Introduction to Real Analysis

PMATH 333

Da Rong Cheng

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of PMATH 333 during Fall 2021 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Contents

Preface			1		
1	Axioms				
	1	Axioms on the real number system	4		
2	Topology of \mathbb{R}^n				
	2	The <i>n</i> -dimensional Euclidean space	6		
	3	Another proof of Cauchy-Schwarz	7		
	4	Open sets and closed sets	8		
	5	New open sets from old	8		
	6	Interior and closure (I)	9		
	7	Interior and closure (II)	9		
	8	Examples (I)	10		
	9	Examples (II)	10		
	10	Relative openness and closedness	10		
	11	Connected sets	11		
	12	New connected sets from old	12		
	13	Convex sets (I)	12		
	14	Convex sets (II)	13		
3	The completeness of $\mathbb R$				
	15	Least upper bounds	14		
	16	The completeness axiom	15		
	17	Some consequences of completeness (I)	15		
	18	Some consequences of completeness (II)	15		
	19	Some consequences of completeness (III)	16		
	20	Connected of intervals	16		
	21	Decimal expansions	17		
	22	Greatest lower bounds	17		
4	Sequences in $\mathbb R$ and $\mathbb R^n$				
•	23	Sequences and limits (I)	18		
	24	Sequences and limits (II)	19		
	25	Some examples	19		
	26	Monotone sequences	20		
	27	Cauchy sequences in \mathbb{R}^d	21		
	-/ 28	Nested sequence of closed sets in \mathbb{R}^d			
	29	Subsequences			
	30	The Bolzano-Weierstrass theorem			

	31 32 33	Equivalent formulations of completeness (I)				
5	Cou	untability	26			
	34	·	26			
	35		26			
	36	Cantor's diagonal argument				
	37		27			
6	Con	Compactness 2				
-	38		28			
	39	Some properties (I)				
	<i>4</i> 0		29			
	41		29			
	42		30			
	-					
	43		30			
	44	Accumulation points	31			
7			32			
	45		32			
	46		33			
	47		33			
	48		34			
	49		34			
	50	Some examples (II)	35			
	51	Some examples (III)	35			
	52	Continuity and openness	35			
	53	Continuous functions on connected sets	36			
	54	Continuous functions on compact sets (I)	37			
	55		37			
	56		38			
	57	·	38			
	58	·	38			
8	Sea	uences of functions	40			
Ŭ	59 59		40			
	60		40			
_	Tmto	anation.				
9	_		42			
	61	D. clair. (TD)	42			
	62	D vivi (III)	43			
	63	T . 1 :11: (T)	43			
	64		44			
	65		4 4			
	66		45			
	67		45			
	68		45			
	69	Fubini's theorem (I)	46			

Axioms

Lecture 1 Axioms on the real number system

- ullet R: the set of real numbers
- \mathbb{Z} : the set of integers
- Q: the set of rational numbers
- **N**: the set of positive integers

The axioms fall into 3 groups

Group I (Addition and multiplication)

Any two real numbers x, y have a sum x + y and a product $x \cdot y$, which are also real numbers. In addition, + and \cdot have the following properties:

- (A1) x + y = y + x.
- (A2) (x + y) + z = x + (y + z).
- (A₃) There exists a real number, denoted 0, such that x + 0 = x for all $x \in \mathbb{R}$.
- (A4) For all $x \in \mathbb{R}$, there exists a real number, denoted -x, such that x + (-x) = 0.
- (M₁) $x \cdot y = y \cdot x$.
- (M2) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- (M₃) There exists a real number distinct from 0, denoted 1, such that $x \cdot 1 = x$ for all $x \in \mathbb{R}$.
- (M₄) For all $x \in \mathbb{R} \setminus \{0\}$, there exists a real number, denoted x^{-1} , such that $x \cdot x^{-1} = 1$.
 - (D) $x \cdot (y+z) = x \cdot y + x \cdot z$.

CHAPTER 1. AXIOMS 5

Group II (Order)

There is a relation < between real numbers such that

(O1) Given real numbers x, y, exactly one of the following holds: x < y or x = y4 or y < x.

```
(O2) If x < y and y < z, then x < z.
```

- (O₃) If x < y, then x + z < y + z for all $z \in \mathbb{R}$.
- (O₄) If x < y, then $x \cdot z < y \cdot z$ for all 0 < z.

Group III (Completeness)

Note that the following definitions will be defined later.

(C) Any non-empty subset of \mathbb{R} which is bounded from above has a least upper bound.

```
Example 1.1: x \cdot 0 = 0 for all x \in \mathbb{R}.
```

Example 1.2:

 $x \cdot y = 0$ if and only if x = 0 or y = 0.

Topology of \mathbb{R}^n

Lecture 2 The *n*-dimensional Euclidean space

Definition 2.1:

- 1. $\mathbb{R}^n = \{\vec{x} = (x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}$. Given $\vec{x} \in \mathbb{R}^n$
- 2. For $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, define

$$\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$$
$$\alpha \vec{x} = (\alpha x_1, \dots, \alpha x_n)$$

3. For $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the inner product

$$\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$$

Lemma 2.2

The following properties of the inner product are easy to check.

1.
$$(\alpha x + \beta y) \cdot z = (\alpha x \cdot z) + \beta (y \cdot z)$$

- 2. $x \cdot y = y \cdot x$
- 3. $x \cdot x \ge 0$, with equality holding if and only if $x = \vec{0}$.

Definition 2.3: Euclidean norm

Given $x \in \mathbb{R}^n$, define the **Euclidean norm** of x by $||x|| := (x \cdot x)^{1/2}$.

Remark 2.4:

Existence of the square root can be traced back to the completeness axiom.

Lemma 2.5

For all $x \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, we have

- 1. $\|\alpha x\| = |\alpha| \|x\|$.
- 2. $\|\alpha\| \ge 0$ with equality if and only if x = 0.

Proposition 2.6: Cauchy-Schwarz inequality

For all $x, y \in \mathbb{R}^n$, $|x \cdot y| \le ||x|| ||y||$.

Proposition 2.7: Triangle inequality

For all $x, y \in \mathbb{R}^n$,

- 1. $||x + y|| \le ||x|| + ||y||$.
- 2. $|||x|| ||y||| \le ||x y||$.

Definition 2.8: norm

A function $\rho: \mathbb{R}^n \to [0, \infty)$ is called a norm if

- 1. $\rho(x) \ge 0$ for all $x \in \mathbb{R}^n$ and $\rho(x) = 0$ if and only if x = 0.
- 2. $\rho(\alpha x) = |\alpha|\rho(x)$ for all $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.
- 3. $\rho(x+y) \le \rho(x) + \rho(y)$.

Lecture 3 Another proof of Cauchy-Schwarz

The proof last time generalizes Hölder's inequality:

Hölder's inequality

Let (S, Σ, μ) be a measure space and let $p, q \in [1, \infty)$ with 1/p + 1/q = 1. Then for all measurable real- or complex-valued functions f and g on S,

$$||fg||_1 \le ||f||_p ||g||_q.$$

Lecture 4 Open sets and closed sets

Notation 4.1

Open and closed ball For $x_0 \in \mathbb{R}^n$, r > 0, define

- 1. $B_r(x_0) = \{x \in \mathbb{R}^n \mid ||x x_0|| < r\}$
- 2. $\overline{B_r(x_0)} = \{x \in \mathbb{R}^n \mid ||x x_0|| \le r\}$

Definition 4.2: open and closed subset

- 1. A subset *E* of \mathbb{R}^n is said to be open if for all $x_0 \in E$, there exists $\delta > 0$ such that $B_{\delta}(x_0) \subseteq E$.
- 2. A subset *E* of \mathbb{R}^n is said to be closed if $\mathbb{R}^n \setminus E$ is open.

Example 4.3:

- 1. \mathbb{R}^n , \emptyset both open. Hence both closed as $\mathbb{R}^n \setminus \emptyset = \mathbb{R}^n$ and $\mathbb{R}^n \setminus \mathbb{R}^n = \emptyset$.
- 2. For all $a \in \mathbb{R}^n$, $\{a\}$ is closed.
- 3. $B_r(x_0)$ is open and not closed. Note that "not closed" is not a consequence of openness.
- 4. $\overline{B_r(x_0)}$ is closed and not open.
- 5. $E = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n < 1\}$ is open.

Remark 4.4:

Not open \implies closed, closed \implies not open.

- 1. \mathbb{R}^n and \emptyset are clopen.
- 2. E = (a, b] for a < b. E is not open and not closed.

Lecture 5 New open sets from old

Proposition 5.1

- 1. The union of an arbitrary collection of open sets in \mathbb{R}^n is open.
- 2. The intersection of finitely many open sets in \mathbb{R}^n is open.

Corollary 5.2

- 1. The intersection of an arbitrary collection of closed sets is closed.
- 2. The union of finitely many closed sets is closed.

Remark 5.3:

Finiteness is necessary in previous propositions. For example, $\bigcup_{a \in B_{\delta}(0)} \{a\} = B_{\delta}(0)$ is an infinite collection of closed sets, and it is not closed. $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$ by completeness axiom. It is infinite collection of open sets, and it is not open.

Lecture 6 Interior and closure (I)

Warm-up [a, ∞) closed and not open.

Definition 6.1: interior, closure, boundary

Let $E \subseteq \mathbb{R}^n$.

- 1. x belongs to the interior of E, denoted E° , if $\exists \delta > 0$ such that $B_{\delta}(x) \subseteq E$.
- 2. x belongs to the closure of E, denoted \overline{E} , if $\forall \delta > 0$, $B_{\delta}(x) \cap E \neq \emptyset$.
- 3. x belongs to the boundary of E, denoted ∂E , if $x \in \overline{E} \setminus E^{\circ}$. Equivalently,

$$\partial E = \{ x \in \mathbb{R}^n \mid \forall \delta > 0, B_{\delta}(x) \cap E = \emptyset \text{ and } B_{\delta}(x) \setminus E \neq \emptyset \}$$

Remark 6.2:

 $E^{\circ} \subseteq E \subseteq \overline{E}$. Each inclusion can be proper.

Proposition 6.3

Let $E \subseteq \mathbb{R}^n$.

- 1. $E^{\circ} = \bigcup \{ A \subseteq E \mid A \text{ is open} \}$
- 2. E° is open.
- 3. E is open if and only if $E = E^{\circ}$.

Lecture 7 Interior and closure (II)

Proposition 7.4

Let $E \subseteq \mathbb{R}^n$.

- 1. $\overline{E} = \bigcap \{ A \subseteq \mathbb{R}^n \mid A \supseteq E \text{ and } A \text{ is closed} \}$
- 2. \overline{E} is closed.
- 3. *E* is closed if and only if $E = \overline{E}$.

Remark 7.5:

- 1. (3) gives an alternative way to prove closedness.
- 2. $\partial E = \overline{E} \cap (\mathbb{R}^n \setminus E^{\circ})$ is closed. Intersection of closed sets is closed.

Lecture 8 Examples (I)

```
Example 8.1: \{x_0\} \text{ is closed, for some } x_0 \in \mathbb{R}^n. \overline{\{x_0\}} = \{x_0\}, \{x_0\}^\circ = \varnothing, \partial\{x_0\} = \{x_0\}. Example 8.2: E = (a,b] \text{ for } a < b. E^\circ = (a,b), \overline{E} = [a,b], \partial E = \{a,b\}. Example 8.3: E = \mathbb{Z} \subseteq \mathbb{R}. \mathbb{Z} \text{ is closed, } \mathbb{Z}^\circ = \varnothing, \partial \mathbb{Z} = \mathbb{Z}. Example 8.4: E = \mathbb{Q} \subseteq \mathbb{R}. \mathbb{Q}^\circ = \varnothing, \overline{\mathbb{Q}} = \mathbb{R}, \partial \mathbb{Q} = \mathbb{R}.
```

Lecture 9 Examples (II)

```
Example 9.1: E = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n \leq 1\}
E \text{ is closed, } E^\circ = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n < 1\}, \ \partial E = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n = 1\}.
\text{Example 9.2:}
E = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n < 1\}
E \text{ is open, } \overline{E} = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n \leq 1\} \text{ and } \partial E = \{x \in \mathbb{R}^n \mid x_1 + \dots + x_n = 1\}.
\text{Example 9.3:}
E = B_r(x_0)
E \text{ is open. We can prove that closure of } B_r(x_0) \text{ is } \overline{B_r(x_0)}. \ \partial B_r(x_0) = \{x \in \mathbb{R}^n \mid \|x - x_0\| = r\}.
```

Lecture 10 Relative openness and closedness

Definition 10.1: open/closed relative to A

Let $E \subseteq A \subseteq \mathbb{R}^n$.

- 1. *E* is open relative to *A*, or open in *A*, if $\forall x \in E$, $\exists \delta > 0$ such that $B_{\delta}(x) \cap A \subseteq E$.
- 2. E is closed relative to A, or closed in A, if $A \setminus E$ is open relative to A.

Remark 10.2:

1. Openness and closedness defined in lecture 4 is strictly speaking openness and closedness relative to \mathbb{R}^n .

2. Unless otherwise stated, "E is open" and "E is closed" (with specifying relative to which E) means relative to \mathbb{R}^n .

Proposition 10.3

Let $E \subseteq A \subseteq \mathbb{R}^n$. Then *E* is open relative to *A* iff $E = A \cap G$ for some *G* open relative to \mathbb{R}^n .

Proposition 10.4

Let $E \subseteq A \subseteq \mathbb{R}^n$. Then *E* is closed relative to *A* iff $E = A \cap F$ for some *F* closed relative to \mathbb{R}^n .

Example 10.5:

1. $A = \{x \in \mathbb{R}. \mid x_n \ge 0\}; E = \{x \in \mathbb{R}^n \mid ||x|| < 1, x_n \ge 0\}.$

 $E = B_1(0) \cap A$, thus E is open relative to A, but E not open relative to \mathbb{R}^n .

2. $A = [0,1) \cup (1,2]; E = [0,1).$

 $E = (-1, 1) \cap A$, then E is open relative to A.

 $A \setminus E = (1,3) \cap A$, then $A \setminus E$ open relative to A, so E is closed relative to A.

But E is neither open nor closed relative to \mathbb{R} .

3. $A = \mathbb{Z}$; $E = \{0\}$.

 $E = \{0\} \cap \mathbb{Z}$, then *E* is closed relative to \mathbb{Z} .

 $E = (-\frac{1}{2}, \frac{1}{2}) \cap \mathbb{Z}$, then E is open relative to \mathbb{Z} .

But E is closed and not open relative to \mathbb{R} .

Lecture 11 Connected sets

Definition 11.1: disconnected

Let $A \subseteq \mathbb{R}^n$. We say that A is disconnected if there exists subset E, F of A such that

- (i) *E*, *F* both non-empty;
- (ii) $E \cap F = \emptyset$, $E \cup F = A$;
- (iii) E, F both open relative to A.

Equivalently, A is disconnected if there exists a subset E of A such that

- (i') $E \neq \emptyset$, $E \neq A$.
- (ii') *E* both open and closed relative to *A*.

Example 11.2:

 $a, b \in \mathbb{R}^n$, $a \neq b$. Then $A = \{a, b\}$ is disconnected.

 $A = [0,1) \cup (1,2]$ is disconnected.

 $A = \{x \in \mathbb{R}^n \mid ||x|| \neq 1\}$ is disconnected.

 $A = \mathbb{Z}$ is disconnected.

Definition 11.3: connected

Let $A \subseteq \mathbb{R}^n$. We say that A is connected if A is not disconnected. That is if $E = \emptyset$ or $F = \emptyset$ whenever $E, F \subseteq A$ satisfy $E \cap F = \emptyset$, $E \cup F = A$ and E, F both open relative to A.

Example 11.4:

 $\{x_0\}$ connected.

Intervals $[a, b], \ldots, (-\infty, b]$, \mathbb{R} are connected.

Convex sets in \mathbb{R}^n are connected.

Definition 11.5: convex

 $A \subseteq \mathbb{R}^n$ is said to be convex if for all $x, y \in A$ and $t \in [0,1]$, we have $tx + (1-t)y \in A$.

Lecture 12 New connected sets from old

Lemma 12.1

Let $B \subseteq \mathbb{R}^n$. If $E \subseteq B$ is open relative to B, then $E \cap A$ is open relative to A for all $A \subseteq B$.

Proposition 12.2

Let $A \subseteq \mathbb{R}^n$ be a connected set. Then \overline{A} is connected.

Proposition 12.3

If $A_1, A_2 \subseteq \mathbb{R}^n$ are connected and $A_1 \cap A_2 \neq \emptyset$, then $A := A_1 \cup A_2$ is connected.

Remark 12.4:

Generalizations of proposition 3: Let $\{A_i\}_{i\in I}$ be an arbitrary collection of connected subsets of \mathbb{R}^n and assume that $A_i \cap A_j$ for all $i, j \in I$. Prove that $\bigcup_{i \in I} A_i$ is connected.

Lecture 13 Convex sets (I)

Definition 13.1: convex

 $A \subseteq \mathbb{R}^n$ is said to be convex if for all $x, y \in A$ and $t \in [0,1]$, we have $tx + (1-t)y \in A$.

Example 13.2:

 $B_r(x_0)$ convex.

 $a \in \mathbb{R}^n \setminus \{0\}$, $c \in \mathbb{R}$. Then $E = \{x \in \mathbb{R}^n \mid x \cdot a < c\}$ is convex.

 $E = \mathbb{R}^n \setminus \{0\}$ not convex.

Proposition 13.3

Intersection of an arbitrary collection of convex sets is convex.

Proposition 13.4

Let $E \subseteq \mathbb{R}^n$ be convex. Then \overline{E} and E° is convex.

Lecture 14 Convex sets (II)

Proposition 14.1

If $A \subseteq \mathbb{R}^n$ is convex, then A is connected.

Proof assumes connectedness of intervals.

Example 14.2:

 $E = \mathbb{R}^2 \setminus \{(x_1, 0) \mid x_1 \ge 0\}$ is connected, but not convex.

 $E = \mathbb{R}^2 \setminus \{0\}$ is connected, but not convex.

The completeness of $\mathbb R$

Lecture 15 Least upper bounds

Definition 15.1: upper bound

Let $E \subseteq \mathbb{R}$.

- 1. We say that $a \in \mathbb{R}$ is an upper bound of E if $x \leq a$ for all $x \in E$.
- 2. *E* is said to be bounded above if it has an upper bound.

Definition 15.2: least upper bound

Let $E \subseteq \mathbb{R}$. We say that $a \in \mathbb{R}$ is a least upper bound of E if

- 1. *a* is an upper bound of *E*.
- 2. $a \le b$ for all upper bound b of E. (Equivalently, if b < a then b is not an upper bound of E.)

Lemma 15.3

Let $E \subseteq \mathbb{R}$. E can only have at most one least upper bound.

By lemma 3, if E has a least upper bound, it is actually "the" least upper bound, and we denote it by $\sup E$, supremum of E.

```
Example 15.4:
```

```
E = \{a_1, \dots, a_k\} is a finite subset of \mathbb{R}. sup E = \max_{1 \le i \le k} a_i.
sup[0,1] = \sup(0,1) = 1
```

Proposition 15.5

Let $E \subseteq \mathbb{R}$ and suppose sup E exists. Then $\forall \delta > 0$, $\exists x \in E$ such that sup $E - \delta < x \le \sup E$. In particular, sup $E \in \overline{E}$.

Proposition 15.6

Let $E \subseteq \mathbb{Z}$ and suppose sup E exists, then sup $E \in E$ and sup $E \in \mathbb{Z}$.

Lecture 16 The completeness axiom

The completeness axiom

Let $E \subseteq \mathbb{R}$ be non-empty and bounded from above. Then E has a least upper bound.

Then completeness axiom + Lemma 15.3 imply: If $E \subseteq \mathbb{R}$ non-empty and bounded above, then $\sup E$ exists.

Lemma 16.1

- 1. Let $\emptyset \neq A \subseteq B \subseteq \mathbb{R}$. Suppose *B* is bounded above. Then so is *A*. sup $A \leq \sup B$.
- 2. Let $A, B \subseteq \mathbb{R}$ be non-empty and bounded above. Then so is $A + b := \{a + b \mid a \in A, b \in B\}$. Moreover, $\sup(A + B) = \sup A + \sup B$.

Lecture 17 Some consequences of completeness (I)

Proposition 17.1: Archimedean property

Given $a, b \in \mathbb{R}$, with a > 0 and $b \ge 0$, there exists $n \in \mathbb{N}$ such that $(n-1)a \le b < na$.

Corollary 17.2

- 1. Let $E = \{1 \frac{1}{n} \mid n \in \mathbb{N}\}$. Then $\sup E = 1$.
- 2. Let $V_k = \left(-\frac{1}{k}, \frac{1}{k}\right)$ for all $k \in \mathbb{N}$. Then $\bigcap_{k=1}^{\infty} V_k = \{0\}$.

Lecture 18 Some consequences of completeness (II)

Proposition 18.1: Density of the rationals

Given $x, y \in \mathbb{R}$ with x < y, $\exists r \in \mathbb{Q}$ such that x < r < y.

Corollary 18.2

- 1. $\overline{Q} = \mathbb{R}$.
- 2. $\overline{\mathbb{Q}^n} = \mathbb{R}^n$.

Remark 18.3:

Density of rationals $\iff \overline{\mathbb{Q}} = \mathbb{R}$.

Lecture 19 Some consequences of completeness (III)

Proposition 19.1: Existence if the square root

Given x > 0, there exists a unique y > 0 such that $y^2 = x$, and we denote this y by \sqrt{x} or $x^{\frac{1}{2}}$.

Remark 19.2:

The above proof can be adapted to prove the existence of the *n*-th root. We will say more about exponential functions later.

Remark 19.3:

- 1. $\sqrt{2} \neq \mathbb{Q}$.
- 2. Then from (1) one can prove that $E = \{a \in \mathbb{Q} \mid a > 0, a^2 < 2\}$, we have $E \neq \emptyset$ and bounded above, but there exists no $r \in \mathbb{Q}$ such that
 - (a) $r \ge x$ for all $x \in E$,
 - (b) $rr \leq s$ for all upper bound $s \in \mathbb{Q}$ of E.

In fact, if such an r existed, it would have to satisfy $r^2 = 2$.

Hence Q is not complete. There are non-empty subsets of Q which are bounded from above but have no least upper bound in Q.

Lecture 20 Connected of intervals

Proposition 20.1

Intervals are connected.

Lecture 21 Decimal expansions

Proposition 21.1

For all $x \in [0,1)$, there exists a unique function $a : \mathbb{N} \in \{0,\ldots,9\}$ such that, writing a_n for a(n) for all $n \in \mathbb{N}$, we have

$$\sum_{i=1}^{n} \frac{a_i}{10^i} \le x < \left(\sum_{i=1}^{n} \frac{a_i}{10^i}\right) + \frac{1}{10^n} \quad \forall n \in \mathbb{N}.$$

Remark 21.2:

The base 10 can be replaced with any $\ell \in \mathbb{N}$, $\ell \geq 2$.

Lecture 22 Greatest lower bounds

Definition 22.1: lower bound

Let $E \subseteq \mathbb{R}$.

- 1. We say that $a \in \mathbb{R}$ is a lower bound of E if $a \leq x$ for all $x \in E$.
- 2. *E* is said to be bounded from below if it has a lower bound.

Definition 22.2: greatest lower bound

Let $E \subseteq \mathbb{R}$. We say that $a \in \mathbb{R}$ is a greatest lower bound of E if

- 1. *a* is a lower bound of *E*.
- 2. $b \le a$ for all lower bound b of E. Equivalently, if b > a then b is not a lower bound of E.

Lemma 22.3

Given $E \subseteq \mathbb{R}$, define $-E = \{-x \mid x \in E\}$. Then

- 1. a is a lower bound of E iff -a is an upper bound of -E.
- 2. *a* is a greatest lower bound of *E* iff -a is a least upper bound of -E.

Remark 22.4:

A subset $E \subseteq \mathbb{R}$ can have at most one lower bound. We denote it by $\inf E$, the infimum of E.

If $E \subseteq \mathbb{R}$ is non-empty and bounded from below, then it has a greatest lower bound. Furthermore, in this case, -E is non-empty and bounded from above, and $\inf E = -\sup(-E)$.

Example 22.5:

$$\inf\left\{\frac{1}{n}\mid n\in\mathbb{N}\right\}=0$$

$$\inf\{r^n \mid n \in \mathbb{N}\} = 0 \text{ where } 0 < r < 1$$

Sequences in $\mathbb R$ and $\mathbb R^n$

Lecture 23 Sequences and limits (I)

Definition 23.1: convergence sequence

Let (a_n) be a sequence in \mathbb{R}^d .

1. We say that (a_n) converges or is convergent if for some $x \in \mathbb{R}^d$ we have $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $||a_n - x|| < \epsilon$ for all $n \ge N$.

In this case x is called the limit of (a_n) , denoted $\lim_{n\to\infty} a_n$, and (a_n) is said to converge to x as $n\to\infty$.

2. (a_n) is said to diverge if it does not converge.

Remark 23.2:

Since $||a_n - x|| = ||a_n - x|| - 0|$, we have that $a_n \to x$ as $n \to \infty$ iff $||a_n - x|| \to 0$ as $n \to \infty$.

Lemma 23.3

 $a_n \to x$ as $n \to \infty$ iff \forall open set $U \subseteq \mathbb{R}^d$ containing x, $\exists N \in \mathbb{N}$ such that $a_n \in U$ for all $n \ge N$.

Proposition 23.4: Uniqueness of limit

Let (a_n) be a sequence in \mathbb{R}^d . Then it has at most one limit.

Definition 23.5: bounded sequence & Cauchy sequence

Let (a_n) be a sequence in \mathbb{R}^d .

- 1. (a_n) is said to be bounded if $\exists R > 0$ such that $||a_n|| \leq R$ for all $n \in \mathbb{N}$, in other words, $a_n \in \overline{B_R(0)}$ for all $n \in \mathbb{N}$.
- 2. (a_n) is said to be a Cauchy sequence if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that $||a_n a_m|| < \epsilon$ for all $n, m \geq N$.

Proposition 23.6

Let (a_n) be a sequence in \mathbb{R}^d and suppose (a_n) converges. Then (a_n) is bounded and (a_n) is Cauchy.

Lecture 24 Sequences and limits (II)

Proposition 24.1

Let (a_n) be a sequence in \mathbb{R}^d . Write $a_n = (a_{n1}, \dots, a_{nd})$ for all n. Then $a_n \to x$ iff $a_{ni} \to x_i$ as $n \to \infty$ for all $i \in [d]$.

Lemma 24.2

Let (a_n) be a convergent sequence in \mathbb{R}^d with $||a_n|| \leq R$ for all $n \in \mathbb{N}$. Then writing x for $\lim_{n\to\infty} a_n$, we have $||x|| \leq R$.

Remark 24.3:

Given $\emptyset \neq E \subseteq \mathbb{R}^d$, if (a_n) is a sequence in E converging to x, then $x \in \overline{E}$.

Conversely, $\forall x \in \overline{E}$ (by considering $B_{1/n}(x)$) there exists a sequence in E converging to x.

Proposition 24.4

 $a_n \to x$ and $b_n \to y$ as $n \to \infty$ in \mathbb{R}^d . Then

- 1. $a_n + b_n \rightarrow x + y$.
- 2. $\forall \alpha \in \mathbb{R}, \alpha a_n \to \alpha x$.
- 3. $a_n \cdot b_n \rightarrow x \cdot y$.

Lecture 25 Some examples

Const sequence is convergent.

Example 25.1:

 $a_n = (-1)^n$. We can prove that (a_n) diverges by prove that it is not Cauchy. It is bounded, however.

Example 25.2:

 $a_n = \frac{1}{n^k}$ for k some natural number. $a_n \to 0$ as $n \to \infty$.

$$a_n = r^n$$
, $r \in (0,1)$. $a_n \to 0$ as $n \to \infty$.

Lemma 25.3

Suppose for some $x \in \mathbb{R}^d$ we have $||a_n - x|| \le t_n \ \forall n \in \mathbb{N}$, where (t_n) is a sequence in $[0, \infty)$ converging to 0. Then $a_n \to x$.

Example 25.4:

Given $x \in [0,1)$, let $a : \mathbb{N} \in \{0,\ldots,9\}$ such that, writing a_n for a(n) for all $n \in \mathbb{N}$, namely that

$$\sum_{i=1}^n \frac{a_i}{10^i} \le x < \left(\sum_{i=1}^n \frac{a_i}{10^i}\right) + \frac{1}{10^n} \qquad \forall n \in \mathbb{N}.$$

Define $q_n = \sum_{i=1}^n \frac{a_i}{10^i}$. (q_n) is Cauchy.

In fact, $|q_n - x| \leq \frac{1}{10^n}$. Then $q_n \to x$ as $n \to \infty$.

Lecture 26 Monotone sequences

Definition 26.1: increasing, decreasing and monotone

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} .

- 1. (a_n) increasing (strictly increasing, resp.) if $a_n \le a_{n+1}$ for all $n \in \mathbb{N}$ (if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$ resp.)
- 2. (a_n) decreasing (strictly decreasing, resp.) if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$ (if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$ resp.)
- 3. (a_n) is said to be monotone if it is increasing or decreasing.

Definition 26.2: bounded sequence

Let (a_n) be a sequence in \mathbb{R} .

- 1. (a_n) bounded from above if $\{a_n \mid n \in \mathbb{N}\}$ bounded from above.
- 2. similar for bounded from below.

Example 26.3:

- 1. $a_n = (-1)^n$, not monotone. Bounded from above and below.
- 2. $a_n = \frac{1}{n^k}$, $k \in \mathbb{N}$. Strictly decreasing. Bounded from above and below.
- 3. $a_n = r^n$, $r \in (0,1)$. Strictly decreasing. Bounded from above and below.
- 4. (q_n) in lec 25. Bounded above and below. Increasing.

Proposition 26.4

- 1. (a_n) in \mathbb{R} , increasing and bounded from above. Then $\exists x \in \mathbb{R}$ such that $a_n \leq x \ \forall x \in \mathbb{N}$ and $a_n \to x$ as $n \to \infty$.
- 2. (a_n) in \mathbb{R} , decreasing and bounded from below. Then $\exists x \in \mathbb{R}$ such that $a_n \geq x \ \forall x \in \mathbb{N}$ and $a_n \to x$ as $n \to \infty$.

Remark 26.5:

Consider the following statements.

- (C) Every non-empty $E \subseteq \mathbb{R}$ and bounded above has a least upper bound.
- (M) (a_n) in \mathbb{R} , increasing and bounded above. Then (a_n) converges and $a_m \leq \lim_{n \to \infty} a_n \ \forall m \in \mathbb{N}$.

We have assumed (C) as an axiom and deduced (M) as a theorem. We can also do the opposite.

Lecture 27 Cauchy sequences in \mathbb{R}^d

Lemma 27.1

Cauchy sequence are bounded.

Lemma 27.2

Let (a_n) be a bounded sequence in \mathbb{R} .

- 1. For $m \in \mathbb{N}$, $\inf\{a_n \mid n \geq m\}$ exists.
- 2. Letting $b_m = \inf\{a_n \mid n \geq m\}$, then $(b_m)_{m \in \mathbb{N}}$ is increasing and bounded above.

Proposition 27.3

Let (a_n) be a Cauchy sequence in \mathbb{R}^d . Then (a_n) converges.

Remark 27.4:

Proposition 3 is useful when proving a sequence converges but we don't have a good idea what the limit might be.

Assuming Archimedean property & Convergence of Cauchy sequence in \mathbb{R} as axioms, we then can deduce a theorem that every non-empty subset of \mathbb{R} which is bounded from above has a least upper bound.

Lecture 28 Nested sequence of closed sets in \mathbb{R}^d

Definition 28.1: nested sequence

- 1. A sequence $E_1, E_2, \dots, E_n, \dots$ of subsets of \mathbb{R}^d is said to be nested if $E_{n+1} \subseteq E_n \ \forall n \in \mathbb{N}$.
- 2. A nested sequence $E_1 \supseteq E_2 \supseteq \cdots \supseteq E_n \supseteq \cdots$ of subsets of \mathbb{R}^d is said to have **diameters going to zero** if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ and $a \in \mathbb{R}^d$ such that $E_n \subseteq B_{\epsilon}(a) \ \forall n \ge N$.

Remark 28.2:

- 1. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d . Define $E_m = \{x_n \mid n \geq m\}$. Then $(E_m)_{m\in\mathbb{N}}$ is a nested sequence of subsets of \mathbb{R}^d .
- 2. If $(E_m)_{m\in\mathbb{N}}$ is a nested sequence of subsets of \mathbb{R}^d , then so is $(\overline{E_m})_{m\in\mathbb{N}}$

We can use A₄ Q₃:

Let $\emptyset \neq E \subseteq \mathbb{R}^d$. Then $x \in \overline{E}$ iff there exists a sequence in E converging to x.

to prove that if $A \subseteq B$, then $\overline{A} \subseteq \overline{B}$.

3. If $(E_m)_{m\in\mathbb{N}}$ and $(F_m)_{m\in\mathbb{N}}$ are nested sequence of subsets of \mathbb{R}^d , with (F_m) having diameters going to zero, and with $E_m \subseteq F_m \ \forall m \in \mathbb{N}$, then (E_m) has diameters going to zero.

Proposition 28.3

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d . For all $m\in\mathbb{N}$, define $E_m=\{x_n\mid n\geq m\}$. By remark 2, (\overline{E}_m) is a nested sequence of subsets of \mathbb{R}^d . Then $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence iff the nested sequence $(\overline{E}_m)_{m\in\mathbb{N}}$ has diameters going to zero.

Proposition 28.4

Let $(F_n)_{n\in\mathbb{N}}$ be a nested sequence of non-empty closed subsets of \mathbb{R}^d , and assume that $(F_n)_{n\in\mathbb{N}}$ has diameters going to zero. Then $\bigcap_{n=1}^{\infty} F_n$ consists of exactly one element.

Lecture 29 Subsequences

Definition 29.1: subsequence

Let $x : \mathbb{N} \to \mathbb{R}^d$ be a sequence in \mathbb{R}^d . A subsequence of x is a sequence in \mathbb{R}^d of the form $x \circ f : \mathbb{N} \to \mathbb{R}^d$ where f is a strictly increasing function from $\mathbb{N} \to \mathbb{N}$. (That is, f(k+1) > f(k) $\forall k \in \mathbb{N}$).

Remark 29.2:

Given a strictly increasing function $f : \mathbb{N} \to \mathbb{N}$, by induction on k we get $f(k) \ge k \ \forall k \in \mathbb{N}$.

Example 29.3:

- 1. $a_n = (-1)^n$. $(a_{2k})_{k \in \mathbb{N}}$ is a subsequence of $(a_n)_{n \in \mathbb{N}}$, here f(k) = 2k.
- 2. $(a_n)_{n\in\mathbb{N}}$ is any sequence in \mathbb{R}^d . $m\in\mathbb{N}$ given. Then $(a_{m+k})_{k\in\mathbb{N}}$ is a subsequence of $(a_n)_{n\in\mathbb{N}}$,

here f(k) = m + k.

3. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d converging to 0. Then there exists a subsequence $(a_{f(m)})_{m\in\mathbb{N}}$ such that $\|a_{f(m)}\| < \frac{1}{m}$ for all $m \in \mathbb{N}$.

Lemma 29.4

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d and suppose $a_n \to x$ as $n \to \infty$. Then every subsequence of $(a_n)_{n\in\mathbb{N}}$ converges to x.

Proposition 29.5

Let $(a_n)_{n\in\mathbb{N}}$ be a bounded sequence in \mathbb{R} , so that $b_m := \inf\{a_n \mid n \geq m\}$ exists $\forall m \in \mathbb{N}$ and that $(b_m)_{m\in\mathbb{N}}$ converges by lec 27 and lec 26. Then there exists a subsequence of $(a_n)_{n\in\mathbb{N}}$ converging to $\lim_{m\to\infty} b_m$.

Corollary 29.6: Bolzano-Weierstrass theorem in $\mathbb R$

Every bounded sequence in \mathbb{R} has a convergent subsequence.

Remark 29.7:

We take for granted the well-ordering principle: Every non-empty subset of $\mathbb N$ has a smallest element.

Lecture 30 The Bolzano-Weierstrass theorem

Definition 30.1: $a_n \in E$ for infinitely many $n \in \mathbb{N}$

Given $E \subseteq \mathbb{R}^d$ and a sequence (a_n) in \mathbb{R}^d , we say that $a_n \in E$ for infinitely many $n \in \mathbb{N}$ if $\forall N \in \mathbb{N}, \exists n \geq N$ such that $a_n \in E$.

Definition 30.2: d-cube

1. A closed *d*-cube is a subset C of \mathbb{R}^d of the form

$$C = [a_1, b_1] \times \cdots \times [a_d, b_d],$$

where $a_i, b_i \in \mathbb{R}$ and $a_i \leq b_i \ \forall i \in [d]$.

2. Given a closed *d*-cube $C = [a_1, b_1] \times \cdots [a_d, b_d] \subseteq \mathbb{R}^d$, let

$$J_{i,0} = \left[a_i, \frac{a_i + b_i}{2}\right], \quad J_{i,1} = \left[\frac{a_i + b_i}{2}, b_i\right]$$

and let

$$C'_{k_1\cdots k_d} = J_{1,k_1} \times \cdots J_{d,k_d} \qquad (k_1,\ldots,k_d \in \{0,1\})$$

Write \mathcal{L}_C for $\{C_{k_1\cdots k_d} \mid k_1, \dots, k_d \in \{0, 1\}\}.$

Remark 30.3:

- 1. Closed *d*-cubes are closed.
- 2. If $a_n \in C$ for infinitely many n, then $\exists C' \in \mathcal{L}_C$ such that $a_n \in C'$ for infinitely many n.

Lemma 30.4

Let $(C_n)_{n\in\mathbb{N}}$ be a sequence of closed d-cubes such that $C_{n+1}\in\mathcal{L}_{C_n}$ for all $n\in\mathbb{N}$. Then $(C_n)_{n\in\mathbb{N}}$ is a nested sequence with diameters going to zero.

Proposition 30.5: Bolzano-Weierstrass theorem

Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in \mathbb{R}^d . Then $(x_n)_{n\in\mathbb{N}}$ has a convergent subsequence.

Lecture 31 Some applications of the Bolzano-Weierstrass theorem

Definition 31.1: bounded subset

A subset *E* of \mathbb{R}^d is said to be bounded if $\exists R > 0$ such that $E \subseteq \overline{B_R(0)}$.

Proposition 31.2

Let $E \subseteq \mathbb{R}^d$ be non-empty, closed and bounded. Then $\exists x_0 \in E$ such that $||x|| \leq ||x_0|| \ \forall x \in E$.

Proposition 31.3

Let $\rho: \mathbb{R}^d \to [0, \infty)$ be a norm on \mathbb{R}^d . $\exists \alpha > 0$ such that $\rho(x) \ge \alpha ||x|| \ \forall x \in \mathbb{R}^d$.

Remark 31.4:

Combining proposition 3 with A₄ Q₅a:

$$\rho(x) \leq \max\{\rho(e_1), \dots, \rho(e_d)\}\sqrt{d}||x|| \text{ for all } x \in \mathbb{R}^d.$$

we infer that given a norm ρ , $\exists \alpha$, C > 0 such that

$$\alpha \|x\| \le \rho(x) \le C \|x\| \qquad \forall x \in \mathbb{R}^d$$

In particular,

- 1. $||a_n x|| \to 0$ iff $\rho(a_n x) \to 0$, so any norm on \mathbb{R}^d defines the same notion of convergence as the Euclidean norm.
- 2. $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq E$ iff $\exists r > 0$ such that $\{y \in \mathbb{R}^d \mid \rho(y x) < r\} \subseteq E$. So any norm on \mathbb{R}^d defines the same notion of openness as the Euclidean norm.

Lecture 32 Equivalent formulations of completeness (I)

Consider the following statements:

- (C) If $E \subseteq \mathbb{R}$ is non-empty and bounded above, then E has a least upper bound.
- (M) If (a_n) is a sequence in \mathbb{R} which is increasing and bounded above, then $\exists x \in \mathbb{R}$ such that $a_n \leq x \forall n \in \mathbb{N}$ and $a_n \to x$ as $n \to \infty$.
- (S) If (a_n) is a Cauchy sequence in \mathbb{R} , then (a_n) converges.
- (A) $\forall a, b \in \mathbb{R}$ with a > 0, $b \ge 0$, $\exists n \in \mathbb{N}$ such that na > b.

In this course, we assume (C) as an axiom, and we have seen (M) and (S) + (A) follow as theorems.

Lemma 32.1: doesn't use any of (C), (M), (S) and (A)

E non-empty subset of \mathbb{R} and bounded from above. Suppose *E* contains no upper bound of itself. Then there exist sequences (a_n) , (b_n) such that for all $n \in \mathbb{N}$,

- (i) b_n is an upper bound of E while a_n isn't.
- (ii) $a_n \le a_{n+1} \le b_{n+1} \le b_n$.
- (iii) $b_{n+1} a_{n+1} = \frac{1}{2}(b_n a_n)$.

Lemma 32.2

Assume (A). Let E, (a_n) , (b_n) be as in Lemma 1. If $c \in \bigcap_{m=1}^{\infty} [a_m, b_m]$ then c is a least upper bound of E.

Lecture 33 Equivalent formulations of completeness (II)

Lemma 33.1

(A) is a consequence of either (C) or (M).

Proposition 33.2

- 1. Assuming (M) as an axiom in place of (C), then (C) follows as a theorem.
- 2. Assuming (S) + (A) as an axiom in place of (C), then (C) follows as a theorem.

Countability

Lecture 34 Countable and uncountable sets

Definition 34.1: countable, at most countable, uncountable

A set *E* is said to be

- 1. countable, if there exists a bijection $f : \mathbb{N} \to E$.
- 2. at most countable, if *E* is either finite or countable.
- 3. uncountable, if *E* is neither finite nor countable.

Proposition 34.2

Any infinite subset E of \mathbb{N} is countable.

Corollary 34.3

Let *E* be an infinite set.

- 1. If *F* is countable and and if there exists an injection $h: E \to F$, then *E* is countable.
- 2. If *F* is countable and if there exists a surjection $h : F \to E$, then *E* is countable.

Lecture 35 Some examples

Example 35.1:

 \mathbb{N} , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$ are countable.

Lemma 35.2

Let E_1, \ldots, E_k be countable. Then $E_1 \times \cdots \times E_k$ is countable.

Example 35.3:

$$\mathbb{Q}, \mathbb{Q}_+ = \mathbb{Q} \cap (0, \infty), \mathbb{Q}^d, U := \{B_r(x) \mid r \in \mathbb{Q}_+, x \in \mathbb{Q}^d\}$$
 are countable.

Let U be an arbitrary collection of mutually disjoint, non-empty open subsets of \mathbb{R}^d . Then U is at most countable.

Lecture 36 Cantor's diagonal argument

Proposition 36.1

Let $(E_m)_{m\in\mathbb{N}}$ be a sequence of non-empty, at most countable sets. Then $E:=\bigcup_{m=1}^{\infty}E_m$ is at most countable.

Corollary 36.2

If $E_1, ..., E_k$ are non-empty, at most countable. Then $\bigcup_{j=1}^k E_j$ is at most countable.

Example 36.3:

Let $E = \{x : \mathbb{N} \to \{0, ..., 9\} \mid \exists N \in \mathbb{N} \text{ such that } x_k = 9 \quad \forall k > N\}$. Then E is countable.

Let $A = \{\text{all sequences } x : \mathbb{N} \to \{0, \dots, 9\}\}$. Then A is uncountable.

Let $B = A \setminus E$. Then B is uncountable.

Lecture 37 Uncountability of \mathbb{R}

Proposition 37.1: Complements of Proposition 21.1

Let $B = \{a : \mathbb{N} \to \{0, ..., 9\} \mid \forall N \in \mathbb{N}, \exists n > N \text{ such that } a_n \neq 9\}$. Given $a \in B$, there exists a unique $x \in [0,1)$ such that

$$\sum_{i=1}^{n} \frac{a_i}{10^i} \le x < \sum_{i=1}^{n} \frac{a_i}{10^i} + \frac{1}{10^n} \quad \forall n \in \mathbb{N}.$$

Proposition 37.2

[0,1) is uncountable.

Corollary 37.3

IR is uncountable.

Compactness

Lecture 38 Open coverings and compactness

Remark 38.1:

Let $E \subseteq \mathbb{R}^d$ be closed and bounded. By Bolzano-Weierstrass theorem, and A₄ Q₃:

Let $\emptyset \neq E \subseteq \mathbb{R}^d$. Then $x \in \overline{E}$ iff there exists a sequence in E converging to x.

any sequence $(x_n)_{n\in\mathbb{N}}$ in E has a convergence subsequence whose limit lies in E. This is important for existence of minimizers/maximizers.

We want an equivalent formulations of above remark purely in terms of open sets.

Definition 38.2: open covering, subcovering, compact

Let $E \subseteq \mathbb{R}^d$.

- 1. An open covering of E is a collection U of open subsets of \mathbb{R}^d such that $E \subseteq \bigcup_{V \in U} V$. We call this "U covers E".
- 2. Given an open covering U of E, a subcovering of U is a subcollection $U' \subseteq U$ such that $E \subseteq \bigcup_{V \in U'} V$.
- 3. E is said to be compact if every open covering of E has finite subcovering, that is, if for all open covering U of E, $\exists N \in \mathbb{N}$ and $V_1, \ldots, V_N \in U$ such that $E \subseteq V_1 \cup \cdots \cup V_N$.

Example 38.3:

 $E = \{x_1, \dots, x_N\}$ is a finite subset of \mathbb{R}^d . Then E is compact.

 $E = \{0\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$ is compact.

 $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$ is not compact.

Lecture 39 Some properties (I)

Proposition 39.1

Let $E_1, \ldots, E_k \in \mathbb{R}^d$ be compact. Then $E := \bigcup_{j=1}^k E_j$ is compact.

Proposition 39.2

Let $F \subseteq E \subseteq \mathbb{R}^d$ with F closed and E compact. Then F is compact.

Proposition 39.3

Let $E \subseteq \mathbb{R}^d$ be compact. Then E is closed and bounded.

Lecture 40 Some properties (II)

Lemma 40.1

Let $K \subseteq \mathbb{R}^d$ be compact. $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ and $x_1, \dots, x_N \in K$ such that $K \subseteq \bigcup_{j=1}^N B_{\epsilon}(x_j)$.

Remark 40.2:

Given a sequence (x_n) in \mathbb{R}^d and $E \subseteq \mathbb{R}^d$, recall that we say " $x_n \in E$ for infinitely many $n \in \mathbb{N}$ " if $\forall N \in \mathbb{N}, \exists n \geq N$ such that $x_n \in E$.

If $x_n \in E$ for infinitely many $n \in \mathbb{N}$ and if $\exists N \in \mathbb{N}$ and $A_1, \ldots, A_n \subseteq \mathbb{R}^d$ such that $E \subseteq A_1 \cup \cdots \cup A_N$, then $\exists j \in [N]$ such that $x_n \in A_j$ for infinitely many $n \in \mathbb{N}$.

Proposition 40.3

Let $K \subseteq \mathbb{R}^d$ be compact and suppose (x_n) is a sequence in K. Then (x_n) has a convergent subsequence with limit lying in K.

Lecture 41 Countable subcoverings

Proposition 41.1

Given $E \subseteq \mathbb{R}^d$ an an open covering U of E, there exists at most countable subcollection U' of U such that $E \subseteq \bigcup_{V \in U'} V$.

Lecture 42 Heine-Borel theorem

Lemma 42.1

Let $(F_n)_{n\in\mathbb{N}}$ be a nested sequence of non-empty closed subsets of \mathbb{R}^d , with F_1 bounded. Then $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Proposition 42.2: Heine-Borel Theorem

Let $E \subseteq \mathbb{R}^d$ be closed and bounded. Then E is compact.

Lecture 43 Equivalent formulations of compactness

Definition 43.1: sequentially compact

Let $E \subseteq \mathbb{R}^d$. Then E is said to be sequentially compact if every sequence in E has a convergent subsequence, with limit lying in E.

Proposition 43.2

Let *E* be a subset of \mathbb{R}^d . Then the following are equivalent:

- (i) *E* is closed and bounded.
- (ii) E is compact.
- (iii) *E* is sequentially compact.

Remark 43.3:

For a subset E of \mathbb{R}^d , we have proved

- In particular (ii) \Leftrightarrow (iii).
- (2) (3) are special to \mathbb{R}^d . (1), (4) hold in more generality.
- (ii) \Leftrightarrow (iii) hold in more generality as will, but general version has a much harder proof.

Lecture 44 Accumulation points

Definition 44.1: accumulation point, isolated point

- 1. For $A \subseteq \mathbb{R}^d$, we say that $x_0 \in \mathbb{R}^d$ is an accumulation point of A if $x_0 \in \overline{A \setminus \{x_0\}}$, that is, if $B_{\delta}(x_0) \cap (A \setminus \{x_0\}) \neq \emptyset \ \forall \delta > 0$. The set of accumulation points of A is denoted by A'.
- 2. $x_0 \in \mathbb{R}^d$ is said to be an isolated point of A if $\exists \delta > 0$, $B_{\delta}(x_0) \cap A = \{x_0\}$.

Remark 44.2:

An accumulation point of A need not lie in A, while an isolated point of A lies in A from the definition

If x_0 is an isolated point of A, then there exists $\delta > 0$ such that $B_{\delta}(x_0) \cap A = \{x_0\}$, then we have $B_{\delta}(x_0) \cap (A \setminus \{x_0\}) = \emptyset \implies x_0 \notin A'$.

Lemma 44.3

For all $A \subseteq \mathbb{R}^d$, we have $\overline{A} = A' \cup \{x \in \mathbb{R}^d \mid x \text{ is an isolated point of } A\}$. Moreover, the two sets on the RHS are disjoint.

Example 44.4:

Let $A \subseteq \mathbb{R}^d$. Then $A^{\circ} \subseteq A'$.

Let $V \subseteq \mathbb{R}^d$ be an open set, then $\partial V \subseteq V'$.

Continuous functions

Lecture 45 Limit of functions (I)

Definition 45.1: limit of a function

Let $A \subseteq \mathbb{R}^m$. Let $f : A \to \mathbb{R}^n$ be a function. Let $x_0 \in A'$.

- 1. Given $y \in \mathbb{R}^n$, we write $f(x) \to y$ as $x \to x_0, x \in A^a$ if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\|f(x) y\| < \epsilon$ whenever $x \in B_{\delta}(x_0) \cap (A \setminus \{x_0\})$.
- 2. f is said to have a limit as $x \to x_0$, $x \in A$ if $\exists y \in \mathbb{R}^n$ such that $f(x) \to y$ as $x \to x_0$, $x \in A$.

Proposition 45.2

Let $A \subseteq \mathbb{R}^m$ and suppose $f: A \to \mathbb{R}^n$ is a function. Take $x_0 \in A'$. Then given $y \in \mathbb{R}^n$, the following are equivalent:

- 1. $f(x) \rightarrow y$ as $x \rightarrow x_0$, $x \in A$.
- 2. $(f(x_k))_{k\in\mathbb{N}}$ converges to y whenever $(x_k)_{k\in\mathbb{N}}$ is a sequence in $A\setminus\{x_0\}$ converging to x_0 .

Corollary 45.3

 $A \subseteq \mathbb{R}^m$, $f: A \to \mathbb{R}^n$ a function, $x_0 \in A'$. Then f has at most one limit as $x \to x_0$ through points in A.

Remark 45.4:

If $f: A \to \mathbb{R}^n$ has a limit as $x \to x_0, x \in A$, it must be "the" limit, denote by $\lim_{\substack{x \to x_0 \\ x \in A}} f(x)$.

When $A = \mathbb{R}^m$, we drop " $x \in A$ ".

 $^{^{}a}f(x)$ tends to y as x tends to x_0 through points in A

Corollary 45.5

 $A \subseteq \mathbb{R}^m$, $f: A \to \mathbb{R}^n$ and $x_0 \in A'$ as above. $\forall x \in A$, write $f(x) = (f_1(x), \dots, f_n(x))$. Then given $y \in \mathbb{R}^n$, $f(x) \to y$ as $x \to x_0$, $x \in A$ if and only if $f_i(x) \to y_i$ as $x \to x_0$, $x \in A$, $\forall i \in [n]$.

Lecture 46 Limit of functions (II)

Remark 46.1:

 $A \subseteq \mathbb{R}^m$, $f: A \to \mathbb{R}^n$ and $x_0 \in A'$. Suppose $B \subseteq A$ is such that $x_0 \in B'$. Consider $f|_B: B \to \mathbb{R}^n: x \mapsto f(x)$. Given $y \in \mathbb{R}^n$, if $f(x) \to y$ as $x \to x_0$, $x \in A$, then $(f|_B)(x) \to y$ as $x \to x_0$, $x \in B$. Some times we denote restrictions of f still by "f", by abuse of notation.

The converse is not true.

Remark 46.2:

Let f,g be functions from $A \subseteq \mathbb{R}^m$ to \mathbb{R}^n . Suppose $x_0 \in A'$ and that $\exists r > 0$ such that f(x) = g(x) $\forall x \in B_r(x_0) \cap (A \setminus \{x_0\})$. Given $y \in \mathbb{R}^n$, if $f(x) \to y$ as $x \to x_0$, $x \in A$, then $g(x) \to y$ as $x \to x_0$, $x \in A$.

Lecture 47 Some examples of limits

Example 47.1:

 $(\mathbb{R}^m)' = \mathbb{R}^m$.

 ρ be any norm. $\lim_{x\to x_0} \rho(x) = \rho(x_0)$.

Example 47.2:

Take a>0. For $x\in\mathbb{Q}$, write $x=\frac{p}{q}$ where $p\in\mathbb{Z},q\in\mathbb{N}$ and define $a^x=(a^{1/q})^p$. We take for granted that

- 1. (well-defined) $(a^{1/n})^m = (a^{1/q})^p$ if $\frac{m}{n} = \frac{p}{q}$ $(m, p \in \mathbb{Z}, n, q \in \mathbb{N})$
- 2. $a^x a^y = a^{x+y}$ for all $x, y \in \mathbb{Q}$.
- 3. $(ab)^x = a^x b^x \ \forall a, b > 0, x \in \mathbb{Q}$.

Then $\forall x_0 \in \mathbb{Q}$, $\lim_{\substack{x \to x_0 \\ x \in \mathbb{Q}}} a^x = a^{x_0}$.

Lecture 48 Continuity

Definition 48.1: continuous

Let $A \subseteq \mathbb{R}^m$ and let $f : A \to \mathbb{R}^n$ be a function.

- 1. f is said to be continuous at $x_0 \in A$ relative to A if either
 - (i) x_0 is an isolated point of A, or
 - (ii) $x_0 \in A'$ and $\lim_{x \to x_0, x \in A} f(x) = f(x_0)$.
- 2. Given $B \subseteq A$, f is said to be continuous on B relative to A if f is continuous at x relative to A for all $x \in B$.

Remark 48.2:

We sometimes drop "relative to A" if $A = \mathbb{R}^m$.

Given $B \subseteq A$ and $x_0 \in B$, we sometimes simply write f for $f|_B$ in the statement " $f|_B$ is continuous at x_0 relative to B".

Lemma 48.3

Let $A \subseteq \mathbb{R}^m$. $f: A \to \mathbb{R}^n$ is continuous at $x_0 \in A$ relative to A iff $\forall \epsilon > 0$, $\exists \delta > 0$ such that $||f(x) - f(x_0)|| < \epsilon \ \forall x \in B_{\delta}(x_0) \cap A$.

Proposition 48.4

Let $f,g:A\subseteq\mathbb{R}^m\to\mathbb{R}^n$ be two functions. Suppose $x_0\in A$ and both f,g are continuous at x_0 relative to A. Then

- 1. so are f + g, αf , $f \cdot g$.
- 2. If in addition n = 1 and $g(x_0) \neq 0$, then $\exists r > 0$ such that $g(x) \neq 0 \ \forall x \in B_r(x_0) \cap A$ and $\frac{1}{g}$ is continuous at x_0 relative to $B_r(x_0) \cap A$.

Lecture 49 Some examples I

Example 49.1:

- 1. $f: \mathbb{R}^m \to \mathbb{R}: x \mapsto x_1^{k_1} \cdots x_m^{k_m}$ is continuous on \mathbb{R}^m .
- 2. Any norm is continuous on \mathbb{R}^m .
- 3. Fix a > 0. $f : \mathbb{Q} \to \mathbb{R} : x \mapsto a^x$ is continuous on \mathbb{Q} relative to \mathbb{Q} .
- 4. Polynomials in x are continuous on \mathbb{R} .
- 5. $p, q : \mathbb{R} \to \mathbb{R}$ are two polynomials. Then
 - (a) $V := \{x \in \mathbb{R} \mid q(x) \neq 0\}$ is open in \mathbb{R} .
 - (b) $\frac{p}{q}$ is continuous on V relative to V.

Example 49.2:

Given $k \in \mathbb{N} \setminus \{1\}$, define $f : [0, \infty) \to [0, \infty)$ by $f(x) = \begin{cases} x^{1/k} & x > 0, \\ 0 & x = 0. \end{cases}$ Then f is continuous on

Proposition 49.3

Suppose $f: A \subseteq \mathbb{R}^m \to \mathbb{R}^n$ and $g: B \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$, and that $f(A) \subseteq B$ (so that $g \circ f$ makes sense). Given $x_0 \in A$, if f is continuous at x_0 relative to A and g is continuous at $f(x_0)$ relative to *B*, then $g \circ f$ is continuous at x_0 relative to *A*.

Lecture 50 Some examples (II)

Example 50.1:

For $f_1, \ldots, f_N : A \subseteq \mathbb{R}^n \to \mathbb{R}$, define $A \to \mathbb{R}$ by $h(x) = \max\{f_1(x), \ldots, f_N(x)\}$. Given $x_0 \in A$. If f_1, \ldots, f_N are continuous at x_0 relative to A, then so is h.

Let $E_+ = \{x \in \mathbb{R}^m \mid x_m \ge 0\}$, $E_- = \{x \in \mathbb{R}^m x_m \le 0\}$. Suppose $f : E_+ \to \mathbb{R}^n$ is continuous on E_+ relative to E_+ and $g: E_- \to \mathbb{R}^n$ is continuous on E_- relative to E_- with $f(x) = g(x) \ \forall x \in E_+ \cap E_-$.

Then $h = \begin{cases} f(x) & x_m \ge 0 \\ g(x) & x_m \le 0 \end{cases}$ is continuous on \mathbb{R}^m relative to \mathbb{R}^m .

Lecture 51 Some examples (III)

Example 51.1: Discontinuity

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
 is discontinuous at $x_0 \ \forall x_0 \in \mathbb{R}$.

Example 51.1: Discontinuity
$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases} \text{ is discontinuous at } x_0 \ \forall x_0 \in \mathbb{R}.$$

$$f(x) = \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & x \in \mathbb{Q}, x = \frac{p}{q} \text{ lowest terms } (p \in \mathbb{Z}, q \in \mathbb{N}) \end{cases} \text{ is continuous at } x_0 \text{ if } x_0 \in \mathbb{R} \setminus \mathbb{Q} \text{ and discontinuous at } x_0 \text{ if } x_0 \in \mathbb{Q}.$$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases} \text{ is continuous at } (x_0,y_0) \neq (0,0) \text{ and discontinuous at } (0,0).$$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 is continuous at $(x_0, y_0) \neq (0,0)$ and discontinuous at $(0,0)$

Continuity and openness Lecture 52

Definition 52.1: neighborhood

- 1. Given $x \in \mathbb{R}^m$, a neighborhood of x is a subset $V \subseteq \mathbb{R}^m$ such that $x \in V$ and V is open.
- 2. Given $A \subseteq \mathbb{R}^m$ and $x \in A$, a neighborhood of x relative to A is a subset $V \subseteq A$ such that $x \in V$ and V is open relative to A.

Notation 52.2

Let $A \subseteq \mathbb{R}^m$. $f : A \to \mathbb{R}^n$ a function.

- 1. For $E \subseteq \mathbb{R}^n$, let $f^{-1}(E) = \{x \in A \mid f(x) \in E\}$.
- 2. For $B \subseteq A$, let $f(B) = \{ y \in \mathbb{R}^n \mid y = f(x) \text{ for some } x \in B \}$.

Proposition 52.3

Let $f: A \to \mathbb{R}^n$ be a function, where $A \subseteq \mathbb{R}^m$. Given $x_0 \in A$, f is continuous at x_0 relative to A iff for all neighborhood W of $f(x_0)$, $f^{-1}(W)$ contains a neighborhood of x_0 relative to A.

Corollary 52.4

 $f: A \subseteq \mathbb{R}^m \to \mathbb{R}^n$ a function. Then f is continuous on A relative to A iff $\forall W \subseteq \mathbb{R}^n$ open, $f^{-1}(W)$ is open relative to A.

Remark 52.5:

It is NOT true that if $f: A \to \mathbb{R}^n$ is continuous on A relative to A then f(V) is open whenever V is open relative to A.

For example, consider $f(x) = 0 \ \forall x \in \mathbb{R}^m$. Then $f(V) = \{0\}$ for all non-empty open $V \subseteq \mathbb{R}^m$. However, $\{0\}$ is not open in \mathbb{R}^n .

Lecture 53 Continuous functions on connected sets

Lemma 53.1

Let $A \subseteq \mathbb{R}^m$ and let $f : A \to \mathbb{R}^n$ be a function. Let $V, W \subseteq \mathbb{R}^m$.

- 1. $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$.
- 2. $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$.
- 3. $f^{-1}(V) = f^{-1}(V \cap f(A))$.
- 4. $f(f^{-1}(V)) = V \cap f(A)$.

Proposition 53.2

Let $A \subseteq \mathbb{R}^m$ be connected and let $f: A \to \mathbb{R}^n$ be continuous on A relative to A. Then f(A) is connected.

Corollary 53.3: Intermediate value theorem

Let $A \subseteq \mathbb{R}^m$ be connected and let $f: A \to \mathbb{R}$ be continuous on A relative to A. Given $x_0, x_1 \in A$ with $f(x_0) \le f(x_1)$, then $\forall c \in [f(x_0), f(x_1)], \exists x_* \in A$ such that $f(x_*) = c$.

Lecture 54 Continuous functions on compact sets (I)

Proposition 54.1

Let $\emptyset \neq A \subseteq \mathbb{R}^m$ be compact and let $f: A \to \mathbb{R}^n$ be a function which is continuous on A relative to A. Then f(A) is compact.

Corollary 54.2

Let $\emptyset \neq A \subseteq \mathbb{R}^m$ be compact and let $f: A \to \mathbb{R}$ be continuous on A relative to A. Then

- 1. f is bounded on A. That is $\exists R > 0$ such that $|f(x)| \leq R \ \forall x \in A$.
- 2. $\sup_{x \in A} f(x)$, $\inf_{x \in A} f(x)$ both exist. Moreover, $\exists x^*, x_* \in A$ such that $f(x^*) = \sup_{x \in A} f(x)$ and $f(x_*) = \inf_{x \in A} f(x)$.

Remark 54.3:

Compactness assumption on A is necessary in corollary 2. Define $f:(0,\infty)\to\mathbb{R}$ by $f(x)=\frac{1}{x}$. Since $(0,\infty)$ not closed, thus not compact. f is continuous on $(0,\infty)$, but unbounded.

Lecture 55 Continuous functions on compact sets (II)

Definition 55.1: uniformly continuous

Suppose $A \subseteq \mathbb{R}^m$ and let $f: A \to \mathbb{R}^n$ be a function. Given $B \subseteq A$, f is said to be uniformly continuous on B if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\|f(x) - f(y)\| < \epsilon$ whenever $x, y \in B$ and $\|x - y\| < \delta$.

Remark 55.2:

If f is uniformly continuous on A, then f is continuous on A relative to A. Converse is false in general.

Example 55.3:

Norm function is uniformly continuous on \mathbb{R}^m .

 $f(x) = x^2$ is uniformly continuous on $[-K, K] \ \forall K > 0$, but not uniformly continuous on \mathbb{R} .

Proposition 55.4

Let $\emptyset \neq A \subseteq \mathbb{R}^m$ be compact and let $f: A \to \mathbb{R}^n$ be continuous on A relative to A. Then f is uniformly continuous on A.

Lecture 56 More on uniform continuity (I)

Lemma 56.1

Suppose $f: A \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is uniformly continuous on A. Given $x_0 \in \overline{A} \setminus A$. $\forall k \in \mathbb{N}$, define $E_k = f(B_{1/k}(x_0) \cap (A \setminus \{x_0\}))$. Then $(\overline{E_k})_{k \in \mathbb{N}}$ is a nested sequence of non-empty closed sets with diameters going to zero.

Lemma 56.2

Suppose $f: A \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is uniformly continuous on A. Then $\forall x_0 \in \overline{A} \setminus A$, $\lim_{x \to x_0, x \in A} f(x)$ exists.

As noted above, $x_0 \in A'$, so statement makes sense.

Proposition 56.3

Let $A \subseteq \mathbb{R}^m$ and suppose $f: A \to \mathbb{R}^n$ is uniformly continuous on A. Then there exists unique $F: \overline{A} \to \mathbb{R}^n$ such that $F(x) = f(x) \ \forall x \in A$. This is called "F extends f". And F is continuous on \overline{A} relative to \overline{A} .

Lecture 57 More on uniform continuity (II)

Continue the proof of last proposition.

Lecture 58 More on uniform continuity (III)

Proposition 58.1

Let a > 0 and define $f : \mathbb{Q} \to \mathbb{R}$ be $f(x) = a^x$. Then $\forall L > 0$, f is uniform continuous on $(-L \cap L) \cap Q$.

Proposition 58.2

Let a > 0. Then there exists a unique $F : \mathbb{R} \to \mathbb{R}$ such that F is continuous on \mathbb{R} and $F(x) = a^x$ $\forall x \in \mathbb{Q}$.

Remark 58.3:

We still denote F(x) by a^x .

Remark 58.4:

Let a, b > 0, then for all $x, y \in \mathbb{R}$:

1.
$$a^{x}a^{y} = a^{x+y}$$
,

2.
$$(a^x)^y = a^{xy}$$
,

$$3. \ a^x b^x = (ab)^x.$$

These can be extended from $x, y \in \mathbb{Q}$ to $x, y \in \mathbb{R}$ by continuity.

Sequences of functions

Lecture 59 Pointwise and uniform convergence

Definition 59.1: pointwise and uniform convergence

Let $A \subseteq \mathbb{R}^m$ and let $(f_k)_{k \in \mathbb{N}}$ be a sequence of functions $A \to \mathbb{R}^n$. Given $f : A \to \mathbb{R}^n$, and $B \subseteq A$

- 1. $(f_k)_{k\in\mathbb{N}}$ is said to converge pointwise to f on B if $\forall x\in B$, $f_k(x)\to f(x)$ as $k\to\infty$.
- 2. $(f_k)_{k\in\mathbb{N}}$ is said to converge uniformly to f on B if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$||f_k(x) - f(x)|| < \epsilon \quad \forall k \ge N \text{ and } x \in B.$$

Remark 59.2:

Uniform convergence on *B* implies pointwise convergence on *B*.

Example 59.3:

 $f_k: [0,1] \to \mathbb{R}: x \mapsto x^k$. Define $f(x) = \begin{cases} 0 & 0 \le x < 1, \\ 1 & x = 1, \end{cases}$ we see that $f_k \to f$ pointwise on [0,1].

However, (f_k) does NOT converge uniformly to f on [0,1].

Suppose $a \in (0,1)$. For all $k \in \mathbb{N}$, define $f_k : \mathbb{R} \to \mathbb{R} : x \mapsto \sum_{j=0}^k x^j$. Then $(f_k)_{k \in \mathbb{N}}$ converges uniformly on [-a,a].

Lecture 60 Uniform convergence and continuity

Proposition 60.1

Let $(f_k)_{k\in\mathbb{N}}$ be a sequence of functions from $A\subseteq\mathbb{R}^m$ to \mathbb{R}^n . Suppose f_k is continuous on A relative to A $\forall k\in\mathbb{N}$ and that $(f_k)_{k\in\mathbb{N}}$ converges uniformly on A to $f:A\to\mathbb{R}^n$. Then f is continuous on A relative to A.

Remark 60.2:

Example 59.3 shows that uniform convergence is necessary in proposition 1, and pointwise convergence is not enough.

Integration

Lecture 61 Partitions (I)

Definition 61.1: partition, refinement, regular partition

Let $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$ be a closed *n*-cube.

- 1. $v(S) := (b_1 a_1) \cdots (b_n a_n)$. Below assume v(S) > 0.
- 2. A partition of S is a finite collection \mathcal{P} of closed n-cubes such that $v(P)>0 \ \forall P\in\mathcal{P}$, $S=\bigcup_{P\in\mathcal{P}}P$, and $P^\circ\cap(\tilde{P})^\circ=\varnothing$ whenever $P,\tilde{P}\in\mathcal{P}$ with $P\neq\tilde{P}$.
- 3. Given two partitions $\mathcal{P}, \mathcal{P}'$ of S, we say that \mathcal{P}' is a refinement of \mathcal{P} (" $\mathcal{P}' \leq \mathcal{P}$ ") if $\forall P \in \mathcal{P}'$, $\exists R \in \mathcal{P}$ such that $P \subseteq R$.
- 4. A partition \mathcal{P} of S is said to be regular if \exists partitions $\mathcal{P}_1, \ldots, \mathcal{P}_n$ of $[a_1, b_1], \ldots, [a_n, b_n]$ respectively, such that $\mathcal{P} = \{I_1 \times \cdots \times I_n \mid I_1 \in \mathcal{P}_1, \ldots, I_n \in \mathcal{P}_n\}$.

Remark 61.2:

If $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$, then $S^{\circ} = (a_1, b_1) \times \cdots (a_n, b_n)$. In particular, v(S) > 0 iff $S^{\circ} \neq \emptyset$.

Suppose $\mathcal{P}, \mathcal{P}'$ are partitions of S such that $\mathcal{P}' \leq \mathcal{P}$. Then $\mathcal{P}' = \bigcup_{R \in \mathcal{P}} \{ \mathcal{P} \in \mathcal{P}' \mid P \subseteq R \}$ and this is a disjoint union.

Let $\mathcal{P}_1, \ldots, \mathcal{P}_n$ be partitions of $[a_1, b_1], \ldots, [a_n, b_n]$ respectively, and define

$$\mathcal{P} = \{I_1 \times \cdots \times I_n \mid I_1 \in \mathcal{P}_1, \dots, I_n \in \mathcal{P}_n\}.$$

Then \mathcal{P} is indeed a partition of $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$.

Example 61.3:

Lecture 62 Partitions (II)

Lemma 62.1

Suppose $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is closed *n*-cube with v(S) > 0. Then every partition of S has a regular refinement.

Remark 62.2:

The above proof yields the following more general statement.

Let S be closed n-cube with v(S) > 0. Let \mathcal{R} be finite collection of closed n-cubes such that v(R) > 0 $\forall R \in \mathcal{R}$ and $R \subseteq S \ \forall R \in \mathcal{R}$. Then there exists a regular partition \mathcal{P} of S such that $\forall P \in \mathcal{P}$ and $R \in \mathcal{R}$, either $P \subseteq R$ or $P^{\circ} \cap R^{\circ} = \emptyset$.

Lecture 63 Partitions (III)

Corollary 63.1

Let *S* be closed *n*-cube with v(S) > 0.

- 1. Let $\mathcal{P}, \mathcal{P}'$ be partitions of S. Then there exists regular partition \mathcal{P}'' of S such that $\mathcal{P}'' \leq \mathcal{P}'$ and $\mathcal{P}'' \leq \mathcal{P}$.
- 2. Let R be a closed n-cube with v(R) > 0 and $R \subseteq S$ and suppose \mathcal{P} is a partition of S. Then there exists regular refinement \mathcal{P}' of \mathcal{P} such that $\forall P \in \mathcal{P}'$, either $P \subseteq R$ or $P^{\circ} \cap R^{\circ} = \emptyset$.

Proposition 63.2

Let $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$ be a closed *n*-cube with v(S) > 0, and let \mathcal{P} be a partition of S. Then $v(S) = \sum_{P \in \mathcal{P}} v(P)$.

Lecture 64 Integrability (I)

Definition 64.1: $U(f, \mathcal{P}), L(f, \mathcal{P})$

Let S be closed n-cube with v(S)>0, $f:S\to\mathbb{R}$ a bounded function. Given partition $\mathcal P$ of S, define

$$U(f, \mathcal{P}) = \sum_{P \in \mathcal{P}} \left(\sup_{x \in P} f(x) \right) v(P)$$

$$L(f, \mathcal{P}) = \sum_{P \in \mathcal{P}} \left(\inf_{x \in P} f(x) \right) v(P)$$

Lemma 64.2

Define S, f as above.

- 1. If $\mathcal{P}', \mathcal{P}$ are partitions of S such that $\mathcal{P}' \leq \mathcal{P}$, then $L(f, \mathcal{P}) \leq L(f, \mathcal{P}')$, $U(f, \mathcal{P}') \leq U(f, \mathcal{P})$.
- 2. For any two partitions \mathcal{P} , \mathcal{R} of S, $L(f,\mathcal{P}) \leq U(f,\mathcal{R})$.

Definition 64.3: $\overline{\int}_S f$, $\int_S f$

Let f, S as in definition 1. Define

$$\overline{\int}_{S} f = \inf\{U(f, \mathcal{P}) \mid \mathcal{P} \text{ is a partition of } S\},$$

$$\underline{\int}_{S} f = \sup\{L(f, \mathcal{P}) \mid \mathcal{P} \text{ is a partition of } S\}.$$

Remark 64.4:

Since $\{S\}$ is a partition of S, $\{U(f,\mathcal{P}) \mid \mathcal{P} \text{ is a partition of } S\}$ and $\{L(f,\mathcal{P}) \mid \mathcal{P} \text{ is a partition of } S\}$ are both non-empty. Moreover, $\overline{\int}_S f$ and $\underline{\int}_S f$ are well-defined. And $\overline{\int}_S f \geq \underline{\int}_S f$.

Definition 64.5: integrable

f is said to be integrable on S if $\int_{S} f = \overline{\int}_{S} f$, in which case the common value is denoted $\int_{S} f$.

Lecture 65 Integrability (II)

Proposition 65.1

Let *S* be closed *n*-cube with v(S) > 0. Suppose $c \in \mathbb{R}$ and define $f : S \to \mathbb{R}$ bt $f(x) = c \ \forall x \in S$. Then *f* is integrable on *S* and $\int_S f = c \cdot v(S)$.

Proposition 65.2

Let *S* be closed *n*-cube with v(S) > 0, $f: S \to \mathbb{R}$ be bounded. Then the following are equivalent:

- 1. *f* is integrable on *S*.
- 2. $\forall \epsilon > 0$, \exists partition \mathcal{P} of S such that $U(f, \mathcal{P}) L(f, \mathcal{P}) < \epsilon$.

Proposition 65.3

Let $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$ be closed *n*-cube with v(S) > 0. $f : S \to \mathbb{R}$ continuous on S relative to S. Then f is bounded and integrable on S.

Lecture 66 New integrable functions from old ones (I)

Proposition 66.1

Let *S* be closed *n*-cube with v(S) > 0. Suppose $f, g : S \to \mathbb{R}$ are bounded and integrable on *S*.

- 1. $\forall c \in \mathbb{R}$, cf is integrable on S and $\int_{S} cf = c \int_{S} f$.
- 2. f + g is integrable on S and $\int_S f + g = \int_S + \int_S g$.
- 3. |f| is integrable on S and $|\int_S f| \le \int_S |f|$.

Lecture 67 New integrable functions from old ones (II)

Proposition 67.1

Let *S* be closed *n*-cube with v(S) > 0. $f : S \to \mathbb{R}$ bounded and integrable on *S*.

- 1. Let $R \subseteq S$ be a closed *n*-cube with v(R) > 0. Then f is integrable on R.
- 2. Given a partition \mathcal{P} of S, f is integrable on $P \ \forall P \in \mathcal{P}$, and $\int_{S} f = \sum_{P \in \mathcal{P}} \int_{P} f$.

Lecture 68 Examples

Example 68.1:

$$f(x) = \begin{cases} 0 & 0 \le x < 1, \\ 1 & x = 1 \end{cases}$$
 is integrable on [0,1], and $\int_{[0,1]} f = 0$.

Example 68.2:

$$f(x) = \begin{cases} 1 & x \in [0,1] \cap \mathbb{Q}, \\ 0 & x \in [0,1] \setminus \mathbb{Q} \end{cases}$$
 is NOT integrable on $[0,1]$.

Example 68.3:

Define
$$f(x) = \begin{cases} 0 & x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & x \in \mathbb{Q}, x = \frac{p}{q} \text{ lowest terms } (p \in \mathbb{Z}, q \in \mathbb{N}) \end{cases}$$
 as in lecture 51. Then f is integrable on $[0,1]$.

Lecture 69 Fubini's theorem (I)

Proposition 69.1: Fubini's theorem

 S_1 closed m-cube, S_2 closed n-cube. $v(S_1), v(S_2) > 0$. $f: S_1 \times S_2 \to \mathbb{R}$ bounded. Assume

- 1. f is integrable on $S_1 \times S_2$.
- 2. $\forall x \in S_1$, the function $g_x : S_2 \to \mathbb{R}$ given by $g_x(y) = f(x,y)$ is integrable on S_2 .

Then the function $G: S_1 \to \mathbb{R}$ given by $G(x) = \int_{S_2} g_x$ is bounded and integrable on S_1 and $\int_{S_1} G = \int_{S_1 \times S_2} f$.

Remark 69.2:

 $\int_{S_1} G$ is referred to as an iterated integral since we can write it as $\int_{S_1} \left(\int_{S_2} g_x \right)$.