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Waves and Diffusions

1.1 The wave equation

We already know the wave equation (c > 0):
U — czuxx =0, —00 < x < 09,
and the general solution is of the form
u(x,t) = f(x+ct) + g(x —ct).
With initial conditions imposed, we have the IVP
bt — P — 0, {( 0) = ¢(x),
ur(x,0) = p(x).
The solution to IVP is then

u() = o +et) +9(x—eh] + o [ p(s)ds.

—ct

To interpret the integral, we can let (x) = u’(x), then the integral becomes

/:ertp(s) ds = pu(x+ct) — p(x —ct).

Jx—ct

1.2 Conservation laws

Given a wave equation, we multiply by u;:

Ustlyy — CUlpllyy = 0

0 /1 )
3 (zu%> — 2 L)x(utux) - utxux] =0

2
aat(;u% + C2u§> — % (czutux) =0
Then the conservation law states that
JdR OF
ot | ox
where R € (—00,400), and F — 0 with x — +o0.

:0,
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1.3 The Diffusion Equation & Maximum principle

The diffusion equation is given by
Uy = kilyy, —o00 < x < 00
with diffusion constant k > 0.

We define

Theorem 1.1: Maximum principle

If u € C(Rr) NC?(Rr) is a solution of the diffusion equation, then u(x,t) < maxc,{u} for all
(x,t) € Rr, T > 0. Here Cr is called the parabolic boundary of Rr.

Remark:
1. We can replace u; — kuyy = 0 with u; — kuy, <O0.

2. A stronger version of the theorem exists which says that u(x,t) < maxc,{u} unless u is
constant.

3. Same result applies to the minimum of u by replacing u with —u. However, in this case, (1)

doesn’t apply. Now we need u; — ki, > 0.

Here are some intuitions. Consider a rod lying on [a,b] with initial non-constant temperature Tp(x).
Then as time goes, only blue T is possible, not red T.

A To(x) ﬁ To(x)

I ’ 7 -

Proof:
Let M = maxc, u. Note that M exists since u is continuous on Cr, and Cr is a closed boundary.
We need to show that # < M on Rr.

Let
o(x,t) = u(x,t) +ex?>, €>0

Let r = max{|a|, |b|}. Then v(x,t) < M + er? on Cr. Now we prove that v < M + er? on Rr.

On Ry, we have
u=0v—ex> < M+e(r* —x?)

Now if we take the derivative,

Ot — kUyy = Ut — kilyy — 2ke = —2ke < 0 *)

(i) Suppose v(x, t) has a maximum at an interior point (xo, ty), i.e., (xo,t9) € (a,b) x (0, T). Then
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vi(x0, tg) = 0. Moreover, vy, (xg,to) < 0. Then

vt (%o, to) — kvxx(x0,to) = —kvxx(xo,t0) > 0
contradicting (*), thus there are no interior max.

(i) Suppose v(x,t) has a maximum at an interior point of the upper boundary. v;(xp, T) > 0.
Then
vt(xo, to) — koxx(xo,to) = 0

contradicting (*), thus there are no maximum along the upper boundary.

But v is continuous on Ry, thus it has a maximum value which we now know must occur on Cr.
Hence v < M + er? on Rr. Letting € — 0, we have u < M on Rr. O

1.4 Uniqueness of the Dirichlet Problem

up — kg = f(x, 1) a<x<b0<t<oco

(
u(x,0) = ¢( (1.1)
u(at) = g(t) '
u(b,t) = h(t)

Theorem 1.2

The solution of (1.1) is unique.

Proof:
Suppose there are two solutions u1(x,t) and uy(x, t). Let w(x,t) = 11 — up. Now we calculate
wp — kwxy = (U1 — kuryy) — (U —tioyy) = f = f =0
w(x,0) = uy(x,0) —uz(x,0) =p —¢p =0
w(a, t) =w(b,t) =0

By maximum principle, we have w < 0 on the boundary, and my minimum principle, w > 0, since

maxc, {w} = minc, {w} = 0. Then we conclude that w = 0. O

Now we present a second proof using energy method:

Proof:
Given w; — kwyy = 0, multiply both sides by w:
1,

d
—w > - ka(wwx) + kw?

0
0 = ww; — kwwyy = 81%(2

If we integrate both sides,

d (b1
22

il 2 dx—k/ Wy )x dx—k/ w dx = kww,

—k/wdx

Thus
d

dtaZde_ k/wdx

Then .
/ %wz dx =0 for all the time
a

Thenw =0ona<x<b0<t<T. O
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Now let’s examine stability. Consider

ur — kuxx - 0
u(a,t) =u(bt) =

and let u;(x,t) be the solution for u(x,0) = ¢;(x) for j = 1,2.

Let w = uy — uy. Proceeding as before (energy method) we have

b b
/ (u1 — 1/{2)2 dx < / ((Pl — (/)2)2 dx
a a
This tells us ||uq — uz||, — 0 as ||¢1 — ¢2||, — 0. This is called stability in the square integrable sense.

Alternatively, by maximum principle,
max |1y — up| < max |¢p; — ¢s]
using maximum & minimum principle, i.e.,

max{uj — up} < max{¢; — ¢}
min{u; —up} > min{¢; — ¢}

This is called stability in the uniform sense.

1.5 Diffusion on the Whole Line

Consider the initial value problem

U —kuyy =0 on —co<x<oo, 0<t<oo (1.2)
u(x,0) = ¢(x) (13)

If s(x, t) is a solution of (1.2), then so is
u(x, t) = /_m s(x —y,1)g(y) dy (1.4)

for any function g(y). We can find uy, uy, uyy and take it into (1.2):

U — kityy = /oQ [st(x —y,t) —ksxx(x — y,t)}g(y) dy=0

So we now find a solution of (1.2) with the property that s(x,0) = é(x), i.e., solve
St — kax - O
s(x,0) = 6(x)
To do this, consider the problem:
v — kv =0
v(x,0) = voH(x) (1.5)
H = Heaviside function

vy carries the dimension of v, thus H(x) is dimensionless.



CHAPTER 1. WAVES AND DIFFUSIONS 7

Similarity solution of (1.5)

Let Q = % which is dimensionless, then the original problem gets transformed to

Qt = kax
Q(x,0) = H(x)

Q

T

The solution can only be a function of x,t and k: Q = F(x,t,k). Then we can apply dimensionless
analysis. This means Q can only depend on dimensionless combinations of x,t and k. We have

Then
2c

L
[xt°k°) = L“TbF = b=c¢2c=—a

This tells us
Q=f(9) where 6 =

=t
:

By chain rule, we have

10,

Qi = f(6) -6 = —57'(6)

/ _ 1,
Qx:f(g)'GX* \/Ef(e)

1 1!
Qux = Ef (9)

Then
0., k

- Y A/
Qt kax 2t kt 0

£(6) = —36'(0)

92

£(0) = Ae
Foy=a [ e iassc

As x — 400, 0 — 400, and Q(x,t) = f(0) — 1. Then limy_, ., f(0) = 1.
As x — —o00,0 — —o0 and Q(x,t) = f(0) — 0, limg_,  f(6) = 0.
s

Therefore, C must be 0, and A / e /4 ds = 1. Using the change of variable 7 = 5

0 6/2 x/V/4kt
/ e /4 ds = 2/ e dy = 2/ e dy
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X

V4kt

So if we take 8§ = at the beginning, we get A = 2A and

Thus we get

Note that for x > 0,as t — 07, X — +ocoand Q(x,t) — \lf/ e ds=1.
7T J—o0

V4kt

And for x < 0ast — 07, Q — 0. The reason for the name “similarity solution” is because the curve
is being stretched over time.

s(x,t) has many names: source function (not a great name), Green’s function, fundamental solution,
propagator of the diffusion equation, diffusion kernel...

Consider a diffusion equation with initial condition

U +kityy =0
u(x,0) = §(x)
The solution is Gaussian . ,
= e_ﬁ
47kt

For any ¢t > 0, u is non-zero. It gets instantaneously non-zero everywhere.



Reflections and Sources

2.1 Diffusion on the Half-Line

We will start with diffusion on the half line Dirichlet problem.

v —kvyy =0 0<x<oo,0<t <00

0(x,0) = ¢(x)
v(0,t) =0 fort>0

Let

B {cp(x) x>0
Podd = Cp(-x) x<0

and solve
Ut +kiiyy =0 on —oo < x < 00
1(x,0) = ¢oga(x)
Then v(x, t) is restriction of u to x > 0. From an earlier result

u(x,) = [ sl =y gy dy

where

Claim From the property of s and ¢,;4, we can show that u(x,t) is an odd function of x. Thus
u(0,t) = 0.

Now we see that

wet) = [ sy gyl dy+ [ sty 00() dy

_Ooo )
= /OO s(x+y, H)¢(y) dy +/O s(x =y, H¢(y) dy lety =—y
1 o (x-y)? _ (xtp)?
= \/ﬁ/o {e —e ] $(y) dy (2.1)
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Example:

v —kvyy =0 O<x <o
v(x,0) =1 x>0
v(0,1) =0

Then ¢35 = —1 + 2H(x).

Recall the solution of
ur — kuxx - 0

u(x,0) = H(x)
is
Vakm 5
e % ds

u(x,t) = \}E/_x;

Let u(x,t) = —1+2g(x,t). Then g(x) is the solution to (2.2). Hence we have
q q

. 2 x/ 4kt Szd f( X )
u=— +—/ e s=erf | —
NE = 4kt

Another way to solve is to use (2.1).

Consider Neumann Boundary condition (0 < x < oo):

Ut *kuxx - 0

u(x,0) = ¢(x)

ux(0,£) =0
We can let
p(x) x>0
¢even =
p(—x) x<0
and solve

Uy — kuxx — 0
u(x/ 0) = Peven

With some algebra, we get

%) x— 2 X 2
U= 1 / |:e(4kyt) _l,_@*% 4)(y) dy
0

2.2 Reflections of Waves

Dirichlet Problem on the half line

Oy — Py =0 0<x <o
0(x,0) = ¢(x)
vt(x,0) = ()
v(0,t) =0

The idea is u(—x,t) = —u(x,t), then u = 0 at x = 0. So consider an odd reflection about x = 0:

p :{<p(x) x>0 v :{tp(x) x>0
“MT) —p(—x) x<0 T p(—x) x <0

10

(2.2)



CHAPTER 2. REFLECTIONS AND SOURCES

We know that the solution of (—oo < x < ©0)

Upp — czuxx =0
u(x,0) = ¢o4a(x)
ur(x,0) = Poqa(x)

is

1 x—+ct
u(x,8) = 5 [guaa(x+ ct) + Guaar— )] + oo [ poaaly) dy

Note that (t > 0)

~x+ct
u(0,8) = 5 [guaa(ct) + gua(—c)] + 5 [ Yoaaly) dy = 0

which satisfies the initial condition.
3 cases of the solution

(@) x > ct|, then x + ¢t > 0,x — ¢t > 0, then the solution (¢ > 0) becomes

(1) = g0t +en) +otx—en)] + o [ p(y) dy

—ct
(b) Consider 0 < x < ct, t > 0, we have x — ¢t < 0,x + ct > 0. Then

Poda(x —ct) = —P(—x +ct)
Poda (x +ct) = ¢p(x +ct)

and
x+ct 0 x—+ct
/ Woda(y) dy:/ [—¢(=y)] dy+/ ¥(y) dy
x—ct x—ct
—x+ct x—+ct
= / P(y) dy + / y) dy
x+-ct
/x ct
Therefore

w= 2 [pberen) —g(~(—e)] +5- [ 9y ay

—(x—ct)

I\)\H

2.3 Diffusion with a Source

ur — kg = f(x,t) —00 < x < 0
u(x,0) = ¢(x) O<t<oo

We can solve
—kuyx = f(x,1)

u(x,0) =0
and
Uy — kityy =0
u(x,0) = ¢(x)

11

(2.3)
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and sum to get the solution.
Duhamel’s Principle for first order linear ODEs
The solution of

v +ay = F(t) t >0, aconstant
y(0) =0

is given by

where w(t;s) is the solution of

Proof:
d t
S (efty) = (1) = ey = / ¢S F(s) ds
0

Then ,

y= [ "CUF(s) ds
0

Using initial condition y(0) = 0 and w(t,s) = F(s)e ™,
w(t —s;s) = F(s)e?~Y)

Thus

y(t) = /Otw(t —s;s) ds

O
We are now to guess that this works for the diffusion equation, i.e., guess the solution of (2.3) is
t
u(x,t) = / w(x, t—s;s) ds
J0
where w(x, t;s) is the solution of
w; — ktwyy =0
w(x,0;s) = f(x,s)
From previous work
w = /_wS(x —yH)f(y,s) dy
Then
u= / | st=u0f(s) dy ds (2.4)

We need to verify that this is indeed the solution
up = / s(x—y,0)f(y,t) dy + / / st(x —y,t —s)f(y,s) dy ds

= f(xy) +// st(x =y, t—s)f(y,s) dy ds
Next

t poo
Uxx = /0 l sxx(x =y, t —s)f(y,s) dy ds
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Then we see that u; — kuyy = f(x,t) and u(x,0) = 0.

Therefore (2.4) is a solution of (2.3). Then add [ S(x —y,t)¢(y) dy to add IC u(x,0) = ¢(x).
2.4 Source on a half line

ur — kuyy = f(x,1) 0<x<oo, 0<t<oo

u(x,0) = ¢(x)
u(0,t) = h(t)

where h(t) is the source on the boundary.
Let v(x,t) = u(x,t) — h(t), then
Ot — kUyy = up — kityy — ' (t) = f(x,t) — H'(¢)

0(x,0) = ¢(x) — h(0) = ¢(x)

v(0,t) =0
Then we can use odd extension and solve

0 — koxe = f(x,8) 1= foq — 1 (1)
0(x,0) = Poda

Use previous solution and restrict to the positive x-axis to get v(x, t) and then u(x,t) = v(x,t) + h'(t).

Theorem 2.1

Let ¢(x) be a bounded continuous function on —co < x < co. Then

u(et) = [ S(x—y,py) dy 23)
where
1 x2
S(x,t) = e M
47kt
defines an C*® solution of
ur —kuyy =0 —o<x<oo 0<t<oo

u(x,0) = ¢(x)

Proof:
Sub S(x, t) in, we get

wt)= e [ g ay
7T

We now introduce the change of variable,

then
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Then
u(x,y) = F e g (x — Vip)(—Vkt dp)

W/ e 7/ 4p(x — Vitp) dp

Thus
1 _ /4
|<xt>|<E P/alp(x— Vip)| d
—_ ma);|¢| /70067;72/4 dP
= max |¢|

Thus (2.5) integral converges absolutely and uniformly.
Formally

a3, 1) = 00 2 S(x ~ 1, 19(y) dy
and these two are equal of the integral converses absolutely.

Consider

I(x,t) = /_oo Sx(x —y, t)p(y) dy

_ (=y)?
e e

\/7
t/f Zk:” P/ (x — Vitp) Vit dp
1 1

= —r/ﬁﬁfﬂx — Vktp) d

Therefore, for C constant

Cmax|p| [ 2
1] < SR T e
Vi —co

converges.

Therefore o
| _six =yt dy
m-n
otmox
the sum of integrals of the form A [*_|p/|e™? i/ dp which converges for all ;.

converges absolutely and hence is equal to uy. Similarly all exist because they will all be

Hence o
—ktyy = / [St(x —y,t) —kSyx(x —y, t)}q)(y) dy=0
since S is a solution of the diffusion equation.
Now we check the initial condition. Since formally S(x,t) does not exist at t = 0 by “the IC is
satisfied” we mean lim; o+ u(x,t) = ¢(x). Now

u(xt) = 9(x) = [ sx=p,Dpy) — p(x)] dy

—00

Using y = x — Vktp as before

u(x, ) — p(x) = r/ e /4 (p(x — Vikip) - p(x) ) dp
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If we fix x, ¢(x) is continuous at x, so for € > 0, there exists 6 > 0 such that

ly—x[ <6 = [p(x+6) —¢(x) <

N @

(i, t) — p(x) = r/ e 4 (g(x — Viip) — p(x)) dp

1
NiT e (@~ Viip) — 9(x)) dp+ = . dp
P|< abs value <e/2 P\>
on |p|<d/Vkt
€  2max|¢| 2
<€ 2malol T
2 Var |l §

Note that the boxed integral satisfies
/ e_p2/4dp:2/ e_p2/4dp—>0 ast—0
P> —5/Vkt

Thus we can take ¢t small enough to make second term < €/2 to get

u(x, t) —¢p(x) <e

if t is sufficiently small. O

Theorem 2.2

Let ¢(x) be a bounded piecewise continuous function on —oo < x < co. Then

wt) = [ Sx—y () dy

where
1 b2
S(x,t) = e ik
47kt
defines an C* solution of
—kuyy =0 —co<x<oo, 0<t<om

u(x,0) = ¢(x)

Proof:
Just need to check the initial conditions which we have to interpret as

lim u(x,t) = 5 (9(") + 9(x 7))

NOW ¢(x7)

|
() = () == [ e [o— Vi) | - 9(x)) dp

+¢T?/—me_p /4 4’(3‘*\/%17) *4’(9‘)) dp
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2.5 Waves with a Source

utt—czuxx:f(x,t) —00 < x <o
u(x,0) = ¢(x) (2.6)
ur(x,0) = p(x)

First we find the solution u; of

utt—czuxx:O —o00 < x <o
u(x,0) = ¢(x) (27)
ur(x,0) = 9(x)

Then we find the solution 1, of

utt—CZuxx:f(x,t) —00 < x <o (28)
2.
u(x,0) = u(x,0) =0
Then u; + uy is a solution of (2.6). We can verify as follows
(ug + un)e — CZ(M1 +Up)yx =+ = f(X,f)
and so on. We already know the solution to (2.7):
1 1 x+-ct
= — —ct R
m =5 (oG+e+olr—ct) +5- [ 9w dy

Therefore, we just need to solve (2.8).
Method 1: Characteristic Coordinates
We let

n=x+ct

C=x-+ct
In other words, we have : :

+7 -1

= — t =
T2 2
At
a7
7
(X, t) ya
g
A
7
,> X >
(x —ct,0) (x +ct,0)
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Under this transformation

o =g g + (s am%)

0 L
ot " Cox M
0
= (1 + cnx) + (G + céx) 3
8 0
= (—c—l—c)% + (chc)a—ér
J
= 2c%
Similarly
ot  ox oy
Therefore fin g
2 _ 42 _ -1
Upy — CUyy = [ = 4cu§,]—f(72 e )
Then we can let 1
ye = *@f(ﬂ/ ¢) (2.9)
Also we can transform the initial conditions as well
u(x,0) =0 = (¢, ¢) =0
up(x,0) =0 = iy =iigorn=¢
because
o1l o1l
ut(x,t) = & 9 + Wt%
CIY

Then we integrate 7, on characteristic triangle A

o ¢
1://a ddg:/ / ugy dn dz
2ol &=no Jn1=1o o <A

S =g
we| ~de
o =10

— [ ne(&,) ~ w0 0] 2

Consider the function g(&) = u(g, ¢), then

using the second IC. Then

= 28(&0) — 3 (1) — 0, 8) + o, 10) =~ o)

Then we integrate the right side of (2.9) as well

=3I
i [[ Fo) an a

Using Jacobian, we have d# d¢ = 2c dx dt. Then
u(x,t) :%//f (x,t) dx dt

x+c(t0q d d
2C/~/x0 c(to—q) Sq 79

(170/ CO
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Method 2: Green’s Theorem / Divergence Theorem

At

(x0, to)

> 5y X
(Xo — cto, 0) I’II (Xo —+ cto, 0)

Here we have the parametrize curve (x,t(x)). On1, 1 ds = (1/¢,1) dx and we let

ti(x) =to— %(x —Xp)

Consider the characteristic triangle in the xt plane.

//(utt — czuxx) dx dt = ./]f(x, t) dx dt

By Divergence theorem,
LHS = // (aax’ aat> . (—czyx,ut) dx dt
= ?{(—czux,ut) i ds

b bt

Note that [;;; = 0 because u¢(x,0) = u(x,0) = 0.

Now for side I:

~X0+ctp Xp+ctp
/ (—Puy,uz) - (1/¢,1) dx = / (up — cuy) dx
J X0 J X0
Along I, u = u(x,t;(x)) := g(x), then
dt;
/ — -
1(x) = e+ 11
1
= Ux — — Ut
c
= —=(up — cuy)
Therefore
xo+cty
/I(ut +cuy) dx = / —cgy dx = —c(g(xo + cto) — g(x0))
xo
Note that
g(xo) = u(xo, to)
g(xo + ctp) = u(xg +cty,0) =0
Therefore
/: cu(xo, to)
I
Similarly,

/ = cu(xo, to)
il

18
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Therefore we have

u(xg, tg) = %//Af dx dt

which is identical to the previous result.

19
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