# Machine Learning in Physics

PHYS 449

Pooya Ronagh, Roger Melko

#### **Preface**

**Disclaimer** Much of the information on this set of notes is transcribed directly/indirectly from the lectures of PHYS 449 during Fall 2021 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

outline: outline/view/1835

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on <a href="https://notes.sibeliusp.com/">https://notes.sibeliusp.com/</a>.

Sibelius Peng

## **Contents**

| Preface |     |                          | 1 |
|---------|-----|--------------------------|---|
| 1       | Mac | chine Learning Primer    | 3 |
|         | 1.1 | Introduction to learning | 3 |

### **Machine Learning Primer**

#### 1.1 Introduction to learning

What does it mean for a computer to learn? See a quote from T Mitchell '97. This is learning, but not intelligence.

Does that mean the algorithm is intelligent? Should real-world events be thought as probabilistic events? These questions do not have definite answers. Nowadays, AI is 99% deep learning, algorithms.

Learning algorithms are often divided into 3 paradigms: unsupervised, supervised, reinforcement learning.

Supervised learning is the most common form of ML. The tasks T is to learn a mapping of units  $x \in X$  to outputs  $y \in Y$  so we are really just trying to learn the function  $f : x \mapsto y$ .

- *x* is called feature. Some related fields include feature engineering.
- An experience E is a correct pairing (x, y).
- A training dataset is a collection of experiences  $D = \{(x_1, y_1), \dots, (x_N, y_N)\}.$
- y often called label.
- Such datasets are called labeled datasets.

Finding a good dataset is hard.

A working example is solving many-body physics problems. Consider a 2-D toroidal lattice of spin sites.

$$E(s) = -J \sum_{\langle ij \rangle} s_i s_j$$

 $s_i$  is spin state at site i of lattice. E(s) is energy. J is couping constant. One tries to minimize the energy.

Supervised learning relies on existence of labelled dataset. Unsupervised learning "makes sense of" data. Dataset D without any corresponding output labels  $y_n$ . Basic techniques include clustering, dimensionality reduction. So it is fitting an unconditional model of the form p(x), which can generate new data x.

Another common classification of ML models: discriminative/generative.

Reinforcement learning views the model as an agent, learning how to interact with its environment. The goal of agent is to learn optimal policy of what actions to take in a given environment. The agent does not know the best action, but receives occasional reward in response to its actions. It has close connections to control theory.