Partial Differential Equations 2

AMATH 453

Kevin Lamb

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of AMATH 453 during Fall 2021 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.
You can find my notes for other courses on https://notes.sibeliusp.com/.
Sibelius Teng

Contents

Preface 1
1 Waves and Diffusions 3
1.1 The wave equation 3
1.2 Conservation laws 3
1.3 The Diffusion Equation \& Maximum principle 4
1.4 Uniqueness of the Dirichlet Problem 5
1.5 Diffusion on the Whole Line 6
2 Reflections and Sources 9
2.1 Diffusion on the Half-Line 9
2.2 Reflections of Waves 10
2.3 Diffusion with a Source 11
2.4 Source on a half line 13
2.5 Waves with a Source 16

Waves and Diffusions

1.1 The wave equation

We already know the wave equation $(c>0)$:

$$
u_{t t}-c^{2} u_{x x}=0, \quad-\infty<x<\infty
$$

and the general solution is of the form

$$
u(x, t)=f(x+c t)+g(x-c t)
$$

With initial conditions imposed, we have the IVP

$$
u_{t t}-c^{2} u_{x x}=0, \quad\left\{\begin{array}{l}
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

The solution to IVP is then

$$
u(x)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

To interpret the integral, we can let $\psi(x)=\mu^{\prime}(x)$, then the integral becomes

$$
\int_{x-c t}^{x+c t} \psi(s) d s=\mu(x+c t)-\mu(x-c t)
$$

1.2 Conservation laws

Given a wave equation, we multiply by u_{t} :

$$
\begin{gathered}
u_{t} u_{t t}-c^{2} u_{t} u_{x x}=0 \\
\frac{\partial}{\partial t}\left(\frac{1}{2} u_{t}^{2}\right)-c^{2}\left[\frac{\partial}{\partial x}\left(u_{t} u_{x}\right)-u_{t x} u_{x}\right]=0 \\
\frac{\partial}{\partial t}\left(\frac{1}{2} u_{t}^{2}+\frac{c^{2}}{2} u_{x}^{2}\right)-\frac{\partial}{\partial x}\left(c^{2} u_{t} u_{x}\right)=0
\end{gathered}
$$

Then the conservation law states that

$$
\frac{\partial R}{\partial t}+\frac{\partial F}{\partial x}=0
$$

where $R \in(-\infty,+\infty)$, and $F \rightarrow 0$ with $x \rightarrow \pm \infty$.

1.3 The Diffusion Equation \& Maximum principle

The diffusion equation is given by

$$
u_{t}=k u_{x x}, \quad-\infty<x<\infty
$$

with diffusion constant $k>0$.
We define

$$
\begin{aligned}
R & =(a, b) \times(0, \infty) \\
R_{T} & =(a, b) \times(0, T] \\
\overline{R_{T}} & =[a, b] \times[0, T] \\
C_{T} & =\{a \leq x \leq b, t=0\} \cup\{a, 0 \leq t \leq T\} \cup\{b, 0 \leq t \leq T\}
\end{aligned}
$$

Theorem 1.1: Maximum principle

If $u \in C\left(\overline{R_{T}}\right) \cap C^{2}\left(R_{T}\right)$ is a solution of the diffusion equation, then $u(x, t) \leq \max _{C_{T}}\{u\}$ for all $(x, t) \in R_{T}, T>0$. Here C_{T} is called the parabolic boundary of R_{T}.

Remark:

1. We can replace $u_{t}-k u_{x x}=0$ with $u_{t}-k u_{x x} \leq 0$.
2. A stronger version of the theorem exists which says that $u(x, t)<\max _{C_{T}}\{u\}$ unless u is constant.
3. Same result applies to the minimum of u by replacing u with $-u$. However, in this case, (1) doesn't apply. Now we need $u_{t}-k u_{x x} \geq 0$.

Here are some intuitions. Consider a rod lying on $[a, b]$ with initial non-constant temperature $T_{0}(x)$. Then as time goes, only blue T is possible, not red T.

Proof:
Let $M=\max _{C_{T}} u$. Note that M exists since u is continuous on C_{T}, and C_{T} is a closed boundary. We need to show that $u \leq M$ on $\overline{R_{T}}$.

Let

$$
v(x, t)=u(x, t)+\epsilon x^{2}, \quad \epsilon>0
$$

Let $r=\max \{|a|,|b|\}$. Then $v(x, t) \leq M+\epsilon r^{2}$ on C_{T}. Now we prove that $v \leq M+\epsilon r^{2}$ on R_{T}.
On R_{T}, we have

$$
u=v-\epsilon x^{2} \leq M+\epsilon\left(r^{2}-x^{2}\right)
$$

Now if we take the derivative,

$$
\begin{equation*}
v_{t}-k v_{x x}=u_{t}-k u_{x x}-2 k \epsilon=-2 k \epsilon<0 \tag{*}
\end{equation*}
$$

(i) Suppose $v(x, t)$ has a maximum at an interior point $\left(x_{0}, t_{0}\right)$, i.e., $\left(x_{0}, t_{0}\right) \in(a, b) \times(0, T)$. Then

$$
\begin{aligned}
& v_{t}\left(x_{0}, t_{0}\right)=0 \text {. Moreover, } v_{x x}\left(x_{0}, t_{0}\right) \leq 0 \text {. Then } \\
& \qquad v_{t}\left(x_{0}, t_{0}\right)-k v_{x x}\left(x_{0}, t_{0}\right)=-k v_{x x}\left(x_{0}, t_{0}\right) \geq 0
\end{aligned}
$$

contradicting $\left({ }^{*}\right)$, thus there are no interior max.
(ii) Suppose $v(x, t)$ has a maximum at an interior point of the upper boundary. $v_{t}\left(x_{0}, T\right) \geq 0$. Then

$$
v_{t}\left(x_{0}, t_{0}\right)-k v_{x x}\left(x_{0}, t_{0}\right) \geq 0
$$

contradicting $\left(^{*}\right)$, thus there are no maximum along the upper boundary.
But v is continuous on $\overline{R_{T}}$, thus it has a maximum value which we now know must occur on C_{T}. Hence $v \leq M+\epsilon r^{2}$ on $\overline{R_{T}}$. Letting $\epsilon \rightarrow 0$, we have $u \leq M$ on R_{T}.

1.4 Uniqueness of the Dirichlet Problem

$$
\begin{align*}
u_{t}-k u_{x x} & =f(x, t) \quad a<x<b, 0<t<\infty \\
u(x, 0) & =\phi(x) \tag{1.1}\\
u(a, t) & =g(t) \\
u(b, t) & =h(t)
\end{align*}
$$

Theorem 1.2

The solution of (1.1) is unique.

Proof:

Suppose there are two solutions $u_{1}(x, t)$ and $u_{2}(x, t)$. Let $w(x, t)=u_{1}-u_{2}$. Now we calculate

$$
\begin{aligned}
w_{t}-k w_{x x} & =\left(u_{1 t}-k u_{1 x x}\right)-\left(u_{2 t}-u_{2 x x}\right)=f-f=0 \\
w(x, 0) & =u_{1}(x, 0)-u_{2}(x, 0)=\phi-\phi=0 \\
w(a, t) & =w(b, t)=0
\end{aligned}
$$

By maximum principle, we have $w \leq 0$ on the boundary, and my minimum principle, $w \geq 0$, since $\max _{C_{T}}\{w\}=\min _{C_{T}}\{w\}=0$. Then we conclude that $w \equiv 0$.

Now we present a second proof using energy method:
Proof:
Given $w_{t}-k w_{x x}=0$, multiply both sides by w :

$$
0=w w_{t}-k w w_{x x}=\frac{\partial}{\partial t}\left(\frac{1}{2} w^{2}\right)-k \frac{\partial}{\partial x}\left(w w_{x}\right)+k w_{x}^{2}
$$

If we integrate both sides,

$$
\frac{d}{d t} \int_{a}^{b} \frac{1}{2} w^{2} \mathrm{~d} x=k \int_{a}^{b}\left(w w_{x}\right)_{x} \mathrm{~d} x-k \int_{a}^{b} w_{x}^{2} \mathrm{~d} x=\left.k w w_{x}\right|_{a} ^{b}-k \int_{a}^{b} w_{x}^{2} \mathrm{~d} x
$$

Thus

$$
\frac{d}{d t} \int_{a}^{b} \frac{1}{2} w^{2} \mathrm{~d} x=-k \int_{a}^{b} w_{x}^{2} \mathrm{~d} x
$$

Then

$$
\int_{a}^{b} \frac{1}{2} w^{2} \mathrm{~d} x=0 \quad \text { for all the time }
$$

Then $w \equiv 0$ on $a \leq x \leq b, 0 \leq t \leq T$.

Now let's examine stability. Consider

$$
\begin{array}{r}
u_{t}-k u_{x x}=0 \\
u(a, t)=u(b, t)=0
\end{array}
$$

and let $u_{j}(x, t)$ be the solution for $u(x, 0)=\phi_{j}(x)$ for $j=1,2$.
Let $w=u_{1}-u_{2}$. Proceeding as before (energy method) we have

$$
\int_{a}^{b}\left(u_{1}-u_{2}\right)^{2} \mathrm{~d} x \leq \int_{a}^{b}\left(\phi_{1}-\phi_{2}\right)^{2} \mathrm{~d} x
$$

This tells us $\left\|u_{1}-u_{2}\right\|_{2} \rightarrow 0$ as $\left\|\phi_{1}-\phi_{2}\right\|_{2} \rightarrow 0$. This is called stability in the square integrable sense.
Alternatively, by maximum principle,

$$
\max \left|u_{1}-u_{2}\right| \leq \max \left|\phi_{1}-\phi_{2}\right|
$$

using maximum \& minimum principle, i.e.,

$$
\begin{aligned}
\max \left\{u_{1}-u_{2}\right\} & \leq \max \left\{\phi_{1}-\phi_{2}\right\} \\
\min \left\{u_{1}-u_{2}\right\} & \geq \min \left\{\phi_{1}-\phi_{2}\right\}
\end{aligned}
$$

This is called stability in the uniform sense.

1.5 Diffusion on the Whole Line

Consider the initial value problem

$$
\begin{align*}
u_{t}-k u_{x x} & =0 \quad \text { on }-\infty<x<\infty, \quad 0<t<\infty \tag{1.2}\\
u(x, 0) & =\phi(x) \tag{1.3}
\end{align*}
$$

If $s(x, t)$ is a solution of (1.2), then so is

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} s(x-y, t) g(y) \mathrm{d} y \tag{1.4}
\end{equation*}
$$

for any function $g(y)$. We can find $u_{t}, u_{x}, u_{x x}$ and take it into (1.2):

$$
u_{t}-k u_{x x}=\int_{-\infty}^{\infty}\left[s_{t}(x-y, t)-k s_{x x}(x-y, t)\right] g(y) \mathrm{d} y=0
$$

So we now find a solution of (1.2) with the property that $s(x, 0)=\delta(x)$, i.e., solve

$$
\begin{aligned}
s_{t}-k s_{x x} & =0 \\
s(x, 0) & =\delta(x)
\end{aligned}
$$

To do this, consider the problem:

$$
\begin{align*}
& v_{t}-k v_{x x}=0 \\
& v(x, 0)=v_{0} H(x) \tag{1.5}\\
& H=\text { Heaviside function }
\end{align*}
$$

v_{0} carries the dimension of v, thus $H(x)$ is dimensionless.

Similarity solution of (1.5)

Let $Q=\frac{v}{v_{0}}$ which is dimensionless, then the original problem gets transformed to

$$
\begin{aligned}
Q_{t} & =k Q_{x x} \\
Q(x, 0) & =H(x)
\end{aligned}
$$

The solution can only be a function of x, t and $k: Q=F(x, t, k)$. Then we can apply dimensionless analysis. This means Q can only depend on dimensionless combinations of x, t and k. We have

$$
\begin{aligned}
{[x] } & =L \\
{[t] } & =T \\
{[k] } & =\frac{L^{2}}{T}
\end{aligned}
$$

Then

$$
\left[x^{a} t^{b} k^{c}\right]=L^{a} T^{b} \frac{L^{2 c}}{T^{c}} \Longrightarrow b=c, 2 c=-a
$$

This tells us

$$
Q=f(\theta) \quad \text { where } \theta=\frac{x}{\sqrt{k t}}
$$

By chain rule, we have

$$
\begin{aligned}
Q_{t} & =f^{\prime}(\theta) \cdot \theta_{t}=-\frac{1}{2} \frac{\theta}{t} f^{\prime}(\theta) \\
Q_{x} & =f^{\prime}(\theta) \cdot \theta_{x}=\frac{1}{\sqrt{k t}} f^{\prime}(\theta) \\
Q_{x x} & =\frac{1}{k t} f^{\prime \prime}(\theta)
\end{aligned}
$$

Then

$$
\begin{gathered}
Q_{t}-k Q_{x x}=-\frac{\theta}{2 t} f^{\prime}-\frac{k}{k t} f^{\prime \prime}=0 \\
f^{\prime \prime}(\theta)=-\frac{1}{2} \theta f^{\prime}(\theta) \\
f^{\prime}(\theta)=A e^{-\frac{\theta^{2}}{4}} \\
f(\theta)=A \int_{-\infty}^{\theta} e^{-s^{2} / 4} \mathrm{~d} s+C
\end{gathered}
$$

As $x \rightarrow+\infty, \theta \rightarrow+\infty$, and $Q(x, t)=f(\theta) \rightarrow 1$. Then $\lim _{\theta \rightarrow+\infty} f(\theta)=1$.
As $x \rightarrow-\infty, \theta \rightarrow-\infty$ and $Q(x, t)=f(\theta) \rightarrow 0, \lim _{\theta \rightarrow-\infty} f(\theta)=0$.
Therefore, C must be 0 , and $A \int_{-\infty}^{\infty} e^{-s^{2} / 4} \mathrm{~d} s=1$. Using the change of variable $\eta=\frac{s}{2}$:

$$
\int_{-\infty}^{\theta} e^{-s^{2} / 4} \mathrm{~d} s=2 \int_{-\infty}^{\theta / 2} e^{-\eta^{2}} \mathrm{~d} \eta=2 \int_{-\infty}^{x / \sqrt{4 k t}} e^{-\eta^{2}} \mathrm{~d} \eta
$$

So if we take $\theta=\frac{x}{\sqrt{4 k t}}$ at the beginning, we get $\tilde{A}=2 A$ and

$$
\tilde{A} \int_{-\infty}^{\infty} e^{-s^{2}} \mathrm{~d} s=1 \Longrightarrow \tilde{A}=\frac{1}{\sqrt{\pi}}
$$

Thus we get

$$
Q=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x / \sqrt{4 k t}} e^{-s^{2}} \mathrm{~d} s
$$

Note that for $x>0$, as $t \rightarrow 0^{+}, \frac{x}{\sqrt{4 k t}} \rightarrow+\infty$ and $Q(x, t) \rightarrow \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s^{2}} \mathrm{~d} s=1$.
And for $x<0$ as $t \rightarrow 0^{+}, Q \rightarrow 0$. The reason for the name "similarity solution" is because the curve is being stretched over time.
$s(x, t)$ has many names: source function (not a great name), Green's function, fundamental solution, propagator of the diffusion equation, diffusion kernel...

Consider a diffusion equation with initial condition

$$
\begin{aligned}
u_{t}+k u_{x x} & =0 \\
u(x, 0) & =\delta(x)
\end{aligned}
$$

The solution is Gaussian

$$
u=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}
$$

For any $t>0, u$ is non-zero. It gets instantaneously non-zero everywhere.

Reflections and Sources

2.1 Diffusion on the Half-Line

We will start with diffusion on the half line Dirichlet problem.

$$
\begin{aligned}
v_{t}-k v_{x x} & =0 \quad 0<x<\infty, 0<t<\infty \\
v(x, 0) & =\phi(x) \\
v(0, t) & =0 \quad \text { for } t>0
\end{aligned}
$$

Let

$$
\phi_{o d d}= \begin{cases}\phi(x) & x>0 \\ -\phi(-x) & x<0\end{cases}
$$

and solve

$$
\begin{aligned}
u_{t}+k u_{x x} & =0 \quad \text { on }-\infty<x<\infty \\
u(x, 0) & =\phi_{\text {odd }}(x)
\end{aligned}
$$

Then $v(x, t)$ is restriction of u to $x>0$. From an earlier result

$$
u(x, t)=\int_{-\infty}^{\infty} s(x-y, t) \phi_{o d d}(y) \mathrm{d} y
$$

where

$$
s(x, t)=\frac{e^{-\frac{x^{2}}{4 k t}}}{\sqrt{4 \pi k t}}
$$

Claim From the property of s and $\phi_{o d d}$, we can show that $u(x, t)$ is an odd function of x. Thus $u(0, t)=0$.

Now we see that

$$
\begin{array}{rll}
u(x, t) & =\int_{-\infty}^{0} s(x-y, t)[-\phi(-y)] \mathrm{d} y+\int_{0}^{\infty} s(x-y, t) \phi(y) \mathrm{d} y & \\
& =\int_{\infty}^{0} s(x+y, t) \phi(y) \mathrm{d} y+\int_{0}^{\infty} s(x-y, t) \phi(y) \mathrm{d} y & \text { let } y=-y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}-e^{-\frac{(x+y)^{2}}{4 k t}}\right] \phi(y) \mathrm{d} y & \tag{2.1}
\end{array}
$$

Example:

$$
\begin{aligned}
v_{t}-k v_{x x} & =0 & & 0<x<\infty \\
v(x, 0) & =1 & & x>0 \\
v(0, t) & =0 & &
\end{aligned}
$$

Then $\phi_{\text {odd }}=-1+2 H(x)$.
Recall the solution of

$$
\begin{align*}
u_{t}-k u_{x x} & =0 \\
u(x, 0) & =H(x) \tag{2.2}
\end{align*}
$$

is

$$
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{x / \sqrt{4 k \pi}} e^{-s^{2}} \mathrm{~d} s
$$

Let $u(x, t)=-1+2 q(x, t)$. Then $q(x)$ is the solution to (2.2). Hence we have

$$
u=-1+\frac{2}{\sqrt{\pi}} \int_{-\infty}^{x / \sqrt{4 k \pi t}} e^{-s^{2}} \mathrm{~d} s=\operatorname{erf}\left(\frac{x}{\sqrt{4 k t}}\right)
$$

Another way to solve is to use (2.1).
Consider Neumann Boundary condition $(0<x<\infty)$:

$$
\begin{aligned}
u_{t}-k u_{x x} & =0 \\
u(x, 0) & =\phi(x) \\
u_{x}(0, t) & =0
\end{aligned}
$$

We can let

$$
\phi_{\text {even }}= \begin{cases}\phi(x) & x>0 \\ \phi(-x) & x<0\end{cases}
$$

and solve

$$
\begin{aligned}
u_{t}-k u_{x x} & =0 \\
u(x, 0) & =\phi_{\text {even }}
\end{aligned}
$$

With some algebra, we get

$$
u=\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left[e^{-\frac{(x-y)^{2}}{4 k t}}+e^{-\frac{(x+y)^{2}}{4 k t}}\right] \phi(y) \mathrm{d} y
$$

2.2 Reflections of Waves

Dirichlet Problem on the half line

$$
\begin{aligned}
v_{t t}-c^{2} v_{x x} & =0 \quad 0<x<\infty \\
v(x, 0) & =\phi(x) \\
v_{t}(x, 0) & =\psi(x) \\
v(0, t) & =0
\end{aligned}
$$

The idea is $u(-x, t)=-u(x, t)$, then $u=0$ at $x=0$. So consider an odd reflection about $x=0$:

$$
\phi_{\text {odd }}=\left\{\begin{array}{ll}
\phi(x) & x>0 \\
-\phi(-x) & x<0
\end{array} \quad \psi_{\text {odd }}= \begin{cases}\psi(x) & x>0 \\
-\psi(-x) & x<0\end{cases}\right.
$$

We know that the solution of $(-\infty<x<\infty)$

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =0 \\
u(x, 0) & =\phi_{o d d}(x) \\
u_{t}(x, 0) & =\psi_{o d d}(x)
\end{aligned}
$$

is

$$
u(x, t)=\frac{1}{2}\left[\phi_{o d d}(x+c t)+\phi_{o d d}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{o d d}(y) \mathrm{d} y
$$

Note that $(t>0)$

$$
u(0, t)=\frac{1}{2}\left[\phi_{o d d}(c t)+\phi_{o d d}(-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{o d d}(y) \mathrm{d} y=0
$$

which satisfies the initial condition.
3 cases of the solution
(a) $x>c|t|$, then $x+c t>0, x-c t>0$, then the solution $(t>0)$ becomes

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) \mathrm{d} y
$$

(b) Consider $0<x<c t$, $t>0$, we have $x-c t<0, x+c t>0$. Then

$$
\begin{aligned}
& \phi_{o d d}(x-c t)=-\phi(-x+c t) \\
& \phi_{o d d}(x+c t)=\phi(x+c t)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{x-c t}^{x+c t} \psi_{o d d}(y) \mathrm{d} y & =\int_{x-c t}^{0}[-\psi(-y)] \mathrm{d} y+\int_{0}^{x+c t} \psi(y) \mathrm{d} y \\
& =-\int_{0}^{-x+c t} \psi(y) \mathrm{d} y+\int_{0}^{x+c t} \psi(y) \mathrm{d} y \\
& =\int_{-(x-c t)}^{x+c t} \psi(y) \mathrm{d} y
\end{aligned}
$$

Therefore

$$
u=\frac{1}{2}[\phi(x+c t)-\phi(-(x-c t))]+\frac{1}{2 c} \int_{-(x-c t)}^{x+c t} \psi(y) \mathrm{d} y
$$

2.3 Diffusion with a Source

$$
\begin{aligned}
u_{t}-k u_{x x} & =f(x, t) & -\infty<x<\infty \\
u(x, 0) & =\phi(x) & 0<t<\infty
\end{aligned}
$$

We can solve

$$
\begin{align*}
u_{t}-k u_{x x} & =f(x, t) \tag{2.3}\\
u(x, 0) & =0
\end{align*}
$$

and

$$
\begin{aligned}
u_{t}-k u_{x x} & =0 \\
u(x, 0) & =\phi(x)
\end{aligned}
$$

and sum to get the solution.

Duhamel's Principle for first order linear ODEs

The solution of

$$
\begin{aligned}
y^{\prime}+a y & =F(t) \quad t>0, \quad a \text { constant } \\
y(0) & =0
\end{aligned}
$$

is given by

$$
y(t)=\int_{0}^{t} w(t-s ; s) \mathrm{d} s
$$

where $w(t ; s)$ is the solution of

$$
\begin{aligned}
w_{t}(t ; s)+a w(t ; s) & =0 \\
w(0 ; s) & =F(s)
\end{aligned}
$$

Proof:

$$
\frac{d}{d t}\left(e^{a t} y\right)=e^{a t} F(t)=e^{a t} y=\int_{0}^{t} e^{a s} F(s) \mathrm{d} s
$$

Then

$$
y=\int_{0}^{t} e^{a(s-t)} F(s) \mathrm{d} s
$$

Using initial condition $y(0)=0$ and $w(t, s)=F(s) e^{-a t}$,

$$
w(t-s ; s)=F(s) e^{a(s-t)}
$$

Thus

$$
y(t)=\int_{0}^{t} w(t-s ; s) \mathrm{d} s
$$

We are now to guess that this works for the diffusion equation, i.e., guess the solution of (2.3) is

$$
u(x, t)=\int_{0}^{t} w(x, t-s ; s) \mathrm{d} s
$$

where $w(x, t ; s)$ is the solution of

$$
\begin{aligned}
w_{t}-k w_{x x} & =0 \\
w(x, 0 ; s) & =f(x, s)
\end{aligned}
$$

From previous work

$$
w=\int_{-\infty}^{\infty} s(x-y, t) f(y, s) \mathrm{d} y
$$

Then

$$
\begin{equation*}
u=\int_{0}^{t} \int_{-\infty}^{\infty} S(x-y, t) f(y, s) \mathrm{d} y \mathrm{~d} s \tag{2.4}
\end{equation*}
$$

We need to verify that this is indeed the solution

$$
\begin{aligned}
u_{t} & =\int_{-\infty}^{\infty} s(x-y, 0) f(y, t) \mathrm{d} y+\int_{0}^{t} \int_{-\infty}^{\infty} s_{t}(x-y, t-s) f(y, s) \mathrm{d} y \mathrm{~d} s \\
& =f(x, y)+\int_{0}^{t} \int_{-\infty}^{\infty} s_{t}(x-y, t-s) f(y, s) \mathrm{d} y \mathrm{~d} s
\end{aligned}
$$

Next

$$
u_{x x}=\int_{0}^{t} \int_{-\infty}^{\infty} s_{x x}(x-y, t-s) f(y, s) \mathrm{d} y \mathrm{~d} s
$$

Then we see that $u_{t}-k u_{x x}=f(x, t)$ and $u(x, 0)=0$.
Therefore (2.4) is a solution of (2.3). Then add $\int_{-\infty}^{\infty} S(x-y, t) \phi(y) \mathrm{d} y$ to add IC $u(x, 0)=\phi(x)$.

2.4 Source on a half line

$$
\begin{aligned}
u_{t}-k u_{x x} & =f(x, t) \quad 0<x<\infty, \quad 0<t<\infty \\
u(x, 0) & =\phi(x) \\
u(0, t) & =h(t)
\end{aligned}
$$

where $h(t)$ is the source on the boundary.
Let $v(x, t)=u(x, t)-h(t)$, then

$$
\begin{aligned}
v_{t}-k v_{x x} & =u_{t}-k u_{x x}-h^{\prime}(t)=f(x, t)-h^{\prime}(t) \\
v(x, 0) & =\phi(x)-h(0)=\tilde{\phi}(x) \\
v(0, t) & =0
\end{aligned}
$$

Then we can use odd extension and solve

$$
\begin{aligned}
v_{t}-k v_{x x} & =\tilde{f}(x, t):=f_{o d d}-h^{\prime}(t) \\
v(x, 0) & =\tilde{\phi}_{o d d}
\end{aligned}
$$

Use previous solution and restrict to the positive x-axis to get $v(x, t)$ and then $u(x, t)=v(x, t)+h^{\prime}(t)$.

Theorem 2.1

Let $\phi(x)$ be a bounded continuous function on $-\infty<x<\infty$. Then

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) \mathrm{d} y \tag{2.5}
\end{equation*}
$$

where

$$
S(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}
$$

defines an C^{∞} solution of

$$
\begin{aligned}
u_{t}-k u_{x x} & =0 \quad-\infty<x<\infty, \quad 0<t<\infty \\
u(x, 0) & =\phi(x)
\end{aligned}
$$

Proof:
Sub $S(x, t)$ in, we get

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) \mathrm{d} y
$$

We now introduce the change of variable,

$$
\frac{x-y}{\sqrt{k t}}=p
$$

then

$$
y=x-\sqrt{k t} p, \quad \mathrm{~d} y=-\sqrt{k t} \mathrm{~d} p
$$

Then

$$
\begin{aligned}
u(x, y) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-p^{2} / 4} \phi(x-\sqrt{k t} p)(-\sqrt{k t} \mathrm{~d} p) \\
& =\frac{1}{\sqrt{4 \pi}} \int_{\infty}^{\infty} e^{-p^{2} / 4} \phi(x-\sqrt{k t} p) \mathrm{d} p
\end{aligned}
$$

Thus

$$
\begin{aligned}
|u(x, t)| & \leq \frac{1}{\sqrt{4 \pi}} \int_{\infty}^{\infty} e^{-p^{2} / 4}|\phi(x-\sqrt{k t} p)| \mathrm{d} p \\
& =\frac{\max |\phi|}{\sqrt{4 \pi}} \int_{-\infty}^{\infty} e^{-p^{2} / 4} \mathrm{~d} p \\
& =\max |\phi|
\end{aligned}
$$

Thus (2.5) integral converges absolutely and uniformly.
Formally

$$
u_{x}(x, t)=\infty_{-\infty}^{\infty} \frac{\partial}{\partial x} S(x-y, t) \phi(y) \mathrm{d} y
$$

and these two are equal of the integral converses absolutely.
Consider

$$
\begin{aligned}
I(x, t) & =\int_{-\infty}^{\infty} S_{x}(x-y, t) \phi(y) \mathrm{d} y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty}\left[-\frac{(x-y)}{2 k t} e^{-\frac{(x-y)^{2}}{4 k t}}\right] \phi(y) \mathrm{d} y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} \frac{-\sqrt{k t} p}{2 k t} e^{-p^{2} / 4} \phi(x-\sqrt{k t} p) \sqrt{k t} \mathrm{~d} p \\
& =-\frac{1}{4 \sqrt{\pi k}} \frac{1}{\sqrt{t}} \phi(x-\sqrt{k t} p) \mathrm{d} p
\end{aligned}
$$

Therefore, for C constant

$$
|I| \leq \frac{C \max |\phi|}{\sqrt{t}} \int_{-\infty}^{\infty}|p| e^{-p^{2} / 4}
$$

converges.
Therefore

$$
\int_{-\infty}^{\infty} S_{x}(x-y, t) \phi(y) \mathrm{d} y
$$

converges absolutely and hence is equal to u_{x}. Similarly all $\frac{\partial^{m+n} u}{\partial t^{m} \partial x^{n}}$ exist because they will all be the sum of integrals of the form $A \int_{-\infty}^{\infty}\left|p^{j}\right| e^{-p^{2} / 4} \mathrm{~d} p$ which converges for all j.

Hence

$$
u_{t}-k u_{x x}=\int_{-\infty}^{\infty}\left[S_{t}(x-y, t)-k S_{x x}(x-y, t)\right] \phi(y) \mathrm{d} y=0
$$

since S is a solution of the diffusion equation.
Now we check the initial condition. Since formally $S(x, t)$ does not exist at $t=0$ by "the IC is satisfied" we mean $\lim _{t \rightarrow 0^{+}} u(x, t)=\phi(x)$. Now

$$
u(x, t)-\phi(x)=\int_{-\infty}^{\infty} s(x-y, t)[\phi(y)-\phi(x)] \mathrm{d} y
$$

Using $y=x-\sqrt{k t} p$ as before

$$
u(x, t)-\phi(x)=\frac{1}{\sqrt{4 \pi}} \int_{-\infty}^{\infty} e^{-p^{2} / 4}(\phi(x-\sqrt{k t} p)-\phi(x)) \mathrm{d} p
$$

If we fix $x, \phi(x)$ is continuous at x, so for $\epsilon>0$, there exists $\delta>0$ such that

$$
\begin{aligned}
&|y-x|<\delta \Longrightarrow \left\lvert\, \phi(x+\delta)-\phi(x)<\frac{\epsilon}{2}\right. \\
& u(x, t)-\phi(x)=\frac{1}{\sqrt{4 \pi}} \int_{-\infty}^{\infty} e^{-p^{2} / 4}(\phi(x-\sqrt{k t} p)-\phi(x)) \mathrm{d} p \\
&= \frac{1}{\sqrt{4 \pi}} \int_{|p|<\frac{\delta}{\sqrt{k t}}} e^{-p^{2} / 4}(\underbrace{\phi(x-\sqrt{k t} p)-\phi(x)}_{\begin{array}{c}
\text { abs value }<\epsilon / 2 \\
\text { on }|p|<\delta / \sqrt{k t}
\end{array}}) \mathrm{d} p+\frac{1}{\sqrt{4 \pi}} \int_{|p|>\frac{\delta}{\sqrt{k t}}} \ldots \mathrm{~d} p \\
& \leq \frac{\epsilon}{2}+\frac{2 \max |\phi|}{\sqrt{4 \pi}} \int_{|p|>\frac{\delta}{\sqrt{k t}}} e^{-p^{2} / 4} \mathrm{~d} p
\end{aligned}
$$

Note that the boxed integral satisfies

$$
\int_{|p|>\frac{\delta}{\sqrt{k t}}} e^{-p^{2} / 4} \mathrm{~d} p=2 \int_{-\delta / \sqrt{k t}}^{\infty} e^{-p^{2} / 4} \mathrm{~d} p \rightarrow 0 \quad \text { as } t \rightarrow 0
$$

Thus we can take t small enough to make second term $<\epsilon / 2$ to get

$$
u(x, t)-\phi(x)<\epsilon
$$

if t is sufficiently small.

Theorem 2.2

Let $\phi(x)$ be a bounded piecewise continuous function on $-\infty<x<\infty$. Then

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) \mathrm{d} y
$$

where

$$
S(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\frac{x^{2}}{4 k t}}
$$

defines an C^{∞} solution of

$$
\begin{aligned}
u_{t}-k u_{x x} & =0 \quad-\infty<x<\infty, \quad 0<t<\infty \\
u(x, 0) & =\phi(x)
\end{aligned}
$$

Proof:
Just need to check the initial conditions which we have to interpret as

$$
\lim _{t \rightarrow 0^{+}} u(x, t)=\frac{1}{2}\left(\phi\left(x^{+}\right)+\phi\left(x^{-}\right)\right)
$$

Now

$$
\begin{aligned}
& u(x, t)-\phi(x)=\frac{1}{\sqrt{4 \pi}} \int_{-\infty}^{\infty} e^{-p^{2} / 4}(\phi(x-\sqrt{k t} p)-\phi(x)) \mathrm{d} p \\
& +\frac{1}{\sqrt{4 \pi}} \int_{-\infty}^{\infty} e^{-p^{2} / 4}(\underbrace{\boxed{\phi(x-\sqrt{k t} p)}}_{\uparrow}-\phi(x)) \mathrm{d} p
\end{aligned}
$$

2.5 Waves with a Source

$$
\begin{align*}
u_{t t}-c^{2} u_{x x} & =f(x, t) \quad-\infty<x<\infty \\
u(x, 0) & =\phi(x) \tag{2.6}\\
u_{t}(x, 0) & =\psi(x)
\end{align*}
$$

First we find the solution u_{1} of

$$
\begin{align*}
u_{t t}-c^{2} u_{x x} & =0 \quad-\infty<x<\infty \\
u(x, 0) & =\phi(x) \tag{2.7}\\
u_{t}(x, 0) & =\psi(x)
\end{align*}
$$

Then we find the solution u_{2} of

$$
\begin{align*}
u_{t t}-c^{2} u_{x x} & =f(x, t) \quad-\infty<x<\infty \tag{2.8}\\
u(x, 0)=u_{t}(x, 0) & =0
\end{align*}
$$

Then $u_{1}+u_{2}$ is a solution of (2.6). We can verify as follows

$$
\left(u_{1}+u_{2}\right)_{t t}-c^{2}\left(u_{1}+u_{2}\right)_{x x}=\cdots=f(x, t)
$$

and so on. We already know the solution to (2.7):

$$
u_{1}=\frac{1}{2}(\phi(x+c t)+\phi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) \mathrm{d} y
$$

Therefore, we just need to solve (2.8).

Method 1: Characteristic Coordinates

We let

$$
\begin{aligned}
& \eta=x+c t \\
& \xi=x+c t
\end{aligned}
$$

In other words, we have

$$
x=\frac{\xi+\eta}{2} \quad t=\frac{\xi-\eta}{2 c}
$$

Under this transformation

$$
\begin{aligned}
\frac{\partial}{\partial t}+c \frac{\partial}{\partial x} & =\eta_{t} \frac{\partial}{\partial \eta}+\xi_{t} \frac{\partial}{\partial \xi}+\left(\eta_{x} \frac{\partial}{\partial \eta}+\xi_{x} \frac{\partial}{\partial \xi}\right) \\
& =\left(\eta_{t}+c \eta_{x}\right) \frac{\partial}{\partial \eta}+\left(\xi_{t}+c \xi_{x}\right) \frac{\partial}{\partial \xi} \\
& =(-c+c) \frac{\partial}{\partial \eta}+(c+c) \frac{\partial}{\partial \xi} \\
& =2 c \frac{\partial}{\partial \xi}
\end{aligned}
$$

Similarly

$$
\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}=-2 c \frac{\partial}{\partial \eta}
$$

Therefore

$$
u_{t t}-c^{2} u_{x x}=f \Longrightarrow-4 c^{2} u_{\xi \eta}=f\left(\frac{\xi+\eta}{2}, \frac{\xi-\eta}{2 c}\right)
$$

Then we can let

$$
\begin{equation*}
\tilde{u}_{\eta \xi}=-\frac{1}{4 c^{2}} \tilde{f}(\eta, \xi) \tag{2.9}
\end{equation*}
$$

Also we can transform the initial conditions as well:

$$
\begin{aligned}
u(x, 0) & =0 \\
u_{t}(x, 0) & =0
\end{aligned} \overline{\tilde{u}(\xi, \xi)=0} \begin{array}{r}
\tilde{u}_{\eta}=\tilde{u}_{\xi} \text { or } \eta=\xi
\end{array}
$$

because

$$
\begin{aligned}
u_{t}(x, t) & =\xi_{t} \frac{\partial \tilde{u}}{\partial \tilde{\xi}}+\eta_{t} \frac{\partial \tilde{u}}{\partial \eta} \\
& =c \frac{\partial \tilde{u}}{\partial \tilde{\xi}}-c \frac{\partial \tilde{u}}{\partial \eta}
\end{aligned}
$$

Then we integrate $\tilde{u}_{\tilde{\xi} \eta}$ on characteristic triangle Δ :

$$
\begin{aligned}
I=\iint_{\Delta} \tilde{u}_{\xi \eta} \mathrm{d} \eta \mathrm{~d} \xi & =\int_{\tilde{\xi}=\eta_{0}}^{\tilde{\xi}_{0}} \int_{\eta=\eta_{0}}^{\xi} u_{\tilde{\xi} \eta} \mathrm{d} \eta \mathrm{~d} \xi \\
& =\left.\int_{\eta_{0}}^{\xi_{0}} u_{\xi}\right|_{\eta=\eta_{0}} ^{\eta=\xi} \mathrm{d} \xi \\
& =\int_{\eta_{0}}^{\xi_{0}}\left[u_{\xi}(\xi, \xi)-u_{\xi}\left(\eta_{0}, \xi\right)\right] \mathrm{d} \xi
\end{aligned}
$$

Consider the function $g(\xi)=u(\xi, \xi)$, then

$$
\frac{d g}{d \xi}=2 u(\xi, \xi)
$$

using the second IC. Then

$$
I=\frac{1}{2} g\left(\xi_{0}\right)-\frac{1}{2} f\left(\eta_{0}\right)-u\left(\eta_{0}, \xi_{0}\right)+u\left(\eta_{0}, \eta_{0}\right)=-u\left(\eta_{0}, \xi_{0}\right)
$$

Then we integrate the right side of (2.9) as well:

$$
\begin{gathered}
-\iint_{\Delta}=\frac{1}{4 c^{2}} \iint_{\Delta} f \\
u\left(\eta_{0}, \xi_{0}\right)=\frac{1}{4 c^{2}} \iint_{\Delta} \tilde{f}(\eta, \xi) \mathrm{d} \eta \mathrm{~d} \xi
\end{gathered}
$$

Using Jacobian, we have $\mathrm{d} \eta \mathrm{d} \xi=2 c \mathrm{~d} x \mathrm{~d} t$. Then

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 c} \iint_{\Delta} f(x, t) \mathrm{d} x \mathrm{~d} t \\
& =\frac{1}{2 c} \int_{0}^{t} \int_{x_{0}-c\left(t_{0}-q\right)}^{x+c\left(t_{0}-q\right)} f(s, q) \mathrm{d} q \mathrm{~d} s
\end{aligned}
$$

Method 2: Green's Theorem / Divergence Theorem

Here we have the parametrize curve $(x, t(x))$. On $\mathrm{I}, \hat{n} \mathrm{~d} s=(1 / c, 1) \mathrm{d} x$ and we let

$$
t_{\mathrm{I}}(x)=t_{0}-\frac{1}{c}\left(x-x_{0}\right)
$$

Consider the characteristic triangle in the $x t$ plane.

$$
\iint\left(u_{t t}-c^{2} u_{x x}\right) \mathrm{d} x \mathrm{~d} t=\iint f(x, t) \mathrm{d} x \mathrm{~d} t
$$

By Divergence theorem,

$$
\begin{aligned}
\text { LHS } & =\iint\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right) \cdot\left(-c^{2} y_{x}, u_{t}\right) \mathrm{d} x \mathrm{~d} t \\
& =\oint\left(-c^{2} u_{x}, u_{t}\right) \cdot \hat{n} \mathrm{~d} s \\
& =\int_{\mathrm{I}}+\int_{\mathrm{II}}+\int_{\mathrm{III}}
\end{aligned}
$$

Note that $\int_{\text {III }}=0$ because $u_{t}(x, 0)=u_{x}(x, 0)=0$.
Now for side I:

$$
\int_{x_{0}}^{x_{0}+c t_{0}}\left(-c^{2} u_{x}, u_{t}\right) \cdot(1 / c, 1) \mathrm{d} x=\int_{x_{0}}^{x_{0}+c t_{0}}\left(u_{t}-c u_{x}\right) \mathrm{d} x
$$

Along I, $u=u\left(x, t_{I}(x)\right):=g_{I}(x)$, then

$$
\begin{aligned}
g_{I}^{\prime}(x) & =u_{x}+u_{t} \frac{d t_{I}}{d x} \\
& =u_{x}-\frac{1}{c} u_{t} \\
& =-\frac{1}{c}\left(u_{t}-c u_{x}\right)
\end{aligned}
$$

Therefore

$$
\int_{\mathrm{I}}\left(u_{t}+c u_{x}\right) \mathrm{d} x=\int_{x_{0}}^{x_{0}+c t_{0}}-c g_{I}^{\prime} \mathrm{d} x=-c\left(g\left(x_{0}+c t_{0}\right)-g\left(x_{0}\right)\right)
$$

Note that

$$
\begin{aligned}
g\left(x_{0}\right) & =u\left(x_{0}, t_{0}\right) \\
g\left(x_{0}+c t_{0}\right) & =u\left(x_{0}+c t_{0}, 0\right)=0
\end{aligned}
$$

Therefore

$$
\int_{\mathrm{I}}=c u\left(x_{0}, t_{0}\right)
$$

Similarly,

$$
\int_{\mathrm{II}}=c u\left(x_{0}, t_{0}\right)
$$

Therefore we have

$$
u\left(x_{0}, t_{0}\right)=\frac{1}{2 c} \iint_{\Delta} f \mathrm{~d} x \mathrm{~d} t
$$

which is identical to the previous result.

