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Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of AMATH 453 during Fall 2021 as well as other related resources. I do not make any war-
ranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g
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1
Waves and Diffusions

1.1 The wave equation

We already know the wave equation (c > 0):

utt � c2uxx = 0, � ¥ < x < ¥ ,

and the general solution is of the form

u(x, t) = f (x + ct) + g(x � ct).

With initial conditions imposed, we have the IVP

utt � c2uxx = 0,

(
u(x, 0) = φ(x),

ut(x, 0) = ψ(x).

The solution to IVP is then

u(x) =
1
2

[φ(x + ct) + φ(x � ct)] +
1
2c

Z x+ ct

x� ct
ψ(s) ds.

To interpret the integral, we can let ψ(x) = µ0(x), then the integral becomes
Z x+ ct

x� ct
ψ(s) ds = µ(x + ct) � µ(x � ct).

1.2 Conservation laws

Given a wave equation, we multiply by ut:

ututt � c2utuxx = 0

∂

∂t

�
1
2

u2
t

�
� c2

�
∂

∂x
(utux) � utxux

�
= 0

∂

∂t

�
1
2

u2
t +

c2

2
u2

x

�
�

∂

∂x

�
c2utux

�
= 0

Then the conservation law states that
∂R
∂t

+
∂F
∂x

= 0 ,

where R 2 ( � ¥ , + ¥ ), and F ! 0 with x ! � ¥ .
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1.3 The Diffusion Equation & Maximum principle

The diffusion equation is given by

ut = kuxx, � ¥ < x < ¥

with diffusion constant k > 0.

We define

R = ( a, b) � (0, ¥ )

RT = ( a, b) � (0, T]

RT = [ a, b] � [0, T]

CT = f a � x � b, t = 0g [ f a, 0 � t � Tg [ f b, 0 � t � Tg

Theorem 1.1: Maximum principle

If u 2 C(RT) \ C2(RT) is a solution of the diffusion equation, then u(x, t) � maxCT f ug for all
(x, t) 2 RT , T > 0. Here CT is called the parabolic boundary of RT .

Remark:

1. We can replace ut � kuxx = 0 with ut � kuxx � 0.

2. A stronger version of the theorem exists which says that u(x, t) < maxCT f ug unless u is
constant.

3. Same result applies to the minimum of u by replacing u with � u. However, in this case, (1)
doesn’t apply. Now we need ut � kuxx � 0.

Here are some intuitions. Consider a rod lying on [a, b] with initial non-constant temperature T0(x).
Then as time goes, only blue T is possible, not red T.

T0(x) T0(x)

Proof:
Let M = maxCT u. Note that M exists since u is continuous on CT , and CT is a closed boundary.
We need to show that u � M on RT .

Let
v(x, t) = u(x, t) + εx2, ε > 0

Let r = maxfj aj, jbjg. Then v(x, t) � M + εr2 on CT . Now we prove that v � M + εr2 on RT .

On RT , we have
u = v � εx2 � M + ε(r2 � x2)

Now if we take the derivative,

vt � kvxx = ut � kuxx � 2kε = � 2kε < 0 (*)

(i) Suppose v(x, t) has a maximum at an interior point (x0, t0), i.e., (x0, t0) 2 (a, b) � (0, T). Then
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vt(x0, t0) = 0. Moreover, vxx(x0, t0) � 0. Then

vt(x0, t0) � kvxx(x0, t0) = � kvxx(x0, t0) � 0

contradicting (*), thus there are no interior max.

(ii) Suppose v(x, t) has a maximum at an interior point of the upper boundary. vt(x0, T) � 0.
Then

vt(x0, t0) � kvxx(x0, t0) � 0

contradicting (*), thus there are no maximum along the upper boundary.

But v is continuous on RT , thus it has a maximum value which we now know must occur on CT .
Hence v � M + εr2 on RT . Letting ε ! 0, we have u � M on RT .

1.4 Uniqueness of the Dirichlet Problem

ut � kuxx = f (x, t) a < x < b, 0 < t < ¥

u(x, 0) = φ(x)

u(a, t) = g(t)

u(b, t) = h(t)

(1.1)

Theorem 1.2

The solution of (1.1) is unique.

Proof:
Suppose there are two solutions u1(x, t) and u2(x, t). Let w(x, t) = u1 � u2. Now we calculate

wt � kwxx = ( u1t � ku1xx) � (u2t � u2xx) = f � f = 0

w(x, 0) = u1(x, 0) � u2(x, 0) = φ � φ = 0

w(a, t) = w(b, t) = 0

By maximum principle, we have w � 0 on the boundary, and my minimum principle, w � 0, since
maxCT f wg = minCT f wg = 0. Then we conclude that w � 0.

Now we present a second proof using energy method:

Proof:
Given wt � kwxx = 0, multiply both sides by w:

0 = wwt � kwwxx =
∂

∂t

�
1
2

w2
�

� k
∂

∂x
(wwx) + kw2

x

If we integrate both sides,

d
dt

Z b

a

1
2

w2 dx = k
Z b

a
(wwx)x dx � k

Z b

a
w2

x dx = kwwx

���
b

a
� k

Z b

a
w2

x dx

Thus
d
dt

Z b

a

1
2

w2 dx = � k
Z b

a
w2

x dx

Then Z b

a

1
2

w2 dx = 0 for all the time

Then w � 0 on a � x � b, 0 � t � T.
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Now let's examine stability. Consider

ut � kuxx = 0

u(a, t) = u(b, t) = 0

and let uj (x, t) be the solution for u(x, 0) = f j (x) for j = 1, 2.

Let w = u1 � u2. Proceeding as before (energy method) we have

Z b

a
(u1 � u2)2 dx �

Z b

a
(f 1 � f 2)2 dx

This tells us ku1 � u2k2 ! 0 askf 1 � f 2k2 ! 0. This is called stability in the square integrable sense .

Alternatively, by maximum principle,

max ju1 � u2j � max jf 1 � f 2j

using maximum & minimum principle, i.e.,

maxf u1 � u2g � maxf f 1 � f 2g

min f u1 � u2g � min f f 1 � f 2g

This is called stability in the uniform sense .

1.5 Diffusion on the Whole Line

Consider the initial value problem

ut � kuxx = 0 on � ¥ < x < ¥ , 0 < t < ¥ (1.2)

u(x, 0) = f (x) (1.3)

If s(x, t) is a solution of ( 1.2), then so is

u(x, t) =
Z ¥

� ¥
s(x � y, t)g(y) dy (1.4)

for any function g(y). We can �nd ut , ux, uxx and take it into ( 1.2):

ut � kuxx =
Z ¥

� ¥

h
st (x � y, t) � ksxx(x � y, t)

i
g(y) dy = 0

So we now �nd a solution of ( 1.2) with the property that s(x, 0) = d(x), i.e., solve

st � ksxx = 0

s(x, 0) = d(x)

To do this, consider the problem:
vt � kvxx = 0

v(x, 0) = v0H (x)

H = Heaviside function

(1.5)

v0 carries the dimension of v, thus H (x) is dimensionless.
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