it or not. If we choose interval 1, then we cannot
choose interval 2, and we need to make a decision on interval 3. If we do not choose interval 1, then
we need to make decision on interval 2. Doing this recursively, we have a recursion tree as shown.

%)

{1,3}

\

same extension

This is an exponential time algorithm, but observe a lot of redundancy. For example, in the branches
{1,3} and {3}, the subtrees extending these partial solutions are exactly the same. This is because to
determine how to extend these partial solutions, what really matter is the last interval of the current
partial solutions, but not anything on the left, since they won't interact with anything on the right.

So, we just need to keep track of the “boundary” of the solution. In this problem, the boundary is
simply the last interval. This suggests that there should be a recursion with only one parameter!

Better Recurrence

To facilitate the algorithm description, we use a good ordering of the intervals and pre-compute useful
information. We sort the intervals by starting time so that s; < sy < --- <'s,. For each interval i, we



CHAPTER 5. DYNAMIC PROGRAMMING 49

use next[i] to denote the smallest j such that j > i and f; < sj, i.e., the first interval on the right of
interval i that is not overlapping with interval i. If no such intervals exist, next|[i] is defined as n + 1,
representing the end. In the example below,

1 5 9

3 4 7 8 11
next[1] =5, next[2] = 6, next[3] = 4, next[9] = 12, etc.

Since we sort the intervals by non-decreasing starting time, for an interval 7, next|[i] has the property
that intervals {i, ..., next[i] — 1} overlap with interval i while the intervals {next][i],...,n} are disjoint
from interval 7.

Now, we are ready to write a recursion with only one parameter, resulting in only n subproblems! Let
opt(i) := maximum income that we can earn using the intervals in {i,i +1,...,n} only. Then opt(1)
is the optimal value that we would like to compute. To compute opt(1), there are only two options for
the solutions:

1. The solutions that choose interval 1.

For these solutions, we earn w; dollars by choosing interval 1. But then we cannot choose the
intervals in {2,...,next[1] — 1} since these intervals overlap with interval 1. So, to find the opti-
mal value of choosing interval 1, we need to find an optimal way to choose from {next[1],...,n}.
Therefore, the optimal value for solutions choosing interval 1 is w; + opt(next[1]).

2. The solutions that don’t choose interval 1.
Then, by definition of opt(2), the optimal value for solutions not choosing interval 1 is opt(2).

Combining the two cases, we get that opt(1) = max{w; + opt(next[1]), opt(2)}. This recurrence
relation is true for every 7, and so we have the following recursive algorithm to solve the problem.

Algorithm 23: top-down weighted interval scheduling

1 Sort the intervals by non-decreasing starting time so that s; < sy < --- <s,.
2 Compute next[i] for 1 < i < n. Set visited[i] = False for 1 <i < n.

3 return opt(1)

4

5 Function opt (i):

6 if i = n + 1 then return 0

7 | if visited[i] = True then return answeri]

8 | answer[i] = max{w; + opt(next[i]), opt(i+1)}
9 | visited[i] = True
10 | return answer|i]

Correctness The correctness of the algorithm follows from the explanation of the recurrence relation
above.

Time complexity Sorting and the next[] array can be computed in O(nlogn) time. After that, the
top-down memorization implements the recursion in O(n) time, since there are only n subproblems
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and each subproblem only needs to look up two values.

Algorithm 24: Bottom-up implementation for weighted interval scheduling

1opt(n+1)=0
2 fori <— n downto 1 do
3 L opt(i) = max{w; + opt(nextli]), opt(i)}

Quite surprisingly, this has the same time complexity as the greedy algorithm! That is, somehow we
can implement an exhaustive search algorithm as efficient as the greedy algorithm! We can see why
dynamic programming is general and powerful, because it is very systematic (so that we may not need
problem specific insight) and yet we get very competitive algorithms.

5.2 Subset-Sum and Knapsack Problem

We consider two related and useful problems.

Subset-Sum

Input: n positive integers and a1, a2, ..., a4, and an integer K.
Output: a subset S C [n] with Y a; = K, or report that no such subset exists.
€S
For example, given 1, 3,10, 12, 14, is there a subset with sum 27? Yes, {3,10,14}. Sum 29? No.

This problem can be modified to ask for a subset S with } ;5 4; < K but maximizes ) ;cg ;. This is the
version in [KT] and is slightly more general, but once we solve our equality version, it should be clear
how to solve inequality version as well.

Knapsack

Input: n items, each of weight w; and value v;, and a positive integer W.
Output: a subset S C [n] with Y w; < W that maximizes Y v;.

i€s i€$
We can think of W as the weight that the knapsack can hold. Then, the problem asks us to find a
maximum value subset that we can fit in the knapsack. Alternatively, we can think of W as the total
time that we have, and out objective is to choose a subset of jobs that can be finished on time while
maximizing our income.

Knapsack is more general than subset-sum as there are two parameters to consider, but again it will
not be difficult once we solved subset-sum. So, let’s start with subset-sum.

To come up with the recurrence, we start with exhaustive search algorithm for the subset-sum problem.
We will consider all possibilities. Start with the first number a;. Then, either we choose it or not.

e If we choose a1, then we need to choose a subset from {2,...,n} fo that the sum is K — 4;.

e Otherwise, if we don’t choose a1, then we need to choose a subset from {2,...,n} so that the
sum is K.

A naive implementation will consider all subsets, and this gives an exponential time algorithm.

The observation is, we don’t really need to keep track of which subset we have chosen so far, as long as
they have the same sum. This suggests that we can just keep track of the (partial) sum in the recursion,
which allows us to reduce the search space significantly.

The subproblems that we will consider are subsum[i,L] for 1 < i < n and L < K where subsum(i, L]
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returns true if and only if there is a subset in {1,...,n} with sum L. Then the original problem we
would like to solve is subsum[1, K]. The recurrence relation is

subsum[i, L] = (subsum[i +1,L —a;] OR subsum[i+1,L])

The former case corresponds to choosing a;, while the latter case corresponds to not choosing a;, If
either case returns true, then return true. Otherwise, when both return false, return false.

Algorithm 25: top-down subset-sum

1 Function subsum(i, L):

2 if L = 0 then

3 t return True

4 if i >nor L <0 then
5 L return False

6 | return (subsum(i+1,L—a;) OR subsum(i+1,L))

Correctness follows from the recurrence relation explained above.

Time complexity There are totally nk subproblems, n choices for i and K choices for L. Each sub-
problem can be solved by looking up two values. Using top-down memorization, the time complexity
is O(nK).

Pseudo-polynomial time note that the time complexity is O(nK), which depends on K. When K is
small, this is fast. But K could be exponential in 7 (as n-bit number can be as big as 2"), in which case
this is even slower than the naive exhaustive search (and also uses much more space). We call this type
of time complexity pseudo-polynomial. This is probably avoidable, as we will see that the subset-sum
problem is NP-complete.

Implementations

Bottom-up computation We use a 2D-array subsum[#][K] to store the values of all subproblems. We
can compute these values in reverse order from # to 1.

Algorithm 26: Bottom-up computation for subsum

1 subsum[i][L] = False forall1 <i<mnand 0 <L <K
2 subsum(n][a,] = subsum[n][0] = True

3 subsum[i][0] = True forall1 <i<mn
4 fori < n downto 1 do

5 fori <+ 1to Kdo

6 if subsum(i + 1][L] = True then

7 L subsum([i][L] = True

8 if L —a; > 0 and subsum[i + 1][L — a;] = True then
9 L subsum[i][L] = True

Space-Efficient Implementation With this bottom-up implementation, we see that we don’t need to
use an n X K array. When we are computing subsum([i][*] in the outer for-loop, we just use the values
of subsuml[i + 1][*]. So, we can throw away the values subsum[> i+ 2][*] and only use a 2 x K array,
which is a significant saving.
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Top-Down vs Bottom-Up The bottom-up implementation don’t need recursions, and also leads to
a space-efficient algorithm. But the run-time is always exactly nK, to compute all the subproblems.
When there is a solution, the top-down approach may run faster, as it may be able to find a solution
by solving only a few subproblems. From this perspective, it may make a difference by solving
subsum(i + 1, L — a;) before subsum(i + 1, L).

Tracing a solution By following a path of “true” from subsum(1, K), we can find a subset of sum K.
e If subsum(2, K — a1) = True, then put a; in our solution and recurse.

e Otherwise, don’t put a7 in the solution, and follow a “true” path from subsum(2, K).

Dynamic Programming and Graph Search Dynamic programming reduces the search space to poly-
nomial size. We can draw a graph. Each vertex is a subproblem, and the edges are added according
to the recurrence relation. That is, there is a direct edge from (i,L) to (i +1,L) and from (i,L) to
(i+1,L —a;) if L —a; > 0. Then the problem is equivalent to determining whether there is a directed
path from the starting state (1, K) to a “true” “base state” (e.g., (i,0) for some i). The way the top-down
memorization algorithm works is basically doing a DFS on this “subproblem graph”, by recursing and
marking subproblems visited.

Knapsack (Sketch)

We outline how to solve the knapsack problem, which is quite similar to solving subset-sum. From
now on, we won't start from the exhaustive search again.

First approach We use a similar recurrence as in subset-sum. The subproblems are knapsack(i, W, V),
which is true if and only if there is a subset in {i,i + 1,...,n} with total weight W and total value V.
With this 3D-table, we should be able to write a recurrence as in subset-sum to solve the problem.

Better recurrence It is possible to just use 2 parameters as in subset-sum. Note that some sub-
problems dominate other subproblems, e.g., if knapsack(i, W,V + 1) = True, then we can ignore the
subproblem knapsack(i, W, V). So, the idea is to only have subproblems knapsack(i, W) and keep
track of the max value achievable. Define knapsack(i, W) as the maximum value that we can earn
using items in {i,...,n} with total weight < W. More precisely, let

Y wj <W}

knapsack(i, W) max {Z v;
j€Ss

SC{z jes

Then the recurrence relation is
knapsack(i, W) = max{v; + knapsack(i + 1, W — w;), knapsack(i +1, W)} .

The first case corresponds to choosing item i, thus earning v; and the maximum value of using items
from i + 1 to n when the capacity left in the knapsack is W — w;. The second case corresponds to not
choosing item i.

With this recurrence relation, it si not difficult to compute the algorithm and the analysis as in subset-
sum. Just need to be careful in the base cases: when W < 0, return —oo; when i > n, return 0. The
time complexity is O(n, W).

5.3 Longest Increasing Subsequence

Given n numbers a4, ...,4,, a subsequence is a subset of these numbers taken in order of the form
i, iy, - - -, i, where 1 <iy <ip <--- <ip <n,and a subsequence is increasing if a; <a;, <--- <a_.
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Input: n numbers ay,ay,. .., a4,
Output: an increasing subsequence of maximum length.

For example, given 5,1,9, 8, 8,8,4,5, 6,7 (recognize this?), the longest increasing subsequenceis 1,4,5,6,7.
By now, it should be relatively straightforward to solve this problem using dynamic problems.

Subproblems Let L(i) be the length of a longest increasing subsequence starting at 4; and only using
the numbers in 4, ..., a,. So, there are only n subproblems.

Final answer After we compute L(1),L(2),...,L(n), the final answer is maxq<;<,{L(i)}.

Recurrence relation Given we start at a;, we try all possible numbers 4; with j > i and a; >
a;, and form an increasing subsequence starting from a; by concatenating with a longest increas-
ing subsequence starting at a;. More precisely, L(i) = 1+ max;;1<j<,{L(j) | 4j > a;}. Note that
the subsequences formed must be increasing. The correctness can be proved by induction, i.e., if
L(i+1),...,L(n) are correct, then L(i) is also correct.

Algorithm 27: Bottom-up implementation for longest increasing subsequence
1 L(i)=1foralll1 <i<n

2 fori <— n downto 1 do

3 forj<i+1tondo

4 L ifa; > a;and L(j) +1 > L(i) then

| L(i) « L(j) +1

Nl

For example, given 3,8,7,2,6,4,12,14,9, then L-values are 4,3,3,4,3,3,2,1,1.
Time complexity O(n?).

Printing a longest increasing subsequence One way to do it is to keep track of the next number (e.g.,
parent[i] = j) when we update L(i) < L(j) + 1. We can also directly trace back a longest increasing
subsequence using the L-values in O(n) time without using extra storage.

Longest path in DAG An alternative way to think about this problem is to find a longest path in a
DAG. Given n numbers a3, ...,a,, we create a graph of n vertices, each corresponding to a number.
There is a directed edge from i to j if j > 7 and 4; > 4;. Then, an increasing subsequence corresponds
to a directed path in this directed acyclic graph, and vice versa. So, a longest path in the graph gives
us a longest increasing subsequence. For example, given 3,8,7,2,6,4,12,14,9, the graph is
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In general, the longest path problem in DAG can solved by dynamic programming efficiently.

A Faster Algorithm for Longest Increasing Subsequence

There is a clever algorithm to solve the problem in O(nlogn) time. The observation is that we don’t
need to store all the subproblems, as some subproblems are “dominated” by other subproblems. For
each length k, we will only store the “best” position to start an increasing subsequence of length k.
Then it will turn out that these best positions satisfy a monotone property, and this allows us to use
binary search to update these values in O(logn) time when we consider a new element. This is high
level summary and now we discuss the details.

For a given length k, consider the indices i < iy < iy < --- <iysothat L(iy) = L(iz) = --- = L(iy) = k.
What is the best subproblem to keep for future computations of L(i),L(i —1),...,L(1)? Since we are
extending these increasing subsequences using elements in {1,...,i}, the starting positions iy, iy, . . . , iy
are not important. What is important is the starting value.

If L(i;) = L(ip) = k and a;, > a;,, then the subproblem L(i;) dominates L(i;), because any increasing
subsequence using numbers in {ay,...,4;} that can be extended by an increasing subsequence of
length k, starting at a;, can also be extended by an increasing subsequence of length k starting at a;, .
That is, among the increasing subsequences of length k, the one with largest starting value is easiest
to be extended. Therefore, we define pos[k] = argmaxj>i{aj | L(j) = k}, when L(i) is the current
subproblem to be computed.

Intuitively, pos[k] is the best position to start an increasing subsequence of length k after the current in-
dexi. Let m = max;j<,{L(j)} be the length of a longest increasing subsequence we have computed so
far. By the reasoning above, when we compute L(i), we just need to consider L(pos[1]), ..., L(pos[m]),
as the other subproblems are dominated by these subproblems. For example, given the sequence
2,7,6,1,4,8,5,3, when we compute L(2), we have L(3) = L(5) = 2,L(4) = 3, and L(6) = L(7) =
L(8) = 1, then we only keep pos[1] = 6 with ag = 8, pos[2] = 3 with a3 = 6, pos[3] = 4 with a4 = 1.

Once we only keep the best subproblems, we have the following important monotone property.

Claim a[pos[1]] > a[pos[2]] > --- > a[pos[m]] where m = max;.j<,{L(j)} and L(i) is the current
subproblem.

(Intuition: A longer subsequence should be more difficult to be extended, i.e., its starting value is
smaller.)

Proof:

Suppose, by contradiction, that there exists j such that a[pos[j]] > a[pos[j — 1]]. Let an optimal
increasing subsequence of length jbe ap, <ap, <--- < ap, where p; = pos[j]. Thenay, < --- < ap;
is an increasing subsequence of length j — 1 with a,, > a,, = a[pos[j]] > a[pos[j — 1]], contradicting
that pos[j — 1] is the best position to start an increasing subsequence of length j — 1. O

Suppose we have found the best subproblems pos[m], pos[m — 1],. .., pos[1] after processing the num-
bers ay,...,a;11. Now, we process the number 4;, and would like to update the best subproblem for
future computations. We consider three cases.

1. When a; < a[pos[m]].

This is the good case, as we can extend the longest increasing subsequence so far by one, by
adding a; in front of the increasing subsequence of length m starting at pos[m]. So, we can
increase m by 1, and set pos[m] = i.

2. When a[pos[j]] < a; < a[pos[j — 1]].
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Since a; > a[pos[j]], we cannot use 4; to form an increasing subsequence of length j + 1. But we
can use 4; to form an increasing subsequence of length j, by adding a; in front of the increasing
subsequence of length j — 1 starting at pos[j — 1].

Furthermore, this increasing subsequence of length j is better than the one starting at pos|j], as
a; > a[pos[j]]. So, in this case, we update pos[j] = i.

3. When a[pos(1]] < a;.

In this case, we cannot use g; to extend any increasing subsequence because it is larger than all
the starting values, but we can use it to update pos[1] = i.

Note that since a[pos[m]] < a[pos[m —1]] < --- < a[pos[l]], we can use binary search to find the
smallest j so that a[pos[j]] < a;, and then we update by above rules.

Algorithm 28: Faster algorithm for longest increasing subsequence

m=1,pos[l] =n
fori <— n—1 downto 1 do
if a; < a[pos[m]| then

%Y

N

3

4 m<+—m+1

5 pos|m| < i

6 else

7 use binary search to find the smallest j so that a[pos[j]] < a;
8 L pos|j] < i

9 return m

Time complexity O(nlogn).

5.4 Longest Common Subsequence

Input: Two strings a4, ...,4, and by, ..., by, where each a;, bj is a symbol.
Output: The largest k such that there exist iy <iy < --- <irand j; < jo <--- < jr such thata;, =,
forl1 < /¢ <k

One example is that we are given two DNA sequences and want to identify common structures.

51 = AAACCGTGAGTTATTCGTTCTAGAA
Sy = CACCCCTAAGGTACCTTTGGTIC

ACCTAGTACTTTG

The longest subsequence (LIS) is a special case of the longest common subsequence problem (LCS).

S1=3,8,7,2,6,4,12,14,9
3,8,7,2,6,4,12,14,9 (for LI5) ~ ~educesto, ! (for LCS)
S, =2,3,4,6,7,8,9,12,14

Since the second sequence is sorted, it forces the solution of LCS to be an increasing subsequence.

Let C(i, j) be the length of a longest common subsequence of 4;,...,a, and bj, ..., by. Then the answer
we are looking for is C(1,1). The base cases are C(n+1,j) =0forall1 <j<m,and C(1,m+1) =0
forall 1 <i < n. To compute C(i, ), there are three cases, depending on whether a; and bj are used or
not.

1. (Use both a; and b)) If a; = bj, then we can put 4; and b; in the beginning of a common subse-
quence, then the remaining subproblem is to find a longest common subsequence for a1, ...,a,
and bj1,...,by. So, let SOL; =1+ Cli+1,j+1)ifa; = bj. Otherwise SOL; = 0.
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2. (Not use a;) Then we find a longest common subsequence for 4,1, ...,a, and bj, .o, by. So, let
SOL, = C(i+1,j).

3. (Not use b;) Then we find a longest common subsequence for a;,...,a, and bj11,...,byu. So, let
SOLs =C(i,j+1).

Then we take the best out of these three possibilities. That is, C(i,j) = max{SOL;, SOL;, SOL3}.

Correctness  All solutions for C(i, j) fall into at least one of the above three cases. We can then prove
correctness by induction.

Time complexity There are n - m subproblems. Each subproblem looks up three values. Using top-
down memorization, the total time complexity is O(m - n).

Tracing out solution We can either record some “parent” information when computing C(i,j). We

can also compute it directly using C(i,j) only, by recursively going to a subproblem that gives the
maximum value for C(i, j).

Algorithm 29: Bottom-up implementation for longest common subsequence
C(i,m+1)«+Oforalll1 <i<mn

Cn+1,j)«0foralll <j<m

for i <— n downto 1 do

=)

N

3

4 | forj< m downto1do

5 if a; = a; then

6 | SOL«1+C(i+1,j+1)

7 else

8 | SOL+0

9 C(i,j) + max{SOL, C(i+1,j), C(i,j+ 1)}

5.5 Edit Distance

Input: Two strings a4, ...,4, and by, ..., by, where each a;, b]- is a symbol.
Output: The minimum k so that we can do k add/delete/change operations to transform ay,...,ay,
into by, ..., by.

For example, if two input strings are SNOWY and SUNNY, the following are two ways:

S - N O W Y - S N O W - Y
S U N N - Y S U N N - - Y
Cost: 3 Cost: 5

In the first way, we match S, add U, match N, change O to N, delete W, and match Y. This takes
three add/delete/change operations to transform SNOWY and SUNNY. The second way requires five
add/delete/change operations to transform SNOWY and SUNNY. We call the minimum number of oper-
ations to transform one string to anther string the “edit distance” between two strings. It is a useful
measure of the similarity of two strings, e.g., in a word processor.

The recurrence is similar to that in LCS. Let D(i, j) be the edit distance of the strings a;,...,a, and
bj,...,by. The answer we want is D(1,1). The base case is D(n +1,m + 1) = 0. To compute D(i, ]),
there are four possible operations to perform.
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Add We add b; to the current string, when j < m. For example,

abc -+« — | abc
—

def oo d | ef

Then we match one more symbol to the target string and move on. More precisely,

1+D(,j+1) ifj<
S0L, = +D(@,j+1) ifj<m
1) otherwise.

Delete We delete a; from the current string, when i < n. For example,

abc -+ a | bc
—

def <o — | def

Then we move one symbol forward in the current string. More precisely,

SOL, = 1+D(i+1,j) ifi<n
S otherwise
Change We change a4; to b; when i < n and j < m. Then we move one symbol forward in both
strings. For example,
abc <o-oa | be

def <o d | ef

More precisely,
SOLs — {1+D(i+1,j+1) ifi<nandj<m

1) otherwise

Match Ifi <nandj<manda; = b]-, then we match and move one symbol forward in both strings.
For example,
abc -+ a| bc

aac .- a | ac

More precisely,

SOL, — D(i+1,j+1) ifi<nandj<m
1) otherwise

Finally, we set D(i,j) = min{SOL;, SOL;, SOL3, SOL4}.

Correctness Follows from the base case and an inductive argument. In the inductive step as dis-
cussed above, we have considered all the possibilities to transform one string to another string.
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Time complexity There are m - n subproblems, each requiring a constant number of operations.
Using top-down memorization, the time complexity is O(n - m).

Algorithm 30: Edit distance

1 D(i,0) «iforall0 <i<m
2 D(0,j) < jforalll1 <j<mn
3 fori < 1tomdo

4 forj < 1tondo

5 if a; = b; then

6 | diff(i,j) « 0
7 else
8

9

| diff(i,f) 1
| D(i,j) =min{D(i—1,j)+1, D(i,j — 1)+ 1, D(i—1,j — 1) + dif£(i, j)}

10 return D(m,n)

The algorithm presented here is from [DPV 6.3], which is a bit different from the discussion here
(bottom-up implementation).

Graph searching Once again, we would like to point out that dynamic programming can be thought
of as finding a (shortest) path from the starting state to the target state in the state graph. This
connection is even more transparent when we are using the state table to trace out a solution.

In the graph® below, all edge lengths are 1, except for {(i —1,j —1) — (i,j) : x[i] = y[j]} (shown
dotted in the figure), whose length is 0. The final answer is the simply the distance between nodes
s(0,0) and t(m, n).

*adapted from [DPV 6.3]
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5.6 Independent Sets on Trees

Given a graph G = (V, E), a subset of vertices S C V is called an independent set if ij ¢ E for alli,j € S.
We will see that the problem of finding a maximum cardinality independent st is NP-complete, but
we can use dynamic programming to solve the problem in polynomial time on trees.

Input: A tree T = (V,E)
Output: An independent set S C V of maximum cardinality.

T 7 vertices 9 vertices (optimal)

Having a tree structure suggests a natural way to use dynamic programming. We will define a sub-
problem for each subtree rooted at a vertex v. They key point is that since there are no edges between
different subtrees, we can solve the problem on each subtree separately and thus reduce to smaller
subproblems. Then we can write a recurrence relation between a parent and its children.

Actually, we have used this idea before. When we compute the low[| array to compute all cut vertices,
we have already used dynamic programming on trees.

Let I(v) be the size of a maximum independent set in the subtree rooted at vertex v. The answer we
want is I(root). Bases cases are I(leaf) = 1 for all leaves in the tree. To compute I(v), we consider two
possibilities:

1. v is in the independent set.

Then all its children cannot be included in the independent set. The optimal way to extend the
current partial solution is to take a maximum independent set in each subtree rooted at its grand
children. So in this case, the maximum size is 1 + Y.,y grandchild of o [ (@)

2. v is not in the independent set.

The optimal way to extend the current partial solution is to take a maximum independent set in
each subtree rooted at its children. So, in this case, the maximum size iS Y ;.. child of v 1(W)-

Therefore,

I(v) = max{l + Y I(w), ) I(w)}

w:w grandchild of v w:w child of v

Correctness It follows from the explanation of the recurrence relation and induction.

Time complexity There are n subproblems. Each subproblem requires (# children + # grandchildren)
lookups. Note that

) (# children + # grandchildren) = )} (# parent + # grandparent) < ) 2 =2n,
veV veV veV

by counting the sum in a different way (i.e., counting upward instead of counting downward). So
using top-down memorization, the total time complexity is O(n).

We can also write a recurrence relation involving children only. The idea is to use two subproblems
on a vertex v. Let I'T(v) be the size of a maximum independent set with v included, and I~ (v) be
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the size of a maximum independent set with v excluded. Then the answer is max{I " (root), I~ (root)}.
The base cases are [ (leaf) = 1 and I~ (leaf) = 0 for all leaves. The recurrence are
Ifoy=1+ Y TI'(w) and I (0)= Y  max{IT(w), I (w)}
w:w child of v w:w child of v
Note that we can extend the algorithm to solve the maximum weighted independent set problem on
trees.

5.7 Dynamic Programming on “Tree-like” Graphs

Many optimization problems are hard on graphs but easy on trees using dynamic programming.
Generalizing the ideas using dynamic programming on trees, it is possible to show that dynamic
programming also works on “tree-like” graphs. For example,

GE e

“treewidth” 2 “treewidth” 3

There is a way to define the “tree-width” of a graph so as to measure how “close” a graph is to a tree. If
the tree-width is small, then dynamic programming works faster, usually with runtime ~ O(ntreewidth),
This has become an important paradigm to deal with hard programs on graphs, at least in research
papers. Read [KT 10.4, 10.5] for an introduction to this approach. Read CO 442 for an introduction to
tree-width.

5.8 Optimal Binary Search Tree

This problem is a bit similar to the Huffman coding problem, also about finding an optimal binary tree.
Imagine the scenario where there are n commonly searched strings, e.g., some French vocabularies for
English meanings. We would like to build a good data structure to support these queries efficiently.
And somehow we have decided to use a binary search tree (say instead of using hashing). As there
are n strings, we could build a balanced binary search tree to answer the queries in O(log, 1) time.
As in Huffman coding, suppose we know the frequencies of the searched strings, can we use this
information to design a better binary search tree so as to minimize the average query time?

Input: n keys k; < kp < --- < ky, frequencies f1, fo,..., fu with 3 ; fi = 1.
Output: a binary search tree T that minimizes the objective value Y ; f; - depthr(k;).

For example, given f1 = 0.1, f, =02, f3 =025, f; =0.05, f5 =04,

objective value
=025x1+02x2
+04x2+01x3
+0.05x3
=19

objective value
=04x1+4+025x%x2
+0.2x340.05x3
+0.1x4
=2.05

In the above example, even though ks has the highest frequency, it is not necessarily optimal to put
ks at the root for it to have minimum depth. So, this is unlike the prefix coding problems, in which
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keys with higher frequencies will have smaller depth. This is because we have to maintain the binary
search tree structure, such that smaller keys have to be put on the left subtree while larger keys have to
be put on the right subtree. This restriction turns out to be useful in setting up the recurrence relation.

The subproblem structure is slightly different from those that we have seen before. In the following,
we let Fj; = Z]é:i Fy. To handle boundary cases, we let F;; = 0 for i > j. Let C(i, ) be the objective
value of an optimal binary search tree for keys k; < - - - < k;. The desired answer is C(1, 7). Base cases
are C(i,i) = f; for 1 <i < n. To handle boundary cases, we also set C(i,i —1) = 0 for all i.

To compute C(i, ), we try all the possible root of the binary search tree. For 1 < ¢ < j, if we set ky
to be the root, then the keys k;, ..., k;,_1 must be on the left subtree of the root, while keys k;1,...,k;
must be on the right subtree of the root. The two subtrees can be computed independently of each
other, as there are no more constraints between the two subtrees. So, the best way is to find an optimal
binary search tree for kj, ..., k;,_1 on the left, and an optimal binary search tree for k;4,..., kj on the
right. Therefore,

Clij) = min { o+ Bt + €= 1)+ By + e+ 1)
~ oot left subtree right subtree

= irgnflgj{lzi/]‘ +C(i,t—1)+C(L+1,))}

Note that the terms F;; 1 and Fy;1,; ar added because the keys k;, ..., k,_1 and the keys ky,q,...,k;
are put one level lower, and so the two terms account for the increase in the objective value.

Correctness follows from the justification of the recurrence formula and by induction.

Time complexity There are no more than n? subproblems. Each subproblem looks up no more than
n values. Using top-down memorization, the total time complexity is O(n%).

To bottom-up implement this problem, it requires more care to write it correctly. We will solve the
subproblems with j —i = 1 first, and then j — i = 2, and so on.

Algorithm 31: Bottom-up implementation for optimal binary search tree
1 C(i,i—1)=0for1<i<mn

2 Compute E; forall1 <i,j<mn

3 for1 < width<n—1do

4 | fori<« 1to (n— width) do

5 j < i+ width

6 C(i,) + oo

7 for { < itojdo

8 | C(i,j) « min{C(i, ), F;j+C(i,{ — 1)+ C(¢+1,j)}

It is clear the time complexity is O(n3) as there are three for-loops.

With additional observations, Knuth used the same subproblems but showed how to solve the problem
in O(n?) time!

5.9 Single-Source Shortest Paths with Arbitrary Edge Lengths

Input: A directed graph G = (V, E), an edge length ¢, for each edge ¢ € E, and a vertexs € V.
Output: The shortest path distances from s to every vertex v € V.
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This problem is solved using Dijkstra’s algorithm in the special case where the edge lengths are non-
negative, which runs in near-linear time. It turns out that allowing negative edge lengths makes the
problem considerably harder. Let’s first see why Dijkstra’s algorithm does not work in this more
general setting.

In Dijkstra’s algorithm, we maintain a set R C V so that dist[v] is computed correctly for all v € R,
and then we grow R greedily by adding a vertex v ¢ R closest to R into R. With the presence of the
negative edge lengths, however, this greedy algorithm does not maintain this invariant anymore.

In the example, the vertex v is closest to s and is added to R first, but dist[v] # 4 as the path s,y,x,v
is of length —4 because of the negative edge xv. The correctness of Dijkstra’s algorithm crucially uses
that the length of a prefix of a path cannot be shorter than the length of the path, and this doesn’t hold
anymore with the presence of negative edges. With this wrong start, Dijkstra’s algorithm will add u
and w to R. Only after vertex x is added and explore later, we realize that there is a shorter path from
s to v via x. Then we know that the distances to u and w are not computed correctly.

To fix it, we need to use the new distance to v to update the distance to # and w, but then we can
no longer say that each vertex is only explored once. We can extend this example so that this update
process needs to be done many times. This is where we could not maintain the near-linear time
complexity for solving this more general problem.

Another issue of having negative edges is that there may exist negative cycles.

1 -1 1

N

In the example, from s to ¢, we can go around the negative cycle as many times as we want, and so the
shortest path distance is not even well-defined. In the following, we will study the algorithms solve
the following problems:

1. If G has no negative cycles, solve the single-source shortest paths problem.

2. Given a directed graph G, check if there exists a negative cycle C, i.e., Y pec e < 0.

5.9.1 Bellman-Ford Algorithm

Although Dijkstra’s algorithm may not compute all distances correctly in one pass, it will compute the
distances to some vertices correctly, e.g., the first vertex on a shortest path.

In the example above, dist[y] will eb computed correctly. Then, if we do the update on every edge
again, then we would get dist[x] right for sure. Then, with one more update pm every edge, then we
would get dist[v] correct and so on. How many times we need to do? If the graph has no negative
cycles, then any shortest walk must be a simple path, which has at most n — 1 edges. So, by repeating
the updating phases at most n — 1 times, we should have computed all shortest path distances correctly,
with time complexity about O(nm). This is basically the Bellman-Ford algorithm.

To formalize the above idea, we design an algorithm using dynamic programming to compute the
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shortest path distance from s to every vertex v € V using at most i edges, from i = 1 (base case) to
i = n — 1. Then we will show that this is equivalent to the Bellman-Ford algorithm we see in textbooks.

Let D(v,1) be the shortest path distance from s to v using at most i edges. For eachv € V, D(v,n — 1)
is the shortest path distance from s to v when the graph has no negative cycles. For the base cases, we
let D(s,0) = 0and D(v,0) = oo forallv € V —s.

To compute D(v,i + 1), note that a path with at most 7 4+ 1 edges from s to v must be coming from a
path using at most i edges from s to u for an in-neighbor u of v. Since we are to compute the shortest
path distance from s to v using at most i + 1 edges, we should use a shortest path using at most i
edges from s to u. We try all possibilities of u and get the recurrence relation

D(v,i+1) = min{D(v,i), min_{D(u,i +€uv}}

u:uveE

Time complexity Given D(v,i) for all v € V, it takes m—deg(w) time to compute D(w, i+ 1). So, the
time to compute D(w,i+1) forall w € V is O(L ey in-deg(w)) = O(m). Wedo thisfor1 <i<n-—1,
thus the total time complexity is O(nm).

Space complexity A direct implementation requires @ (n?) space to store all the values D(v,i). Note
that to compute D(w, i+ 1) for all w € V, we just need the values D(v, i) for all v € V but don’t need
D(v,j) for j <i—1, and so we can throw these away and only use O(n) space.

The algorithm can be made even simpler, matching the intuition that we mentioned in the beginning.

Algorithm 32: Bellman-Ford algorithm
1 dist[s] =0

2 distfv] =co forallv e V —s

3 fori+ 1ton—1do

4 foreach edge uv € E do
5 L if dist[u] + lyy < dist[v] then

6 L dist[v] = dist[u] + ¢, and parent[v] = u

This is the Bellman-Ford algorithm. The simplification is that we don’t need to use two arrays. To see
why we don’t need two arrays, note that using one array could only have the intermediate distances
smaller, and they remain to be upper bounds on the true distances, so using tighter upper bounds
would not hurt (and may speed up in practice).

5.9.2 Shortest Path Tree

As in Dijkstra’s algorithm, we would like to return a shortest path from s to v by following the edges
(parent[v],v). In Bellman-Ford, there are many iterations in the outerloop, and it is not clear whether
these edges still form a tree. Actually, it is possible to have a directed cycle in the edges (parent[v],v),
but the following lemma shows that these directed cycles must be negative cycles.

Lemma

If there is a directed cycle C in the edges (parent[v], v), then the cycle C must be a negative cycle,
ie., ZEEC £, < 0.

Proof:
Let the directed cycle C be v1,vy,...,v, with v;v;,1 € Eforall 1 < i < k-1 and vv; € E.
Assume that v;v; is the last edge in the cycle C formed in the algorithm, i.e., the cycle C formed
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when v, becomes the parent of v1, while parent[v;] = v;_ already for 2 < i < k. Consider the
values dist[v;] right before v, becomes the parent fo v;. Since v;_; is the parent of v;, we have
dist[v;] > dist[v; 1] + Ly, v for 2 <i < k.

Note that at the time when we set parent[v;] = v;_1, the inequality holds as an equality, but later
dist[v;_1] could decrease and it may become an inequality. Note also that we cannot have dist[v;] <
dist[v;_1] + Lo, ,0; as otherwise parent[v;] would be updated.

Now when we set parent[v;] = vy, it must be because dist[v1] > dist[vy]| + £y, at that time. Adding
all these k inequalities, we have

k k
Y dist[o;] > Y dist[o;] + Y £,
i=1 i=1

= ecC

which implies that ) ,cc 4e < 0. O

The lemma implies that if there are no negative cycles, then there are no directed cycles in the edges
(parent[v], v). Assuming that every vertex can be reached from vertex s, then every vertex has exactly
one incoming edge in (parent[v],v), and there are no directed edges by the lemma. So, the edges
(parent[v],v) must form a directed tree, i.e., a tree with edges pointing away from s. To conclude,
when there are no negative edges, the edges (parent[v], v) form a shortest path tree from s.

5.9.3 Negative Cycles

We can extend the dynamic programming algorithm to identify a negative cycle if it exists. Even with
negative cycles, after k iterations of the dynamic programming, the same recurrence relation proves
that we compute the shortest path fro ms to v using at most k edges for all v € V. To solve the single-
source shortest paths problem, we only used the assumption that there are no negative cycles to prove
that the algorithm can stop after n — 1 iterations and conclude that distances are computed correctly.
If there are negative cycles, then we would expect that D(v,k) — —oo as k — oo for some v € V. For
example, in the graph

. 1 -1
3 /}
t
we have D(t,3) = —1, D(t,6) = —4, D(,9) = —7, and so on. On the other hand, if there are

no negative cycles, then we expect that D(v,n) = D(v,n —1) for all v € V, and this implies that
D(v,0) # —co as k — oo for all v € V. So, intuitively, by checking if D(v,n) = D(v,n — 1) for all
v € V, we can determine if there is a negative cycle or not.

In the following, we assume that every vertex can be reached from s. For the problem of finding a
negative cycle, this is without loss of generality since we can restrict our attention to strongly connected
components and we learnt previously how to identify all SCCs in linear time.

We make the above ideas precise by the following claims (proofs see L14.pdf).
Claim 1 If the graph has a negative cycle, then D(v,k) = —o0 as k — oo for some v € V.
Claim 2 If the graph has no negative cycles, then D(v,n) = D(v,n—1) forallv € V.

Claim 3 If D(v,n) = D(v,n —1) for all v € V, then the graph has no negative cycles.

Similarly, one can show from the proof of Claim 3: as long as D(v,k+ 1) = D(v,k) for all v € V,
then D(v,¢) = D(v,k) for all ¢ > k, and so we can stop in that iteration with all distances computed
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correctly. This provides an early termination rule that is useful in practice (when shortest paths have
few edges).

Claim 2 and 3 together imply that a graph has no negative cycles if and only if D(v,n — 1) = D(v,n)
for all v € V. Since we can compute D(v,n) and D(v,n — 1) for all v € V in O(mn) time, this implies
an O(mn) time algorithm for checking.

The next question is: if D(w,n) < D(w,n — 1) for some w, how do we find a negative cycle? Here we
assume that we use ©(n?)-space dynamic programming algorithm for computing D(w, ), and that
we have stored parent[w,n] = u if D(w,n) = D(u,n — 1) + £y.

First, since D(w, n) < D(w,n — 1), we know that the path P from s to w with total length D(w, n) and
at most n edges must have exactly n edges, as otherwise D(w,n — 1) = D(w,n). A path of length n
must have a repeated vertex, and thus a cycle C.

We claim C must a negative cycle. Suppose not, then we can skip the cycle C to get a path P’ with fewer
edges than that in P and length(P’) < length(P) since C is a non-negative cycle. But that would imply
that D(w,n — 1) < length(P’) since P’ has at most n — 1 edges, and thus D(w,n — 1) < length(P’") <
length(P) = D(w, n), a contradiction. So, the cycle C must be a negative cycle.

By tracing out the parents using the stored information, we can find P and thus the cycle C. This gives
an O(mn)-time algorithm to find a negative cycle, using ©(n?) space.

There is also an O(mn)-time algorithm using only O(#n) space. Details in [KT 6.10].

5.10 All-Pairs Shortest Paths

Input: A directed graph G = (V, E), an edge length ¢, for e € E.
Output: The shortest path length from s to t, for all s,¢ € V.

We can solve this by running Bellman-Ford for each s € V. This would take O(n?m) time, which could
be @(n*) when m = @(n?). It is possible to solve the all-pairs shortest paths problem in O(n3), using
a different recurrence. Here we present the Floyd-Warshall algorithm.

In the Floyd-Warshall algorithm, more subproblems are used to store information for each pair of
vertices.

Let the vertex set V = {1,2,...,n}. Let D(i, , k) be the length of a shortest path from vertex i to vertex
j using only vertices {1,...,k} as intermediate vertices in the path. (Another perhaps more natural
choice is D' (i, j, k) which denotes the length of a shortest path from i to j using at most k edges similar
to that in the Bellman-Ford algorithm. The question was left such that D’ (i, j, k) doesn’t work as well
as the Floyd-Warshall subproblems). And the answer we want is D(i,j,n) for alli,j € V.

Base cases are D(i,],0) = ¢;; if if € E and D(i,],0) = oo if ij ¢ E. This is because D(i, j, 0) is asking for
the shortest path length from i to j without using intermediate vertices.

Assume D(i, ], k) are computed correctly for all i,j € V for some k. We would like to compute
D(i,j,k+1) for all i,j € V. The only difference between D(i,j,k + 1) and D(i,j, k) is that D(i,j, k + 1)
is allowed to use vertex k + 1 as an intermediate vertex, while D(i, j, k) is not allowed to do so. To use
vertex k + 1 as an intermediate vertex for a path between i and j, the path has to go from i to k41 and
then from k + 1 to j. The optimal way to do this using only vertices [k + 1] as intermediate vertices is
to use a shortest path from i to k + 1 using [k] as intermediate vertices, and a shortest path from k + 1
to j using [k] as intermediate vertices. Note that we don’t need to use vertex k + 1 more than once, as
there are no negative cycles. Therefore,

D(i,j,k+1) =min{D(i,j, k), D(i,k+1,k)+D(k+1,jk)},
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where the first term considers the paths not going through k + 1, while the second term consider paths
that use vertex k + 1.

Algorithm 33: Floyd-Warshall algorithm
1 D(i,j,0) = oo forij ¢ E

2 D(i,j,0> = fl] for l] € E.

3 fork+< Oton—1do

4 fori < 1tondo

5 Lforj(—ltondo

6 | D(i,j,k+1) =min{D(i,j,k), D(ik+1k)+D(k+1,jk)}

Runtime is O(n3). It has been a long standing open problem whether there exists a truly sub-cubic
time algorithm for computing all-pairs shortest paths, e.g., O(1n>%).

5.11 Traveling Salesman Problem

Input: A directed graph G = (V, E), with an edge length ¢;; for alli,j € V.
Output: A cycle C that visits every vertex exactly once and minimizes ) . Ze.

It is one of the famous problem in combinatorial optimization. As we will show in the last part of the
course, this problem is NP-hard.

There is a naive algorithm for this problem, by enumerating all possible orderings to visit the vertices.
This will take @(n! - n) time. It becomes too slow when n = 13. We present a dynamic programing
solution that can probably work up to n = 30.

The difficulty of the problem is that it is not enough to remember only the shortest paths, but also
what vertices that we have visited so that what other vertices yet to visit. The recurrence is unlike
everything that we have seen so far, as it has exponentially many subproblems!

Let C(i,S) be the length of a shortest path to go from 1 to i, with vertices in S on the path. Note that
we don’t care about the ordering of vertices in S in the path, and this is where the speedup over the
naive algorithm is coming from.

The answers we want are min;cy{C(i, V) + £;1 }, from 1 to i using all vertices in V once, then come
back to 1. Base cases are C(i, {1,i}) = {y; foralli € V.

Suppose we have computed C(i, S) for all subsets S of size k. We would like to use these to compute
C(i,S) for all subsets S of size k + 1. To compute C(i,S) for S of size k + 1, we try all possibilities of
the second last vertex on the path. Note that the second last vertex must be from S, and of course the
best way to reach the second last vertex j is to use a shortest path from 1 to j that reaches every vertex
in S — {i} exactly once. Therefore, we have

C@i,8) = jerg_ir{li}{c(]'/s —{i}) + i}

There are O(n - 2"*) subproblems, each requiring O(n) time to compute. So, the total time complexity
is O(n? - 2""). The main drawback of this algorithm is that the space complexity is @(n - 2").
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Bipartite Graphs

6.1 Bipartite Matching

The bipartite matching problem is an important problem both in theory and in practice. In this chapter,
we will study efficient algorithms for solving bipartite matching and its “dual” problem minimum
vertex cover, and see some interesting and non-trivial applications of these problems. We will learn
a new technique called “the augmenting path” method to solve the bipartite matching problem. This
is an important technique that underlies many algorithms for combinatorial optimization problems,
including the network flow problem in CO 351. More generally, the augmenting path method can be
understood as one way of solving combinatorial optimization problems using the general framework
of linear programming.

The problem statement is as follows:

Input: A bipartite graph G = (X, Y E).
Output: A maximum cardinality subset of edges that are vertex disjoint.

Here consider two inputs, and maximum matchings are highlighted in the output. Note that the
second example is a “perfect” matching.

X Y X Y

= =
Sz X
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A subset of edges M C E is called a matching if edges in M are pairwise vertex disjoint, or in other
words, no two edges in M share a vertex. Given a matching M C E, we say a vertex v is matched if
v is an endpoint of some edge e € M; otherwise we say v is unmatched or free or unsaturated. We
are interested in finding a maximum matching, a matching with the maximum number of edges. A
matching is called a perfect matching if every vertex in the graph is matched.

Obviously, a perfect matching is the best that we can hope for the maximum matching problem. As
shown in the above example, not all bipartite graphs have a perfect matching. We will see a nice
characterization of graphs that don’t have a perfect matching.

As we will see later, there are many interesting and non-trivial applications of bipartite matching, as
we will see later. Here we first see a standard and useful application, which also explains why the
bipartite matching is sometimes called the assignment problem.

We are given 7 jobs, and m people/machines. Each person/machine is only capable of doing a subset
of jobs. Our task is to assign all the jobs to people/machines, without assigning more than one job
to a person/machine. We can model this as a bipartite matching problem. We create one vertex for
each job, and one vertex for each person/machine. We add an edge between job vertex j and a person
vertex p if and only if person p is capable of doing job j. So, the graph is bipartite. By construction, a
matching corresponds to an assignment of jobs to people such that no one is assigned more than one
job. Let |J| be the number of jobs. Then the assignment problem is possible if and only if there is a
matching of |J| edges.

We study a new algorithmic approach to solve the bipartite matching problem. A natural first ap-
proach is to go greedy: whenever there is an edge uv € E with both endpoints free, then we add the
edge uv to our partial solution and repeat until there are no such edges. This may not find a maximum
matching.

How do we know what edges are in an optimal solution? Actually, we don’t know of an easy way
to tell whether an edge belongs to some maximum matching or not. This is unlike in the shortest
path problem or in the minimum spanning tree problem, where we can prove that a shortest edge or
a minimum weight edge can always be extended to an optimal solution. Instead of making a greedy
decision and commit to it, the new approach is to find efficient ways to improve the current solution if
it is not optimal. So, the augmenting path method can be understood as a local search algorithm. There
are no known dynamic programming algorithms for bipartite matching.

A path v1, vy, ..., 0y is an augmenting path of a matching M if
1. v1 and vy, are free/unmatched,
2. Upi 10y & Mforalll <i <k,
3. UpiUpip1 € Mforalll <i<k-—1.

If we have found an augmenting path, we can use it to improve the matching size by one, by removing
the even edges from M and add the odd edges to M. Simply by “switching” edges. Note that an edge
with both endpoints free is an augmenting path of length one.

By trying some examples, surprisingly, it turns out that finding an augmenting path is all one need to
do.

Proposition

M is a maximum matching if and only if there is no augmenting path of M.

One direction is easy. The other direction involves discussion by cases. See MATH 249 for details. The
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proposition suggests the following “local search” algorithm for finding a maximum matching.

Algorithm 34: Bipartite matching

1 M+~ g
> while there is an augmenting path P = v1v; ... vy, of M do
5 | M M—{og0pi01 [ 1 < i <k—1} + {vpi_10p | 1 <P <k}

4 return M

Correctness follows from the proposition. The time complexity is O(n - T(n,m)) where T(m, n) is the
time complexity to find an augmenting path of M if it exists, or report that no such paths exist, in a
graph with n vertices and m edges.

There is an algorithm by Edmonds and Karp which solves the problem in O(m+/n) time.

Then to complete the bipartite matching algorithm, we need to develop an algorithm to find an aug-
menting path. Thanks to the structure of the bipartite graph, we can design a simple algorithm for this.
First we need to find a free vertex vy on the left. If there is a neighbor v, of v; which is unmatched,
then we have found an augmenting path v;v, of length one. Otherwise, v, is matched, and to extend
it to an augmenting path, we have no choice but to follow the matching edge of v; to go back to the
left, call the matching edge v,v3. Then, we repeat the above step: if v3 has an unmatched neighbor
vy, then we found an augmenting path; otherwise we follow the matching edge v4v5 to go back to the
left.

Observe that every time we go to the right, either we are done or we follow a matching edge that takes
us back to the left, because of the bipartite graph structure. THe important idea is to encode the color
information on the edges by directions, such that each unmatched edge points from the left to right
and each matched edge points from right to left.

augmenting path directed path
of Min G in GM

Given a bipartite graph G = (X,Y;E) and a matching M C E, we construct a directed graph Gy
on the same vertex set and the same edge set, while the direction of every edge in M is from X to
Y and the direction of every edge in E — M is from Y to X. By construction, we have the following
correspondence between augmenting paths in G and directed paths in Gy;.
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Claim There is an augmenting path of M in G = (X, Y;E) if and only if there is a directed path in
G M from a free/unmatched vertex in X (on the left) to a free/unmatched vertex in Y (one the right).

The claim allows us to reduce the problem of finding an augmenting path of M in G to a “reachability”
problem in Gy, for which we know how to solve by BFS/DFS. A direct implementation is to start a
BFS/DEFS on each free vertex on the left and check if can reach a free vertex on the right, but this could
take Q(n(n + m)) time. There is a simple trick to solve this “multiple-source multiple-sink” problem
in O(n + m) time. We just add a super-source vertex on the left, with directed edges to the free vertices
on the left, and we add a super-sink vertex on the right, with directed edges from the free vertices on
the right.

—

G
By construction, we reduce the augmenting path problem in G to the s-t reachability problem in 65\/1

Claim There is a directed path from a free vertex on the left to a free vertex on the right in Gy if and
only if there is a directed path from s and ¢ in é;w

Corollary There is an augmenting path of M in G if and only if there is a directed path from s to ¢
in Gj.

Algorithm 35: Augmenting path

Input: a bipartite graph G = (X, Y; E), and a matching M C E.

Output: an augmenting path P of M in G, or report that no such paths exist.
1 Construct the directed graph é§\/1 as described above.
2 Use BFS/DFS to determine if there exists a directed path P in é}w from s to t.
3 if yes then

4 return P

5 else
6 L return “No”

The time complexity is O(m + n). In actual implementation, we can work directly on the directed
graph and it is easy to update, so that we don’t need to construct éf\/{ in each iteration.

The bipartite matching algorithm fails in general (non-bipartite) graphs. Edmonds and Tutte have
some work in this area. See CO 342 for details.
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6.2 Bipartite Vertex Cover

Given a graph G = (V,E), a subset of vertices S C V is called a vertex cover if for every edge uv € E,
{u,v} NS # @. In words, S is a vertex cover if S intersects every edge.

Input: A bipartite graph G = (V,E)
Output: A vertex cover of minimum cardinality.

We could imagine that this problem (in general graphs) is useful in computer networks, say by using
the minimum number of computers to monitor all the links in the network.

Actually, vertex cover problem is the dual problem of maximum matching problem, in a precise and
meaningful way. First we observe that if there is a matching with k edges, and any vertex cover must
have at least k vertices. The reason is simple: since the k matching edges are vertex disjoint, we must
use k distinct vertices just to cover these k edges, and so any vertex cover must have at least k vertices.
Therefore, the size of a maximum matching is a lower bound on the size of a minimum vertex cover.
Surprisingly, this is always a tight lower bound on bipartite graphs. In other words, having a large
matching is the only reason that we need a large vertex cover.

Theorem (Konig)

In a bipartite graph, the maximum size of a matching is equal to the minimum size of a vertex
cover.

Proof:
It can be proven using algorithmic approach, or strong duality theorem. O

Algorithm 36: Bipartite vertex cover

1 Use an efficient algorithm to find a maximum matching M (doesn’t need to be augmenting
path algorithms).

2 Construct the directed graph é;w as described in the previous section.

3 Do a BFS/DFS on é}w to identify all vertices S C V reachable from S.

4 Return (YN S) U (X — S) as the vertex cover.

The time complexity is dominated by the first step, as the remaining steps take only O(n + m). Using
the augmenting path algorithm before gives O(mn)-time algorithm for bipartite vertex cover. Using
the O(m+/n)-time algorithm by Edmonds and Karp gives O(m+/n)-time algorithm.

Konig’s theorem is a nice example of a graph-theoretic characterization. To see this, imagine that you
work for a company and your boss asks you to find a maximum matching say to assign some jobs
to the employees. If your algorithm finds a perfect matching, then your boss would be happy. But
suppose there is no perfect matching in the graph, how could you convince your boss about the non-
existence? Your boss may just think that you are incompetent and other smarter people could find
a better assignment. With the augmenting path algorithm, maybe you could explain that there is no
augmenting path for your matching and so it is maximum, but this may not be so easy to explain to
your boss. A more convincing way is to show that a vertex cover of size < %, and explain that if there
is a perfect matching such a vertex cover could not exist.

These min-max theorems are some of the most beautiful results in combinatorial optimization, pro-
viding succinct “proofs” for both YES-case (a large matching) and the NO-case (a small vertex cover).
They show the non-existence of a solution by the existence of a simple obstruction. This is the same
idea when studying the duality in the context of programming and optimization.

To put the above discussion into perspective, consider the dynamic programming algorithms. Even
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though we could solve the problems in polynomial time, we don’t have such a succinct characterization
for the NO-cases. If your boss asks why there is no better solution, it would be quite difficult to explain.
The “proof” is still succinct in the sense that it is polynomial sized table, but it is not nearly as elegant
as the proofs provided by the min-max theorems.

Theorem (Hall)

A bipartite graph G = (X, Y; E) with |X| = |Y| has a perfect matching if and only if for every
subset S C Xm it holds that |[N(S)| > |S| where N(S) is the neighbor set of S in Y.

Corollary Every d-regular bipartite graph G = (X, Y; E) has a perfect matching.



Undecidability and Intractability

7.1 Polynomial Time Reductions

Once we have learned more and more algorithms, they become our building blocks and we may not
need to design algorithms for new problems from scratch every time. So it becomes more and more
important to be able to use existing algorithms to solve new problems. We have already seen some
reductions. For instances, we have reduced subset-sum to knapsack, longest increasing subsequence
to longest common subsequence, etc. In general, if there is an efficient reduction from problem A to
problem B and there is an efficient algorithm to solve problem B, then we have an efficient algorithm
to solve problem A.

7.1.1 Decision Problems

To formalize the notion of a reduction, it is more convenient to restrict our attention to decision
problems, for which the output is just YES or NO, so that every problem has the same output format.
For example, instead of finding a maximum matching, we consider the decision version of the problem
“Does G has a matching of size at least k?” As we will discuss later, for all the problems that we will
consider, if we know how to solve the decision version of our problem in polynomial time, then we
can use the decision algorithm as a blackbox/subroutine to solve the search version of our problem in
polynomial time.

polynomial time reductions

We say a decision problem A is polynomial time reducible to a decision problem B if there exists
a polynomial time algorithm F that maps/transforms any instance I[4 of A into an instance Ip
of B (that is, F(I4) = Ip) such that I4 is a YES instance of problem A if and only if I is a YES
instance of problem B.

We use the notation A <p B to denote that such a reduction exists, intuitively saying that

problem A is not more difficult than B in terms of polynomial time solvability.

Now suppose we have such a polynomial time reduction algorithm F and a polynomial time algorithm

73
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ALGp to solve problem B, then we have the following polynomial time algorithm to solve problem A.

Algorithm 37: Solving problem A by reduction

Input: an instance 4 of problem

Output: whether 14 is a YES-instance
1 Use the reduction algorithm F to map/transform I, into Iy = F(I4) of problem B.
2 Return ALGp(Ip).

Correctness follows from the property of reduction algorithm F that I4 is a YES-instance of problem
A if and only if I is a YES-instance of problem B, and the correctness of ALGp to solve problem B.

Time complexity Suppose F has time complexity p(n) for an instance I4 of size n where p(n) is a
polynomial in 7, and ALGp has time complexity g(m) for an instance Iz of size m where q(m) is a
polynomial in m. Then the above algorithm has time complexity g(p(n)), a polynomial in the input
size n.

So far it is all familiar: We reduce problem A to problem B efficiently, and use an efficient algorithm for
problem B to obtain an efficient algorithm to solve problem A. Now we explore the other implication
of the inequality A <p B. Suppose problem A is known to be impossible to be solved in polynomial
time. Then A <p B implies that B cannot be solved in polynomial time either, as otherwise we can
solve problem A in polynomial time using the reduction algorithm proven above. Therefore, if A is
computationally hard and A <p B, then B is also computationally hard.

By our current knowledge, however, we know almost nothing about proving a problem cannot be
solved in polynomial time, and so we could not draw such a strong conclusion from A <p B. But sup-
pose there is a problem, say the traveling salesman problem, which is very famous and has attracted
many brilliant researches to solve it in polynomial time but without any success. Now our boss gives
us a problem C, and we couldn’t solve it in polynomial time, it would be much more convincing if we
could prove that TSP <p C. This is what we will be doing in this chapter!

7.1.2 Simple Reductions

We will show that the following three problems are equivalent in terms of polynomial-time solvability.
Either way they can be solved in polynomial time or they all cannot be solved in polynomial time.

Maximum Clique (Clique)

A subset of vertices S C V is a clique if uv € E for all u,v € S.

Input: Graph G = (V,E), an integer k.
Output: Is there a clique in G with at least k vertices?

Maximum Independent Set (IS)

A subset of vertices S C V is an independent set if uv ¢ E for all u,v € S.

Input: Graph G = (V,E), an integer k.
Output: Is there an independent set in G with at least k vertices?
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Minimum Vertex Cover (VC)

A subset of vertices S C V is a vertex cover if {u,v} NS # 0 for all uv € E.

Input: Graph G = (V,E), an integer k.
Output: Is there a vertex cover in G with at most k vertices?

Proposition Clique <p IS and IS <p Clique.

To see the connection between independent sets and vertex covers, we need the following observation.

Observation In G = (V,E), S C V is a vertex cover of G if and only if V — § is an independent set
in G.

With this observation, we can prove the following proposition.

Proposition VC <pISand IS <p VC.

Note that polynomial time reductions are transitive. Therefore, Clique, IS and VC are equivalent in
polynomial time solvability.

Hamiltonian Cycle (HC)

A cycle is a Hamiltonian cycle if it touches every vertex exactly once.

Input: Undirected graph G = (V, E).
Output: Does G have a Hamiltonian cycle?

Hamiltonian Path (HP)
A path is a Hamiltonian path if it touches every vertex exactly once.

Input: Undirected graph G = (V, E).
Output: Does G have a Hamiltonian path?

It is not surprising that these two problems are equivalent in terms of polynomial time computation.
A common technique to do reduction is to show that one problem is a special case of another problem.

We call this technique specialization. The following proposition is an example.

Proposition HC <p TSP.

7.1.3 A Nontrivial Reduction

First, we introduce the 3-SAT problem, which will be important in the theory of NP-completeness. In
this problem we are given n boolean variables xi, ..., x,, each can either be set to True or False. We
are also given a formula in conjunctive normal form (CNF), where it is an AND of the clauses, and
each clause is an OR of some literals, where a literal is either x; or x;.

3-Satisfiability (3-SAT)

Input: A CNF-formula in which each clause has at most three literals.
Output: Is there a truth assignment to the variables that satisfies all the clauses?
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Theorem 3-SAT <p IS.

We have introduced the notion of a polynomial time reduction, and used it to establish relations
between different problems. In principle, we can add new problems and relate to these problems, and
slowly build a big web of all computational problems. As <p is transitive, any strongly connected
component in this web forms an equivalent class of problems in terms of polynomial time solvability.
Is there a better way to do it than consider the problem one by one?

7.2 NP & NP-completeness

As we discussed last time, we could do reductions between different problems and slowly build up
a huge map showing the relations of all the problems. But it would be exhausting to do so many
reductions, or even just look up the relations. It would nice if we could identify the “hardest” problem
X of a large class. Then, when we have a new problem Y, we just need to prove that X <p Y and then
Y could also be at least as hard as all the problems in the large class. This sounds very good, but how
can we show that a problem is the hardest among a large class? For this, we need a general and more
abstract definition that captures a very large class of problems.

For a problem X, each instance of X is represented by a binary string s. A problem X is in NP
if there is a polynomial time verification algorithm By such that the input s is a YES-instance if
and only if there is a proof t which is binary string of length poly(|S|) so that Bx (s, t) returns
YES.

The key points are Bx is a polynomial time algorithm and ¢ is a short proof of length poly(|S|). In
most problems, ¢ is simply a solution and By is an efficient algorithm to check if ¢ is indeed a solution.
This definition is a bit abstract, so let’s see an example.

Example: 3-SAT

Given a 3-SAT formula, the verification algorithm expects the proof to be a satisfying assignment
and will return YES if it indeed satisfies all the clauses. Clearly, the proof is short (polysize), the
verification is efficient (polytime), and it only accepts YES instances.

It should be apparent that the class NP captures all the problems considered in this course, since they
all have short solutions that are easy to verify.

Remarks

Suppose the problem is to determine whether a graph is non-Hamiltonian, then no one knows whether
this problem is in NP, and the common belief is that is it not in NP. In fact, we don’t know how to do
much better than enumerating all potential Hamiltonian cycles and check.

Contrast the fact above with bipartite matching problem, for which we know hwo to efficiently check
whether a graph is a NO-instance, by checking a vertex cover of size < k. A problem with short
and easy-to-check proofs for both YES and NO problems is in NP N co-NP. For example, a min-max
theorem such as Konig’s theorem would show that a problem is in NP N co-NP. But the common belief
is that most problems in NP are not in NP N co-NP (so, e.g., no mix-max theorem).

Let P denote the class of decision problems solvable in polynomial time, then it’s clear that P C NP.

NP is the class of problems solvable by a non-deterministic polytime algorithm. A non-deterministic
machine, roughly speaking, has the power to correctly guess a solution or an accepting path. So, as
long as there is a short solution, a non-deterministic machine will magically find it.
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It is the most important open problem in theoretical computer science to answer whether P = NP
or P C NP. It is now one of the seven open problems in mathematics posted by Clay Math Institute.
The common belief is that P # NP, and the intuition is that an efficient algorithm to verify a solution
should not automatically implies an efficient algorithm to find a solution.

7.2.1 NP-completeness

Informally, we say a problem is NP-complete if it is a hardest problem in NP.

NP-completeness

A problem X € NP is NP-complete if Y <p X for all Y € NP.

From the definition, we can formally show that an NP-complete problem is a hardest problem in NP.

Proposition P = NP if and only if NP-complete problem can be solved in polynomial time.

Cook and Levin independently formulated the class of NP problems and proved the following impor-
tant theorem.

Theorem (Cook-Levin)

3-SAT is NP-complete.
Proof skipped.

7.3 Hard Graph Problems

Directed Hamiltonian Cycle (DHC)

Input: A directed graph G = (V,E).
Output: Does G has a directed cycle that touches every vertex exactly once?

We can show that 3-SAT <, DHC <p HC, so that HC is NP-complete. Thus TSP is NP-complete.

Graph Coloring

Input: An undirected graph G = (V, E), and a positive integer k.
Output: Is it possible to use k colors to color all the vertices so that every vertex receives one
color and any two adjacent vertices receive different colors?

When k = 1, it is possible if and only if the graph has no edges. When k = 2, it is possible if
and only if the graph is bipartite. When k = 3, the problem becomes NP-complete by showing
3-SAT <p 3-coloring. The graph coloring problem is very useful in modeling resource allocation
problems, e.g., interval coloring problem.
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7.4 Hard Partitioning Problems

3-dimensional matching (3DM)

Input : Disjoint sets X, Y, Z each of size n, aset T C X x Y x Z of triples.
Output: Does there exist a subset of # triples in T so that each element of X UY U Z is contained
in exactly one of the triples?

The bipartite matching is a special case when we only have X,Y and pairs. A set of n triples is a
perfect 3D-matching if every element is contained in exactly one of these triples.

Theorem 3DM is NP-complete.

Subset-sum

Input: n positive integers ay, ..., a,, and an integer K.
Output: Does there exist a subset S C [n] with Y ;c5a; = K?

This is a problem about numbers, so some new ideas are needed to connect to previous combinatorial
problems.

Theorem Subset-sum is NP-complete.

Corollary Knapsack is NP-complete.
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