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Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CO 353 during Winter 2022 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

Discrete optimization problems are underlying decisions that have a discrete flavor, e.g., YES/NO or
{0, 1} decisions.

The focus in this course will be on algorithms, modelling. Broad classes of problems that we will study
are network connectivity problems, location problems, general integer programs.
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1
Graph Algorithms

1.1 Definitions, Notations & Terminology

A graph is a tuple (V, E), where V is set of nodes/vertices, E is set of edges, where edges joins two
nodes.

If e is an edge that joins nodes u, v, then we denote this by e = uv. u, v are called ends of e. e is
incident to nodes u, v. We are not allowing parallel edges, i.e., e = uv, and e′ = u′v′ are distinct edges,
then {u, v} 6= {u′, v′}.

An u-v path in G = (V, E) where u, v ∈ V, u 6= v, is a sequence of nodes u1 = u, u2, . . . , uk, uk+1 = v,
where uiui+1 ∈ E ∀i = 1, . . . , k. A cycle in G is a sequence of nodes u1, u2, . . . , uk, uk+1 = u1 where
uiui+1 ∈ E ∀i = 1, . . . , k, and ui’s are distinct. Since there are no parallel edges, we can also identify a
path/cycle by its sequence of uiui+1 edges. So we will often refer to a path/cycle as a set of edges.

A graph G is connected if it has a u− v path ∀u, v ∈ V (u 6= v). G is acyclic if G does not have a cycle.
A tree is a connected, acyclic graph.

Let G = (V, E) be a connected graph, and T = (VT , ET) be a tree. IF ET ⊆ E and VT = V, then we say
that T is a spanning tree of G.

If C is a cycle, and e ∈ C, then C− {e} still connects all nodes of C. So if G is a connected graph, and
it contains a cycle C, and e ∈ C, then G− {e} := (V, E− {e}) is a connected graph. Hence, a spanning
tree of G is a minimal connected subgraph of G. I.e., if T = (V, F) where F ⊆ E is a minimal set such
that (V, F) is connected, then T is a spanning tree of G. If T = (V, F) contains a cycle, then F is not
minimal.

In directed graph, each edge has a direction, and goes from a node to another node.

1.2 Shortest paths: Dijkstra’s algorithm

Problem Given a directed graph G = (V, E) with edge costs {ce ≥ 0} and a node s ∈ V, find the
shortest path from s to all other nodes. The “shortest” path means path with the smallest total edge
cost under the ce edge costs.

5
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Notation For a path P, let c(P) := ∑
e∈P

ce denote the total cost of P. Let d(u) = min
P:P a s→ u path

c(P),

which is shortest path (SP) distance from s to u. If u→ v is an edge of G, we have

d(v) ≤ d(u) + cu,v ( )

Dijkstra’s Algorithm

The idea is to maintain a set of explored vertices, and we want to expand this set. Then we can make
use of ( ) to estimate the shortest path from s to v, a vertex to be added to the set. We will maintain
a label `(v) for all v /∈ A, which is our current estimate fo the s→ v shortest path distance.

Given Directed graph G = (V, E), s ∈ V, edge costs {ce ≥ 0}.

Algorithm 1: Dijkstra’s Algorithm

1 Initialize A← {s}, d(s) = 0, `(v)← ∞ ∀v /∈ A.
2 while A 6= V do
3 For all v /∈ A such that ∃u ∈ A with edge u→ v, update

`(v) = min
{
`(v), min

u∈A:(u,v)∈E

(
d(u) + cu,v

)}
4 Select w ∈ V − A such that `(w) has minimum `(v) value among all v /∈ A.
5 Update A← A ∪ {w}, set d(w) = `(w).

Remark:
Can obtain actual shortest paths by maintaining along with `(w), the node u ∈ A that determines
`(w) (i.e., u ∈ A is s.t. `(w) = d(u) + cu,w). Call u, the “parent” of w, and u → w the parent edge
of w.

The shortest paths obtained via previous point have a special structure: every node w 6= s has
exactly one edge entering it, and there are no cycles, i.e., we have something like “directed” tree.
And we denote shortest-path tree: directed tree returned by algorithm.

Also note that `(v) in

`(v) = min
{
`(v), min

u∈A:(u,v)∈E

(
d(u) + cu,v

)}
is redundant, since

min
u∈A:(u,v)∈E

(
d(u) + cu,v

)
term only decreases as the set A only grows.

Correctness

We may assume that there exists s→ u path in G ∀u ∈ V. And it’s easy to modify Dijkstra’s algorithm
to detect if this assumption holds, and get shortest path distances from s to all nodes reachable from s.

Let dAlg(v): d-value computed by algorithm. Recall d(v) is the shortest path distance from s to v. The
goal then is to show that for all v ∈ V, dAlg(v) = d(v). Clearly this is satisfied when v = s.

Assume we have correctly computed shortest path distances for all u ∈ A, `(v) is the length of the
shortest path P such that last edge of P (which enters v) comes from a node in A.

Why? Consider such a path P. Let u→ v be the last edge of P. So u ∈ A, dAlg(u) = d(u),

c(P) ≥ d(u) + cu,v = dAlg(u) + cu,v ≥ `(v)
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and last inequality is by the definition of `(v).

Theorem 1.1

If w is added to A in line 5 of the algorithm, then dAlg(w) = d(w). (I.e., we have computed
shortest path distance from s to w.)

Proof:
Assume we have correctly computed shortest path distance ∀u ∈ A. Consider an arbitrary s → w
path P. Let u be the last node on P that lies in A. Let v be the node on P after u (so v /∈ A). Let P′

be the s→ v portion of P. Then

c(P) ≥ c(P′) ≥ d(u) + cu,v = dAlg(u) + cu,v ≥ `(v) ≥ `(w)

where the last equality is by the definition of w in the line 4.

Then following parent edges gives an s→ w path of length = `(w) = dAlg(w).

1.3 Running time and Efficient Algorithms

The goal in this course is to design efficient algorithms. What does efficient mean? The short answer
is “reasonable” running time.

Running time is number of elementary operations performed by algorithm as a function of input
size. Elementary operations includes basic arithmetic (e.g., addition), comparisons (is x < y?), simple
logical constructs (i.e., if-then-else), assignments. Input size is the number of bits needed to specify
the input. Note that number of bits need to specify a number x ≥ 0, x integer is roughly log2 x, which
is much smaller than x it self.

For example, the size of an input of the Dijkstra’s algorithm, G = (V, E), {ce}e∈E is usually taken to be
approximately |V|+ |E|+ ∑e∈E log2 ce.

Reasonable running time, i.e., efficient algorithm means that running time that is polynomial func-
tion of input size. In order to specify running time & input size in a convenient, compact way, we will
use O(·) notation.

Given two functions: f , g : R+ 7→ R+, we say that f (n) = O(g(n)) if there exist constants c > 0 and
n0 ≥ 0 such that f (n) ≤ c · g(n) for all n ≥ n0.

Here are some examples:

n = O(n)

2n + 10 = O(n)

3n = O(n2)

αnc + β = O(nd)

n log2 n = O(n2)

log2 n = O(log10 n)

2n = O(3n)

f (n) = O(1) means f (n) ≤ c for all n ≥ n0. f (n) = O(nO(1)) is shorthand for f (n) is bounded by
some (fixed) polynomial function of n: f (n) ≤ d · nc.

An algorithm with running time f (n), where n is input size, is efficient if f (n) is bounded by a
polynomial function of n, i.e., f (n) = O(nO(1)).
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Now we can examine the running time of Dijkstra’s algorithm (removing unnecessary `(v) in line 3).
Let m = |E|, n = |V|. We observe that there are n iterations of while loop. In each iteration:

1. Computing `(v) takes O(din(v)) time where din(v) is the number of edges entering v.

2. Computing `(v) ∀v takes O(m) time since ∑v∈V din(v) = m.

3. Line 4 takes O(n) time.

4. Line 5 takes O(1) time.

Each iteration takes O(m + n) time. This is O(m) if we assume there exists an s→ v path ∀v ∈ V since
then m ≥ n− 1, so n = O(m). Then the running time of algorithm is O(mn) which is a polynomial
function of input size.

However, we can have a better implementation. Observe that if {u ∈ A : (u, v ∈ E)} does not change
across iterations, then `(v) does not change. So instead of recomputing `(v) for all v /∈ A, we do the
following:

When we pick w /∈ A to add to A, we only update `(v) for all v /∈ A such that (w, v) ∈ E,
and set `new(v) = min(`old(v), d(w) + cw,v).

So the steps inside of while loop change as: [Let w∗ be the last node added to A. Initially w∗ = s.]

(a) For every edge (w∗, v), where v /∈ A, update

`(v) = min(`(v), d(w∗) + cw∗ ,v)

and we call this DecreaseKey operation.

(b) Find w /∈ A with minimum `(·) value. We call this ExtractMin operation.

(c) Update A← A ∪ {w}, d(w) = `(w), w∗ = w.

Across all iterations, we examine each edge (u, v) at most once in step (a) above (in the iteration when
w∗ = u, v /∈ A). So across all iterations, ≤ m DecreaseKey operations, ≤ n ExtractMin operations.

Then we can use a simple array to store `(·) values. Note that DecreaseKey is O(1), and ExtractMin
operation is O(n). Thus the running time = O(m + n2) = O(n2).

There exist data structures such as priority queue, under which DecreaseKey and ExtractMin take
O(log n). Then the running time is then O(m log n).

There exists a data structure called Fibonacci heaps, under which DecreaseKey is O(1), and ExtractMin
operation is O(log n). Then the running time is O(m + n log n).



2
Graph Algorithms cont’d

2.1 Minimum Spanning Trees

MST Problem Given a connected, undirected graph G = (V, E), edge costs {ce}e∈E. Find a spanning
tree of G of minimum total edge cost.

We say “T is a spanning tree” is equivalent to “T is the edge set of a spanning tree”. We denote the
cost of T by c(T) := ∑e∈T ce.

Note:
The ce’s could be positive, zero, or negative.

If all ce’s are ≥ 0, then can equivalently define the MST problem as: find the min-cost connected
spanning subgraph of G. Because there is always an optimal solution that is minimal connected
spanning subgraph of G.

Theorem 2.1: Fundamental Theorem about trees

Let T = (V, F) be a graph, and n = |V|. The following are equivalent:

(a) T is a tree (i.e., connected, acyclic)

(b) T is connected, has n− 1 edges.

(c) T is acyclic, has n− 1 edges.

Proof:
(a) ⇒ (b) Pick some r ∈ V as root node. Root T ar r, i.e., draw T as hanging off of r. For each
v 6= r, there is a unique edge uv of T (incident to v) such that u is closer to r than v, and we call uv
the parent edge of v.

These parent edges cover T, and number of parent edges = n− 1, since each v 6= r has a unique
parent edge.

(b) ⇒ (a) T is connected. Let T′ be a spanning tree of T. So by (a) ⇒ (b), we know that T′ has
n− 1 edges. But T has n− 1 edges. So T = T′, so T is a tree.

9
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2.2 Cut property

Notation Let v ∈ V. δ(v) denotes the set of edges incident to v. Let S ⊆ V, δ(S) := {uv ∈ E : u ∈
S, v /∈ S}. In other words, δ(S) denotes the “boundary” of S.

Now we assume that all edges costs are distinct. Fix some node s ∈ V. Let e ∈ δ(S) have the smallest
edge cost among edges in δ(S). Is e in some MST? In fact, e is in every MST.

cut

A cut is any partition (A, V − A) of the vertex set V, where A 6= ∅, A ( V.

Edges crossing the cut are edges in δ(A) (= δ(V − A)). If F ⊆ E, we say F crosses the cut to mean
F ∩ δ(A) 6= ∅.

Lemma 2.2: Cut property

Consider any cut (A, B), where B = V − A. If e is the (unique) min-cost edge across the cut,
then e belongs to every MST.

Proof (via an exchange argument):
Suppose T is an MST such that e /∈ T. We will show that we can find another spanning tree T′ (that
contains e) such that c(T′) < c(T), then a contradiction.

e

e′
T

A B = V − A

T ∪ {e} contains a cycle C that contains e. And this is because T ∪ {e} is connected and has n edges,
then it can’t be acyclic. Here is a basic fact: if a cycle crosses a cut, it crosses the cut at least twice.
So ∃e′ ∈ C ∩ δ(A), e′ 6= e. By definition of e, ce < c′e. And e′ ∈ T.

Consider T′ = T ∪ {e} \ {e′}. We claim that T′ is a spanning tree. T′ is connected since e′ ∈ cycle
in T ∪ {e} and T′ has n− 1 edges. Then we have

c(T′) = c(T) + ce − ce′ < c(T)

a contradiction.

2.3 Prim’s Algorithm

Now we can use cut property as the basis of the greedy algorithm.

Algorithm 2: Prim’s Algorithm

1 Pick an arbitrary “seed” node s ∈ V.
2 Initialize A← {s}, T ← ∅.
3 while A 6= V do
4 Choose e = uv ∈ δ(A) with smallest cost, where u ∈ A, v /∈ A.
5 A← A ∪ {v}, T ← T ∪ {e}.
6 return T
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Example:
Blue lines are the output of Prim’s algorithm.

s
7

6
1

5

4

2

3

Theorem 2.3

Prim’s algorithm correctly computes an MST.

Proof:
Let T be the edge-set returned by Prim’s algorithm.

• T is a spanning tree. T is connected, since every node is connected to s in T. Also, T has n− 1
edges. Thus T is a spanning tree.

• T is a MST. Every e ∈ T belongs to every MST by the cut property, since it is the min-cost
edge across some cut. So T ⊆ every MST. But T it self it a spanning tree, so T is MST.

Corollary

T is the unique MST.

If edge costs are not distinct, then Prim’s algorithm still returns an MST; there could be multiple MSTs.

Implementation & Running Time

Implementation will be similar to Dijkstra’s algorithm. For every unexplored node v /∈ A, maintain a
“key” a(v) = mine=uv:u∈A ce. So in each iteration, we choose w /∈ A with smallest a(·) value similar to
Dijkstra, let w∗ be the last node added to A. In each iteration

(a) For each edge w∗v, where v /∈ A, update a(v) = min{a(v), cw∗v}. DecKey

(b) Find w ∈ V − A with smallest a(·) value. ExtractMin

(c) Set A← A ∪ {w}, and T ← T ∪ {uw}, where u ∈ A, and cuw = a(w).

As in Dijkstra’s algorithm, across all iterations:

1. n ExtractMin operations

2. m DecKey operations

So the running time is

• O(m + n2) using a simpel array to store keys (DecKey O(1), ExtractMin O(n))

• O(m + n log n) using a sophisticated data structure
like Fibonacci Heaps (DecKey O(1), ExtractMin O(log n))
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2.4 Kruskal’s algorithm

Kruskal’s algorithm finds a MST. In some level, it is more greedy and intuitive than Prim’s algorithm.
The idea is to keep the edge costs in increasing order, and add edges to the set one by one, as long as
no cycle are introduced.

Algorithm 3: Kruskal’s algorithm

1 Sort the edges in increasing order of cost.
2 Initialize T ← ∅.
3 for each edge e in sorted order do
4 if T ∪ {e} does not have a cycle then
5 T ← T ∪ {e}

6 return T

Theorem 2.4

Kruskal’s algorithm returns the unique MST when all edges costs are distinct.

Proof:
Let T be the edge-set returned by Kruskal. Then, T is acyclic: by construction. Consider a basic
fact: a graph is connected H = (VH , EH) if and only if δH(A) 6= ∅ ∀A : ∅ 6= A ( VH .

Suppose (V, T) is not connected. Then from the basic fact, ∃A,∅ 6= A ( V such that δ(A)∩ T = ∅.
But G is connected, so ∃ some edge e ∈ δ(A). Then T ∪ {e} is acyclic. So consider the point when
Kruskal considers edge e. Let F ⊆ T be set of edges Kruskal has added until then. Then F ∪ {e} is
acyclic, so Kruskal should have added e. Then e ∈ T, a contradiction. So T is a spanning tree.

Consider any edge e = uv ∈ T. Let

A = {w ∈ V : w is connected to u in T at the point when e is considered by Kruskal}

u ve

e′

A

Graph H = (V, T)
at the point when
Kruskal considers e

Connected components of H

We claim that e is the min-cost edge in δ(A). Observe that e is the first edge of δ(A) considered by
Kruskal. Hence e is the min-cost edge in δ(A). By claim, e ∈ every MST. So T ⊆ every MST. But T
it self is a spanning tree. So T is MST.

Remark:
We can stop Kruskal when |T| = |V| − 1.

Running time Sorting m edges takes O(m log m). To check if e = uv can be added, we need to check
if u, v are in different components of (V, T) are that point. There exist data structures (e.g., Union-Find)
for maintaining connected components that allow one to do this O(log n) time. So total time for step
3 is O(m log n). Since m ≤ n2, the total time for the algorithm is O(m log m + m log n) = O(m log n).
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2.5 Application to Clustering

Clustering Given a set of objects, and some notion of similarity/dissimilarity between these objects,
divide the objects into groups (called clusters) so that

1. Objects in the same group are “similar” to each other.

2. Objects in different groups are “dissimilar” to each other.

Maximum-Spanning Clustering Given a set V = {p1, . . . , pn} of objects/points, and pairwise dis-
tances d(pi, pj) = d(pj, pi) ≥ 0 ∀i, j ∈ [n]. The goal is to partition V into k clusters C1, . . . , Ck
(Ci ∩ Cj = ∅ ∀i 6= j,

⋃k
i=1 Ci = V). So as to maximize the minimum inter-cluster spacing, which

is equivalent to minimum distance between a pair of points in different clusters. I.e., maximize

min
i,j∈[k]

i 6=j

min
p∈Ci
q∈Cj

d(p, q)

Algorithm 4: Single-Linkage Clustering

1 Start with every point in a separate cluster.
2 Repeatedly merge the 2 clusters with smallest inter-cluster distancea, until we have k clusters.

aDistance between Ci , Cj = minp∈Ci ,q∈Cj d(p, q)

This algorithm is called Single-Linkage Clustering, which is an example of an agglomerative algorithm
(i.e., based on merging clusters). Consider a graph G with V as vertex set, and an edge between every
pair p, q ∈ V, p 6= q, with cost d(p, q).

Note:
Single-Linkage Clustering is exactly Kruskal (merging 2 clusters Ci, Cj due to points p ∈ Ci, q ∈ Cj)
when adding edge pq. Except that we stop when there are k components. And this is the same as
taking an MST and deleting the k − 1 most costly edges, i.e., the k − 1 edges that Kruskal could
have added last.

Thus equivalently, Run Kruskal (on complete graph with vertex set V, d(p, q) edge costs) but stop
when k components remain, which is equivalent to take MST and delete k− 1 most costly edges.

Now let’s prove the correctness of Single-Linkage Clustering. Let C1, . . . , Ck be clustering produced by
MST - {k− 1 most costly edges}. Let d be the spacing of this clustering.

· · · · · ·

C1
C2 Ck

d

C∗

Observe that
d = cost of edge Kruskal would have added next

= (k− 1)th most costly edge of MST

If C = {C1, . . . , Ck} is not the optimum, let C∗ = {C∗1 , . . . , C∗k } be the optimum clustering. There might
exist the case that Ci ⊆ C∗j . As both C and C∗ have k partitions, it’s not possible to have ⊆ for all k
partitions. Since C 6= C∗, there is some cluster Ci that intersects at least two clusters of C∗.
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Ci

C∗`

C∗rq

p

uj

uj+1

Red edges inside Ci all have cost ≤ d since these are already added by Kruskal.

So there exists points p, q such that p, q ∈ Ci, but p, q lie in different clusters of C∗. Suppose p ∈ C∗` ,
q ∈ C∗r , ` 6= r. Then considering p− q path in Ci, there must be two consecutive nodes uj, uj+1 such
that uj ∈ C∗` , uj+1 /∈ C∗` . But then spacing of C∗ ≤ d(uj, uj+1) ≤ d since uj, uj+1 are in different clusters
of C∗. So this gives a contradiction since we assumed that {C1, . . . , Ck} is not an optimal clustering,
and optimal clustering has spacing strictly larger than d.



3
Graph Algorithms - cont’d

3.1 Arborescences

Arborescences is directed spanning tree. G = (V, E) a directed graph, and let r ∈ V be a “root” node.

arborescence rooted at r

An arborescence rooted at r (or rooted out of r) is a subgraph T = (V, F) (so F ⊆ E) such that

• there is an r → v path in T ∀v ∈ V

• T is a spanning tree if we ignore the directions of the edges. I.e., “undirected version of
T” is a spanning tree.

Example:

G

Arborscence

r

r r

r r

not an arborescence

not an arborescence
since undirected
version contains
a cycle

15
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Lemma 3.1: Useful alternate characterization of arborescence

T = (V, F) is an arborescence rooted at r if and only if T has no (directed) cycles and every
v 6= r has exactly one incoming edge, (and r has no incoming edges).

Proof:
(⇒) Suppose T is arborescence. Since undirected version of T is a spanning tree, T has no directed
cycles, and there exists r → v path in T for all v ∈ V by the definition of arborescence. The path
must be unique, otherwise we might encounter the situation like

r

v

u1
u2

then we will have a cycle in the undirected version of T. Hence every v 6= r has exactly one
incoming edge.

(⇐) Suppose T has no directed cycles, and every node v 6= r has exactly one incoming edge. For
any node v 6= r, we construct an r → v path as follows: we take v’s unique incoming edge, say
u1 → v, then u1’s unique incoming edge, and so on... Since T has no cycle, this process must stop
because we have reached r, then we found an r → v path.

This also shows that undirected version of T is connected. Also, note that r has no incoming edges
in T: suppose T had an edge v→ r, but then r → v path in T would create a directed cycle.

So we have shown that (since every v 6= r has exactly one incoming edge) T has n− 1 edges. So
undirected version of T is connected, has n− 1 edges, thus is a spanning tree.

3.2 Min Cost Arborescence (MCA) Problem

Given a directed graph G = (V, E), and a root note r ∈ V, and edge costs {ce}e∈E, find an arborescence
rooted at r of minimum total edge cost.

Assume there exists r→ v path in G for all v ∈ V , then there exists an arborescence rooted at r.

There are two greedy strategies (inspired by MST)

Strategy 1 Pick the cheapest edge entering a node v (for some fixed node v). Does this edge belong
to an MCA? Consider the following example for v. The cheapest edge entering v is of cost 1. However,
if we pick this edge, the only arborescence containing edge ~uv is of cost 106, while MCA is of cost 21.

10 100

1 5

6

r

v u w

100

1 5

r

v u w

10

5

6

r

v u w

Strategy 2 Consider some cycle, and delete the most costly edge e of the cycle. Is this valid, i.e., is
there an MCA not containing e? In the above example, we take the cycle C = u → v → w → u. If we
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delete the most cost edge vw, it’s impossible to get MCA on the right.

Let us examine greedy strategy (1) again. Pick cheapest edge entering each node v 6= r. Let F∗ be set
of edges picked. Now let’s make two observations.

Observation 1 If (V, F∗) is an arborescence, then it is an MCA. Every arborescence must pick an
incoming edge for every v 6= r, and F∗ is the cheapest way of picking these edges. If (V, F∗) is NOT
an arborescence, then by Lemma 3.1, we know that (V, F∗) contains cycle Z, not containing root r.

Observation 2 Suppose for every node v 6= r, for each edge e entering v, we subtract a common
amount Pv from its cost, i.e., ∀v 6= r, ∀ edges e entering v, we set c′e = ce− Pv. Then for any arborescence
T, its c-cost and c′-cost differ by a constant; more precisely, c(T)− c′(T) = ∑v 6=r Pv (simply because T
has exactly one edge entering each v 6= r by lemma 3.1).

Corollary

Let yv = min(u,v)∈E cu,v. For all v 6= r, for all edges e entering v, let c′e = ce − yv
a. Then T is an

MCA with respect to {ce} if and only if T is an MCA with respect to {c′e} costs.

ac′e ≥ 0 for all e.

3.3 Edmond’s algorithm

Now based on the corollary, imagine we have a cycle Z ⊆ F∗. And by observation 2, all edges of F∗

(hence Z) have c′e = 0. Then as long as we can reach one node of the cycle, we can take appropriate
edges of the cycle to reach all nodes in the cycle without increasing the c′-cost. As we don’t care about
the inside of the cycle, we can contract the cycle and run the algorithm recursively.

Algorithm 5: Edmond’s Algorithm for MCA

Input: Directed graph G = (V, E), root r ∈ V, {ce} edge costs; assume there exists r → v path
for all v ∈ V

0 if G has only one node then return ∅
1 foreach v 6= r do

yv := min(u,v)∈E cu,v

c′e := ce − yv for all e entering v

2 For each v 6= r, choose a 0 c′-cost edge entering v. Let F∗ be the resulting set of edges.
3 if F∗ is an arborescence then return F∗

4 Otherwise F∗ contains a directed cycle. Find a cycle Z ⊆ F∗ (not containing r). Contract Z into
a single supernode a to get a graph G′ = (V′, E′).

5 Recursively find an MCA (V′, F′) in G′ with respect to {c′e} edge costs.
6 Extend (V′, F′) to an arborescence (V, F) in G:
• Let v ∈ Z be the node that has an incoming edge in F′.
• Set F ← F′ ∪ Z \ {edge of Z entering v}

7 return F

aRemove self-loops, but retain parallel edges

Now let’s consider an example.
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r

1112

9
10

1

2

3

8

4
5 7

6

We then change the cost to c′e.

r

75

6
9

0

0

0

0

0
0 0

0

Then we mark the zero costs edges to produce F∗. And we can see there are cycles in this set of edges.

r

75

6
9

0

0

0

0

0
0 0

0

Z1

We first pick cycle Z1 and contract it. And do the cost change again.

r

75

0 3

0

0
0 0

0

Z1

Z2

And we found cycle Z2, and contract it, and do the cost change.
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r

70

0
3

0

0Z1

Z2

Now red edges are arborescence. Recursive calls stop. Then we expand it back.

r

75

0 3

0

0
0 0

0

Z1

Z2

Then expand again.

r

75

6
9

0

0

0

0

0
0 0

0

Z1

which is the output of the algorithm.

Running time

Line 0 takes O(1). Line 1-2 are operations on edges, take O(m). Line 3 on checking arborescence takes
O(n): follow incoming edges in F∗ to see if we can reach r, either rv path or a cycle. Line 4 takes
O(|Z|) = O(n). Line 6 takes O(|Z|) = O(n).

Algorithm makes O(m) elementary operations and a recursive call to a smaller graph; at most n
recursive calls. Thus polynomial running time.
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Correctness

Lemma 3.2

Suppose we have {de} edge costs, and a 0 d-cost cycle Z such that r /∈ Z. Then there exists an
MCA (with respect to d-costs) that has exactly one edge entering Z.

Proof:
Let T be any arborescence, where it might has multiple edges entering Z. We will show that T
can be modified to an arborescence T′ with the stated property and such that d(T′) ≤ d(T) where
d(T) := ∑e∈T de. T might look like the graph below.

Z

T

r
u

v

Among all edges (u′, v′) ∈ T that enter Z, let (u, v) be such that the r → u path in T has the fewest
number of edges. Note that the r → u path in T has no nodes from Z. Let

T′ ← T − {(u′, v′) ∈ T : v′ ∈ Z, u′ /∈ Z, v′ 6= v} ∪ {edges of Z except for the edge entering v}

Z

T′

r
u

v

Note that d(T′) ≤ d(T) because all edges we are adding in Z have zero costs. We now have to show
T′ is an arborescence.

T′ has n− 1 edges since every w 6= r has exactly one incoming edge. Now it’s remained to show
that there exists an r → w path T′ ∀w 6= r. Let P be the r → w path in T. If P does not contain any
node of Z, then P is also an r → w path in T′.

Now suppose P contains a node of Z. Let w′ be the last node of P in Z. Then T′ contains:

Z

T′

r
u

v

- r → v path in T
- v→ w′ portion of Z
- w′ → w portion of P

P

ww′
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Concatenating these gives an r → w path in T′.

This also shows that undirected version of T′ is connected, and has n− 1 edges. Thus the undirected
version is a spanning tree.

Observation Any arborescence in G that enters cycle Z in step 4 of algorithm exactly once, yields an
arborescence in G′ and VICE VERSA, and these two arborescence have the same c′-cost.

Theorem 3.3

Edmond’s algorithm finds an MCA of G.

Proof:
By induction on |V|. Base cases where |V| = 1 or 2 are clearly true. Suppose inductively, algorithm
finds an MCA T′ in G′ with respect to c′-edge costs.

Let T∗ be an MCA in G with respect to c′-edge costs that enters Z exactly once, which exists by
lemma 3.2. Let T∗′ be arborescence obtained from T∗ for graph G′.

We have

c(T) = c′(T′) since c′e = 0 ∀e ∈ Z

≤ c′(T∗′) T′ is an MCA of G′ wrt. c′-edge costs, induction hypothesis

= c′(T∗) edges of Z have 0 c′-cost

So T is an MCA of G with respect to c′-edge costs. Thus T is an MCA of G with respect to c-edge
costs.



4
Matroids

4.1 Introduction

matroid

A matroid is a tuple M = (U, I), where U is a ground set (or universe), and I ⊆ 2U is a
collection of subsets of U satisfying the following properties:

(a) ∅ ∈ I .

(b) If A ∈ I , and B ⊆ A, then B ∈ I .

(c) (Exchange property) if A, B ∈ I , with |A| < |B|, then ∃e ∈ B− A such that A ∪ {e} ∈ I .

Sets in I are called independent sets. A set not in I is called a dependent set.

A maximal independent set, i.e., a set B ∈ I such that B∪ {e} /∈ I ∀e ∈ U− B, is called a basis.

Example: uniform matroid
Let U be any n-element set, e.g., {1, . . . , n}. Let I := {A ⊆ U : |A| ≤ k}, where k ≥ 0. Then
M = (U, I) is a matroid.

(a) ∅ ∈ I since |∅| = 0 ≤ k

(b) If A ∈ I and B ⊆ A, then |B| ≤ |A| ≤ k, so B ∈ I .

(c) Suppose A, B ∈ I with |A| < |B|(≤ k). Take any e ∈ B − A, and note that |A ∪ {e}| =
|A|+ 1 ≤ |B| ≤ k, so A ∪ {e} ∈ I .

Example: partition matroid
Again, let U be n-element set. Let (S1, . . . , S`) be a partition of U, and let r1, . . . , r` ≥ 0 be some
non-negative integers. Let I := {A ⊆ U : |A ∩ Si| ≤ ri ∀i = 1, . . . , `}.

22
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S1 S2 S`· · ·

≤ r1 ≤ r2 ≤ r`

U

Then M = (U, I) is a matroid.

(a), (b) hold trivially. For part (c), suppose A, B ∈ I with |A| < |B|. Then there exists Si such
that |A ∩ Si| < |B ∩ Si| (since (S1, . . . , S`) partition U). Consider any e ∈ (B ∩ Si)− (A ∩ Si), and
A′ = A ∪ {e}. Then

|A′ ∩ Sj| =
{
|A ∩ Sj| ≤ rj if j 6= i

|A ∩ Si|+ 1 ≤ |B ∩ Si| ≤ ri if j = i

So A′ ∈ I .

Example:
Let U be collection of n vectors in Rd. Let

I := {A ⊆ U : the vectors in A are linearly independent}

Then M = (U, I) is a matroid.

(a), (b) hold trivially. (c) holds because of basic linear algebra: Suppose A, B ∈ I with |A| < |B|. If
every v ∈ B is a linear combinations of vectors in A, then since |B| > |A|, the vectors in B must be
linearly dependent. Then there exists v ∈ B such that v /∈ span(A) (where span(A) is all vectors
that are linear combinations of vectors in A). So A ∪ {v} consists of linearly independent vectors,
i.e., A ∪ {v} ∈ I .

Example: graphic/cycle matroid
Let G = (V, E) be an undirected graph. Let U = E, I := {A ⊆ E : A is acyclic}. Then M = (U, I)
is a matroid.

(a), (b) hold trivially. Consider (c). Suppose A, B ∈ I with |A| < |B|. Then GA = (V, A) has n− |A|
components where n = |V|, and GB = (V, B) has n− |B| < n− |A| components.

Components of GA Components of GB

· · ·
e

In the picture above, we denote the components of GB with red color. Some components of GB

can be contained within components of GB. However, it cannot be that the vertex-set of every
component of GB is a subset of the vertex-set of some components of GA. I.e., there exists some
component of GB that intersects at least two components of GA as shown in the graph above.

This means there exists some e ∈ B that connects two components of GA. Thus A ∪ {e} is acyclic,
so A ∪ {e} ∈ I .

4.2 Max-weight independent set (MWIS) problem

Here we present two matroid optimization problems.



WEEK 4. MATROIDS 24

Max-weight independent set (MWIS) problem

Given a matroid M = (U, I), and weights {we}e∈U (the we’s could be arbitrary), find a max-
weight independent set, i.e., find A ∈ I such that

w(A) := ∑
e∈A

we = max
B∈I

w(B)

Matroid intersection problem

Given two matroids M1 = (U, I1) and M2 = (U, I2) and weights {we}e∈U , find a max-weight
set that is independent in both matroids (common independent set), i.e., solve

max
A∈I1∩I2

w(A)

Matroid intersection problem is beyond the scope of this course, but you can learn it from CO 450.

Note that max-weight spanning tree with positive edge weights is a special case of MWIS problem,
where the matroid is the graphic matroid. (since bases of graphic matroid associated with a connected
graph are spanning trees). MST with {ce} edge costs can be captured by max-weight spanning tree
with positive edge weights. By defining we = M− ce, where M > maxe ce (so that we > 0). For any
spanning tree T w(T) = (n− 1)M− c(T).

Now we develop the greedy algorithm for MWIS. Input is M = (U, I), {we}e∈U . We may assume that
we > 0 for all e ∈ U. Because otherwise, we can move to the smaller matroid

M′ = (U′ := {e ∈ U : we > 0}, I ′ = {A ⊆ U′ : A ∈ I})

where we can verify M′ is a matroid. Solving MWIS on M′ will also solve MWIS on M. Since every
independent set of M′ is also independent in M. If A ∈ I, then A ∩U′ ∈ I ′ and w(A ∩U′) ≥ w(A).

Algorithm 6: Greedy Algorithm for MWIS

Input: M = (U, I), {we}e∈U

1 Sort elements in decreasing order of weight.
2 Initialize A← ∅
3 Considering elements in sorted order, if A ∪ {e} is independent, then set A← A ∪ {e} where e

is current element being considered.
4 return A

Observe that above algorithm run on graphic matroid is equivalent to Kruskal for max-weight span-
ning tree.

Correctness

Claim 4.1

If B, B′ are two bases of a matroid, then |B| = |B′|.

Proof:
Suppose not, and |B| < |B′. Then since B, B′ ∈ I , by the exchange property of matroids, there
exists e ∈ B′ − B such that B ∪ {e} ∈ I , contradicting that B is a maximal independent set.

Now let A be the set returned by the greedy algorithm.

https://n.sibp.ro/co450
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Claim 4.2

A is a basis of M.

Proof:
Suppose there exists e /∈ A such that A∪ {e} ∈ I . Then consider the point when e is considered by
greedy. At that point, we have some set S ⊆ A. But then S ∪ {e} ∈ I since S ∪ {e} ⊆ A ∪ {e}, so
algorithm should have added e, contradicting that e /∈ A.

Theorem 4.3

Greedy algorithm returns a max-weight independent set.

Proof:
Let A∗ be a max-weight independent set. We want to show that w(A) = w(A∗), hence A is a
max-weight independent set.

Observe that A∗ is a basis of M. Otherwise if there exists e /∈ A∗ such that A∗ ∪ {e} ∈ I , we have
w(A∗ ∪ {e}) > w(A∗). So we have |A| = |A∗| by Claim 4.1 and Claim 4.2.

Let k = |A| = |A∗|. Suppose w(A) < w(A∗). Let

A = {e1, e2, . . . , ek}
A∗ = {e∗1 , e∗2 . . . , e∗k}

where elements are ordered by the ordering used by greedy.

Let Ai := {e1, . . . , ei} and A∗i := {e∗1 , . . . , e∗i } for all i = 1, . . . , k. And we define A0 = A∗0 = ∅.
Consider the smallest index j such that w(Aj) < w(A∗j ). Such j exists since w(Ak) = w(A) <

w(A∗) = w(A∗k ). We have

• |A∗j | = j, A∗j ∈ I since A∗j ⊆ A∗

• |Aj−1| = j− 1, Aj−1 ∈ I since Aj−1 ⊆ A

• By the exchange property, there exists e ∈ A∗j − Aj−1 such that Aj−1 ∪ {e} ∈ I .

Since e ∈ A∗j and e∗j has the least weight among elements of A∗j , we have we ≥ we∗j
. Since

w(Aj−1) + wej = w(Aj) < w(A∗j ) = w(A∗j−1) + we∗j

and w(A∗j−1) ≤ w(Aj−1). Thus we∗j
> w(ej). To summarize, we have

we ≥ we∗j
> wej

Consider the point when greedy considers element e. At this point, we have some set S ⊆ Aj−1.
This is because we > wej , so greedy must consider e before ej. But then S ∪ {e} ∈ I since S ∪
{e} ⊆ Aj−1 ∪ {e} and so greedy should have added e. Contradiction, since then we would have
e ∈ Aj−1.

Running Time and Input Specification

How is the matroid M given as input? It would be space inefficient if we give all sets in I as input. So
M is specified by means of the universe U and a matroid independence oracle, which is a procedure
that given a set S ⊆ U as input, answers (correctly) if S ∈ I .
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Running time is the number of elementary operations + number of calls (i.e., queries) made to inde-
pendence oracle. Let m = |U|. Then the running time is O(m log m) + O(m · oracle) = O(m log m)

which is polynomial-time, i.e., efficient algorithm.

4.3 Applications of Matroid Optimization

Maximum-Weight Bipartite Matching

bipartite

A graph G = (V, E) is called bipartite if V can be partitioned as L ∪ R such that every edge has
one end in L and one end in R. We call (L, R) bipartition of V.

matching

Given a graph G = (V, E), a set M ⊆ E is called matching if |M ∩ δ(v)| ≤ 1 for all v ∈ V. I.e.,
for every v ∈ V, there is at most one edge of M incident to it.

Max-weight bipartite matching problem

Given a bipartite graph G = (V, E), edge weights {we}e∈E, find a matching M of maximum
total edge weight.

Let L ∪ R be bipartition of V. Define the following two matroid, having ground set E:

ML =
(
U = E, IL = {A ⊆ U : |A ∩ δ(v)| ≤ 1, ∀v ∈ L}

)
MR =

(
U = E, IR = {A ⊆ U : |A ∩ δ(v)| ≤ 1, ∀v ∈ R}

)
Because the graph is bipartite, {δ(v)}v∈L partitions E, {δ(v)}v∈R partitions E. Then ML and MR are
partition matroids. Thus A ⊆ E is a matching if and only if A ∈ IL ∩ IR. Hence max-weight matching
is equivalent to max-weight independent set in ML and MR. I.e., max-weight bipartite matching can
be solved using matroid intersection.

Schedling Problem

Given a set U of jobs; each j ∈ U has unit processing time, deadline dj ≥ 1 which is integer,
weights wj (can be arbitrary). We can only process one job at any time. Find a max-weight set
S of jobs, and an ordering of S such that all jobs in S complete by their deadlines.

For example,
j 1 2 3 4 5 6

dj 3 2 1 3 2 4
wj 2 1.8 5.6 −0.4 −1 3

Let S = {2, 5, 4}: can order S so that all jobs complete by their deadlines.

2 5 4

0 1 2 3

Consider S = {3, 2, 1, 4}. We cannot order S so that all jobs complete by their deadlines since there are
four jobs in S with deadlines ≤ 3.
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schedulable

Say that S ⊆ U is “schedulable” if there exists an order of S that completes all jobs by their
deadlines.

Exercise:
If S is schedulable, then ordering jobs in S in increasing order of deadlines yields an ordering where
all jobs complete by their deadlines.

S is schedulable if and only if ∀t = 0, 1, . . . , |S|, (number of jobs in S with deadline ≤ t) ≤ t

Theorem 4.4

M = (U, I = {S ⊆ U : S is schedulable}) is a matroid. Hence scheduling problem can be
solved by solving MWIS for matroid M.

Proof:
Properties (a), (b) hold trivially. Consider exchange property. Let A, B ∈ I with |A| < |B|. We have
a notation: for S ⊆ U, let S≤t = {j ∈ S : dj ≤ t}. Consider smallest t ≥ 0 such that

|B≤t′ | > |A≤t′ | ∀t′ ≥ t (∗)

Such a t exists, since for t = maxj∈B dj, (∗) holds and for t = 0, (∗) does not hold, and t ≥ 1.

Claim There exists j ∈ B− A such that dj = t.

If not, then all jobs in B with deadline equal to t are also in A. Then

|B≤t−1| = |B≤t| − (# jobs in B with deadline = t)

> |A≤t| − (# jobs in B with deadline = t) due to (∗)
≥ |A≤t| − (# jobs in A with deadline = t)

= |A≤t−1|

Contradicts t being the smallest value such that (∗) holds.

Claim A′ = A ∪ {j} is schedulable where dj = t.

Consider any t′ = 0, 1, . . . , |A′|. Then

|A′≤t′ | =
{
|A≤t′ | ≤ t′ if t′ < t

|A≤t′ |+ 1 ≤ |B≤t′ | ≤ t′ if t′ ≥ t

So by exercise, A′ is schedulable. So M is a matroid.



5
Steiner Tree & Computational Complexity

5.1 Minimum Steiner Tree Problem

Minimum Steiner Tree Problem

Given an undirected graph G = (V, E), edge costs ce ≥ 0, and a set T ⊆ V called terminals,
find a min-cost tree that spans (i.e., connects) all the vertices in T.

This is called Steiner tree for T and we will omit “for T” if T is clear from the context.

Consider two examples.

Red boxes denote terminals T. Blue edges form a Steiner tree for T. Orange vertex is in Steiner tree
but not in T. This is called a Steiner node. And we notice that this node is not necessary to include,
but it might be useful in terms of the cost. For example,

2

2

2

2

2

2 1

1

1
1

1

1

Best Steiner tree containing only nodes from T has cost 2(|T| − 1). But blue edges form a Steiner tree
of cost |T|.

28
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Useful Transformation Let G = (V, E). (G, c, T) → (G′, c′, T) where G′ = (V, E′) is the complete
graph on V and c′uv is the shortest-path distance in G between u and v.

Note that ∀u, v, w ∈ V, c′uw ≤ c′uv + c′vw (4-ineq) since one u-w path in G is shortest u-v path in G +
shortest v-w path in G.

Claim 5.1

(a) Any Steiner tree F in G is also a Steiner tree in G′, and c′(F) ≤ c(F).

(b) Any Steiner tree F′ in G′ yields a Steiner tree F′′ in G such that c(F′′) ≤ c′(F′).

Proof:
For part (a), clearly F is a Steiner tree in G′. Also, note that ∀uv ∈ E, c′uv ≤ cuv, and so c′(F) ≤ c(F).

For part (b), take F′, and “expand” each edge uv ∈ F′ to the shortest u-v path Puv in G, to get an
edge-set F̂. (So F̂ =

⋃
uv∈F′ Puv, where Puv is the shortest u-v path in G.)

Clearly F̂ connects all vertices in G; but it could contain cycles. We get F′′ from F̂ by simply
removing edges from F̂ so that we get an acyclic graph. So

c(F′′)≤

Since we removed
edges from F̂ to set F′′

c(F̂) ≤ ∑
uv∈F′

c(Puv) = ∑
uv∈F′

c′uv = c′(F′)

(G′, c′) defined as above is called metric completion of (G, c).

By Claim 5.1, we can always solve Steiner tree problem on the metric completion of (G, c). The
optimum values do not change, and optimum solution in the metric completion gives us back an
optimal solution in the original instance and vice versa.

5.2 MST-based algorithm

Idea Find an MST in G′[T] := (T, E′[T]) 1 with respect to c′-costs and map this to a Steiner tree in G
using Claim 5.1 (b).

Algorithm 7: Algorithm for Minimum Steiner Tree Problems

1 Given instance (G, c, T), consider the instance (G′, c′, T), where (G′, c′) is the metric
completion of (G, c).

2 Find an MST in G′[T] := (T, E′[T]) with respect to c′-costs and map this back to a Steiner tree
in G using Claim 5.1 (b).

This is indeed a polytime algorithm, because all operations, including mapping back and so on, are
all polynomial.

Cost of our solution ≤ MST(G′, c′, T), which c′-cost of MST in G′[T]. Let

OPT := OPT(G′, c′, T) = OPT(G, c, T)

where OPT(G′, c′, T) is c′-cost of an optimal solution for (G′, c′, T).

Theorem 5.2

(Cost of solution returned ≤) MST(G′, c′, T) ≤ 2 ·OPT.

1subgraph of G′ induced by T. It is also complete because G is complete
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Proof:
Let F∗ be optimal Steiner tree for (G′, c′, T). Pick some r ∈ T, root F∗ ar r, and do a DFS traversal
of F∗ starting at r.

DFS traversal yields a tour Z (i.e., a closed walk or cycle with repeated notes) that visits all vertices
of F∗, and has c′-cost ≤ 2c′(F∗) = 2 ·OPT.

Will “shortcut” Z to get a cycle Ẑ that visits every terminal exactly once. Suppose

Z :u0 = r, u1, u2, . . . , uk−1, uk = u0 = r

Ẑ :u0 = r, ui1 , ui2 , . . . , ui`−1
, ui` = u0 = r

where for every j, uij is the first terminal after uij−1 in the tour Z that has not been visited before.

By 4-ineq, or the definition of c′, we have c′uij
uij+1
≤ c′(Zuij

uij+1
) where Zuij

uij+1
is the portion of Z

between first occurrences of uij and uij+1 .

Since Zuij
uij+1

are disjoint for different j we have c′(Ẑ) ≤ c′(Z). Removing an edge from Ẑ gives a

spanning tree in G′[T], of cost ≤ c′(Ẑ) ≤ c′(Z) = 2 ·OPT.

Thus MST(G′, c′, T) ≤ 2 ·OPT.

Example:
Here is an example of how we get Ẑ.

r

1

2

3

4

5 6

7

8

9 10

Terminal nodes are denoted by blue. So DFS traversal gives us Z

r, 1, 2, 1, r, 3, 4, 5, 4, 6, 4, 3, 7, 3, r, 8, 9, 8, 10, 8, r

We mark first occurrences of terminals in Z. And these marked vertices form Ẑ.

Were we dumb in analyzing this algorithm? Actually no. Consider an example.

2− ε

2− ε

2− ε

2− ε

2− ε

2− ε 1

1

1
1

1

1

where ε > 0 is small. Our algorithm returns all edges of cost 2ε, thus the total cost is (2− ε)(|T| − 1).
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But the optimal solution is blue edges, of cost |T|. We see the factor is approximately 2. Can we design
a better algorithm? For this problem, there is no known efficient algorithm that is always guaranteed
to return an optimal solution. Moreover, researchers don’t believe such an algorithm exists.

α-approximation algorithm

An α-approximation algorithm, where α ≥ 1 is the approximation factor, for a minimization
problem, is an efficient (i.e., polytime) algorithm that on every instance returns a solution of
cost ≤ α ·OPT.

So above algorithm for Steiner tree is a 2-approximation algorithm for the Steiner tree problem.

5.3 Computational Complexity

P is class/set of all problems that can be solved by polytime algorithms. For example, Shortest Paths,
MST, MCA ∈ P. Other YES/NO problems:

• IsComposite: Given integer n ≥ 2, is n a composite number; i.e, do exist integers x, y ≥ 2 such
that n = xy?

• Factoring: Given integer n ≥ 2, decide if n is composite and if so, find integers x, y ≥ 2 such
that n = xy.

• IsPrime: Given integer n ≥ 2, is n a prime number?

Algorithm 8: Factoring algorithm: Sieve of Eratosthenes

1 Consider all integers x such that 2 ≤ x ≤
√

n, and see if x divides n.
2 If so, then n is composite and x, n

x is a factorization of n.

Is the above a polytime algorithm? No, since number of iterations ≈
√

n, which is not polynomial in
O(log n) which is the input size.

Open question: Is Factoring ∈ P? We already know that IsPrime ∈ P, which is only settled in around
2003. This implies IsComposite ∈ P.

Decision problem is problem with a YES/NO answer. We can take any optimization problem and
consider a decision-version of the problem:

• Is there a solution of cost ≤ k (for minimization problems)

• Is there a solution of value ≥ k (for maximization problems)

Here is decision version of MST (DecMST): given (G, {ce}), and a number k, is there a spanning tree of
cost ≤ k? If MST ∈ P, then DecMST ∈ P.

5.4 Polynomial-Time Reductions

polytime reduction

Given problems A, B, we say A reduces in polynomial time to B, or A is polytime reducible
to B, denote A ≤p B, if we can solve problem A using a polynomial number of elementary
operations + a polynomial number of calls to an algorithm for problem B.
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MST ≤p MCA. Given input (G = (V, E) undirected graph, {ce}e∈E) to MST problem, create (
↔
G,
↔
c )

the bidirected version of G, by creating edges (u, v), (v, u) in
↔
G for every edge uv of G, and give

these two edges cost cuv. Solve MCA on (
↔
G,
↔
c , r) where r is any node of V, and map back MCA to

undirected edge of G to get an MST.

MST ≤p Min Steiner Tree Problem. This is true because MST is a special case of Min Steiner Problem,
when edge costs are ≥ 0. For MST, can always ensure (i.e., move to) nonnegative edge costs by adding
a suitable large constant to all edge costs.

Suppose A ≤P B. Then

1. If B ∈ P, then A ∈ P.

2. Equivalently, if A /∈ P, then B /∈ P.

Consider

• SORTING: Given n numbers a1, . . . , an, sort them in an increasing order.

• MIN: Given n numbers a1, . . . , an, find the minimum of these n numbers.

SORTING ≤p MIN: Can sort using n calls to an algorithm for MIN. Also MIN ≤p SORTING.

Consider 2

• LPFeas: Given A ∈ Qm×n, is the system Ax ≤ b, x ≥ 0 feasible?

• LPOpt: Given A ∈ Qm×n, b ∈ Qm, c ∈ Qn, does the LP

max cTx
s.t. Ax ≤ b

x ≥ 0

have an optimal solution?

LPFeas ≤p LPOpt. We can set c = 0, and call algorithm for LPOpt. Using duality we can show
LPOpt ≤p LPFeas.

Decision problem LPImprov: Given A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and z ∈ Q, determine if there is a
feasible solution to the LP:

max cTx
s.t. Ax ≤ b

x ≥ 0

with objective value > z? Using duality, can show that LPImprov ≤p LPFeas.

Note that simplex method for solving LPs is NOT a polytime algorithm.

Consider

• MST: Given connected graph G = (V, E), edge costs {ce} that are positive integers, find cost of
MST.

• Decision version of MST, DecMST: Given connected G = (V, E), positive integer edge costs {ce},
and an integer k > 0, is there a spanning tree of cost ≤ k?

We observe that DecMST ≤P MST, MST ≤P DecMST.

Given MST instance (G, c), we can deduce that every spanning tree has cost ≥ LB := 1, and MST has
cost ≤ UB := (n− 1)cmax, where cmax := maxe ce.

2Here we choose to work with rational numbers because it’s hard to specify the input size for irrational numbers
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Algorithm Start at k = UB. Solve DecMST with this k; if answer is YES, set k← k− 1 and REPEAT.

This is not a polytime reduction, since we could be calling algorithm for DecMST ≈ UB times, but
UB ≈ (n− 1)cmax is not polynomially bounded in input size.

We can get polynomial reduction by doing binary search. Binary search calls algorithm DecMST

O(log2 UB) which is polynomially bounded in input size.

It’s not hard to see that ≤p is transitive.

Consider two problems:

• MST: find cost of MST

• A-MST: Find a min-cost spanning tree.

We can see that MST ≤p A-MST. A-MST ≤p MST: Let k = MST(G, c). Let e be some edge of G.
Then k′ = MST(G− e, {c f } f∈G−e). If k′ > k, then e belongs to every MST. If k′ ≤ k, then G ← G− e,
c← {c f } f 6=e.



6
P & NP

Consider decision version of Steiner tree:

DecSteiner: Given an instance (G, c, T) and a number k, it there a Steiner tree of cost ≤ k?

Observation Is DecSteiner instance is a YES instance, then there is a simple certificate (A steiner
tree of cost ≤ k) to convince one that answer is indeed YES.

verifier/certifier

A verifier/certifier V for a decision problem Π is an algorithm that takes two inputs, x: an
instance of Π, and a “certificate” y, and outputs YES or NO. It satisfies

• If x is a YES instance, then there exists y such that V(x, y) = YES.

• If x is a NO instance, then for all y, V(x, y) = NO.

6.1 NP

NP a decision problem Π is in the class NP if there exists a polynomial p and a polytime verifier V
for Π such that

• For every YES instance x of Π, there exists a certificate y with size(y) ≤ p(size(x)) such that
V(x, y) = YES.

• (For every NO instance x, V(x, y) = NO for all y)

Informally, a decision problem is in NP if its YES instances have “short”, efficiently verifiable certifi-
cates.

Example:
DecSteiner ∈ NP. It has certificate y: Steiner tree of cost ≤ k. Verifier V: check y is indeed a
Steiner tree of cost ≤ k.

Example:
Recall IsComposite. It is in NP. Certificate y: a factor of n where 2 ≤ y < n. Verifier: check y
divides n (and 2 ≤ y < n).

34
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Example:
IsPrime ∈ NP? Yes, certificate for YES instance uses results in number theory, Fermat’s little
theorem. We know that IsPrime ∈ P.

Claim 6.1

If Π is a decision problem in P, then Π is also NP. In other words, P ⊆ NP.

Proof:
Let A: polytime algorithm for Π. Then, we can construct a polytime verifier V for Π as follows: on
input (x, y), V returns A(x).

Exercise:
Prove that P 6= NP.

Example: 3-SAT
Given a boolean formula F of the form

F = C1 ∧ C2 ∧ · · · ∧ Cm,

where each Ci is a clause of the form yi1 ∨ yi2 ∨ yi3 where each yi (called literal) is xi or x̄i.

Is there are True/False assignment of the variable under which F evaluates to T? Such an assign-
ment is called a satisfying assignment.

Not hard to see 3-SAT ∈ NP: certificate y: satisfying assignment. Verifier: check that y is indeed a
satisfying.

Example: Set-Cover
Input: a universe U, and a collection S = {S1, . . . , Sm} of subsets of U, and an integer k ≥ 0.

Are there k subsets Si1 , . . . , Sik ∈ S such that (Si1 ∪ · · · ∪ Sik ) = U?

Set-Cover ∈ NP: a certificate for YES instance is simply k sets of S whose union is U.

6.2 NP-hard and NP-complete

NP-hard, NP-complete

A problem B is called:

• NP-hard: if x ≤p B ∀x ∈ NP

• NP-complete: if B ∈ NP and B is NP-hard (i.e., x ≤p B ∀x ∈ NP)

Intuitively, NPC are hardest problems in class NP.

Suppose Y is a NPC problem. Then

• if Y ∈ P, then P = NP. Since X ≤p Y for all X ∈ NP and Y ∈ P, we get that x ∈ P ∀x ∈ NP.

• If Y /∈ P, then P 6= NP.

How do we show that a problem Y is NP-hard or NPC?

• Pick a suitable NP-hard problem B.

• Show B ≤P Y. Then Y is NP-hard by transitivity of ≤p.
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• If we want to show that Y is NP-complete, then also SHOW Y ∈ NP, which is usually easy.

Note:
If Y′ is the decision version of optimization problem Y and Y′ is NP-hard, then Y is also NP-hard.
Since Y′ ≤p Y.
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NP-Hard and NP-Complete

7.1 Cook-Levin Theorem

Theorem 7.1: Cook-Levin Theorem

3-SAT is NP-complete.

Will show Πset cover is NPC by showing that 3-SAT ≤p Set Cover. (Already know set cover ∈ NP)

Will show that 3-SAT ≤p special case of set cover, where we have an undirected graph G = (V, E), and
that defines

• U = E

• every vertex v ∈ V creates a set in S given by δ(v).

So a collection of sets S ′ = {δ(v) : v ∈ T} is a set cover. Here T is called vertex cover.

Theorem 7.2

3-SAT ≤p Vertex Cover.

Proof:
Let F = C1 ∧ C2 ∧ · · · ∧ Cm where each Ci = yi1 ∨ yi2 ∨ yi3 be an instance of 3-SAT. Will create a
VC-instance such that F is satisfiable⇔ VC instance is a YES instance.

• For every clause Ci = yi1 ∨ yi2 ∨ yi3 , create the triangle,

(yi1 , i)

(yi2 , i) (yi3 , i)

• For every var xj if xj ∈ Ci, and x̄j ∈ Ck, then we create edge (xj, i)− (x̄j, k).

So graph G = (V, E) has

V = {(yj, k) : yj ∈ Ck} E = {(xj, i)(xj′ , k) : i = k, or xj′ = x̄j}

37
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For example, let F = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x4 ∨ x2) ∧ (x3 ∨ x4 ∨ x̄1).

(x3, 1)

(x2, 1) (x1, 1)

(x4, 2)

(x1, 2) (x2, 2)

(x1, 3)

(x3, 3) (x4, 3)

We want to show that F is satisfiable⇔ the graph created has a VC of size (number of nodes in VC
solution) 2m where m is number of clauses in F.

Suppose F satisfiable. Then for every Ci, at least one literal in Ci is set to True. Pick exactly one
literal, say y∗i ∈ Ci, that is set to True and consider set S = {(yi, i) : yi 6= y∗i }. So |S| = 2m. We claim
that S is a vertex cover.

Clearly all 4-edges are covered since we pick 2 nodes from each 4. Consider an edge (xj, i)(x̄j, k).
It cannot be that both xj, x̄j are true, so at least one of these has not been picked for the correspond-
ing clauses (as y∗i ), and so is in S.

Conversely, suppose the graph has been created has a VC S with |S| ≤ 2m. Note that |S| = 2m,
since S must contain ≥ 2 nodes from each triangle, therefore S contains exactly 2 nodes from Ci’s
clause-4.

Suppose for Ci, S contains nodes (yi1 , i), (yi2 , i). Then we set yi3 = true. We claim that this gives a
satisfying (possibly partial) assignment. Clearly, every clause is set to be true. Consider some var
xj and suppose (xj, i)(x̄j, k) ∈ V. Then at least one of these nodes is in S, so we would not set both
xj, x̄j to true, which is then a valid assignment as this holds for every variable.

Theorem 7.3

Set Cover ≤p Steiner Tree.

These are decision versions of the problems. Hence, decision version of Steiner tree is NP-complete.

Proof:
Let (U,S ⊆ 2U , k) be a set cover instance. We represent SC instance (U,S) as follows:

add root node r in Steiner tree instancer

S

U terminalse ∈ U

S ∈ S

edge Se if e ∈ S

We create Steiner tree instance by appending bipartite graph representing (U,S) with a “root”



WEEK 7. NP-HARD AND NP-COMPLETE 39

node r, and edges rS ∀S ∈ S . Terminal set T = {r} ∪U. Set edge cost

c f =

{
1 f ∈ δ(r)

k + 1 f is incident to an element of U

Then we want to show ∃ set cover of size ≤ k⇔ ∃ Steiner tree of cost ≤ n(k + 1) + k︸ ︷︷ ︸
M

where n = |U|.

Suppose S ′ ⊆ S is a collection of ≤ k sets whose union is U, the tree with edges {rSi : Si ∈ S ′}
and {eSj : Sj in some set in S ′ containing e} is a Steiner tree of cost ≤ n(k + 1) + k.

Suppose F is a Steiner tree of cost ≤ M. Then every node e ∈ U must be a leaf node in F, otherwise
c(F) ≥ (k + 1)(# edges in F incident to nodes in U) ≥ (n + 1)(k + 1) > M. Then there are n edges
joining edges e ∈ U to set nodes. Then there are ≤ k edges from δ(r) are in F.

Consider S ′ = {Si : rSi ∈ F}. Then |S ′| ≤ k and every e ∈ U is connected to r by a 2-hop path
e-Si-r, and so Si ∈ S ′. Therefore S ′ is a set cover.
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Approximation Algorithm & Primal Dual Algo-
rithm

8.1 Approximation Algorithm Design

Recall the definition for α-approximation algorithm where α ≥ 1.

Strategy for approximation algorithm design

1. Come up with a (move tractable) lower bound LB on OPT (LB ≤ OPT)

2. Come up with a polytime algorithm and show that it returns a solution of cost≤ α · LB ≤ α ·OPT.

0 LB OPT cost of soln. returned

ratio≤ α

⇒

ratio≤ α

How to come up with lower bounds? We can formulate discrete optimization problem as an integer
program, and relax integrality constraints to get linear program. Then OPTLP ≤ OPTIP and now
OPTLP is LB.

Example: Steiner tree
Instance (G = (V, E), T ⊆ V, {ce ≥ 0}e∈E)

Variables: xe ∈ {0, 1} ∀e ∈ E, and xe = 1 indicates e is in opt tree; xe = 0 indicates e is NOT in our
tree. Here xe is binary indicator variables.

Then the IP:
min ∑e∈E cexe

s.t. xe ∈ {0, 1} ∀e ∈ E
∑e∈δ(S) xe ≥ 1 ∀S ⊆ V : S ∩ T 6= ∅, T − S 6= ∅

(IP)

The second condition means for every cut (S, V − S) where S and SC contain some terminals, then
the boundary of the cut must include at least one edge from the tree, otherwise tree might not
connect up all terminal nodes.

We then can relax first integrality constraint to 0 ≤ xe ≤ 1, or even further xe ≥ 0 because all

40
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feasible xe > 1 can be “reduced to” xe = 1, which still satisfies the constraints. Then LP is

min ∑e∈E cexe

s.t. xe ≥ 0 ∀e ∈ E
∑e∈δ(S) xe ≥ 1 ∀S ⊆ V : S ∩ T 6= ∅, T − S 6= ∅

(LP)

Then OPTLP ≤ OPTIP.

LP relaxation will be exploited in two ways for designing algorithms

1. LP-rounding algorithms: Solve LP-relaxation to get a (likely) fractional solution x∗. Devise a
polytime algorithm to transform x∗ to an integer solution x̂ and show that

cost(x̂) ≤ α · cost(x∗) = α ·OPTLP ≤ α ·OPT

And this way of transforming is known as LP-rounding algorithm.

Theorem 8.1

LPs can be solved in polytime. (BUT simplex is NOT polytime)

Even there are exponentially many constraints, we can still solve LP in polytime via ellipsoid.
Interested readers can consult CO 255 or CO 471.

2. Primal-Dual Algorithms. Recall dual of (LP) is a maximization LP (D), and every dual feasible
solution y has value at most OPTLP. So if we design an algorithm that constructs an integer
feasible solution x̂ and a dual solution y, and show that cost(x̂) ≤ α · (value(y)). Then we get an
α-approximation algorithm since value(y) ≤ OPTLP ≤ OPT.

Recap of LP duality It’s bad to memorize the table as said by the instructor. It’s better to understand
the logic of taking dual.

Back to Steiner tree...
min ∑e∈E cexe

s.t. x ≥ 0
∑e∈δ(S) xe ≥ 1 ∀S ∈ S

(P)

where S = {S ⊆ V : S ∩ T 6= ∅, T − S 6= ∅}.

Now consider the dual constraint:

∑
e∈E

xe

(
∑

S∈S :
e∈δ(S)

yS

)
= ∑

S∈S
yS

(
∑

e∈δ(S)
xe

)
≥ ∑

S∈S
yS (∗∗)

To ensure ∑e∈E cexe ≥ LHS of (∗∗), we need that ce ≥ ∑S∈S :e∈δ(S) yS. So the dual of (P) is

max ∑S∈S yS

s.t. ∑S∈S :e∈δ(S) yS ≤ ce ∀e ∈ E
y ≥ 0

(D)

Weak Duality

The value of any feasible solution y to (D) provides a lower bound on OPT(P) (when (P) is
minimization LP).

So if x is feasible solution to (P), y feasible to (D), then ∑e∈E cexe ≥ ∑S∈S yS.

https://n.sibp.ro/co255
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Strong Duality

If (P) and (D) are both feasible, then they both have optimal solutions, and OPT(P) = OPT(D).

So ∑e∈E cex∗e = ∑S∈S y∗S.

x∗ and y∗ optimal⇔

• x∗, y∗ feasible, AND

• x∗, y∗ satisfy the following Complementary Slackness conditions:

1. x∗e > 0⇒ ∑S∈S :e∈δ(S) y∗S = ce

2. y∗S > 0⇒ ∑e∈δ(S) x∗e = 1

8.2 Network Connectivity Problems

Modeling Framework

We will model a network connectivity problem by a cut-requirement function f : 2V → {0, 1}
where f (S) = 1 for S ⊆ V indicates that a feasible solution and must include an edge from
δ(S). This gives rise to the following f -connectivity problem: Find a min-cost set of edges F s.t.
F ∩ δ(S) 6= ∅ ∀S ⊆ V s.t. f (S) = 1.

Example: Steiner tree
Steiner tree is modeled by the cut-requirement function f ST where

f ST(S) =

{
1 if S ∩ T 6= ∅, T − S 6= ∅
0 otherwise

Then Steiner tree is equivalent to f ST-connectivity problem. I.e., F a Steiner tree ⇔ F is an acyclic
solution to f ST-connectivity.

Note that f (S) = 0 does not say anything about F ∩ δ(S).

8.3 LP-relaxation for f -connectivity and its dual

Define S = {S ⊆ V : f (S) = 1}.

min ∑e∈E cexe

s.t. ∑e∈δ(S) xe ≥ 1 ∀S ∈ S
x ≥ 0

(P)

max ∑S∈S yS

s.t. ∑S∈S :e∈δ(S) yS ≤ cE ∀e ∈ E
y ≥ 0

(D)

We will consider f -connectivity for a structured class of cut-requirement functions.
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{0, 1}-proper cut-requirement function

A {0, 1}-proper cut-requirement function is a function f : 2V → {0, 1} such that

(i) f (V) = 0;

(ii) f (S) = f (V − S) ∀S ⊆ V; (symmetry)

(iii) for any A, B ⊆ V s.t. A, B 6= ∅, A ∩ B = ∅, f (A ∪ B) = 1⇒ f (A) = 1 or a f (B) = 1.

anon-exclusive, could have f (A) = f (B) = 1

We observe that f ST is a {0, 1}-proper function.

Example: Generalized Steiner tree/Steiner forest
Given undirected graph G = (V, E), edge costs {ce ≥ 0}, k-disjoint terminal sets T1, . . . , Tk ⊆ V,
find a min-cost set of edges F s.t. each Ti, i = 1, . . . , k, belongs to a connected components of (V, F)
in Ti. I.e., all nodes are connected in F.

For example,

s1 t1

t3

s3s2

t2 s4

t4

where four colors represent four Ti’s, and the purple forest is a feasible solution.

This can be modelled by the proper function.

f GST(S) =

{
1 if ∃i such that S ∩ Ti 6= ∅, Ti − S 6= ∅
0 otherwise

It’s not hard to show that Generalized Steiner tree is equivalent to f GST-connectivity: write one Ti,
Generalized Steiner tree→ Steiner tree, f GST → f ST .

We claim that f GST is a proper function.

Proof:
Clearly f GST(V) = 0 and symmetry holds. For (iii), suppose A, B 6= ∅, A∩ B = ∅, s.t. f GST(A∪
B) = 1. So there exists i such that (A ∪ B) ∩ Ti 6= ∅, Ti − (A ∪ B) 6= ∅. I.e.,

(a) A ∩ Ti 6= ∅ (i.e., Ti − A 6= ∅) OR

(b) B ∩ Ti 6= ∅ (i.e., Ti − B 6= ∅).

So f GST(A) = 1 (a) OR f GST(B) = 1 (b).

Goal Design a 2-approximation algorithm for f -connectivity with {0, 1}-proper function.

Recall (P) and (D) defined previously. Primal-Dual Algorithm will simultaneously construct an inte-
ger feasible solution to (P), and a dual feasible solution y.

It’s useful to introduce a notion of “time” t. Initially t = 0 and t increases at rate 1. (t is not necessarily
an integer) We will maintain a set F of edges, and a dual feasible solution y. Initially F ← ∅, yS ← 0
∀S ∈ S , which is feasible. At any state, given infeasible solution F, there will be some violated sets,
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i.e., set S with f (S) = 1 BUT F ∩ δ(S) = ∅. We will increase yS for some violated sets.

Which violated sets do we pick?

Design rule 1 Will pick the (inclusion-wise) minimal violated sets (MVSs). Let

V = {S ∈ S : S is violated, and S is minimal among violated sets}

“Minimal among violated sets”: ∀T ( S, T is not violated.

Now given V , we want increase yS ∀S ∈ V .

Lemma 8.2

Given set F of edges, the MVSs are {S ⊆ V : S is a component of (V, F) with f (S) = 1}.

Proof:
Clearly if F∩ δ(S) 6= ∅, then S is not violated. So any violated set S must be a union C1 ∪ · · · ∪Ck of
components of (V, F). Since f (S) = 1, by property (iii) of proper functions, we must have f (Ci) = 1
for some i = 1, . . . , k. Thus Ci is a MVS.



9
Primal Dual Algorithm cont’d

9.1 Primal dual algorithm for f -connectivity

Recall S = {S ⊆ V : f (S) = 1}.

min ∑e∈E cexe

s.t. ∑e∈δ(S) xe ≥ 1 ∀S ∈ S
x ≥ 0

(P)

max ∑S∈S yS

s.t. ∑S∈S :e∈δ(S) yS ≤ cE ∀e ∈ E
y ≥ 0

(D)

Corollary 9.1

F ⊆ E is feasible (for f -connected with a {0, 1}-proper function) ⇔ f (S) = 0 for every compo-
nent S of (V, F).

Design Rule 2 Increase yS ∀S ⊆ V uniformly at rate 1, (but yS’s need not be integral) until constraint
∑S∈S :e∈δ(S) yS ≤ cE goes tight for some edge e ∈ δ(S) for some MVS S. When this happens, we add e
to F.

We STOP, when F is feasible, i.e., there are no violated sets (and hence no MVSs), where the feasibility
of F can be detected using Corollary 9.1.

Final Design Rule (Reverse Delete) After we have stopped adding edges, consider edges in F in

45
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reverse insertion order and delete an edge e if F− {e} is feasible.

Algorithm 9: Primal Dual Algorithm

1 Initialize F ← ∅, yS ← 0 ∀S ∈ S , and time t← 0 (t increase at rate 1 throughout).
Let V : MVSs give F, i.e., {S ⊆ V : S is a component of (V, F) with f (S) = 1}. // Lemma 8.2

2 while V 6= ∅ do
(a) Increase yS uniformly at rate 1 ∀S ∈ V until some edge e ∈ δ(S) goes tight for some

S ∈ V .
(b) Update F ← F ∪ {e}, update V .

3 (Reverse Delete) Let F = {ek, ek−1, . . . , e1} where ek is inserted last, ek−1 before ek and so on.
For i = k..1, if F− {ei} is feasible, F ← F− {ei}.

4 return F

Example:
Consider Steiner tree with T = {s, t}, s-t shortest path. At each point of time, we have exactly 2
MVSs, consisting of components of (V, F) are containing s, other containing t. Then Primal Dual
algorithm is equivalent to bidirectional version of Dijkstra, where we grow explored set simultane-
ously from both s, t.

Example:
Consider Steiner tree with T = V, i.e., MST. Then Primal Dual algorithm is exactly Kruskal’s
algorithm.

First edge to tight is least-cost edge. In general, given F, next edge to go tight in the least cost edge
joining 2 components of (V, F). This is because any edge e that gets added to F by Primal Dual
algorithm, is on the boundary of exactly 2 sets in V at all times until it is added. Thus e gets added
at time te = ce/2.

Now consider the example in Generalized Steiner Tree. Let Ti = {si, ti} for i = 1, 2, 3, 4.

s1 s2

t2

t3

s3 t1 s4 t44 8

11

2

3

1

Initially, all singleton nodes are violated sets as f ({v}) = 1 and it requires an edge in δ({v}) for all
v ∈ ∪Ti.

t = 0, yS ← 0 ∀S ∈ S , F ← ∅.

t = 0.5, y{v} = 0.5 ∀v ∈ ∪Ti. F ← {s4t4, s3t1, s2t2}. V ←
{
{s1}

0.5
, {s3, t1}

0
, {t3}

0.5

}
. The red values are yS.

F = {s2t2, s3t1, s4t4}.
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t = 1, s3t3 goes tight. y{s3,t1} = 0.5, y{s1} = y{t3} = 1, y{v} = 0.5 ∀v ∈ ∪Ti − {s1, t3}.
Here V =

{
{s1}

1
, {s3t1t3}

0

}
. F = {s2t2, s3t1, s4t4, s3t3}.

t = 2.5, t1s4 goes tight. Here V =
{
{s1}

2.5
, {s3s4t1t3t4}

0

}
. F = {s2t2, s3t1, s4t4, s3t3, t1s4}.

t = 3.5, s1s2 goes tight. V =
{
{s1s2t2}

0
, {s3s4t1t3t4}

1

}
. F = {s2t2, s3t1, s4t4, s3t3, t1s4, s1s2}.

t = 5.5, s2s3 goes tight. Final dual solution is

ys1 = 3.5

ys2 = 0.5

ys3 = 0.5

ys4 = 0.5

yt1 = 0.5

yt2 = 0.5

yt3 = 1

yt4 = 0.5

ys2t2 = 0

ys3t1 = 0.5

ys4t4 = 0

ys3t1t3 = 1.5

ys1s2t2 = 2

ys3s4t1t3t4 = 3

And there’s no violated sets!

Then the final edge set F is



WEEK 9. PRIMAL DUAL ALGORITHM CONT’D 48

where t1s4 gets deleted.

Here {s2, t2}, {s4, t4} are components that are not violated, i.e., f (C) = 0.

9.2 Analysis

Now back to the algorithm. We want to analyze running time. We only need tto keep track of non-zero
yS values. We can easily identify MVSs, ≤ n MVSs any point.

F is always acyclic, since we only add edges on boundaries of some components. 1 Thus |F| ≤ n− 1.
Therefore, at most n− 1 iterations of WHILE loop in step 2. Moreover, as there are at most n MVSs,
then there are at most n2 sets S with yS > 0.

We can compute (in polytime) next edge to go tight (and also the time at which this happens) by
keeping track of “residual cost” ce − ∑S∈S :e∈δ(S) for each e ∈ E. This implies WHILE loop runs in
polytime, and Reverse Delete takes polytime.

Now let’s examine the approximation guarantee. Recall the CS conditions for (P), (D):

1. xe > 0⇒ ∑S∈S :e∈δ(S) yS = ce ∀e ∈ E. This holds by design ∀e ∈ F.

2. yS > 0⇒ ∑e∈δ(S) xe = 1 ∀S ∈ S . This can be violated.

Exercise:
If (1) holds, and the following relaxation of (2) holds: (2’) yS > 0 ⇒ ∑e∈δ(S) xe ≤ 2 (where x is
{0, 1}-solution corresponding to F: xe = 1 ∀e ∈ F, xe = 0 otherwise).

Then ∑e cexe ≤ 2 ∑S∈S yS, which is then a 2-approximation.

Notation For an edge set Z ⊆ E, δZ(S) = δ(S)∩ Z. From now on, F is the final-set of edges returned.

Lemma 9.2

At any point in the algorithm, ∑S∈V |δF(S)| ≤ 2|V|.

This is like an “averaged” version of (2’).

Proof:
Recall F is final edge set. Consider (start of) some stage i. Let F′ ⊇ F be the edge-set BEFORE
Reverse Delete. Let F′i ⊆ F′ be edges added to F′ by START of stage i. Let V = Vi: collection of
MVSs at start of stage i.

: F

: F′

: components of F′i

: MVS V

Su1

Su2

Su3

1A tiny note: we might encounter the situation that at some point, two edges connecting two components go tight at the
same time. We are processing them in linear order. After we add one edge, then the other edge is no longer on the boundary,
so the other edge is not added.
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Let H be graph obtained from (V, F) by contracting the node-sets corresponding to components of
(V, F′i ) where we eliminate self loops.

u1 u2

u3

H

For each node u in H, let Su ⊆ V be nodes that were contracted to form u. So δF(Sv) = δH(v). We
have to show

∑
v∈H:Sv∈V

|δH(v)| ≤ 2|{v ∈ H : Sv ∈ V}|

We claim that H is acyclic.

Consider H′ be graph obtained from (V, F′) by contracting components of (V, F′i ). Since F′, F′i ⊆ F′

are acyclic, H′ is acyclic. But H is a subgraph of H′, so H is acyclic.

Consider a component C of H. We will show

∑
v∈C:Sv∈V

|δH(v)| ≤ 2|{v ∈ C : Sv ∈ V}| (∗∗)

We observe that adding (∗∗) over all components of H gives ∑
v∈H:Sv∈V

|δH(v)| ≤ 2|{v ∈ H : Sv ∈ V}|.

Note that ∑v∈C |δH(v)| = 2(|C| − 1) because it is a tree and then by handshaking lemma. So to
show (∗∗), it suffices to show that if v is a leaf of C, then Sv ∈ V . (so if v ∈ C, Sv /∈ V , then
|δH(v)| ≥ 2.)

If C is a singleton component, (∗∗) clearly holds. Suppose C is not a singleton component, and let
v be a leaf node node of C.

v

u

C

T

Here we also suppose f (Sv) = 0, i.e., Sv /∈ V . Since edge uv of C incident to v was not deleted,
if Z ⊆ V node-set corresponds to C − {v} (i.e., Z =

⋃
w∈C−{v} Sw), then f (Z) = 1. a Then

f (V − Z) = 1. But

V − Z =
(

V −
⋃

w∈C
Sw

)
∪ Sv

and f (V − ⋃w∈C Sw) = f (
⋃

w∈C Sw) = 0 since C is a component of H. This contradicts property
(iii) of proper functions.
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To finish the proof,

∑
v∈H:Sv∈V

|δH(v)| = ∑
components C of H

∑
v∈C:Sv∈V

|δH(v)|

= ∑
components C of H

(
2|C| − 2− ∑

v∈C:Sv /∈V
|δH(v)|︸ ︷︷ ︸
≥2

)
≤ ∑

components C of H

(
2|C| − 2− ∑

v∈C:Sv /∈V
2
)

= ∑
components C of H

(2|C| − 2|v ∈ C : Sv /∈ V| − 2)

= ∑
components C of H

(2|v ∈ C : Sv ∈ V| − 2)

≤ ∑
components C of H

(2|v ∈ C : Sv ∈ V|)

= ∑
components C of H

∑
v∈C:Sv∈V

2

= 2|{v ∈ H : Sv ∈ V}|
aWe have f (Z ∪ Sv) = 0 as C is a component of H. So there are no edges in final set F from δ(Z ∪ Sv).

uv as not deleted because deleting uv will create an infeasible solution, which means some component S of (V, F− uv)
has f (S) = 1. As F is feasible, then such an S must be a new component that gets created when we delete uv: either S = Sv

or S = Z. As f (Sv) = 0, then f (Z) = 1.

Theorem 9.3

The final edge set F, dual solution y returned satisfy c(F) ≤ 2 ∑S∈S yS. Thus 2-approximation.

Proof:
Divide the algorithm into stages, where each stage i corresponds to an iteration of WHILE loop,
and on associated time interval. Note that in a stage, collection of MVSs does not change. Let

∆i = length of stage i (i.e., length of associated time interval)

Vi = collection of MVSs at start of stage i

Note that yS = ∑i:S∈Vi
∆i ∀S ∈ S , which implies

∑
S∈S

yS = ∑
S∈S

(
∑

i:S∈Vi

∆i

)
= ∑

i
∆i|Vi|

Then we have

c(F) = ∑
e∈F

ce = ∑
e∈F

(
∑

S∈S :e∈δ(S)
yS

)
= ∑

S∈S
yS|δF(S)|

= ∑
S∈S

(
∑

i:S∈Vi

∆i

)
|δF(S)|

= ∑
i

∆i

(
∑

S∈Vi

|δF(S)|
)

≤∑
i

∆i · 2|Vi| By Lemma 9.2

= 2 ∑
S∈S

yS
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Set Cover & Uncapacitated Facility Location

Recall Set Cover: Given a universe U of n elements, and a collection S of subsets of U. Each set S ∈ S
a weight wS ≥ 0. Goal: Find a min-weight collection of sets from S whose union is U, which is called
a set cover.

Recall:

• Even when all wS = 1, Set Cover is NP-hard.

• Even vertex cover (special case, where sets is equivalent to nodes of a graph, U is edges) is
NP-hard.

10.1 LP-relaxation for SET COVER and its dual

As usual, S index sets in S , e index elements in U.

min ∑
S

wSxS (SC-P)

s.t. ∑
S:e∈S

xS ≥ 1 ∀e ∈ U (1)

x ≥ 0

where xS indicates if S is picked.

max ∑
e

ye (SC-D)

s.t. ∑
e∈S

ye ≤ wS ∀S ∈ S (2)

y ≥ 0

A {0, 1}-solution to (SC-P) is precisely a set cover.

CS conditions
xS > 0 =⇒ ∑

e∈S
ye = wS ∀S ∈ S (3)

ye > 0 =⇒ ∑
S:e∈S

xS = 1 ∀e ∈ U (4)

Let B = maxe |{S ∈ S : e ∈ S}|.

51
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Claim For any feasible solution x to (SC-P), where xS ≤ 1 ∀S, we have ∑S:e∈S xS ≤ B for every e ∈ U.
This is simply because there are at most B terms on LHS, each is at most 1.

So if we can construct a {0, 1}-solution x̂ feasible for (SC-P), and a dual feasible solution y such that
(3) holds, then

∑
S

wS x̂S = ∑
S:x̂S=1

wS = ∑
S:x̂S=1

(
∑
e∈S

ye

)
= ∑

e
ye

(
∑

S:x̂S=1,e∈S
1
)
≤ B ∑

e
ye ≤ B ·OPT(SC-D)

which is B-approximation. This suggests following primal-dual B-approximation algorithm.

Algorithm 10: Primal Dual algorithm for Set Cover

1 Initially y← 0, C ← ∅, N = U −∑S∈C S // C is collection of sets picked. N is

uncovered elements.

2 while N 6= ∅ do
Pick some e ∈ N
Increase ye until (2) goes tight for some set S s.t. e ∈ S
C ← C ∪ {S}
Update N

3 return C

Theorem 10.1

This primal dual algorithm is a B-approximation algorithm.

For vertex cover, B = 2 because each edge has 2 end points. Thus we have a 2-approximation for
vertex cover.

Note that B can be very large, so the algorithm would be bad. Here is another algorithm for Set
Cover.

Algorithm 11: Greedy algorithm for Set Cover

1 y← 0, C ← ∅, N ← U. Initialize “time” t← 0 // t increase at rate 1 throughout
2 while N 6= ∅ do

Raise ye ∀e ∈ N uniformly at rate 1, until some set S is paid by elements in N, i.e.,
∑e∈N∩S ye = wS.
C ← C ∪ {S}, N ← N − S.

3 return C

We make several observations

• At any time t, if Nt is the set of uncovered elements of time t, we have ye = t ∀e ∈ Nt.

• So the first set to be picked is the set with smallest ws/|S| ratio.

In general, given that we have picked sets in C, and set of uncovered elements N, the next set to be

picked is the set S /∈ C with smallest
wS
|S ∩ N| ratio, which is the spirit of greediness.

Now let’s analyze the greedy approximation algorithm. By design, ∑S∈C wS = ∑e ye. Does this suggest
an optimal solution? But note that y need not to be feasible for (SC-D). We could have ∑e∈S ye > wS

since we ignore ye’s for e ∈ S− N.

Let ∆ = maxS∈S |S|.
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For an integer k ≥ 1, we denote

Hk := 1 +
1
2
+ · · ·+ 1

k
which is k-th Harmonic number, and the value is roughly log k. We will show y′ = y/H∆ is a dual
feasible solution, where y is the dual solution at end of greedy algorithm. Then this implies Greedy
algorithm is a H∆-approximation algorithm:

∑
S∈S

= ∑
e∈U

ye = H∆ ·
(

∑
e∈U

y′e
)
≤ H∆ ·OPT(SC-D)

Lemma 10.2

∑e∈S ye ≤ H∆ · wS for all S ∈ S .

Proof:
Consider any set S. Order elements of S: e1, . . . , ek, where k = |S|, s.t. e1 is covered before e2, e2

before e3, and so on. How large could ye1 be ?

Let ti be time when ei is covered. So yei = ti by design.

At time t1 − ε (ε > 0 small), all e1, . . . , ek are uncovered. So |S|(t1 − ε) ≤ wS, where LHS is total
y-contribution from |S ∩ N|, then t1 ≤ ws

k + ε. As this holds for ε > 0, then t1 = ye1 ≤ wS/|S|.

Now consider ye2 . At this time, all of e2, . . . , ek are uncovered. Then (|S| − 1)(t2 − ε) ≤ wS. This
holds for all ε > 0. Thus ye2 = t2 ≤ wS

|S|−1 .

Continuing this way, we get yei = ti ≤ wS
|S|−i+1 for all i = 1, . . . , k = |S|. Thus

∑
e∈S

ye =
|S|

∑
i=1

yei ≤
|S|

∑
i=1

wS
|S| − i + 1

= ws

(
1
|S| +

1
|S| − 1

+ · · ·+ 1
)
= wS · H|S| ≤ wS · H∆

As y/H∆ is dual feasible solution, then

Theorem 10.3

Greedy algorithm is an H∆-approximation algorithm.

10.2 LP-Rounding Algorithms for Set Cover

Observation 1 If x∗S ≥
1
c , and we set x̂S = 1 in an integer solution then cost increase by a factor of at

most c (relative to cost of x∗)

Observation 2 For any element e, there exists some set S containing e s.t. x∗S ≥
1
B , because there are

at most B terms on the LHS of (1).

These two observations suggest LP-rounding B-approximation algorithm: Pick all sets S with x∗S ≥
1
B .

In observation 2, we get a set cover. In observation 1, we get a solution of cost at most B ·OPT(LP).
Thus a B-approximation.

LP-rounding O(ln n)-approximation for set cover

where n is number of elements. Important technique: Randomized Rounding.
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Idea Interpret x∗S ∈ [0, 1] as a probability, then x∗S is the probability that set S is picked.

(A) Pick each set S independently with probability x∗S.

Issues

1. We may not cover every element.

2. Can only say that expected cost of sets picked is bounded:

Expected cost = ∑
S

wS · Pr[S is picked] = ∑
S

wS · x∗S = OPT(LP)

We will only deal with issue (1): Can we bound Pr[e is not bounded] for some element e, and hence
bound the probability “we do not have a set cover”. For an element f ∈ U,

Pr[ f is not covered] = Pr[no set S containing f is picked] sets are picked independently

= ∏
S: f∈S

(1− x∗S) as 1− x ≤ e−x

≤ ∏
S: f∈S

e−x∗S

= e−∑S: f∈S x∗S ∑S: f∈S x∗S ≥ 1

≤ e−1

Suppose we repeat (A) for 2 ln n rounds, each round is independent of all other rounds. Now

Pr[ f is not covered at the end of 2 ln n rounds] =
2 ln n

∏
i=1

Pr[ f is not covered in round i]

≤
2 ln n

∏
i=1

e−1

= e−2 ln n

=
1
n2

Basic fact (union bound): P(A ∪ B) ≤ P(A) + P(B). thus

Pr[we don’t have a set cover after 2 ln n rounds] = Pr[∃ f ∈ U s.t. f is not covered after 2 ln n rounds]

≤ ∑
f∈U

Pr[ f is not covered after 2 ln n rounds]

≤ n · 1
n2

=
1
n

Then the expected cost of sets picked:

E[cost of sets picked after 2 ln n rounds] ≤
n ln n

∑
i=1

E[cost of sets picked in round i] = 2 ln n ·OPT(LP)

So we have a randomized algorithm such that

1. Algorithm has a probability of error, i.e., we do not have a set cover.

2. Can only say that expected cost of solution is at most 2 ln n ·OPT(LP).
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Now we want to make error probability equal to zero. If after 2 ln n rounds, sound element is not
covered, then simply pick the min-weight set S f containing f , and add that to our solution, i.e., the
sets picked. Now

E[cost of our solution] ≤ 2 ln n ·OPT(LP) + ∑
f∈U

Pr[ f is not covered after 2 ln n rounds] · wS f

≤ 2 ln n ·OPT(LP) + n · 1
n2 ·OPT(LP)

≤
(

2 ln n +
1
n

)
OPT(LP)

as wS f ≤ OPT(LP). This is because any feasible LP solution satisfies ∑S: f∈S xS ≥ 1; then

OPT(LP) = ∑
S: f∈S

xSwS ≥ ∑
S: f∈S

(min
S: f∈S

wS)xS = wS f ∑
S: f∈S

xS ≥ wS f

10.3 Uncapacitated Facility Location

We are given a complete bipartite graph G = (V = F ∪ C, E) (so there is an edge ij ∀i ∈ F, j ∈ C). F is
facilities, C is clients.

• Every facility i has an opening cost fi ≥ 0.

• For each facility i ∈ F, client j ∈ C, we have a connection/assignment cost cij ≥ 0, which is the
cost of assigning client j to facility i.

The goal is to choose a set F′ ⊆ F facilities to open, and assign each client j ∈ C to an open facil-
ity i(j) ∈ F′ so as to minimize ∑i∈F′ fi + ∑j∈C ci(j)j which is the sum of facility opening cost + client
assignment/connection cost.

Note that any open facility can serve any number of clients, this is uncapacitated.

Recall this is NP-complete. We then have LP-relaxation. i indexes facilities in F, j indexes clients in C.
Variables:

• yi indicates if facility i is open ∀i ∈ F.

• xij indicates if client j is assigned to facility i ∀i ∈ F, j ∈ C.

min ∑
i∈F

fiyi + ∑
j∈C

∑
i∈F

cijxij (UFL-P)

s.t. ∑
i

xij ≥ 1 ∀j ∈ C (1)

xij ≤ yi ∀i ∈ F, j ∈ C (2)

x, y ≥ 0

(1) means every j is assigned to a facility. (2) means j is assigned to an open facility.

max ∑
j∈C

αj (UFL-D)

s.t. αj − βij ≤ cij ∀i, j

∑
j∈C

βij ≤ fi ∀i

α, β ≥ 0
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Recall i indexes facilities in F, j indexes clients in C. Variables:

• yi indicates if facility i is open ∀i ∈ F.

• xij indicates if client j is assigned to facility i ∀i ∈ F, j ∈ C.

min ∑
i∈F

fiyi + ∑
j∈C

∑
i∈F

cijxij (UFL-P)

s.t. ∑
i

xij ≥ 1 ∀j ∈ C (1)

xij ≤ yi ∀i ∈ F, j ∈ C (2)

x, y ≥ 0

max ∑
j∈C

αj (UFL-D)

s.t. αj − βij ≤ cij ∀i, j

∑
j∈C

βij ≤ fi ∀i

α, β ≥ 0

11.1 Economic Interpretation of Dual LP

αj is amount j is willing to pay to get itself assigned to a facility.

First, suppose all facilities are free, i.e., have 0 cost, or facility is not charging any payment︸ ︷︷ ︸
βij

from clients

(to produce service). Then, each client j will want to get assigned to facility i′ such that ci′ j = mini∈F cij,
i.e., pays an amount mini∈F cij. So we get a lower bound of ∑j∈C(mini∈F cij) on OPT.

To get a better lower bound, suppose each facility i charges an amount βij ≥ 0 (share of its opening cost
chared to j) from client j (to provide service). These cost shares have to satisfy the fairness condition
∑j∈C βij ≤ fi ∀i ∈ F.

Now, client j has to pay a net cost of cij + βij to get assigned to facility i. Then client j would pay
mini∈F(cij + βij) and so LB(β) := ∑j∈C mini∈F(cij + βij) is a lower bound on OPT.

56
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Any {βij}i∈F,j∈C cost-sharing scheme satisfying fairness condition gives LB(β) as lower bound. So to
get best lower bound, we want to

max ∑j∈C min
i∈F

(cij + βij)︸ ︷︷ ︸
:=αij

s.t. ∑j∈C βij ≤ fi ∀i ∈ F
β ≥ 0

is equivalent to

max ∑j∈C αj

s.t. ∑j∈C βij ≤ fi ∀i ∈ F
β ≥ 0
αj ≤ mini∈F(cij + βij) ∀j ∈ C

The last constraint is equivalent to αj ≤ cij + βij ∀j ∈ C, i ∈ F. So the best LB is obtained by (UFL-D),
where we add α ≥ 0 without any change in optimal value.

Complementary Slackness condition

1. (a) xij > 0⇒ αj = cij + βij, so cij ≤ αj (since βij ≥ 0) ∀i ∈ F, j ∈ C.

(b) yi > 0⇒ ∑j β j = fi

2. αj > 0⇒ ∑i xij = 1

βij > 0⇒ xij = yi

11.2 LP-rounding Algorithms for general assignment costs

Let (x∗, y∗) be the optimal solution to (UFL-P), (α∗, β∗) be the optimal solution to (UFL-D). Let
OPT(LP) be the common optimal value of (UFL-D), (UFL-P), so

∑
i

fiy∗i + ∑
i,j

cijx∗ij = OPT(LP) = ∑
j

α∗j

Define F∗j = {i ∈ F : x∗ij > 0}. (Note that (x∗, y∗) is potentially fractional solution, so |F∗j | will typically
be more than 1)

We make several observations:

(X) cij ≤ α∗j ∀i ∈ F∗j . This is the same CS condition 1(a)

(A) Suppose we have found a facility-set F′ s.t. F′ ∩ F∗j 6= ∅ ∀j ∈ C. (*)

Then the cost of solution that opens F′, and assigns each j ∈ C to some facility in F′ ∩ F∗j , is at
most

∑
i∈F′

fi + total assignment cost ≤ ∑
i∈F′

fi + ∑
j∈C

α∗j = ∑
i∈F′

fi + OPT(LP)

(B) Finding a min-cost set F′ satisfying (*) is a set-cover problem where each facility i is a set with
weight fi, that covers all clients j ∈ C s.t. i ∈ F∗j . So universe is C.

(C) There is a feasible solution y∗ to LP-relaxation (SC-P) for the set-cover instance in (B) of cost
at most OPT(LP). This is because for any j ∈ C, ∑i∈F∗j

y∗i ≥ ∑i∈F∗j
x∗ij = ∑i∈F x∗ij ≥ 1, and

cost(y∗) = ∑i∈F fiy∗i ≤ OPT(LP).

(D) If A is a ρ-approx. algorithm for set-cover that returns a solution of cost at most ρ ·OPT(SC-P)
(LP-relative approximation), then we can use this on set cover instance in observation (B) to get a
facility-set F′ s.t. ∑i∈F′ fi ≤ ρ ∑ fiy∗i ≤ ρ ·OPTLP. And F′ satisfies (*), then we get a UFL solution
of total cost at most (ρ + 1)OPTLP. This gives us a (ρ + 1)-approximation.

All algorithms we have seen for set cover are LP-relative approximation algorithm. In particular,
using greedy algorithm for set cover, we obtain an (Hn + 1)-approximation algorithm for UFL, where
Hn + 1 ≈ O(log n) and n = |C|.
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With general cij’s (cij ≥ 0), any LP-rounding approximation algorithm must assign each client j to
some facility i with x∗ij > 0 (i.e., we must open F′ satisfying (*)). This is because if x∗ij = 0, then we can
increase cij arbitrarily without affecting LP solution, i.e., no handle on cij if x∗ij = 0.

There are instances, where any algorithm satisfying (*) must have cost ≈ ln n ·OPT(LP).

Upshot To do better than ln n, algorithm must sometimes assign a client j to a facility i with x∗ij = 0,
and so we need some structure/assumption on the cij’s so that this is not incompatible with having a
bounded approximation ratio.

11.3 Metric UFL

Recall define F∗j = {i : x∗ij > 0} ∀j ∈ C. Suppose we find F′ s.t. F′ ∩ F∗j 6= ∅ ∀j ∈ C (∗)

To get an improved algorithm, we need to impose some structure on cij’s.

Metric UFL

Connection costs satisfy the triangle-inequality, i.e., cij’s form a metric. That is,

∀i, i′ ∈ F, ∀j, j′ ∈ C : ci′ j ≤ cij + cij′ + ci′ j′

It’s convenient to extend cij’s to distance/costs cuv ∀u, v ∈ F ∪ C by defining cuv to be the shortest-path
distance between u and v in the graph G = (F ∪ C, E = {ij, i ∈ F, j ∈ C}) with {cij}i∈F,j∈C edge cost.

Note that for i ∈ F, j ∈ C, the shortest i-j path is the single edge ij, due to the triangle-inequality.

Observation If all F∗j -sets were pairwise disjoint (i.e., F∗j ∩ F∗k = ∅ ∀j, k ∈ C, j 6= k), then we can find
F∗ satisfying (∗) of cost ≤ ∑i fiy∗i ≤ OPT(LP). By opening cheapest (in terms of fi) facility in each F∗j
set.

j1

F∗j1

j2

F∗j2

k

F∗k

: facility

: client

Goal Pick a subset C′ ⊆ C of clients such that

1. F∗j sets for all j ∈ C′ are disjoint.

2. any k ∈ C− C′ is “close” to a client in C′
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Algorithm 12: Clustering algorithm to find C′

1 L← list of all clients sorted in increasing α∗j -order (break ties arbitrarily)

2 C′ ← ∅
3 while L 6= ∅ do

Let j be first client in L. C′ ← C′ ∪ {j}, L← L− {j}.
for k ∈ L do

if F∗k ∩ F∗j 6= ∅ then
L← L− {k}, set nbr(k) = j

4 return C′

Example:
Suppose we have α∗1 ≤ α∗2 ≤ α∗3 ≤ α∗4 ≤ α∗5 . There is an edge ij whenever x∗ij > 0 (i.e., i ∈ F∗j ). As
usual, we use circle to denote client, and square to denote facility.

A B C D E G

1 2 3 4 5

First add j = 1, and 2, 4 get removed.

A B C D E G

1 2 3 4 5

Next add j = 3, and 5 gets removed.

A B C D E G

1 2 3 4 5

So we have C′ = {1, 3} and nbr(2) = 1, nbr(5) = 3, nbr(4) = 1.

Algorithm 13: Metric UFL

1 Run clustering algorithm to find C′

2 F′ ← ∅
3 for j ∈ C′ do

Open i ∈ F∗j with smallest fi, i.e., add i to F′

Assign j to i, and assign every k ∈ C− C′ with nbr(k) = j to i

4 return F′ and corresponding client assignment

Now let’s analyze the approximation guarantee.

Claim 11.1

If k ∈ C− C′, and nbr(k) = j ∈ C′, then cjk ≤ α∗j + α∗k , and α∗j ≤ α∗k .
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Proof:

j k

≤ α∗j ≤ α∗k

i

Since nbr(k) = j, we have F∗j ∩ F∗k 6= ∅. Let i ∈ Fj ∩ F∗k , so by CS conditions, we have cij ≤ α∗j and
cik ≤ α∗k . And so cjk ≤ cij + cik ≤ α∗j + α∗k . Since nbr(k) = j, j comes before k in L, thus we have
α∗j ≤ α∗k

Lemma 11.2

(a) If j ∈ C′, then it is assigned to a facility i ∈ F′ such that cij ≤ α∗j .

(b) If k ∈ C− C′, then it is assigned to i ∈ F′ such that cij ≤ 3α∗k .

Proof:
For part (a), it’s easy to see that since j ∈ C′, it is assigned to some i ∈ F∗j , thus cij ≤ α∗j .

For part (b),

j k≤ α∗j

≤ α∗k

i

Let j = nbr(k). So k is assigned to some i ∈ F∗j . By Claim 11.1, cjk ≤ α∗j + α∗k and α∗j ≤ α∗k . We have

cik ≤ cjk + cij ≤ (α∗j + α∗k ) + α∗j ≤ 2α∗j + α∗k ≤ 3α∗k

Lemma 11.3

Cost of opening facilities is at most ∑i fiy∗i .

Proof:
The cost of cheapest facility i in F∗j is fi ≤ ∑i′∈F∗j

fi′x∗i′ j since fi ≤ fi′ ∀i′ ∈ F∗j and ∑i′∈F∗j
x∗i′ j ≥ 1. So

we have
fi ≤ ∑

i′∈F∗j

fi′x
∗
i′ j ≤ ∑

i′∈F∗j

fi′y
∗
i′ (♠)

We then add up (♠) for all j ∈ C′ (ignoring gray part):

∑
i∈F′

fi ≤ ∑
j∈C′

∑
i∈F∗j

fi′y
∗
i′ ≤ ∑

i∈F
fiy∗i
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since F∗j sets are disjoint ∀j ∈ C′.

Theorem 11.4

Total cost is at most 4 ·OPT(LP).

which implies this is a 4-approximation algorithm.

Proof:
By Lemma 11.3, total facility-opening cost is at most ∑ fiy∗i ≤ OPT(LP). By Lemma 11.2, total
assignment cost is at most 3 ∑j α∗j = 3 ·OPT(LP). So total cost is at most 4 ·OPT(LP).



12
Computational Methods for (General) Integer
Programs

12.1 Relaxation Methods

Consider an optimization problem

max f (x) s.t. x ∈ X ⊆ Rn (P)

relaxation

We say that
max g(x) s.t. x ∈ G ⊆ Rn (R)

is a relaxation of (P) if

1. X ⊆ G, and

2. f (x) ≤ g(x) ∀x ∈ X.

Suppose (P) and (R) both have optimal solutions. Let x(1) be optimal solution to (P), x(2) be optimal
solution to (R).

Observation 12.1

OPT(R) ≥ OPT(P).

Proof:

OPT(P) = f (x(1))
∗
≤ g(x(1))

?
≤ g(x(2)) = OPT(R)

(∗): property 2

(?): x(1) ∈ X ⊆ G, then by property (1), x(2) optimal solution to (R).

Observation 12.2

Suppose f = g. Then if x(2) ∈ X, we have x(2) optimal solution to (P).

62
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Proof:
f (x(2)) = g(x(2)) = OPT(R) ≥ OPT(P) by Observation 12.1. And we know x(2) feasible to (P).
Thus x(2) is optimal solution to (P).

Let’s examine some examples of relaxations.

Example: LP-relaxation
Suppose

max cTx s.t. Ax ≤ b, x integer︸ ︷︷ ︸
X

(P)

is an integer program. Then its LP-relaxation is

max cTx s.t. Ax ≤ b︸ ︷︷ ︸
G

(R)

• G ⊇ X since we have only dropped integrality constraints.

• f (x) = g(x) = cTx

is indeed a relaxation under our definition.

Example: Lagrangian Relaxation

max cTx
s.t. Dx ≤ d

x ∈ X1

(P)

where Dx ≤ d has m inequalities. So feasible region of (P) is

X = {x : Dx ≤ d, x ∈ X1}

Think of

• Dx ≤ d “complicating” constraints

• x ∈ X1: “easy” constraints (e.g., max cTx s.t. x ∈ X1 is easier to solve)

Let λ ∈ Rm
+, i.e., λ1, λ2, . . . , λm ≥ 0. Consider the problem LR(λ):

max cTx + λT(d− Dx) s.t. x ∈ X1

where λT(d− Dx) is multiplying i-th constraint of d− Dx ≥ 0 by λi, and adding these terms to
objective function. Also observe that λTd is constant, then this is equivalent to

λTd + max(cT − λT D)x s.t. x ∈ X1 (LR(λ))

Lemma 12.3

LR(λ) is a relaxation of (P), for any λ ≥ 0.

Proof:
For property (1), feasible region of LR(λ) is X1, and by definition X ⊆ X1.

For property (2), for any x ∈ X, we have Dx ≤ d, i.e., d− Dx ≥ 0. Since λ ≥ 0, λT(d− Dx) ≥ 0,
and so objective function of LR(λ) is cTx + λT(d− Dx) ≥ cTx.

LR(λ) is called Lagrangian Relaxation of (P)

• with respect to Dx ≤ d constraints.
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• obtained by dualizing Dx ≤ d constraints.

So by Lemma 12.3, and Observation 12.1, OPT(LR(λ)) ≥ OPT(P) ∀λ ≥ 0. So

zLD := min
λ∈Rm

+

OPT(LR(λ)) = min
λ∈Rm

+

(
max cTx + λT(d− Dx)

s.t. x ∈ X1

)
is an upper bound on OPT(P). This is bust upper bound obtained using LR(λ). zLD is called La-
grangian dual with respect to Dx ≤ d constraints.

Example: Bounded-Degree Max-weight Spanning Tree Problem
Consider following Bounded-Degree Max-weight Spanning Tree Problem. Given connected undi-
rected graph G = (V, E), {we}e∈E edge weights. and degree bounds {bv ≥ 0, integer}v∈V . The
goal is to find a spanning tree R of max weight such that every node v has degree at most bv in T,
i.e.,

max w(T)
s.t. T is a spanning tree

|δT(v)| ≤ bv ∀v ∈ V

where δT(v) = δ(v) ∩ T.

We introduce a notation. For a set F ⊆ E, the incidence vector of F, xF, is the {0, 1} vector in RE

given by

xF
e =

{
1 if e ∈ F

0 otherwise

Ler X1 = {xT : T is a spanning tree of G}. Our problem is

max wTx
s.t. x ∈ X1

∑e∈δ(v) xe ≤ bv ∀v ∈ V

where the second constraint is complicated DEGREE constraint. Then the Lagrangian Relaxation
LR(λ) obtained by dualizing DEGREE constraints.

max wTx + ∑
v∈V

λv(bv − ∑
e∈δ(v)

xe) s.t. x ∈ X1

≡ ∑
v∈V

λvbv + max ∑
e=uv∈E

xe(we − λu − λv) s.t. x ∈ X1

(LR(λ))

Consider an integer program (P): max cTx s.t. Ax ≤ b, x integer.

Is there an “ideal relaxation” of (P), i.e., a relaxation that we know how to solve, and whose optimal
value is OPT(P)? YES! We can solve (P) by solving a certain LP. BUT, this LP may have a huge number
of constraints.

Recall, a set Z ⊆ Rn is convex if ∀x, y ∈ Z, ∀λ ∈ [0, 1], the point λx + (1− λ)y ∈ Z. Empty set is
convex set, and intersection of arbitrary family of convex sets is convex.

convex hull

Given a set Z ⊆ Rn, the convex hull of Z, denoted conv(Z) is the smallest convex set containing
Z. I.e., if C is convex, C ⊇ Z, then C ⊇ conv(Z).

Not hard to show that
conv(Z) =

⋂
C⊇Z:C convex

C
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Example:

(a) (b)

(a) Z = {all black dots}, and conv(Z) is red region.

(b) Z is black region, and conv(Z) is red region.

(c) Z = conv(Z) if and only if Z is convex.

Theorem 12.4

Let (P) be the integer program: max cTx s.t. Ax ≤ b, x integer, where A, b rational (i.e., all
entries are rational numbers). Let X be feasible region of (P). Then

(a) conv(X) is a polyhedron. (i.e., a set of the form {x : Mx ≤ b}, or feasible region of some
LP)

(b) Consider (R): max cTx s.t. x ∈ conv(X). Then

• (R) is a relaxation of (P)

• (R) is an LP, and OPT(R) = OPT(P)

So (R) is “ideal relaxation” of (P).

Proof:
It’s bit hard to prove without introducing more convexity theories.

Catch Describing conv(X) may require a huge number of inequalities.

Lemma 12.5

Let X ⊆ Rn, with |X| finite. Then conv(X) is polyhedron.

max wTx s.t. x ∈ conv(Z) = max wTx s.t. x ∈ Z.

Proof:
Skipped, partially because we run out of time, and no need to prove it.

Lemma 12.6

Consider (P): max cTx s.t. x ∈ Z, and its relaxation (R): max cTx s.t. x ∈ conv(Z). Then if x∗ is
optimal solution to (P), we also have x∗ optimal solution to (R).

Proof:
Consider C = {x ∈ Rn : cTx ≤ cTx∗} which is a halfspace. Then C is convex, C ⊇ Z, by definition
of x∗. So C ⊇ conv(Z), i.e., cTx ≤ cTx∗ ∀x ∈ conv(Z). Also, x∗ ∈ Z ⊆ conv(Z). So x∗ is optimal
solution to (R).
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Theorem 12.7

Suppose (P): max cTx s.t. Dx ≤ d, x ∈ X1. Suppose conv(X1) is a polyhedron (e.g., if X1 is finite
or X1 = {x : Ax ≤ b, x integer, where A, b are rational}). Then

zLD = max cTx s.t. Dx ≤ d, x ∈ conv(X1)

12.2 Branch and Bound (BnB) Method

It is an enumerative/recursive method for solving based on a divide-and-conquer approach that ex-
ploits relaxations.

Goal Solve the optimization problem (P): max f (x) s.t. x ∈ X.

BnB((Q), LB)

where

• (Q) is current subproblem that we need to solve: max f (x) s.t. x ∈ XQ where XQ ⊆ X.

• LB is the lower bound on OPT(P); whenever we find a feasible solution x̂ to (P), we update
LB← max(LB, f (x̂)).

Initial call of BnB: BnB((P), LB := −∞) as we haven’t found any feasible solution. The steps are as
follows

Algorithm 14: Branch and Bound: BnB((Q), LB)

1 Solve a relaxation (R): max g(x) s.t. x ∈ G of (Q). // Assume (R) is not unbounded.
if (R) is infeasible then STOP, return (Q) is infeasible, i.e., XQ = ∅.
else zR := OPT(R), x(R) be the optimal solution to (R).

2 if zR ≤ LB then
STOP. // Cannot get a better solution in XQ than what we already have. This

is called Pruning

3 else
Use x(R) to find a optimal solution to (Q).
• If f = g, and x(R) ∈ XQ (feasible region of (Q)), then by Observation 12.2, x(R) is optimal
solution to (Q).
• If we can’t deduce from x(R) that we have found an optimal solution to (Q), then Branch:

Partition XQ into X1 ∪ · · · ∪ Xk (branching strategy) and recursively call BnB to find
best solution in each Xi. I.e., call BnB((Qi) : max f (x) s.t. x ∈ Xi, LB). // Note: LP is
updated whenever we found a feasible solution to (P), and so we always

maintains the best solution found so far. So at the end LB = OPT(P)

4 return LB (and solution whose objective value is LB)

The execution of BnB algorithm is often depicted by a BnB tree. A convenient way of descending
execution of BnB method:
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((P), LB)

((Q2), LB)((Q1), LB) ((Qk), LB)· · ·

Issues:

1. We may create a lot of subproblems, e.g., an exponential number of subproblems.

2. Do we terminate? After how many iterations? Depends strongly on quality of bounds (i.e., zR

bounds), i.e., on quality of relaxations.

BnB using LP-relaxations Say (P) is the integer program, and also (Q) integer program. Here, relax-
ation (R) be LP-relaxation of (Q).

So if x(R), an optimal solution to (R), is integral (i.e., in XQ), then x(R) is optimal solution to (Q).

Otherwise, a common and natural branching strategy is to pick one (or more) fractional variable(s) and
branch based on the value of that variable(s) and branch based on the value of that variable(s) in x(R).
For example, x(R)

j = 2.8 which is non-integer, then we create the subproblems (variable branching):

(Q1): (Q) + “xj ≤ 2”

(Q2): (Q) + “xj ≥ 3”

Clearly we have XQ1 ∪ XQ2 = XQ and XQ1 ∩ XQ2 = ∅.

Knapsack Problem

Given n items; each item i has a value vi ≥ 0, integer weight ai ≥ 0. There is a knapsack of
integer capacity B ≥ 0. Goal is to find a max-value set of items that fit in the knapsack, i.e.,
whose total weight is at most B.

It can be formulated as following IP:

max ∑n
i=1 vixi

s.t. ∑n
i=1 aixi ≤ B

xi ∈ {0, 1} ∀i = 1, . . . , n
(K-IP)

And its LP relaxation
max ∑n

i=1 vixi
s.t. ∑n

i=1 aixi ≤ B
0 ≤ xi ≤ 1 ∀i = 1, . . . , n

(K-LP)

We then can solve knapsack via BnB using LP-relaxations and variable branching. We make several
remarks and observations.

First observation is the following theorem and corollary:
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Theorem 12.8

The following algorithm finds an optimal solution to (K-LP).

Sort items in decreasing order of ρi = vi/ai, and pack items in this order, subject to feasibility.
I.e., let ` be the largest index (under sorted order) s.t. ∑`

i=1 ai ≤ B. Set x1 = x2 = · · · = x` = 1,
and

x`+1 = fraction that fills up knapsack =
B− (a1 + · · ·+ a`)

a`+1
< 1,

and x`+2 = · · · = xn = 0.

Corollary 12.9

There is an optimal solution to (K-LP) with at most one fractional variable (say x`+1). This gives
us a unique choice for branching variable, and the two branches will be{

x`+1 = 1 (i.e., x`+1 ≥ 1)

x`+1 = 0 (i.e., x`+1 ≤ 0)

Observation 2 In a subproblem, some variables are fixed to be 0 or 1. Thus this is just another
knapsack instance with

• some residual knapsack capacity B′ (i.e., capacity left after we have included all items i with
xi = 1)

• some residual set of items S (i.e., items whose variables are not yet fixed to 0 or 1)

Will list subproblem by specifying B′ and S.

Observation 3 Ordering of items in set S for a subproblem easily obtained from the ordering for all
items, which needs to be computed only once.

Will specify optimal solution to LP-relaxation by indicating the fractional variable, and the variables
whose values are 1.

Observation 4 From the optimal solution given by Theorem 12.8, we obtain a feasible (integer) solu-
tion

x1 = · · · = x` = 1, x`+1 = · · · = xn = 0

to knapsack, which can be used to update LP.

Now let’s go through a concrete example. The knapsack capacity is 17. The items are as follows with
vi and ai:

i 1 2 3 4 5 6
vi 8 16 20 12 6 10
ai 3 7 9 6 3 5

ρi = vi/ai 8/3 16/7 20/9 2 2 2

Let (Ki) denote residual knapsack subproblem, and zi be the optimal value of LP-relaxation of (Ki).
Also note that we use color red to denote xi = 1, and color blue to denote it is a fractional variable.
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Initially LB = −∞

(K0)

B = 17, S = {1, 2, 3, 4, 5, 6}.

z0 = 8 + 16 + 20 · 7
9 = 39 5

9 .
Then can update LB to
max(−∞, 8 + 16) = 24

(K7)

B = 17, S = {1, 2, 4, 5, 6}.

z7 = 8 + 16 + 12 + 6
3 = 38.

z7 ≤ LB, so can PRUNE
:no soln. to (K7) has value
better than our current
best solution.

LB = 24

(K1)

B = 8, S = {1, 2, 4, 5, 6}.

z1 = 20 + 8 + 16 5
7 = 39 3

7 .
Then can update LB to
max(24, 28) = 28 LB = 28

(K2)

B = 1, S = {1, 4, 5, 6}.

all items in S have ai > B,
so opt. soln. to (K2) is to
include 2, 3 (items already
included) and no items
from S, i.e., OPT(K2) =

v2 + v3 = 36. Update
LB← max(28, 36) = 36. LB = 36

(K3)

B = 8, S = {1, 4, 5, 6}.

z3 = 20 + 8 + 12 · 5
6 = 38.

LB← max(36, 20 + 8) = 36
(no change) LB = 36

(K4)

B = 2, S = {1, 5, 6}.

all items in S have ai > B.
OPT(K4) = v3 + v4 = 32.
No change to LB. LB = 36

(K5)

B = 8, S = {1, 5, 6}.

z5 = 20 + 8 + 6 + 10 · 2
5 = 38.

LB ← max(36, 20 + 8 + 6) = 36
(no change) LB = 36

(K6)

B = 3, S = {1, 5}.

z6 = 20 + 10 + 8 = 38.
Opt. soln. to LP-relaxation
is integral, then opt. soln.
to (K6).
LB← max(36, 38) = 38 LB = 38

x3 = 1 x3 = 0

x2 = 1 x2 = 0

x4 = 1 x4 = 0

x6 = 1 x6 = 0

LB matches z5, thus solution giving LB is also optimal solution to (K5).

LB matches z3, thus have found an optimal solution to (K3).

Also means that we have found optimal solution to (K1), since we have the optimal solutions to (K2),
(K3):

OPT(K1) = max(OPT(K2), OPT(K3)) = max(36, 38) = 38.

So only need to explore x3 = 0 branch of root node as shown above.

Then BnB terminates with optimal value = LB = 38, optimal solution (solution yielding value = LB):

x∗3 = x∗6 = 1, x∗1 = 1, x∗2 = x∗4 = x∗5 = 0



13
BnB using Lagrangian Relaxation

Recall

Theorem 12.7

If conv(X1) is a polyhedron, then

zLD = max cTx s.t. Dx ≤ d, x ∈ conv(X1)︸ ︷︷ ︸
(∗)

We can use zLD to obtain an upper bound on (P) in BnB, or z(λ) := OPT(LR(λ)). Working with zLD

directly turns out to be expensive, but what works out better is using z(λ) for suitable λ’s. Before
discussing this, we discuss some approaches for computing zLD, if we chose to work this this upper
bound.

13.1 Computing zLD

• Sometimes (∗) may be equivalent to LP-Relaxation. Can sometimes be inferred using Theo-
rem 12.7. And in this case, the λ’s yielding optimal solution to (LD) can be obtained by solving
dual of LP-relaxation of (P).

• Column generation. If |X1| is finite, say X1 = {x(1), . . . , x(k)}, then we can show

conv(X1) =

{ k

∑
i=1

λix(i) : λ ≥ 0,
k

∑
i=1

λi = 1
}

So we can encode (∗) as
max cT(∑k

i=1 λix(i))
s.t. D(∑k

i=1 λix(i)) ≤ d
λ ≥ 0
∑i λi = 1

which is an LP with λi’s as variables. But |X1| could be quite large, and so we may get an LP
with a huge number of variables. So instead of working with the entire-set of variables up-front,
a more effective approach is to add variables on the fly, as and when required.

• Subgradient optimization. We can use “subgradient” descent to optimize z(λ), which we can
show piecewise linear function. Start with some λ = λ(0), move in direction of “gradient” (or

70
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more precisely, “subgradient”, because z(λ) is not differentiable). The idea is to start with some
λ, and more in a suitable direction (e.g., negative gradient) to decrease z(·).

In practice, do not compute zLD as it’s time consuming, but run some iterations of a subgradient-style
method to get “good” λ’s and use z(λ) as upper bound.

Compared to working with the upper bound, it is now easy to compute upper bounds: for any λ ∈ Rm
+,

z(λ) yields an upper bound. So as noted above, seek to compute some “good” λ’s by running, say, a
few iterations of subgradient descent.

Also, λ’s computed for last subproblem, can be used for the next subproblem. So upshot: can get upper
bounds very quickly for our subproblem. But Branching Strategy is not straightforward. Unlike
when using LP relaxations, we may now obtain an infeasible, but integral vector (e.g., spanning tree
violating degree bounds), so how do we branch?

13.2 Example: Traveling Salesman Problem

Given an undirected graph G = (V, E), nonnegative edge costs {ce}e∈E, find a min-cost edge cycle that
visits every node exactly once, which is called a TSP tour.

xe = 1 if e is part of TSP ∀e ∈ E. {1} is some fixed node set, or tour starting node.

min ∑
e∈E

cexe (TSP)

s.t. ∑
e∈δ(v)

xe = 2 ∀v ∈ V − {1} (1)

∑
e∈δ(1)

xe = 2 (2)

∑
e∈E(S)

xe ≤ |S| − 1 ∀∅ ( S ( V (3)

∑
e∈E

xe = n = |V| (4)

xe ∈ {0, 1} ∀e ∈ E

Here constraints (1) and (2) encode the degree constraints. Let F be a TSP tour. If we consider any
nonempty strict subset S of V, F ∩ E(S) must be acyclic, and this is encoded by constraint (3).

Let X1 denote the constraints other than (1). (TSP) is a minimization problem, so the Lagrangian
relaxation will provide a lower bound on OPT(T). Then Lagrangian Relaxation with respect to (1) is

min ∑
e

cexe + ∑
v 6=1

λv

(
2− ∑

e∈δ(v)
xe

)
s.t. x ∈ X1

min 2 ∑
v 6=1

λv + ∑
e=uv∈E

(ce − λu − λv)xe s.t. x ∈ X1 (LR(λ))

Here X1 is the set of 1-trees: consist of spanning tree on V − {1}, exactly 2 edges incident to 1.

For an edge e = (u, v), we define ce(λ) := ce − λu − λv, which is the cost of e in the objective function
of (LR(λ)) under the given λ-vector. We denote z(λ) := OPT(LR(λ)), and this is a lower bound on
OPT(TSP). Hence we have the following.

Theorem 13.1

Suppose F is a TSP tour such that c(F) = z(λ) for some λ. Then F is an optimal TSP tour.
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The corresponding Lagrangian dual problem seeks to find the best lower bound, and is given by

max
λ=(λv)v 6=1

z(λ) ≡ max
λ=(λv)v 6=1

(
min 2 ∑

v 6=1
λv + ∑

e=(u,v)
(ce − λu − λv)xe s.t. x ∈ X1

)
(LD)

In general, at a branch-and-bound node, we will have fixed some xe variables to 0 and some to 1, and
the subproblem that we wish to solve is to find the minimum c-cost TSP solution that is consistent
with the fixed variables. In the corresponding Lagrangian relaxation, we seek to find the minimum
c(λ)-cost 1-tree that includes the edges whose xe’s are fixed to 1, and does not include the edges whose
xes are fixed to 0. To find such a 1-tree, we use the following result.

Theorem 13.2

Given G = (V, E), edge costs, disjoint sets F, Z, where F is the set of edges whose xes are fixed
to 1, Z is set of edges whose xes are fixed to 0. Can compute a min-cost 1-tree T such that T ⊇ F,
T ∩ Z = ∅ (OR detect that no such 1-tree exists).

Theorem 13.2 (detailed)

Let G = (V, E) be a connected undirected graph with |δ(1)| ≥ 2. Let F, Z be disjoint subsets of
E, where F is the set of edges whose xes are fixed to 1, Z is set of edges whose xes are fixed to
0. Denote G′ =

(
V \ {1}, E(V \ {1}) \ Z

)
.

(i) If |δ(1)∩ F| > 2 or |δ(1) \ Z| < 2 or G′ is not connected, then there is no 1-tree T such that
T ⊇ F, T ∩ Z = ∅.

(ii) Otherwise, a minimum-cost 1-tree T such that T ⊇ F, T ∩ Z = ∅ is obtained by taking
a minimum-cost spanning tree of G′ containing F \ δ(1), and adding to it the edges in
F ∩ δ(1) and the 2− |F ∩ δ(1)| cheapest edges from δ(1) \ (F ∪ Z).

BnB using LR for TSP

1. At a BnB node:

• compute optimal 1-tree T given current λv’s using Theorem 13.2

• perform at most two “tweakings” of λv’s:

– If there exists v such that |T ∩ δ(v)| > 2, decrease λv by 1. By doing so, we increase the
ce(λ)-costs of all edges incident to v, which intuitively aims to decrease the degree of
node v in the new optimal 1-tree.

– If there exists v such that |T ∩ δ(v)| < 2, increase λv by 1.

– If |T ∩ δ(v)| = 2, then we do not change λv.

2. At root node: start with λv = 0 ∀v ∈ V − {1}.

3. For next subproblem, will start off λv’s obtained by tweaking the last λv’s used for previous
subproblem.

4. Branching Strategy: Suppose 1-tree T is not a TSP tour. Then it contains a cycle C = {e1, . . . , ek}
that does not visit all nodes.
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So a TSP tour must exclude at least one of e1, . . . , ek. So Branch into subproblems:

xe1 = 0 xe1 = 1 xe1 = 1 · · · xe1 = 1
... xe2 = 0 xe2 = 1 · · ·

...
... xe3 = 0 · · ·

...
...

. . . xek−1 = 1
xek = 0

If some of the variables have been fixed previously, then we omit the subproblems where the above
fixing of variables conflicts with the earlier fixing.

When to stop If we have a TSP tour T, and some λv’s such that c(T) = z(λ). Then T is optimal TSP
tour.

Now let’s examine a concrete example:
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We start with root node T0.
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Original problem: (T0)

λv = 0 for all v 6= 1

Root node

λ2 ↓ 1, λ8 ↑ 1
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1

λ = (•,−1, 0, 0, 0, 0, 0, 1)

Then we branch based on cycle:
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T0

infeasible, as
deg(1) must = 2

infeasible, as
deg(1) must = 2

x12 = 0 x12 = 1, x23 = 1, x31 = 0

x12 = 1
x23 = 0

1

3 7

8

62

54

6

02

1

13

3

03

2

−1

4

2

Subproblem: (T1)

λ = (•,−1,−1, 0, 0, 0, 1, 1)

λ3 ↓ 1, λ7 ↑ 1

We indicate xe = 1 by making edge thick, and indicate xe = 0 by paling the edge. Then we branch
based on cycle.

T1

infeasible, as
deg(1) must = 2

x13 = 0 x13 = 1, x24 = 0

x13 = 1
x24 = 1
x34 = 0

1

3 7

8

62

54

5

−11

2

14

4

−13

2

−1

4

2

Subproblem: (T2)

λ = (•,−1,−1,−1, 0, 1, 1, 1)

λ4 ↓ 1, λ6 ↑ 1

c-cost of tour found is 13. Lower bound on OPT(T1) obtained by the optimal value of Lagrangian
relaxation of (T1):

min 2 ∑
v 6=1

λv + ∑
e=(u,v)

(ce − λu − λv)xe s.t. x ∈ X1, x12 = 1, x23 = 0 (LR(T1)(λ))

is 13. So this tour is the optimal tour for (T1), and hence for (T0).
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