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1
Axioms

Lecture 1 Axioms on the real number system

• R: the set of real numbers

• Z: the set of integers

• Q: the set of rational numbers

• N: the set of positive integers

The axioms fall into 3 groups

Group I (Addition and multiplication)

Any two real numbers x, y have a sum x + y and a product x · y, which are also real numbers.
In addition, + and · have the following properties:

(A1) x + y = y + x.

(A2) (x + y) + z = x + (y + z).

(A3) There exists a real number, denoted 0, such that x + 0 = x for all x ∈ R.

(A4) For all x ∈ R, there exists a real number, denoted −x, such that x + (−x) = 0.

(M1) x · y = y · x.

(M2) (x · y) · z = x · (y · z).

(M3) There exists a real number distinct from 0, denoted 1, such that x · 1 = x for all x ∈ R.

(M4) For all x ∈ R \ {0}, there exists a real number, denoted x−1, such that x · x−1 = 1.

(D) x · (y + z) = x · y + x · z.

4
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Group II (Order)

There is a relation < between real numbers such that

(O1) Given real numbers x, y, exactly one of the following holds: x < y or x = y4 or y < x.

(O2) If x < y and y < z, then x < z.

(O3) If x < y, then x + z < y + z for all z ∈ R.

(O4) If x < y, then x · z < y · z for all 0 < z.

Group III (Completeness)

Note that the following definitions will be defined later.

(C) Any non-empty subset of R which is bounded from above has a least upper bound.

Example 1.1:
x · 0 = 0 for all x ∈ R.

Example 1.2:
x · y = 0 if and only if x = 0 or y = 0.



2
Topology of Rn

Lecture 2 The n-dimensional Euclidean space

Definition 2.1:

1. Rn = {~x = (x1, . . . , xn) | x1, . . . , xn ∈ R}. Given ~x ∈ Rn

2. For ~x,~y ∈ Rn and α ∈ R, define

~x +~y = (x1 + y1, . . . , xn + yn)

α~x = (αx1, . . . , αxn)

3. For ~x,~y ∈ Rn, define the inner product

~x ·~y =
n

∑
i=1

xiyi

Lemma 2.2

The following properties of the inner product are easy to check.

1. (αx + βy) · z = (αx · z) + β(y · z)

2. x · y = y · x

3. x · x ≥ 0, with equality holding if and only if x =~0.

Definition 2.3: Euclidean norm

Given x ∈ Rn, define the Euclidean norm of x by ‖x‖ := (x · x)1/2.

Remark 2.4:
Existence of the square root can be traced back to the completeness axiom.

6
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Lemma 2.5

For all x ∈ Rn, α ∈ R, we have

1. ‖αx‖ = |α|‖x‖.

2. ‖α‖ ≥ 0 with equality if and only if x = 0.

Proposition 2.6: Cauchy-Schwarz inequality

For all x, y ∈ Rn, |x · y| ≤ ‖x‖‖y‖.

Proposition 2.7: Triangle inequality

For all x, y ∈ Rn,

1. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

2. |‖x‖ − ‖y‖| ≤ ‖x− y‖.

Definition 2.8: norm

A function ρ : Rn → [0, ∞) is called a norm if

1. ρ(x) ≥ 0 for all x ∈ Rn and ρ(x) = 0 if and only if x = 0.

2. ρ(αx) = |α|ρ(x) for all x ∈ Rn and α ∈ R.

3. ρ(x + y) ≤ ρ(x) + ρ(y).

Lecture 3 Another proof of Cauchy-Schwarz

The proof last time generalizes Hölder’s inequality:

Hölder’s inequality

Let (S, Σ, µ) be a measure space and let p, q ∈ [1, ∞) with 1/p+ 1/q = 1. Then for all measurable
real- or complex-valued functions f and g on S,

‖ f g‖1 ≤ ‖ f ‖p‖g‖q.
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Lecture 4 Open sets and closed sets

Notation 4.1

Open and closed ball For x0 ∈ Rn, r > 0, define

1. Br(x0) = {x ∈ Rn | ‖x− x0‖ < r}

2. Br(x0) = {x ∈ Rn | ‖x− x0‖ ≤ r}

Definition 4.2: open and closed subset

1. A subset E of Rn is said to be open if for all x0 ∈ E, there exists δ > 0 such that Bδ(x0) ⊆ E.

2. A subset E of Rn is said to be closed if Rn \ E is open.

Example 4.3:
1. Rn,∅ both open. Hence both closed as Rn \∅ = Rn and Rn \Rn = ∅.

2. For all a ∈ Rn, {a} is closed.

3. Br(x0) is open and not closed. Note that “not closed” is not a consequence of openness.

4. Br(x0) is closed and not open.

5. E = {x = (x1, . . . , xn) ∈ Rn | x1 + · · ·+ xn < 1} is open.

Remark 4.4:
Not open 6=⇒ closed, closed 6=⇒ not open.

1. Rn and ∅ are clopen.

2. E = (a, b] for a < b. E is not open and not closed.

Lecture 5 New open sets from old

Proposition 5.1

1. The union of an arbitrary collection of open sets in Rn is open.

2. The intersection of finitely many open sets in Rn is open.

Corollary 5.2

1. The intersection of an arbitrary collection of closed sets is closed.

2. The union of finitely many closed sets is closed.

Remark 5.3:
Finiteness is necessary in previous propositions. For example,

⋃
a∈Bδ(0){a} = Bδ(0) is an infinite

collection of closed sets, and it is not closed.
⋂∞

n=1
(
− 1

n , 1
n
)
= {0} by completeness axiom. It is

infinite collection of open sets, and it is not open.
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Lecture 6 Interior and closure (I)

Warm-up [a, ∞) closed and not open.

Definition 6.1: interior, closure, boundary

Let E ⊆ Rn.

1. x belongs to the interior of E, denoted E◦, if ∃δ > 0 such that Bδ(x) ⊆ E.

2. x belongs to the closure of E, denoted E, if ∀δ > 0, Bδ(x) ∩ E 6= ∅.

3. x belongs to the boundary of E, denoted ∂E, if x ∈ E \ E◦. Equivalently,

∂E = {x ∈ Rn | ∀δ > 0, Bδ(x) ∩ E = ∅ and Bδ(x) \ E 6= ∅}

Remark 6.2:
E◦ ⊆ E ⊆ E. Each inclusion can be proper.

Proposition 6.3

Let E ⊆ Rn.

1. E◦ = ∪{A ⊆ E | A is open}

2. E◦ is open.

3. E is open if and only if E = E◦.

Lecture 7 Interior and closure (II)

Proposition 7.4

Let E ⊆ Rn.

1. E = ∩{A ⊆ Rn | A ⊇ E and A is closed}

2. E is closed.

3. E is closed if and only if E = E.

Remark 7.5:
1. (3) gives an alternative way to prove closedness.

2. ∂E = E ∩ (Rn \ E◦) is closed. Intersection of closed sets is closed.
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Lecture 8 Examples (I)

Example 8.1:
{x0} is closed, for some x0 ∈ Rn.

{x0} = {x0}, {x0}◦ = ∅, ∂{x0} = {x0}.

Example 8.2:
E = (a, b] for a < b.

E◦ = (a, b), E = [a, b], ∂E = {a, b}.

Example 8.3:
E = Z ⊆ R.

Z is closed, Z◦ = ∅, ∂Z = Z.

Example 8.4:
E = Q ⊆ R.

Q◦ = ∅, Q = R, ∂Q = R.

Lecture 9 Examples (II)

Example 9.1:
E = {x ∈ Rn | x1 + · · ·+ xn ≤ 1}

E is closed, E◦ = {x ∈ Rn | x1 + · · ·+ xn < 1}, ∂E = {x ∈ Rn | x1 + · · ·+ xn = 1}.

Example 9.2:
E = {x ∈ Rn | x1 + · · ·+ xn < 1}

E is open, E = {x ∈ Rn | x1 + · · ·+ xn ≤ 1} and ∂E = {x ∈ Rn | x1 + · · ·+ xn = 1}.

Example 9.3:
E = Br(x0)

E is open. We can prove that closure of Br(x0) is Br(x0). ∂Br(x0) = {x ∈ Rn | ‖x− x0‖ = r}.

Lecture 10 Relative openness and closedness

Definition 10.1: open/closed relative to A

Let E ⊆ A ⊆ Rn.

1. E is open relative to A, or open in A, if ∀x ∈ E, ∃δ > 0 such that Bδ(x) ∩ A ⊆ E.

2. E is closed relative to A, or closed in A, if A \ E is open relative to A.

Remark 10.2:
1. Openness and closedness defined in lecture 4 is strictly speaking openness and closedness

relative to Rn.
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2. Unless otherwise stated, “E is open” and “E is closed” (with specifying relative to which A)
means relative to Rn.

Proposition 10.3

Let E ⊆ A ⊆ Rn. Then E is open relative to A iff E = A ∩ G for some G open relative to Rn.

Proposition 10.4

Let E ⊆ A ⊆ Rn. Then E is closed relative to A iff E = A ∩ F for some F closed relative to Rn.

Example 10.5:
1. A = {x ∈ R. | xn ≥ 0}; E = {x ∈ Rn | ‖x‖ < 1, xn ≥ 0}.

E = B1(0) ∩ A, thus E is open relative to A, but E not open relative to Rn.

2. A = [0, 1) ∪ (1, 2]; E = [0, 1).

E = (−1, 1) ∩ A, then E is open relative to A.

A \ E = (1, 3) ∩ A, then A \ E open relative to A, so E is closed relative to A.

But E is neither open nor closed relative to R.

3. A = Z; E = {0}.

E = {0} ∩Z, then E is closed relative to Z.

E = (− 1
2 , 1

2 ) ∩Z, then E is open relative to Z.

But E is closed and not open relative to R.

Lecture 11 Connected sets

Definition 11.1: disconnected

Let A ⊆ Rn. We say that A is disconnected if there exists subset E, F of A such that

(i) E, F both non-empty;

(ii) E ∩ F = ∅, E ∪ F = A;

(iii) E, F both open relative to A.

Equivalently, A is disconnected if there exists a subset E of A such that

(i’) E 6= ∅, E 6= A.

(ii’) E both open and closed relative to A.

Example 11.2:
a, b ∈ Rn, a 6= b. Then A = {a, b} is disconnected.

A = [0, 1) ∪ (1, 2] is disconnected.

A = {x ∈ Rn | ‖x‖ 6= 1} is disconnected.

A = Z is disconnected.
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Definition 11.3: connected

Let A ⊆ Rn. We say that A is connected if A is not disconnected. That is if E = ∅ or F = ∅
whenever E, F ⊆ A satisfy E ∩ F = ∅, E ∪ F = A and E, F both open relative to A.

Example 11.4:
{x0} connected.

Intervals [a, b], . . . , (−∞, b], R are connected.

Convex sets in Rn are connected.

Definition 11.5: convex

A ⊆ Rn is said to be convex if for all x, y ∈ A and t ∈ [0, 1], we have tx + (1− t)y ∈ A.

Lecture 12 New connected sets from old

Lemma 12.1

Let B ⊆ Rn. If E ⊆ B is open relative to B, then E ∩ A is open relative to A for all A ⊆ B.

Proposition 12.2

Let A ⊆ Rn be a connected set. Then A is connected.

Proposition 12.3

If A1, A2 ⊆ Rn are connected and A1 ∩ A2 6= ∅, then A := A1 ∪ A2 is connected.

Remark 12.4:
Generalizations of proposition 3: Let {Ai}i∈I be an arbitrary collection of connected subsets of Rn

and assume that Ai ∩ Aj for all i, j ∈ I. Prove that ∪i∈I Ai is connected.

Lecture 13 Convex sets (I)

Definition 13.1: convex

A ⊆ Rn is said to be convex if for all x, y ∈ A and t ∈ [0, 1], we have tx + (1− t)y ∈ A.

Example 13.2:
Br(x0) convex.

a ∈ Rn \ {0}, c ∈ R. Then E = {x ∈ Rn | x · a < c} is convex.

E = Rn \ {0} not convex.
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Proposition 13.3

Intersection of an arbitrary collection of convex sets is convex.

Proposition 13.4

Let E ⊆ Rn be convex. Then E and E◦ is convex.

Lecture 14 Convex sets (II)

Proposition 14.1

If A ⊆ Rn is convex, then A is connected.

Proof assumes connectedness of intervals.

Example 14.2:
E = R2 \ {(x1, 0) | x1 ≥ 0} is connected, but not convex.

E = R2 \ {0} is connected, but not convex.



3
The completeness of R

Lecture 15 Least upper bounds

Definition 15.1: upper bound

Let E ⊆ R.

1. We say that a ∈ R is an upper bound of E if x ≤ a for all x ∈ E.

2. E is said to be bounded above if it has an upper bound.

Definition 15.2: least upper bound

Let E ⊆ R. We say that a ∈ R is a least upper bound of E if

1. a is an upper bound of E.

2. a ≤ b for all upper bound b of E. (Equivalently, if b < a then b is not an upper bound of
E.)

Lemma 15.3

Let E ⊆ R. E can only have at most one least upper bound.

By lemma 3, if E has a least upper bound, it is actually “the” least upper bound, and we denote it by
sup E, supremum of E.

Example 15.4:
E = {a1, . . . , ak} is a finite subset of R. sup E = max1≤i≤k ai.

sup[0, 1] = sup(0, 1) = 1

14
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Proposition 15.5

Let E ⊆ R and suppose sup E exists. Then ∀δ > 0, ∃x ∈ E such that sup E− δ < x ≤ sup E. In
particular, sup E ∈ E.

Proposition 15.6

Let E ⊆ Z and suppose sup E exists, then sup E ∈ E and sup E ∈ Z.

Lecture 16 The completeness axiom

The completeness axiom

Let E ⊆ R be non-empty and bounded from above. Then E has a least upper bound.

Then completeness axiom + Lemma 15.3 imply: If E ⊆ R non-empty and bounded above, then sup E
exists.

Lemma 16.1

1. Let ∅ 6= A ⊆ B ⊆ R. Suppose B is bounded above. Then so is A. sup A ≤ sup B.

2. Let A, B ⊆ R be non-empty and bounded above. Then so is A+ b := {a+ b | a ∈ A, b ∈ B}.
Moreover, sup(A + B) = sup A + sup B.

Lecture 17 Some consequences of completeness (I)

Proposition 17.1: Archimedean property

Given a, b ∈ R, with a > 0 and b ≥ 0, there exists n ∈N such that (n− 1)a ≤ b < na.

Corollary 17.2

1. Let E =
{

1− 1
n | n ∈N

}
. Then sup E = 1.

2. Let Vk =
(
− 1

k , 1
k
)

for all k ∈N. Then
⋂∞

k=1 Vk = {0}.

Lecture 18 Some consequences of completeness (II)

Proposition 18.1: Density of the rationals

Given x, y ∈ R with x < y, ∃r ∈ Q such that x < r < y.
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Corollary 18.2

1. Q = R.

2. Qn = Rn.

Remark 18.3:
Density of rationals ⇐⇒ Q = R.

Lecture 19 Some consequences of completeness (III)

Proposition 19.1: Existence if the square root

Given x > 0, there exists a unique y > 0 such that y2 = x, and we denote this y by
√

x or x
1
2 .

Remark 19.2:
The above proof can be adapted to prove the existence of the n-th root. We will say more about
exponential functions later.

Remark 19.3:
1.
√

2 6= Q.

2. Then from (1) one can prove that E = {a ∈ Q | a > 0, a2 < 2}, we have E 6= ∅ and bounded
above, but there exists no r ∈ Q such that

(a) r ≥ x for all x ∈ E,

(b) rr ≤ s for all upper bound s ∈ Q of E.

In fact, if such an r existed, it would have to satisfy r2 = 2.

Hence Q is not complete. There are non-empty subsets of Q which are bounded from above
but have no least upper bound in Q.

Lecture 20 Connected of intervals

Proposition 20.1

Intervals are connected.
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Lecture 21 Decimal expansions

Proposition 21.1

For all x ∈ [0, 1), there exists a unique function a : N ∈ {0, . . . , 9} such that, writing an for a(n)
for all n ∈N, we have

n

∑
i=1

ai

10i ≤ x <

(
n

∑
i=1

ai

10i

)
+

1
10n ∀n ∈N.

Remark 21.2:
The base 10 can be replaced with any ` ∈N, ` ≥ 2.

Lecture 22 Greatest lower bounds

Definition 22.1: lower bound

Let E ⊆ R.

1. We say that a ∈ R is a lower bound of E if a ≤ x for all x ∈ E.

2. E is said to be bounded from below if it has a lower bound.

Definition 22.2: greatest lower bound

Let E ⊆ R. We say that a ∈ R is a greatest lower bound of E if

1. a is a lower bound of E.

2. b ≤ a for all lower bound b of E. Equivalently, if b > a then b is not a lower bound of E.

Lemma 22.3

Given E ⊆ R, define −E = {−x | x ∈ E}. Then

1. a is a lower bound of E iff −a is an upper bound of −E.

2. a is a greatest lower bound of E iff −a is a least upper bound of −E.

Remark 22.4:
A subset E ⊆ R can have at most one lower bound. We denote it by inf E, the infimum of E.

If E ⊆ R is non-empty and bounded from below, then it has a greatest lower bound. Furthermore,
in this case, −E is non-empty and bounded from above, and inf E = − sup(−E).

Example 22.5:

inf
{ 1

n | n ∈N
}
= 0

inf{rn | n ∈N} = 0 where 0 < r < 1



4
Sequences in R and Rn

Lecture 23 Sequences and limits (I)

Definition 23.1: convergence seqeunce

Let (an) be a sequence in Rd.

1. We say that (an) converges or is convergent if for some x ∈ Rd we have ∀ε > 0, ∃N ∈ N

such that ‖an − x‖ < ε for all n ≥ N.

In this case x is called the limit of (an), denoted limn→∞ an, and (an) is said to converge to
x as n→ ∞.

2. (an) is said to diverge if it does not converge.

Remark 23.2:
Since ‖an − x‖ = |‖an − x‖ − 0|, we have that an → x as n→ ∞ iff ‖an − x‖ → 0 as n→ ∞.

Lemma 23.3

an → x as n→ ∞ iff ∀ open set U ⊆ Rd containing x, ∃N ∈N such that an ∈ U for all n ≥ N.

Proposition 23.4: Uniqueness of limit

Let (an) be a sequence in Rd. Then it has at most one limit.

18
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Definition 23.5: bounded sequence & Cauchy sequence

Let (an) be a sequence in Rd.

1. (an) is said to be bounded if ∃R > 0 such that ‖an‖ ≤ R for all n ∈ N, in other words,
an ∈ BR(0) for all n ∈N.

2. (an) is said to be a Cauchy sequence if ∀ε > 0, ∃N ∈ N such that ‖an − am‖ < ε for all
n, m ≥ N.

Proposition 23.6

Let (an) be a sequence in Rd and suppose (an) converges. Then (an) is bounded and (an) is
Cauchy.

Lecture 24 Sequences and limits (II)

Proposition 24.1

Let (an) be a sequence in Rd. Write an = (an1, . . . , and) for all n. Then an → x iff ani → xi as
n→ ∞ for all i ∈ [d].

Lemma 24.2

Let (an) be a convergent sequence in Rd with ‖an‖ ≤ R for all n ∈ N. Then writing x for
limn→∞ an, we have ‖x‖ ≤ R.

Remark 24.3:
Given ∅ 6= E ⊆ Rd, if (an) is a sequence in E converging to x, then x ∈ E.

Conversely, ∀x ∈ E (by considering B1/n(x)) there exists a sequence in E converging to x.

Proposition 24.4

an → x and bn → y as n→ ∞ in Rd. Then

1. an + bn → x + y.

2. ∀α ∈ R, αan → αx.

3. an · bn → x · y.

Lecture 25 Some examples

Const sequence is convergent.
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Example 25.1:
an = (−1)n. We can prove that (an) diverges by prove that it is not Cauchy. It is bounded, however.

Example 25.2:

an = 1
nk for k some natural number. an → 0 as n→ ∞.

an = rn, r ∈ (0, 1). an → 0 as n→ ∞.

Lemma 25.3

Suppose for some x ∈ Rd we have ‖an − x‖ ≤ tn ∀n ∈ N, where (tn) is a sequence in [0, ∞)

converging to 0. Then an → x.

Example 25.4:
Given x ∈ [0, 1), let a : N ∈ {0, . . . , 9} such that, writing an for a(n) for all n ∈N, namely that

n

∑
i=1

ai

10i ≤ x <

(
n

∑
i=1

ai

10i

)
+

1
10n ∀n ∈N.

Define qn = ∑n
i=1

ai
10i . (qn) is Cauchy.

In fact, |qn − x| ≤ 1
10n . Then qn → x as n→ ∞.

Lecture 26 Monotone sequences

Definition 26.1: increasing, decreasing and monotone

Let (an)n∈N be a sequence in R.

1. (an) increasing (strictly increasing, resp.) if an ≤ an+1 for all n ∈ N (if an < an+1 for all
n ∈N resp.)

2. (an) decreasing (strictly decreasing, resp.) if an ≥ an+1 for all n ∈ N (if an > an+1 for all
n ∈N resp.)

3. (an) is said to be monotone if it is increasing or decreasing.

Definition 26.2: bounded sequence

Let (an) be a sequence in R.

1. (an) bounded from above if {an | n ∈N} bounded from above.

2. similar for bounded from below.

Example 26.3:
1. an = (−1)n, not monotone. Bounded from above and below.

2. an = 1
nk , k ∈N. Strictly decreasing. Bounded from above and below.

3. an = rn, r ∈ (0, 1). Strictly decreasing. Bounded from above and below.

4. (qn) in lec 25. Bounded above and below. Increasing.
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Proposition 26.4

1. (an) in R, increasing and bounded from above. Then ∃x ∈ R such that an ≤ x ∀x ∈ N

and an → x as n→ ∞.

2. (an) in R, decreasing and bounded from below. Then ∃x ∈ R such that an ≥ x ∀x ∈ N

and an → x as n→ ∞.

Remark 26.5:
Consider the following statements.

(C) Every non-empty E ⊆ R and bounded above has a least upper bound.

(M) (an) in R, increasing and bounded above. Then (an) converges and am ≤ limn→∞ an ∀m ∈N.

We have assumed (C) as an axiom and deduced (M) as a theorem. We can also do the opposite.

Lecture 27 Cauchy sequences in Rd

Lemma 27.1

Cauchy sequence are bounded.

Lemma 27.2

Let (an) be a bounded sequence in R.

1. For m ∈N, inf{an | n ≥ m} exists.

2. Letting bm = inf{an | n ≥ m}, then (bm)m∈N is increasing and bounded above.

Proposition 27.3

Let (an) be a Cauchy sequence in Rd. Then (an) converges.

Remark 27.4:
Proposition 3 is useful when proving a sequence converges but we don’t have a good idea what
the limit might be.

Assuming Archimedean property & Convergence of Cauchy sequence in R as axioms, we then
can deduce a theorem that every non-empty subset of R which is bounded from above has a least
upper bound.
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Lecture 28 Nested sequence of closed sets in Rd

Definition 28.1: nested sequence

1. A sequence E1, E2, . . . , En, . . . of subsets of Rd is said to be nested if En+1 ⊆ En ∀n ∈N.

2. A nested sequence E1 ⊇ E2 ⊇ · · · ⊇ En ⊇ · · · of subsets of Rd is said to have diameters
going to zero if ∀ε > 0, ∃N ∈N and a ∈ Rd such that En ⊆ Bε(a) ∀n ≥ N.

Remark 28.2:
1. Let (xn)n∈N be a sequence in Rd. Define Em = {xn | n ≥ m}. Then (Em)m∈N is a nested

sequence of subsets of Rd.

2. If (Em)m∈N is a nested sequence of subsets of Rd, then so is (Em)m∈N

We can use A4 Q3:

Let ∅ 6= E ⊆ Rd. Then x ∈ E iff there exists a sequence in E converging to x.

to prove that if A ⊆ B, then A ⊆ B.

3. If (Em)m∈N and (Fm)m∈N are nested sequence of subsets of Rd, with (Fm) having diameters
going to zero, and with Em ⊆ Fm ∀m ∈N, then (Em) has diameters going to zero.

Proposition 28.3

Let (xn)n∈N be a sequence in Rd. For all m ∈ N, define Em = {xn | n ≥ m}. By remark 2,
(Em) is a nested sequence of subsets of Rd. Then (xn)n∈N is a Cauchy sequence iff the nested
sequence (Em)m∈N has diameters going to zero.

Proposition 28.4

Let (Fn)n∈N be a nested sequence of non-empty closed subsets of Rd, and assume that (Fn)n∈N

has diameters going to zero. Then
⋂∞

n=1 Fn consists of exactly one element.

Lecture 29 Subsequences

Definition 29.1: subsequence

Let x : N → Rd be a sequence in Rd. A subsequence of x is a sequence in Rd of the form
x ◦ f : N→ Rd where f is a strictly increasing function from N→ N. (That is, f (k + 1) > f (k)
∀k ∈N).

Remark 29.2:
Given a strictly increasing function f : N→N, by induction on k we get f (k) ≥ k ∀k ∈N.

Example 29.3:
1. an = (−1)n. (a2k)k∈N is a subsequence of (an)n∈N, here f (k) = 2k.

2. (an)n∈N is any sequence in Rd. m ∈ N given. Then (am+k)k∈N is a subsequence of (an)n∈N,
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here f (k) = m + k.

3. Let (an)n∈N be a sequence in Rd converging to 0. Then there exists a subsequence (a f (m))m∈N

such that ‖a f (m)‖ < 1
m for all m ∈N.

Lemma 29.4

Let (an)n∈N be a sequence in Rd and suppose an → x as n → ∞. Then every subsequence of
(an)n∈N converges to x.

Proposition 29.5

Let (an)n∈N be a bounded sequence in R, so that bm := inf{an | n ≥ m} exists ∀m ∈N and that
(bm)m∈N converges by lec 27 and lec 26. Then there exists a subsequence of (an)n∈N converging
to limm→∞ bm.

Corollary 29.6: Bolzano-Weierstrass theorem in R

Every bounded sequence in R has a convergent subsequence.

Remark 29.7:
We take for granted the well-ordering principle: Every non-empty subset of N has a smallest
element.

Lecture 30 The Bolzano-Weierstrass theorem

Definition 30.1: an ∈ E for infinitely many n ∈N

Given E ⊆ Rd and a sequence (an) in Rd, we say that an ∈ E for infinitely many n ∈ N if
∀N ∈N, ∃n ≥ N such that an ∈ E.

Definition 30.2: d-cube

1. A closed d-cube is a subset C of Rd of the form

C = [a1, b1]× · · · × [ad, bd],

where ai, bi ∈ R and ai ≤ bi ∀i ∈ [d].

2. Given a closed d-cube C = [a1, b1]× · · · [ad, bd] ⊆ Rd, let

Ji,0 =

[
ai,

ai + bi
2

]
, Ji,1 =

[
ai + bi

2
, bi

]
and let

C′k1···kd
= J1,k1 × · · · Jd,kd

(k1, . . . , kd ∈ {0, 1})

Write LC for
{

Ck1···kd

∣∣ k1, . . . , kd ∈ {0, 1}
}

.
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Remark 30.3:
1. Closed d-cubes are closed.

2. If an ∈ C for infinitely many n, then ∃C′ ∈ LC such that an ∈ C′ for infinitely many n.

Lemma 30.4

Let (Cn)n∈N be a sequence of closed d-cubes such that Cn+1 ∈ LCn for all n ∈N. Then (Cn)n∈N

is a nested sequence with diameters going to zero.

Proposition 30.5: Bolzano-Weierstrass theorem

Let (xn)n∈N be a bounded sequence in Rd. Then (xn)n∈N has a convergent subsequence.

Lecture 31 Some applications of the Bolzano-Weierstrass
theorem

Definition 31.1: bounded subset

A subset E of Rd is said to be bounded if ∃R > 0 such that E ⊆ BR(0).

Proposition 31.2

Let E ⊆ Rd be non-empty, closed and bounded. Then ∃x0 ∈ E such that ‖x‖ ≤ ‖x0‖ ∀x ∈ E.

Proposition 31.3

Let ρ : Rd → [0, ∞) be a norm on Rd. ∃α > 0 such that ρ(x) ≥ α‖x‖ ∀x ∈ Rd.

Remark 31.4:
Combining proposition 3 with A4 Q5a:

ρ(x) ≤ max{ρ(e1), . . . , ρ(ed)}
√

d‖x‖ for all x ∈ Rd.

we infer that given a norm ρ, ∃α, C > 0 such that

α‖x‖ ≤ ρ(x) ≤ C‖x‖ ∀x ∈ Rd

In particular,

1. ‖an − x‖ → 0 iff ρ(an − x) → 0, so any norm on Rd defines the same notion of convergence
as the Euclidean norm.

2. ∃ε > 0 such that Bε(x) ⊆ E iff ∃r > 0 such that {y ∈ Rd | ρ(y− x) < r} ⊆ E. So any norm on
Rd defines the same notion of openness as the Euclidean norm.
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Lecture 32 Equivalent formulations of completeness (I)

Consider the following statements:

(C) If E ⊆ R is non-empty and bounded above, then E has a least upper bound.

(M) If (an) is a sequence in R which is increasing and bounded above, then ∃x ∈ R such that an ≤ x
∀n ∈N and an → x as n→ ∞.

(S) If (an) is a Cauchy sequence in R, then (an) converges.

(A) ∀a, b ∈ R with a > 0, b ≥ 0, ∃n ∈N such that na > b.

In this course, we assume (C) as an axiom, and we have seen (M) and (S) + (A) follow as theorems.

Lemma 32.1: doesn’t use any of (C), (M), (S) and (A)

E non-empty subset of R and bounded from above. Suppose E contains no upper bound of
itself. Then there exist sequences (an), (bn) such that for all n ∈N,

(i) bn is an upper bound of E while an isn’t.

(ii) an ≤ an+1 ≤ bn+1 ≤ bn.

(iii) bn+1 − an+1 = 1
2 (bn − an).

Lemma 32.2

Assume (A). Let E, (an), (bn) be as in Lemma 1. If c ∈ ⋂∞
m=1[am, bm] then c is a least upper bound

of E.

Lecture 33 Equivalent formulations of completeness (II)

Lemma 33.1

(A) is a consequence of either (C) or (M).

Proposition 33.2

1. Assuming (M) as an axiom in place of (C), then (C) follows as a theorem.

2. Assuming (S) + (A) as an axiom in place of (C), then (C) follows as a theorem.



5
Countability

Lecture 34 Countable and uncountable sets

Definition 34.1: countable, at most countable, uncountable

A set E is said to be

1. countable, if there exists a bijection f : N→ E.

2. at most countable, if E is either finite or countable.

3. uncountable, if E is neither finite nor countable.

Proposition 34.2

Any infinite subset E of N is countable.

Corollary 34.3

Let E be an infinite set.

1. If F is countable and and if there exists an injection h : E→ F, then E is countable.

2. If F is countable and if there exists a surjection h : F → E, then E is countable.

Lecture 35 Some examples

Example 35.1:
N, Z, N×N are countable.

26
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Lemma 35.2

Let E1, . . . , Ek be countable. Then E1 × · · · Ek is countable.

Example 35.3:
Q, Q+ = Q∩ (0, ∞), Qd, U := {Br(x) | r ∈ Q+, x ∈ Qd} are countable.

Let U be an arbitrary collection of mutually disjoint, non-empty open subsets of Rd. Then U is at
most countable.

Lecture 36 Cantor’s diagonal argument

Proposition 36.1

Let (Em)m∈N be a sequence of non-empty, at most countable sets. Then E :=
⋃∞

m=1 Em is at most
countable.

Corollary 36.2

If E1, . . . , Ek are non-empty, at most countable. Then
⋃k

j=1 Ej is at most countable.

Example 36.3:
Let E = {x : N→ {0, . . . , 9} | ∃N ∈N such that xk = 9 ∀k > N}. Then E is countable.

Let A = {all sequences x : N→ {0, . . . , 9}}. Then A is uncountable.

Let B = A \ E. Then B is uncountable.

Lecture 37 Uncountability of R

Proposition 37.1: Complements of Proposition 21.1

Let B = {a : N → {0, . . . , 9} | ∀N ∈ N, ∃n > N such that an 6= 9}. Given a ∈ B, there exists a
unique x ∈ [0, 1) such that

n

∑
i=1

ai

10i ≤ x <
n

∑
i=1

ai

10i +
1

10n ∀n ∈N.

Proposition 37.2

[0, 1) is uncountable.

Corollary 37.3

R is uncountable.
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Compactness

Lecture 38 Open coverings and compactness

Remark 38.1:
Let E ⊆ Rd be closed and bounded. By Bolzano-Weierstrass theorem, and A4 Q3:

Let ∅ 6= E ⊆ Rd. Then x ∈ E iff there exists a sequence in E converging to x.

any sequence (xn)n∈N in E has a convergence subsequence whose limit lies in E. This is important
for existence of minimizers/maximizers.

We want an equivalent formulations of above remark purely in terms of open sets.

Definition 38.2: open covering, subcovering, compact

Let E ⊆ Rd.

1. An open covering of E is a collection U of open subsets of Rd such that E ⊆ ⋃V∈U V. We
call this “U covers E”.

2. Given an open covering U of E, a subcovering of U is a subcollection U′ ⊆ U such that
E ⊆ ⋃V∈U′ V.

3. E is said to be compact if every open covering of E has finite subcovering, that is, if for all
open covering U of E, ∃N ∈N and V1, . . . , VN ∈ U such that E ⊆ V1 ∪ · · · ∪VN .

Example 38.3:
E = {x1, . . . , xN} is a finite subset of Rd. Then E is compact.

E = {0} ∪
{ 1

n

∣∣ n ∈N
}

is compact.

E =
{ 1

n

∣∣ n ∈N
}

is not compact.

28
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Lecture 39 Some properties (I)

Proposition 39.1

Let E1, . . . , Ek ∈ Rd be compact. Then E :=
⋃k

j=1 Ej is compact.

Proposition 39.2

Let F ⊆ E ⊆ Rd with F closed and E compact. Then F is compact.

Proposition 39.3

Let E ⊆ Rd be compact. Then E is closed and bounded.

Lecture 40 Some properties (II)

Lemma 40.1

Let K ⊆ Rd be compact. ∀ε > 0, ∃N ∈N and x1, . . . , xN ∈ K such that K ⊆ ⋃N
j=1 Bε(xj).

Remark 40.2:
Given a sequence (xn) in Rd and E ⊆ Rd, recall that we say “xn ∈ E for infinitely many n ∈ N” if
∀N ∈N, ∃n ≥ N such that xn ∈ E.

If xn ∈ E for infinitely many n ∈ N and if ∃N ∈ N and A1, . . . , An ⊆ Rd such that E ⊆ A1 ∪ · · · ∪
AN , then ∃j ∈ [N] such that xn ∈ Aj for infinitely many n ∈N.

Proposition 40.3

Let K ⊆ Rd be compact and suppose (xn) is a sequence in K. Then (xn) has a convergent
subsequence with limit lying in K.

Lecture 41 Countable subcoverings

Proposition 41.1

Given E ⊆ Rd an an open covering U of E, there exists at most countable subcollection U′ of U
such that E ⊆ ⋃V∈U′ V.
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Lecture 42 Heine-Borel theorem

Lemma 42.1

Let (Fn)n∈N be a nested sequence of non-empty closed subsets of Rd, with F1 bounded. Then⋂∞
n=1 Fn 6= ∅.

Proposition 42.2: Heine-Borel Theorem

Let E ⊆ Rd be closed and bounded. Then E is compact.

Lecture 43 Equivalent formulations of compactness

Definition 43.1: sequentially compact

Let E ⊆ Rd. Then E is said to be sequentially compact if every sequence in E has a convergent
subsequence, with limit lying in E.

Proposition 43.2

Let E be a subset of Rd. Then the following are equivalent:

(i) E is closed and bounded.

(ii) E is compact.

(iii) E is sequentially compact.

Remark 43.3:
For a subset E of Rd, we have proved

(ii) E compact (iii) E sequentially compact

(i) E closed and bounded

(1) (4)(2) (3)

• In particular (ii)⇔ (iii).

• (2) (3) are special to Rd. (1), (4) hold in more generality.

• (ii)⇔ (iii) hold in more generality as will, but general version has a much harder proof.
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Lecture 44 Accumulation points

Definition 44.1: accumulation point, isolated point

1. For A ⊆ Rd, we say that x0 ∈ Rd is an accumulation point of A if x0 ∈ A \ {x0}, that is, if
Bδ(x0) ∩ (A \ {x0}) 6= ∅ ∀δ > 0. The set of accumulation points of A is denoted by A′.

2. x0 ∈ Rd is said to be an isolated point of A if ∃δ > 0, Bδ(x0) ∩ A = {x0}.

Remark 44.2:
An accumulation point of A need not lie in A, while an isolated point of A lies in A from the
definition.

If x0 is an isolated point of A, then there exists δ > 0 such that Bδ(x0) ∩ A = {x0}, then we have
Bδ(x0) ∩ (A \ {x0}) = ∅ =⇒ x0 /∈ A′.

Lemma 44.3

For all A ⊆ Rd, we have A = A′ ∪
{

x ∈ Rd
∣∣∣ x is an isolated point of A

}
. Moreover, the two

sets on the RHS are disjoint.

Example 44.4:
Let A ⊆ Rd. Then A◦ ⊆ A′.

Let V ⊆ Rd be an open set, then ∂V ⊆ V′.
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Continuous functions

Lecture 45 Limit of functions (I)

Definition 45.1: limit of a function

Let A ⊆ Rm. Let f : A→ Rn be a function. Let x0 ∈ A′.

1. Given y ∈ Rn, we write f (x) → y as x → x0, x ∈ A a if ∀ε > 0, ∃δ > 0 such that
‖ f (x)− y‖ < ε whenever x ∈ Bδ(x0) ∩ (A \ {x0}).

2. f is said to have a limit as x → x0, x ∈ A if ∃y ∈ Rn such that f (x)→ y as x → x0, x ∈ A.

a f (x) tends to y as x tends to x0 through points in A

Proposition 45.2

Let A ⊆ Rm and suppose f : A → Rn is a function. Take x0 ∈ A′. Then given y ∈ Rn, the
following are equivalent:

1. f (x)→ y as x → x0, x ∈ A.

2.
(

f (xk)
)

k∈N
converges to y whenever (xk)k∈N is a sequence in A \ {x0} converging to x0.

Corollary 45.3

A ⊆ Rm, f : A → Rn a function, x0 ∈ A′. Then f has at most one limit as x → x0 through
points in A.

Remark 45.4:
If f : A→ Rn has a limit as x → x0, x ∈ A, it must be “the” limit, denote by limx→x0

x∈A
f (x).

When A = Rm, we drop “x ∈ A” .

32
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Corollary 45.5

A ⊆ Rm, f : A→ Rn and x0 ∈ A′ as above. ∀x ∈ A, write f (x) = ( f1(x), . . . , fn(x)). Then given
y ∈ Rn, f (x)→ y as x → x0, x ∈ A if and only if fi(x)→ yi as x → x0, x ∈ A, ∀i ∈ [n].

Lecture 46 Limit of functions (II)

Remark 46.1:
A ⊆ Rm, f : A → Rn and x0 ∈ A′. Suppose B ⊆ A is such that x0 ∈ B′. Consider f |B : B → Rn :
x 7→ f (x). Given y ∈ Rn, if f (x) → y as x → x0, x ∈ A, then ( f |B)(x) → y as x → x0, x ∈ B. Some
times we denote restrictions of f still by “ f ”, by abuse of notation.

The converse is not true.

Remark 46.2:
Let f , g be functions from A ⊆ Rm to Rn. Suppose x0 ∈ A′ and that ∃r > 0 such that f (x) = g(x)
∀x ∈ Br(x0) ∩ (A \ {x0}). Given y ∈ Rn, if f (x) → y as x → x0, x ∈ A, then g(x) → y as x → x0,
x ∈ A.

Lecture 47 Some examples of limits

Example 47.1:
(Rm)′ = Rm.

ρ be any norm. limx→x0 ρ(x) = ρ(x0).

Example 47.2:
Take a > 0. For x ∈ Q, write x = p

q where p ∈ Z, q ∈ N and define ax = (a1/q)p. We take for
granted that

1. (well-defined) (a1/n)m = (a1/q)p if m
n = p

q (m, p ∈ Z, n, q ∈N)

2. axay = ax+y for all x, y ∈ Q.

3. (ab)x = axbx ∀a, b > 0, x ∈ Q.

Then ∀x0 ∈ Q, limx→x0
x∈Q

ax = ax0 .
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Lecture 48 Continuity

Definition 48.1: continuous

Let A ⊆ Rm and let f : A→ Rn be a function.

1. f is said to be continuous at x0 ∈ A relative to A if either

(i) x0 is an isolated point of A, or

(ii) x0 ∈ A′ and limx→x0,x∈A f (x) = f (x0).

2. Given B ⊆ A, f is said to be continuous on B relative to A if f is continuous at x relative
to A for all x ∈ B.

Remark 48.2:
We sometimes drop “relative to A” if A = Rm.

Given B ⊆ A and x0 ∈ B, we sometimes simply write f for f |B in the statement “ f |B is continuous
at x0 relative to B”.

Lemma 48.3

Let A ⊆ Rm. f : A → Rn is continuous at x0 ∈ A relative to A iff ∀ε > 0, ∃δ > 0 such that
‖ f (x)− f (x0)‖ < ε ∀x ∈ Bδ(x0) ∩ A.

Proposition 48.4

Let f , g : A ⊆ Rm → Rn be two functions. Suppose x0 ∈ A and both f , g are continuous at x0

relative to A. Then

1. so are f + g, α f , f · g.

2. If in addition n = 1 and g(x0) 6= 0, then ∃r > 0 such that g(x) 6= 0 ∀x ∈ Br(x0) ∩ A and 1
g

is continuous at x0 relative to Br(x0) ∩ A.

Lecture 49 Some examples I

Example 49.1:
1. f : Rm → R : x 7→ xk1

1 · · · x
km
m is continuous on Rm.

2. Any norm is continuous on Rm.

3. Fix a > 0. f : Q→ R : x 7→ ax is continuous on Q relative to Q.

4. Polynomials in x are continuous on R.

5. p, q : R→ R are two polynomials. Then

(a) V := {x ∈ R | q(x) 6= 0} is open in R.

(b) p
q is continuous on V relative to V.
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Example 49.2:

Given k ∈ N \ {1}, define f : [0, ∞) → [0, ∞) by f (x) =

{
x1/k x > 0,

0 x = 0.
Then f is continuous on

[0, ∞) relative to [0, ∞).

Proposition 49.3

Suppose f : A ⊆ Rm → Rn and g : B ⊆ Rn → R`, and that f (A) ⊆ B (so that g ◦ f makes
sense). Given x0 ∈ A, if f is continuous at x0 relative to A and g is continuous at f (x0) relative
to B, then g ◦ f is continuous at x0 relative to A.

Lecture 50 Some examples (II)

Example 50.1:
For f1, . . . , fN : A ⊆ Rn → R, define A → R by h(x) = max{ f1(x), . . . , fN(x)}. Given x0 ∈ A. If
f1, . . . , fN are continuous at x0 relative to A, then so is h.

Let E+ = {x ∈ Rm | xm ≥ 0}, E− = {x ∈ Rmxm ≤ 0}. Suppose f : E+ → Rn is continuous on E+

relative to E+ and g : E− → Rn is continuous on E− relative to E− with f (x) = g(x) ∀x ∈ E+ ∩ E−.

Then h =

{
f (x) xm ≥ 0

g(x) xm ≤ 0
is continuous on Rm relative to Rm.

Lecture 51 Some examples (III)

Example 51.1: Discontinuity

f (x) =

{
1 x ∈ Q

0 x ∈ R \Q
is discontinuous at x0 ∀x0 ∈ R.

f (x) =

0 x ∈ R \Q

1
q x ∈ Q, x = p

q lowest terms (p ∈ Z, q ∈N)
is continuous at x0 if x0 ∈ R \Q and dis-

continuous at x0 if x0 ∈ Q.

f (x, y) =


xy

x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)
is continuous at (x0, y0) 6= (0, 0) and discontinuous at (0, 0).

Lecture 52 Continuity and openness

Definition 52.1: neighborhood

1. Given x ∈ Rm, a neighborhood of x is a subset V ⊆ Rm such that x ∈ V and V is open.

2. Given A ⊆ Rm and x ∈ A, a neighborhood of x relative to A is a subset V ⊆ A such that
x ∈ V and V is open relative to A.
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Notation 52.2

Let A ⊆ Rm. f : A→ Rn a function.

1. For E ⊆ Rn, let f−1(E) = {x ∈ A | f (x) ∈ E}.

2. For B ⊆ A, let f (B) = {y ∈ Rn | y = f (x) for some x ∈ B}.

Proposition 52.3

Let f : A→ Rn be a function, where A ⊆ Rm. Given x0 ∈ A, f is continuous at x0 relative to A
iff for all neighborhood W of f (x0), f−1(W) contains a neighborhood of x0 relative to A.

Corollary 52.4

f : A ⊆ Rm → Rn a function. Then f is continuous on A relative to A iff ∀W ⊆ Rn open,
f−1(W) is open relative to A.

Remark 52.5:
It is NOT true that if f : A → Rn is continuous on A relative to A then f (V) is open whenever V
is open relative to A.

For example, consider f (x) = 0 ∀x ∈ Rm. Then f (V) = {0} for all non-empty open V ⊆ Rm.
However, {0} is not open in Rn.

Lecture 53 Continuous functions on connected sets

Lemma 53.1

Let A ⊆ Rm and let f : A→ Rn be a function. Let V, W ⊆ Rm.

1. f−1(V ∪W) = f−1(V) ∪ f−1(W).

2. f−1(V ∩W) = f−1(V) ∩ f−1(W).

3. f−1(V) = f−1(V ∩ f (A)).

4. f ( f−1(V)) = V ∩ f (A).

Proposition 53.2

Let A ⊆ Rm be connected and let f : A → Rn be continuous on A relative to A. Then f (A) is
connected.

Corollary 53.3: Intermediate value theorem

Let A ⊆ Rm be connected and let f : A→ R be continuous on A relative to A. Given x0, x1 ∈ A
with f (x0) ≤ f (x1), then ∀c ∈ [ f (x0), f (x1)], ∃x∗ ∈ A such that f (x∗) = c.
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Lecture 54 Continuous functions on compact sets (I)

Proposition 54.1

Let ∅ 6= A ⊆ Rm be compact and let f : A → Rn be a function which is continuous on A
relative to A. Then f (A) is compact.

Corollary 54.2

Let ∅ 6= A ⊆ Rm be compact and let f : A→ R be continuous on A relative to A. Then

1. f is bounded on A. That is ∃R > 0 such that | f (x)| ≤ R ∀x ∈ A.

2. supx∈A f (x), infx∈A f (x) both exist. Moreover, ∃x∗, x∗ ∈ A such that f (x∗) = supx∈A f (x)
and f (x∗) = infx∈A f (x).

Remark 54.3:
Compactness assumption on A is necessary in corollary 2. Define f : (0, ∞) → R by f (x) = 1

x .
Since (0, ∞) not closed, thus not compact. f is continuous on (0, ∞), but unbounded.

Lecture 55 Continuous functions on compact sets (II)

Definition 55.1: uniformly continuous

Suppose A ⊆ Rm and let f : A → Rn be a function. Given B ⊆ A, f is said to be uniformly
continuous on B if ∀ε > 0, ∃δ > 0 such that ‖ f (x)− f (y)‖ < ε whenever x, y ∈ B and ‖x− y‖ <
δ.

Remark 55.2:
If f is uniformly continuous on A, then f is continuous on A relative to A. Converse is false in
general.

Example 55.3:
Norm function is uniformly continuous on Rm.

f (x) = x2 is uniformly continuous on [−K, K] ∀K > 0, but not uniformly continuous on R.

Proposition 55.4

Let ∅ 6= A ⊆ Rm be compact and let f : A → Rn be continuous on A relative to A. Then f is
uniformly continuous on A.



CHAPTER 7. CONTINUOUS FUNCTIONS 38

Lecture 56 More on uniform continuity (I)

Lemma 56.1

Suppose f : A ⊆ Rm → Rn is uniformly continuous on A. Given x0 ∈ A \ A. ∀k ∈ N, define
Ek = f

(
B1/k(x0) ∩ (A \ {x0})

)
. Then (Ek)k∈N is a nested sequence of non-empty closed sets

with diameters going to zero.

Lemma 56.2

Suppose f : A ⊆ Rm → Rn is uniformly continuous on A. Then ∀x0 ∈ A \ A, limx→x0,x∈A f (x)
exists.

As noted above, x0 ∈ A′, so statement makes sense.

Proposition 56.3

Let A ⊆ Rm and suppose f : A → Rn is uniformly continuous on A. Then there exists unique
F : A → Rn such that F(x) = f (x) ∀x ∈ A. This is called “F extends f ”. And F is continuous
on A relative to A.

Lecture 57 More on uniform continuity (II)

Continue the proof of last proposition.

Lecture 58 More on uniform continuity (III)

Proposition 58.1

Let a > 0 and define f : Q → R be f (x) = ax. Then ∀L > 0, f is uniform continuous on
(−L ∩ L) ∩Q.

Proposition 58.2

Let a > 0. Then there exists a unique F : R→ R such that F is continuous on R and F(x) = ax

∀x ∈ Q.

Remark 58.3:
We still denote F(x) by ax.

Remark 58.4:
Let a, b > 0, then for all x, y ∈ R:

1. axay = ax+y,

2. (ax)y = axy,
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3. axbx = (ab)x.

These can be extended from x, y ∈ Q to x, y ∈ R by continuity.
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Sequences of functions

Lecture 59 Pointwise and uniform convergence

Definition 59.1: pointwise and uniform convergence

Let A ⊆ Rm and let ( fk)k∈N be a sequence of functions A→ Rn. Given f : A→ Rn, and B ⊆ A

1. ( fk)k∈N is said to converge pointwise to f on B if ∀x ∈ B, fk(x)→ f (x) as k→ ∞.

2. ( fk)k∈N is said to converge uniformly to f on B if ∀ε > 0, ∃N ∈N such that

‖ fk(x)− f (x)‖ < ε ∀k ≥ N and x ∈ B.

Remark 59.2:
Uniform convergence on B implies pointwise convergence on B.

Example 59.3:

fk : [0, 1] → R : x 7→ xk. Define f (x) =

{
0 0 ≤ x < 1,

1 x = 1,
we see that fk → f pointwise on [0, 1].

However, ( fk) does NOT converge uniformly to f on [0, 1].

Suppose a ∈ (0, 1). For all k ∈ N, define fk : R → R : x 7→ ∑k
j=0 xj. Then ( fk)k∈N converges

uniformly on [−a, a].

Lecture 60 Uniform convergence and continuity

Proposition 60.1

Let ( fk)k∈N be a sequence of functions from A ⊆ Rm to Rn. Suppose fk is continuous on A
relative to A ∀k ∈ N and that ( fk)k∈N converges uniformly on A to f : A → Rn. Then f is
continuous on A relative to A.

40
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Remark 60.2:
Example 59.3 shows that uniform convergence is necessary in proposition 1, and pointwise conver-
gence is not enough.
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Integration

Lecture 61 Partitions (I)

Definition 61.1: partition, refinement, regular partition

Let S = [a1, b1]× · · · × [an, bn] be a closed n-cube.

1. v(S) := (b1 − a1) · · · (bn − an). Below assume v(S) > 0.

2. A partition of S is a finite collection P of closed n-cubes such that v(P) > 0 ∀P ∈ P ,
S =

⋃
P∈P P, and P◦ ∩ (P̃)◦ = ∅ whenever P, P̃ ∈ P with P 6= P̃.

3. Given two partitions P ,P ′ of S, we say that P ′ is a refinement of P (“P ′ ≤ P”) if ∀P ∈ P ′,
∃R ∈ P such that P ⊆ R.

4. A partition P of S is said to be regular if ∃ partitions P1, . . . ,Pn of [a1, b1], . . . , [an, bn]

respectively, such that P = {I1 × · · · × In | I1 ∈ P1, . . . , In ∈ Pn}.

Remark 61.2:
If S = [a1, b1]× · · · × [an, bn], then S◦ = (a1, b1)× · · · (an, bn). In particular, v(S) > 0 iff S◦ 6= ∅.

Suppose P ,P ′ are partitions of S such that P ′ ≤ P . Then P ′ = ⋃
R∈P{P ∈ P ′ | P ⊆ R} and this is

a disjoint union.

Let P1, . . . ,Pn be partitions of [a1, b1], . . . , [an, bn] respectively, and define

P = {I1 × · · · × In | I1 ∈ P1, . . . , In ∈ Pn}.

Then P is indeed a partition of S = [a1, b1]× · · · × [an, bn].

42
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Example 61.3:

Lecture 62 Partitions (II)

Lemma 62.1

Suppose S = [a1, b1]× · · · × [an, bn] is closed n-cube with v(S) > 0. Then every partition of S
has a regular refinement.

Remark 62.2:
The above proof yields the following more general statement.

Let S be closed n-cube with v(S) > 0. LetR be finite collection of closed n-cubes such that v(R) > 0
∀R ∈ R and R ⊆ S ∀R ∈ R. Then there exists a regular partition P of S such that ∀P ∈ P and
R ∈ R, either P ⊆ R or P◦ ∩ R◦ = ∅.

Lecture 63 Partitions (III)

Corollary 63.1

Let S be closed n-cube with v(S) > 0.

1. Let P ,P ′ be partitions of S. Then there exists regular partition P ′′ of S such that P ′′ ≤ P ′
and P ′′ ≤ P .

2. Let R be a closed n-cube with v(R) > 0 and R ⊆ S and suppose P is a partition of S. Then
there exists regular refinement P ′ of P such that ∀P ∈ P ′, either P ⊆ R or P◦ ∩ R◦ = ∅.

Proposition 63.2

Let S = [a1, b1]× · · · × [an, bn] be a closed n-cube with v(S) > 0, and let P be a partition of S.
Then v(S) = ∑P∈P v(P).
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Lecture 64 Integrability (I)

Definition 64.1: U( f ,P), L( f ,P)

Let S be closed n-cube with v(S) > 0, f : S → R a bounded function. Given partition P of S,
define

U( f ,P) = ∑
P∈P

(
sup
x∈P

f (x)
)

v(P)

L( f ,P) = ∑
P∈P

(
inf
x∈P

f (x)
)

v(P)

Lemma 64.2

Define S, f as above.

1. If P ′,P are partitions of S such that P ′ ≤ P , then L( f ,P) ≤ L( f ,P ′), U( f ,P ′) ≤ U( f ,P).

2. For any two partitions P ,R of S, L( f ,P) ≤ U( f ,R).

Definition 64.3:
∫

S f ,
∫

S
f

Let f , S as in definition 1. Define∫
S

f = inf{U( f ,P) | P is a partition of S},∫
S

f = sup{L( f ,P) | P is a partition of S}.

Remark 64.4:
Since {S} is a partition of S, {U( f ,P) | P is a partition of S} and {L( f ,P) | P is a partition of S}
are both non-empty. Moreover,

∫
S f and

∫
S

f are well-defined. And
∫

S f ≥
∫

S
f .

Definition 64.5: integrable

f is said to be integrable on S if
∫

S
f =

∫
S f , in which case the common value is denoted

∫
S f .

Lecture 65 Integrability (II)

Proposition 65.1

Let S be closed n-cube with v(S) > 0. Suppose c ∈ R and define f : S → R bt f (x) = c ∀x ∈ S.
Then f is integrable on S and

∫
S f = c · v(S).
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Proposition 65.2

Let S be closed n-cube with v(S) > 0, f : S→ R be bounded. Then the following are equivalent:

1. f is integrable on S.

2. ∀ε > 0, ∃ partition P of S such that U( f ,P)− L( f ,P) < ε.

Proposition 65.3

Let S = [a1, b1] × · · · × [an, bn] be closed n-cube with v(S) > 0. f : S → R continuous on S
relative to S. Then f is bounded and integrable on S.

Lecture 66 New integrable functions from old ones (I)

Proposition 66.1

Let S be closed n-cube with v(S) > 0. Suppose f , g : S→ R are bounded and integrable on S.

1. ∀c ∈ R, c f is integrable on S and
∫

S c f = c
∫

S f .

2. f + g is integrable on S and
∫

S f + g =
∫

S +
∫

S g.

3. | f | is integrable on S and |
∫

S f | ≤
∫

S | f |.

Lecture 67 New integrable functions from old ones (II)

Proposition 67.1

Let S be closed n-cube with v(S) > 0. f : S→ R bounded and integrable on S.

1. Let R ⊆ S be a closed n-cube with v(R) > 0. Then f is integrable on R.

2. Given a partition P of S, f is integrable on P ∀P ∈ P , and
∫

S f = ∑P∈P
∫

P f .

Lecture 68 Examples

Example 68.1:

f (x) =

{
0 0 ≤ x < 1,

1 x = 1
is integrable on [0, 1], and

∫
[0,1] f = 0.

Example 68.2:

f (x) =

{
1 x ∈ [0, 1] ∩Q,

0 x ∈ [0, 1] \Q
is NOT integrable on [0, 1].
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Example 68.3:

Define f (x) =

0 x ∈ R \Q

1
q x ∈ Q, x = p

q lowest terms (p ∈ Z, q ∈N)
as in lecture 51. Then f is integrable

on [0, 1].

Lecture 69 Fubini’s theorem (I)

Proposition 69.1: Fubini’s theorem

S1 closed m-cube, S2 closed n-cube. v(S1), v(S2) > 0. f : S1 × S2 → R bounded. Assume

1. f is integrable on S1 × S2.

2. ∀x ∈ S1, the function gx : S2 → R given by gx(y) = f (x, y) is integrable on S2.

Then the function G : S1 → R given by G(x) =
∫

S2
gx is bounded and integrable on S1 and∫

S1
G =

∫
S1×S2

f .

Remark 69.2:∫
S1

G is referred to as an iterated integral since we can write it as
∫

S1

(∫
S2

gx

)
.
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