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Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of AMATH 343 during Fall 2021 as well as other related resources. I do not make any war-
ranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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1
Introduction

Discrete models are used to analyze or predict properties of a system over discrete time units tk,
k = 1, 2, . . ., as opposed to analyzing it over a continuous time variable t ∈ R.

In a simple example, where we model the population of a particular species of perennial plant in a
given ecosystem, we can let p(n) be the number of plants in this system n years past this year, where
n ≥ 0. We can also use pn for simplicity. Then the populations pn may be viewed as elements of a
sequence p = {p0, p1, . . .}.

1.1 Radioactive Decay

Imagine a rock containing a radioactive element “X”. We denote T1/2 the radioactive “half-life” of X.
Then we have

If our sample contains a units of X at some time t, then only one-half the original amount,
1
2 a units are present at time t + T1/2.

We let xk be the amount of X in our sample at tk = kT1/2, for k = 0, 1, 2, . . ..

The half-life property gives us

xk =
1
2

xk−1, k = 1, 2, 3, . . . (1.1)

(1.1) is an example of a difference equation in the variables xk, k = 0, 1, 2, . . .. We abbreviate as “d.e.”
in this course.

The expression xk = (1/2)kx0 is the solution to (1.1) with initial condition x0.

We often interested in the long-term or asymptotic behavior of the sequence, i.e., {xk} with k→ ∞.

If now we assume x(t) is continuous, then xk is the result of sampling at times tk. In this and other ap-
plications, the sampling can be viewed as a “stroboscopic” examination of a certain physical property
x(t) of a physical or biological system that evolves over time. Here we can use the true “radioactive
decay low”, i.e.,

[ Rate of decay ] proportional to [ amount of radioactive substance present ]

This leads to differential equation with decay constant k > 0 specific to X:

dx
dt

= −kx,
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and the solution to this DE satisfying the initial condition x(0) = x0 is x(t) = x0e−kt.

1.2 Population growth

The model of “Malthusian growth” is as follows:

[ Rate of population growth ] is proportional to [ population at time t ]

This yields the following DE
dx
dt

= ax, a > 0

The solution to this DE satisfying the initial condition x(0) = x0 is

x(t) = x0eat.

This DE represents a continuous dynamical model of population evolution.

The propagation of annual plants is better described by discrete models:

xn+1 = cxn,

for c some constant.

General questions regarding discrete mathematical models

Q1 Given x0, . . . , xn for some n > 0,can we determine xn+1 uniquely? How many of previous values
do we need?

The simplest type of model is xn = f (xn−1) for n = 1, 2, . . .. We typically require f not only continuous
in x but also increasing in x (for population model). Also we need f (0) = 0. This leads to the simplest
case f (x) = cx.

Later in this course, the term discrete dynamical system will be used to refer to such models.

Q2 What’s the behavior of the sequence {xn} as n→ ∞?

So here we analyze the asymptotic behavior of sequences xn = cxn−1, n ≥ 1. The solution to DE with
initial condition x0 is xn = cnx0, n ≥ 0.

Case 1: c > 1, population grows monotonically without bound.

Case 2: c = 1, population remains constant.

Case 3: 0 < c < 1, population decreases monotonically with limit 0.

We can depict as follows:

c > 1 or
0 0x0 x1 x2 motion away from 0

c = 1 or
0 0xn = x0 points remain fixed

c < 1 or
0 0x2 x1 x0 motion toward 0
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These sets of diagrams are known as phase potraits of the dynamic system.

We use f ◦n to denote n-fold composition of f with itself. For example, x2 = f ( f (x0)) = f ◦2(x0).

The solution to the dynamic system is xn = cnx0. If x0 = 0, then xn = 0 for all n. The point x = 0 is a
fixed point of the function f (x) = cx.

Then we discuss the behavior of the sequences.

• c > 0

– 0 < c < 1. x = 0 is an attractive fixed point.

– c > 1. x = 0 is a repulsive fixed point.

– c = 1, each x is a fixed point. x = 0 is neither attractive or repulsive fixed point. In many
books, it is called neutral fixed point or indifferent fixed point. Note that fixed points here
are unstable, because if we perturb the initial condition a bit, unlike the other two cases, the
long term result/behavior is different.

• c < 0, xn and xn−1 alternate in sign.

1.3 Applications

The discrete models above, or discrete dynamic systems, have the following relation in general: for
some n ≥ 1,

xk = f (k, xk−1, xk−2, . . . , xk−n), k ≥ n. (1.2)

(1.2) represents the general form of difference equation of order n. It also can be called recursion
relations.
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