
}
Deterministic OR Models

CO 370}
Bertrand Guenin

LATEXed by S̊i˜bfle¨lˇi˚u¯s P̀e›n`g



Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the
lectures of CO 370 during Fall 2021 as well as other related resources. I do not make any warranties
about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

What is operations research (OR)? There’s no standard definitions for it. One particular definition:
use of mathematical models to make complex decisions for real life problems. The origin is British
military in WW2. OR is actually everywhere today. Key milestone: Simplex algorithm (1947).

Recall optimization problem is of the form:

max f (x)
s.t. a set of constraints

There are some applications: mail delivery, machine scheduling, inventory problem, network design,
facility location, class scheduling, portfolio optimization, surgery planning, sensor location.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

S̊i˜bfle¨lˇi˚u¯s P̀e›n`g

1

https://notes.sibeliusp.com/contact
https://notes.sibeliusp.com/


Contents

Preface 1

I Formulations 4

1 LP formulations 5
1.1 Production problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Minimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Flows 8
2.1 Max st-flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Min cost flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 IP formulations 11
3.1 IP tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Modeling piece-wise linear function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Modeling union of polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Perfect formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Application to flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Cone programming 17
4.1 Examples of cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Cone programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 (General) SOC program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Robust optimization 19
5.1 Model uncertainty for a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Modeling uncertainty by a ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Modeling uncertainty by a hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II Interpretations of optimal solutions 22

6 Duality review 23
6.1 Weak duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Strong duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Complementary Slackness conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Economic interpretation of dual variables 25

8 Sensitivity Analysis 27

2



8.1 Primal and dual Optimal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.2 Review of simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8.3 Changes to the right-hand-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8.4 Changes in the objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Primal and dual Simplex 32
9.1 Tableaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9.2 Primal and Dual Simplex via tableaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9.3 Parametric Linear Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III Solving Optimization Techniques 36

10 Cutting planes - review 37
10.1 Cutting plane algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11 Column generation 39
11.1 Column generation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11.2 Cutting stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



Picture from https://www.catalent.com/oral-dose/

development-bioavailability/formulation/

Part I:

Formulations

4

https://www.catalent.com/oral-dose/development-bioavailability/formulation/
https://www.catalent.com/oral-dose/development-bioavailability/formulation/


1
LP formulations

1.1 Production problem

Products J = {1, . . . , n}
Resources I = {1, . . . , m}

Data:

• ∀j ∈ J : cj = value of unit of product j

• ∀i ∈ I : bi = number of units of resource i available

• ∀i ∈ I, ∀j ∈ J : aij = number of units of resource i going to product j

Goal: maximize values of product made subject to available resources

Var: xj = number of units of product j produced

Then problem is
max ∑j∈J cjxj

s.t. ∑j∈J aijxj ≤ bi (i ∈ I)
xj ≥ 0 (j ∈ J)

Now let’s generalize this problem to have more than one period.

Products J = {1, . . . , n}
Resources I = {1, . . . , m}
Periods K = {1, . . . , p}

Then we have data

• ∀j ∈ J, k ∈ K: cjk = unit value of product j in period k

• ∀i ∈ I, k ∈ K: wik = unit price for resource i in period k

• ∀i ∈ I, j ∈ J: aij = number of units of resource i going into product j

and the goal: decide how much of each resource to buy & how much of each product to make during
each period, to maximize total profit. Unused resources are available at next time period.

Var:

5



CHAPTER 1. LP FORMULATIONS 6

• pik = number of units of resource i, purchased at start of period k

• xjk = number of units of product j made in period k

• zik = number of units of resource i at the end of period k

Profit = ∑
k∈K

[
∑
j∈J

cjkxjk −∑
i∈I

wik pik

]
(1.1)

Then we keep track of resources: for i ∈ I, k ∈ K

zik = zi(k−1) + pik −∑
j∈J

aijxjk (1.2)

and we define for i ∈ I,
zi0 = 0 (1.3)

Thus the optimization problem is
max (1.1)

s.t. (1.2), (1.3)
p, x, z ≥ 0

(P)

Remark:
If (P) has a feasible solution of value that is bigger than 0, then (P) is unbounded. So we are
missing some assumptions, maybe? For example, bik = amount of resource i that can be bound
during period k. Then we can add constraints: pik ≤ bik.

1.2 Minimax

Consider the problem of the form

minx max{ f1(x), . . . , fk(x)} := g(x)
s.t. · · ·

where fi : Rn → R.

Example:
f1(x) = −x− 1, f2(x) = 0, f3(x) = x− 1. Then max{ f1(x), f2(x), f3(x)} is as follows

1 2−1−2

1

2

−1

−2

f1

f2

f3



CHAPTER 1. LP FORMULATIONS 7

A motivation

• ∀i ∈ [k], fi(x) = completion time for task i.

• Project consists of task 1, . . . , k.

• g(x) = completion time of entire project

Note that minimax is not an optimization problem as we defined it. We can revise it as follows

min y
s.t. y ≥ f1(x)

y ≥ f2(x)
...
y ≥ fk(x)
· · ·

An application minimize a piece-wise linear convex function using linear programming.



2
Flows

digraph

A directed graph (digraph) is a pair (V, E) where

• V is a set of vertices,

• E is a set of ordered pairs of vertices called arcs.

Notation Let q ∈ V, then

δ+(q) = {e ∈ E | e leaves q}
δ−(q) = {e ∈ E | e arrives at q}

2.1 Max st-flow model

Given

1. digraph G = (V, E),

2. two vertices s, t ∈ V, and s 6= t,

3. ∀e ∈ E, arc e has capacity ue ≥ 0.

Now we construct an LP.

For every arc e, we will have a variable xe, and xe will be called the flow on arc e.

Notation Let q ∈ V:
fx(q) := ∑

e∈δ+(q)
xe − ∑

e∈δ−(q)
xe

The maximization problem is then

max fx(s)
s.t. fx(q) = 0 (q ∈ V, q 6= s, q 6= t)

0 ≤ xe ≤ ue (e ∈ E)
(P)

8



CHAPTER 2. FLOWS 9

A feasible solution to (P) is a flow. An optimal solution to (P) is a maximum flow. The value of a flow
x is fx(S).

Remark:
(P) is always feasible. It is not unbounded, so there always exists a maximum flow.

Application computer network. Suppose we have

• computers s and t (s 6= t)

• capacity ue (gb/s) for every link e

The goal is to computer number gb that can be sent from s to t across network. Then xe is the amount
of information across e. fx(q) = 0 means no information lost.

Magic property

If u is integer, then there exists an optimal solution to (P) that is integer.

Remark:
We need the condition “u is integer” so that the property is still true. Also, an optimal solution to
(P) is not necessarily integers.

Generalize max st-flows

We can add lower bounds to arcs: `e ∀e ∈ E

max fx(s)
s.t. fx(q) = 0 (q ∈ V, q 6= s, q 6= t)

`e ≤ xe ≤ ue (e ∈ E)
(Q)

Magic property - revised

If `, u is integer, and there exists an optimal solution to (Q), then there exists an optimal solution
to (Q) that is integer.

Example: Consistent rounding
The goal is to round all entries to nearest up/down integer, so that row sums & column sums still
hold.

Any feasible solutions give consistent rounding.

2.2 Min cost flow model

Given

• Digraph G = (V, E)

• Capacities ue ≥ 0 (e ∈ E)

• Costs ce (e ∈ E)

• Supply/demands bq (q ∈ V)



CHAPTER 2. FLOWS 10

Then the model is
min ∑e∈E cexe

s.t. fx(q) = bq (q ∈ V)

0 ≤ xe ≤ ue (e ∈ E)
(P)

Similarly, feasible solution to (P) is a flow. An optimal solution to (P) is a min cost flow.

Magic property - min cost flows

Suppose u, b are integer, then if there exists a min cost flow, then there exists a min cost flow
that is integer.

Similarly, we can add a lower bound:

min ∑e∈E cexe

s.t. fx(q) = bq (q ∈ V)

`e ≤ xe ≤ ue (e ∈ E)
(P)

Magic property - min cost flows (revised)

Suppose u, b, ` are integer, then if there exists a min cost flow, then there exists a min cost flow
that is integer.

What is a necessary condition for bq so that there exists a flow? ∑q∈V bq = 0.

Example: Staffing problem

hours # of employees required
1-2 2

2-3 3

3-4 3

4-5 2

and we have cost of hiring a single employee between

hours cost
1-5 6

1-4 4

3-5 5

2-4 3

The goal is to minimize cost of hiring employees while meeting staff needs.



3
IP formulations

3.1 IP tricks

Imaging we are forcing variable to take some prescribed set of values: x ∈ {5, 9, 13, 36}. Then we can
introduce variables z1, z2, z3, z4 ∈ {0, 1} so that we have two constraints:

1 = z1 + z2 + z3 + z4

x = 5z1 + 9z2 + 13z3 + 36z4

3.2 Modeling piece-wise linear function

Let f : R → R be piecewise linear. Given a1, . . . , ak and f1, . . . , fk such that f (ai) = fi. The goal is to
write IP constraints with variables x, y such that y = f (x), x ∈ [ a1

dom( f )

, ak].

To generalize,

1. λ1, . . . , λk ≥ 0, ∑k
i=1 λi = 1

2. x = ∑k
i=1 λiai

3. y = ∑k
i=1 λi fi

4. z0, . . . , zk ∈ {0, 1}, z0 = zk = 0

5. ∑k
i=0 zi = 1

6. ∀p ∈ [k], λp ≤ zp−1 + zp

By (4) and (5), we may assume that zp = 1 and zj = 0 ∀j 6= p.

Claim λp, λp+1 are the only non-zero λ variables.

Proof:
Pick j 6= p, j 6= p + 1. As

0 ≤ λj ≤ zj−1 + zj = 0 + 0 = 0

With this claim, we can simplify (2) and (3).

11



CHAPTER 3. IP FORMULATIONS 12

3.3 Modeling union of polyhedra

Let

P1 = {x | A1x ≤ b1}
P2 = {x | A2x ≤ b2}

Goal: write condition: x ∈ P1 ∪ P2 as part of IP.

Hypothesis: If x ∈ P1 ∪ P2, then 0 ≤ x ≤ U for some U.

Constraints:

1. y1, y2 ∈ {0, 1}

2. y1 + y2 = 1

3. x = x1 + x2

4. Aixi ≤ yibi, i = 1, 2

5. 0 ≤ xi ≤ yiU, i = 1, 2

To show that x ∈ P1 ∪ P2 ⇐⇒ ∃x1, x2, y1, y2 such that all 5 conditions hold.

Proof:
First let’s assume (1) - (5) hold. We may assume y1 = 1, y2 = 0. Then (5) tells us x2 = 0. (3) tells us
x = x1. (4) implies

A1x1 ≤ y1b1 =⇒ A1x ≤ b1 =⇒ x ∈ P1 ⊆ P1 ∪ P2

Now suppose x ∈ P1 ∪ P2. We may assume x ∈ P1. Then we set y1 = 1, y2 = 0, x1 = x, x2 = 0. Then
we can verify that all 5 conditions hold.

3.4 Perfect formulations

basis

Let A be a matrix with column indices {1, . . . , n}. Then B ⊆ {1, . . . , n} is a basis if

1. AB square,

2. AB non-singular.

Remark:
A has a basis ⇐⇒ rows of A are independent.

basic solution

Let A be a matrix with column indices 1, . . . , n. Consider

Ax = b (∗)

Pick B as basis of A. Then x is a basic solution of (∗) if

1. Ax = b.

2. xj = 0 if j /∈ B.



CHAPTER 3. IP FORMULATIONS 13

x is a basic solution for (∗) if x is a basic solution for some basis B.

standard equality form

max cTx
s.t. Ax = b

x ≥ 0

and rows of A are independent.

The correctness of simplex algorithm implies the following theorem:

Theorem 3.1

If an LP is SEF has an optimal solution, then it has an optimal solution that is basic.

Let A be matrix, b vector with same number of entries as rows of A. Then A ←j b denotes matrix
obtained from A by replacing column j by b.

Theorem 3.2: Cramer’s rule

Let M be a non-singular matrix and consider Mx = b.

x̄j =
det
(

M←j b
)

det(M)
∀j

then Mx̄ = b.

Proposition 3.3

Let M be square matrix with det(M) = ±1, and M, b are integer. Then there exists a unique
solution to Mx = b is integer.

Proof:
Directly from Cramer’s rule.

Totally unimodular matrix

A matrix A is totally unimodular if every square submatrix N of A, det(N) ∈ {0,+1,−1}.

Proposition 3.4

Let A be TU, b integer. Then every basic solution of Ax = b is integer.

Proof:
Suppose x̄ is a basic solution for basis B. If j /∈ B, x̄j = 0, which is integer. The basic variables
x̄B are the unique solution to ABxB = b. Since A is TU, then det(AB) ∈ {0,−1,+1}. Since B is
basis, det(AB) 6= 0. Then det(AB) = ±1. AB is integer as it is TU. Then by Proposition 3.3, x̄B is
integer.



CHAPTER 3. IP FORMULATIONS 14

Theorem 3.5

If an LP is SEF has an optimal solution, it has an optimal solution that is basic.

Theorem 3.6: main theorem

max cTx
s.t. Ax = b, x ≥ 0

(P)

Suppose A is TU and b integer. Then if (P) has an optimal solution, it has an optimal solution
that is integer.

Proof:
We may assume rows of A are linearly independent. Then (P) is SEF. Thus if (P) has an optimal
solution, then by Theorem 3.5, it has an optimal basic solution x̄. By Proposition 3.4, every basic
solution is integer. In particular, so is x̄.

Constructing TU matrices

Proposition 3.7

Let A be a 0,−1,+1 matrix such that for every column

1. we have at most one +1,

2. we have at most one −1.

Then A is TU.

Proof:
We need to show every k × k submatrix M of A has det(M) ∈ {0,−1,+1}. We can prove it by
induction on k. Discuss by cases.

• M has a column of zeros. Then det(M) = 0.

• Every column has exactly one +1 and one -1, then row sum is zero, then rows are linearly
dependent, thus det(M) = 0.

• One column has a unique non-zero entry Mij. Applying cofactor expansion,

det(M) = Mij(−1)i+j det
(

M′ij
)

Then by induction, the statement holds.



CHAPTER 3. IP FORMULATIONS 15

Constructing TU matrices from TU matrices

Proposition 3.8

Let A be TU. Then

1. permutation of A,

2. AT ,

3. any matrix obtained from A by multiplying rows/columns by −1,

4. any matrix obtained by adding a unit vector to thw rows/columns

are TU.

Theorem 3.9

max cTx
s.t. Ax = b, x ≥ 0

(P)

Suppose A is TU, b integer. Then if (P) has an optimal solution, then it has one that is integer.

Theorem 3.10

max cTx
s.t. Ax = b, 0 ≤ x ≤ U

(Q)

Suppose A is TU, b and U are integer. Then if (Q) has optimal solution, then it has one that is
integer.

Proof:
We can rewrite (Q) in SEF:

max cTx

s.t.

[
A 0
I I

] [
x
s

]
=

[
b
U

]
x, s ≥ 0

(P’)

We denote the first constraint by A′x′ = b′. Now note that b′ is integer as b, U are integer. It’s clear
that A′ is TU. Then apply Theorem 3.9.

3.5 Application to flows

vertex-arc incidence matrix

M is the vertex-arc incidence matrix of digraph G = (V, E) if

1. rows of M correspond to V,

2. columns of M correspond to E,

3. for column uv we have +1 for every u, −1 for entry v and 0 otherwise.



CHAPTER 3. IP FORMULATIONS 16

Remark:
Let M be vertex-arc incidence matrix of G = (V, E). Pick v ∈ V: for every entry e of row v, if
e ∈ δ+(v), then we have +1; if e ∈ δ−(v), we have −1, otherwise we have 0.

Magic property - min cost flow

min cTx
s.t. fx(q) = bq (q ∈ V)

0 ≤ x ≤ U
(P)

Suppose b, U integer, and there exists an optimal solution. Then there exists an integer optimal
solution.

Proof:
Let A be the vertex-arc matrix.

Claim fx(q) = bq ⇐⇒ rowq(A)x = bq.

Proof of the claim:
Using the remark, we know that

rowq(A)x = ∑
e∈δ+(q)

xe − ∑
e∈δ−(q)

xe := fx(q)

We can write (P) as
min cTx

s.t. Ax = b
0 ≤ x ≤ U

We proved A is TU. Then it follows by Theorem 3.10.



4
Cone programming

This is generalization of

1. linear programming

2. second-order cone programming

3. semi-definite programming

We have good algorithms for these problems.

cone

C ⊆ Rm is a cone if

1. C is convex,

2. ∀λ ≥ 0 and a ∈ C, λa ∈ C.

The second condition: C is closed under (non-negative scaling).

pointed cone

A cone is pointed if it does not contain an infinite line.

4.1 Examples of cones

Rm
+ = {u ∈ Rm : u ≥ 0}

Second Order Cone (SOC):

Lm = {u ∈ Rm : ‖(u1, . . . , um−1)‖ ≤ um}

semi-definite matrix

An n× n matrix M is semi-definite if ∀x ∈ Rn: xT Mx ≥ 0.

Semi-definite cone is
Sn
+ = {n× n semi-definite matrices M}

17



CHAPTER 4. CONE PROGRAMMING 18

Direct sum

Let A ⊆ Rp, B ⊆ Rq. The direct sum and A and B is

A⊕ B := {(a, b) : a ∈ A, b ∈ B} ⊆ Rp+q

Proposition 4.1

Let A, B be cones, then A⊕ B is a cone.

4.2 Cone programming model

Let c ∈ Rn, A m× n matrix, b ∈ Rm, K pointed cone.

min cTx
s.t. Ax− b ∈ K

(P)

Cases:

1. K = Rm
+. Then Ax− b ∈ Rm

+ ⇐⇒ Ax ≥ b. Then it’s an LP.

2. K = Lm. Ax− b ∈ Lm can be rewritten as[
A′

dT

]
x−

[
b′

p

]
∈ Lm

∥∥A′x− b
∥∥ ≤ dTx− p

and this is restricted SOC program.

3. K = Sn
+. This is semi-definite program.

Example: Least square problem

min
x
‖Ax− b‖

or
min t

s.t. ‖Ax− b‖ ≤ t

which is restricted SOC program

4.3 (General) SOC program

min cTx
s.t. ‖Aix− bi‖ ≤ dT

i x− pi (i = 1, . . . , k)

Is this still a cone program? In other words, is there A, B, K such that the above constraint is equivalent
to Ax− b ∈ K? Yes. It’s direct sum of pointed cones.



5
Robust optimization

min · · ·
s.t. aTx ≤ β

· · ·

This particular constraint might be important. And a is part of data that is given, but a here might
have some imprecision. This brings us the uncertainty.

5.1 Model uncertainty for a

Given: ā ∈ Rn estimate, ε ⊆ Rn uncertainty. True a satisfies a− ā ∈ ε.

Then we can write the condition
aTx ≤ β (a− ā ∈ ε)

We have different choices for ε, or think it for different ways.

For example, the ball:
aTx ≤ β (a− ā ∈ {u : ‖u‖ ≤ r} := ε1) (5.1)

the cube:
aTx ≤ β (a− ā ∈ {u : −r ≤ ui ≤ r, ∀i} := ε2) (5.2)

Let

S1 = {x | x satisfies (5.1)}
S2 = {x | x satisfies (5.2)}

What’s the relationship between S1 and S2? We know that ε1 ⊆ ε2. The constraints in (5.1) form a
subset of constraints in (5.2). Thus S2 ⊆ S1.

We will see: (5.1) can be replaced by a single SOC constraint: ‖ f (x)‖ ≤ g(x) where f , g affine. (5.2)
can be replaced by a finite number of linear constraints (with additional variables).

5.2 Modeling uncertainty by a ball

Given data r > 0, ā ∈ Rn, β ∈ R. We then have ε = {u ∈ Rn | ‖U‖ ≤ r}.

aTx ≤ β (a− ā ∈ ε) (∗)

19



CHAPTER 5. ROBUST OPTIMIZATION 20

As (∗) has infinitely many of inequalities, the goal is to replace (∗) with a single inequality. The key
idea is to fix x. Note that

(∗) ⇐⇒ max{aTx : a− ā ∈ ε} ≤ β

āTx + max{aTx− āTx : a− ā ∈ ε} ≤ β

āTx + max{(a− ā)Tx : a− ā ∈ ε} ≤ β

āTx + max{uTx : u ∈ ε} ≤ β

Note that max{uTx : u ∈ ε} = r‖x‖ given ε is a radius r ball. Then

āTx + r‖x‖ ≤ β

and this is exactly SOC constraint.

ellipsoid

An ellipsoid is a set of the form {Pu : ‖u‖ ≤ 1} and P is a non-singular matrix.

For example, let P =

[
2 0
0 1

]
This is generalization of the ball.

5.3 Modeling uncertainty by a hypercube

Recall the constraint
aTx ≤ β (a− ā ∈ ε) ( )

where ε = {U | −r ≤ vj ≤ r, ∀j}. We need to show

1. ( ) is equivalent to single constraint, involving absolute values.

2. ( ) is equivalent to finite number of linear constraints.

aTx ≥ β (a− ā ∈ ε) ( )

Fix x. Then the above constraint is equivalent to

min{aTx | a− ā ∈ ε} ≥ β

Then similarly,
āTx + min{uTx | u ∈ ε} ≥ β

Note that assume u is optimal, then

uTx = ∑
j

ujxj

= ∑
j:xj≥0

ujxj + ∑
j:xj<0

ujxj

= ∑
j:xj≥0

−rxj + ∑
j:xj<0

rxj

= −r ∑
j
|xj|



CHAPTER 5. ROBUST OPTIMIZATION 21

Proposition 5.1

aTx ≥ β (a− ā ∈ {u | −r ≤ uj ≤ r, ∀j})

is equivalent to
āTx− r ∑

j
|xj| ≥ β

Corollary 5.2

aTx ≤ β (a− ā ∈ {u | −r ≤ uj ≤ r, ∀j})

is equivalent to
āTx + r ∑

j
|xj| ≤ β

Proposition 5.3

1. ∃x such that āTx + r ∑j |xj| ≤ β

2. ∃x, y such that āTx + r ∑j yj ≤ β, yj ≥ xj, yj ≥ −xj.

are equivalent.

Proposition 5.4

aTx ≤ β (a− ā ∈ {u | −r ≤ uj ≤ r, ∀j})

is equivalent to

āTx + r ∑
j

yj ≤ β

yj ≥ xj, yj ≥ −xj, ∀j

This can be generalized to be a rectangle. Given ∆ ≥ 0. Then

ε = {i | −δj ≤ uj ≤ δj, ∀j}

For example, ∆ =

(
1
2

)



Picture from https://leadingincontext.com/2019/11/06/

what-is-duality/

Part II:

Interpretations of optimal solutions

22

https://leadingincontext.com/2019/11/06/what-is-duality/
https://leadingincontext.com/2019/11/06/what-is-duality/


6
Duality review

max cTx
s.t. Ax ? b

x ?
(Pmax)

min bTy
s.t. ATy ? c

y ?
(Pmin)

Then we have this table

Pmax Pmin

xj ≥ 0 constraint j ≥
xj ≤ 0 constraint j ≤
xj free constraint j =

constraint j ≤ yi ≥ 0
constraint j ≥ yi ≤ 0
constraint j = yi free

6.1 Weak duality

Let Pmax and Pmin be a primal/dual pair. Let x̄ and ȳ feasible for Pmax and Pmin respectively, then
cT x̄ ≤ bT ȳ.

Then if cT x̄ = bT ȳ, then x̄ optimal for Pmax, ȳ optimal for Pmin.

6.2 Strong duality

Let Pmax and Pmin be a primal/dual pair.

1. Pmax has an optimal solution x̄ iff Pmin has an optimal solution ȳ.

2. If (1) holds, then cT x̄ = bT ȳ.

Strong duality is what makes weak duality useful.

6.3 Complementary Slackness conditions

x̄, ȳ satisfy CS conditions if

23



CHAPTER 6. DUALITY REVIEW 24

1. ∀j: x̄j = 0 or constraint j of Pmin tight.

2. ∀i: ȳi = 0 or constraint i of Pmax tight.

CS theorem

Let x̄, ȳ feasible for Pmax and Pmin. Then the following are equivalent:

1. x̄, ȳ optimal for Pmax and Pmin.

2. CS conditions hold.

3. cT x̄ = bT ȳ.



7
Economic interpretation of dual variables

Recall the production problem

1. Products J = {1, . . . , n}, Resources I = {1, . . . , m}.

2. ∀j ∈ J: cj = unit value of product j.

3. ∀i ∈ I: bi = number of units of resource i available.

4. ∀i ∈ I, j ∈ J: Aij = number of units of resource i in one unit of product j.

The formulation is
max ∑j∈J cjxj

s.t. ∑j∈J Aij ≤ bi (i ∈ I)
xj ≥ 0 (j ∈ J)

Now we can write it in a more compact way:

max cTx
s.t. Ax ≤ b

x ≥ 0
(P)

and its dual
min bTy

s.t. ATy ≥ c
y ≥ 0

(D)

What is (D) doing? Consider a special case.

Let x1 be number of hammer, x2 be number of pliers. The formulation is

max
(

130 100
)

x

s.t.

1.5 1
1 1

0.3 0.5

 x ≤

27
21
9


where three rows represent steel, plastic, time respectively. Primal optimal solution x̄ = (12, 9)T . Its
dual

min
(

27 21 9
)

y

s.t.

(
1.5 1 0.3
1 1 0.5

)
y ≥

(
130
100

)
y ≥ 0

25



CHAPTER 7. ECONOMIC INTERPRETATION OF DUAL VARIABLES 26

Then the dual solution ȳ =
(

60 40 0
)T

. The dual variables attach to each of resources.

In general, we can think of yi = “price” of resource i. But this is not quite precise enough. More
precisely, yi is the lowest unit price at which resource i can be sold without losing money. This can
also be called as market price, fair price, shadow price.

This is indeed the right interpretation. Let us look at constraint of (D):

• y ≥ 0: prices are non negative

• ATy ≥ c:
colj(A)Ty ≥ cj

∑
i∈I

Aijyi ≥ cj

where cj is unit value for product j. And the sum means the market value of resources going
into one unit of product j.

Note that bTy = ∑i∈I biyi is the total market value of all resources. Then strong duality tells us total
production value = market value of all resources.

Now let’s look at CS. Suppose x̄, ȳ optimal for (P) and (D).

• ∀i ∈ I, rowi(A)x̄ < bi =⇒ ȳi = 0. It tells us if we have excess resource i, then market value of
resource i is zero.

• ∀j ∈ J, colj(A)T ȳ > cj =⇒ xj = 0. It tells us if market value of resource into one unit of product
j is bigger than value of product j, then do not produce product j.

Proposition 7.1

Let α ≥ 0. Consider
max cTx

s.t. Ax ≤ b
x ≥ 0

(P)

and
max cTx

s.t. Ax ≤ b + αei
x ≥ 0

(Q)

Suppose (P) has an optimal solution and let ȳ be the optimal solution to the dual of (P).

1. (Q) has an optimal solution.

2. OPT(Q) ≤ OPT(P) + αȳi.

Proof:
Denote the duals of (P) and (Q) by (D) and (R).

Since (P) feasible and α ≥ 0, then (Q) feasible. ȳ feasible for (D), then ȳ feasible for (R). Then (Q)
and (R) both have an optimal solution.

To prove (2), note that

OPT(Q) ≤ (b + αei)
T ȳ weak duality

= bT ȳ + αȳi

= OPT(P) + αȳi strong duality



8
Sensitivity Analysis

max cTx
s.t. Ax = b

x ≥ 0
(P)

Let B be an optimal basis. For what changes to A, b or c does B remain optimal?

8.1 Primal and dual Optimal basis

max cTx
s.t. Ax = b

x ≥ 0
(P)

and dual
max bTy

s.t. ATy ≥ c
(D)

Let B be basis of A, and N column indices of A not in B. Then this means we can partition A = [B | N].

primal/dual basic solution

x is a primal basic solution if xB = A−1
B b, xN = 0. y is a dual basic solution if y = A−T

B cB.

primal/dual feasible

B primal feasible if x feasible for (P). B dual feasible if y feasible for (D).

optimal basis

B is optimal if it is primal and dual feasible.

We now need to be convinced that this is a good definition. Now we can characterize primal/dual
feasible basis.

Remark:
Let B be basis. Define b̄ = A−1

B b. Then B is primal feasible if and only if b̄ ≥ 0.

27



CHAPTER 8. SENSITIVITY ANALYSIS 28

Remark:
Let B be basis. Define y = A−T

B cB, c̄ = c− ATy. Then the following are equivalent:

• B dual feasible.

• c̄ ≤ 0.

• c̄N ≤ 0.

Proposition 8.1

If B is optimal basis then

1. primal basic solution is optimal,

2. dual basic solution is optimal.

Proof:
By CS theorem, if suffices to check CS conditions hold for x, y.

Proposition 8.2

If an LP in SEF has an optimal solution, then it has an optimal basis.

8.2 Review of simplex

canonical form

(P) is in canonical form for some basis B if AB = I and cB = 0.

Proposition 8.3

max cTx
s.t. Ax = b

x ≥ 0
(P)

Let B be basis.
max c̄Tx + bTy

s.t. A−1
B Ax = b̄

x ≥ 0
(Q)

where
b̄ = A−1

B b, c̄ = c− ATy, y = A−T
B cB

Then (Q) is in canonical form for B.

Simplex algorithm always STOP with an optimal basis.



CHAPTER 8. SENSITIVITY ANALYSIS 29

8.3 Changes to the right-hand-side

Proposition 8.4

Let α ≥ 0. Consider
max cTx

s.t. Ax = b
x ≥ 0

(P)

and
max cTx

s.t. Ax = b + αei
x ≥ 0

(Q)

Suppose B optimal for (P). Then B optimal for (Q) if and only if

b̄ + α · coli(A−1
B ) ≥ 0

where b̄ = A−1
B b.

The set of possible α here is the allowable range.

Proof:
Consider the duals

min bTy
s.t. ATy ≥ c

(DP)

min (b + ei)
T

s.t. ATy ≥ c
(DQ)

B optimal for (P) means:

(1) A−1
B b ≥ 0

(2) c̄ = c− ATy ≤ 0, y = A−T
B cB

B optimal for (Q) means:

(1’) A−1
B (b + αei) ≥ 0

(2’) same as (2) above.

We know (1) and (2) hold. When does (1’) hold? Because (2’) always hold. It holds when

A−1
B (b + αei) = A−1

B b + αA−1
B ei = b̄ + αcdi(A−1

B ) ≥ 0



CHAPTER 8. SENSITIVITY ANALYSIS 30

Proposition 8.5

Let α ≥ 0. Consider
max cTx

s.t. Ax = b
x ≥ 0

(P)

and
max cTx

s.t. Ax = b + αei
x ≥ 0

(Q)

Suppose B optimal for (P). Let ȳ be the basic dual solution for (P) and basis B. Suppose α is in
the allowable range. Then

OPT(Q) = OPT(P) + αȳi

Proof:
Consider duals.

8.4 Changes in the objective function

Proposition 8.6

Consider
max cTx

s.t. Ax = b
x ≥ 0

(P)

and
max dTx

s.t. Ax = b
x ≥ 0

(Q)

where d = c + αej where j /∈ B. Suppose B is optimal for (P). Then B optimal for (Q) iff α ≤ −c̄j.

Proof:
Similar as before.

Proposition 8.7

Consider
max cTx

s.t. Ax = b
x ≥ 0

(P)

and
max dTx

s.t. Ax = b
x ≥ 0

(Q)

where d = c + αej where j ∈ B. Suppose B is optimal for (P). Then B optimal for (Q) iff

∀k /∈ B : c̄k − α · rowr(A−1
B ) colk(A) ≤ 0.

And j corresponds to the rth basis element.



CHAPTER 8. SENSITIVITY ANALYSIS 31

For example, let B = {1, 4, 9, 12, 15}. Then for j = 9, we have r = 3.

Proposition 8.8

Consider
max cTx

s.t. Ax = b
x ≥ 0

(P)

and
max dTx

s.t. Mx = b
x ≥ 0

(Q)

where

M =

 A1 · · · An f

 , d = (c1, c2, . . . , cn, p).

Suppose B optimal for (P) and y basic dual solution for (P).. Then B optimal for (Q) iff yT f ≥ p.



9
Primal and dual Simplex

The idea is to solve dual problem. Consider two applications. One is parametric linear programs,
which we can think of as extension of sensitivity analysis. Another is cutting planes.

(Primal) Simplex algorithm

At each step,

1. primal feasible basis B.

2. rewrite in canonical form for B.

3. if B dual feasible, then STOP.

4. if primal unbounded, then STOP.

5. find better basis: B ∪ {j} \ {r}.

Dual Simplex algorithm

At each step,

1. dual feasible basis B.

2. rewrite in canonical form for B.

3. if B primal feasible, then STOP.

4. if dual unbounded, then STOP.

5. find better basis: B ∪ {j} \ {r}.

Key ingredients:

• decide what variable enters

• decide what variable leaves

• detect unboundedness

Now we are going to show how to rewrite in canonical using notation of tableaus.

32



CHAPTER 9. PRIMAL AND DUAL SIMPLEX 33

9.1 Tableaus

max z = cTx + x̄
s.t. Ax = b

x ≥ 0

can be transformed into

z− cTx = z̄

Ax = b

Then we have the tableau representation:



z x RHS

1 −cT z̄
0
... A b
0


Remark:
Pivot on (i, j). j enters, r leaves where r is the ith basic variable.

9.2 Primal and Dual Simplex via tableaus

max cTx
s.t. Ax = b

x ≥ 0
(P)

max bTy
s.t. ATy ≥ c

(D)

We have basis B. (P) rewritten in canonical form:

max c̄Tx + z̄
s.t. Āx = b̄

x ≥ 0

and put into tableau 
1 −c̄T z̄
0
... Ā b̄
0


Primal Simplex B primal feasible.

1. if c̄ ≤ 0, then STOP.

2. pick j such that c̄j > 0.

3. if colj(Ā) ≤ 0, then STOP, (P) unbounded.

4. let i be the k index minimizing mink

{
b̄k
Ākj

: Ākj > 0
}

5. pivot on (i, j).



CHAPTER 9. PRIMAL AND DUAL SIMPLEX 34

Dual Simplex assume dual feasible, then c̄ ≤ 0

1. if b̄ ≥ 0, then STOP.

2. Pick i such that b̄i < 0

3. If rowi(Ā) ≥ 0, then STOP, (D) unbounded.

4. Let j be the k index minimizing mink

{
c̄k

Āik
: Āik < 0

}
5. Pivot on (i, j).

Claim In (3) if rowi(Ā) ≥ 0, then (D) is unbounded.

Proof:
Note that

b̄i︸︷︷︸
<0

= rowi(Ā)︸ ︷︷ ︸
≥0

x︸︷︷︸
≥0

Thus (P) infeasible. Then (D) is either infeasible or unbounded. But (D) is feasible.

Claim B remains dual feasible during each iteration.

Proof:
For the initial iteration, if we write out the tableau, −c̄T ≥ 0, then dual feasible. For the next
iteration, we want to show −c′ ≥ 0, thus dual feasible.

−c′k = −c̄k +
c̄j

Āij
Āik

?
≥ 0

and this is equivalent to check whether

c̄j

Āij
Āik ≥ c̄k

We then discuss by cases: Āik ≥ 0 or Āij < 0.

9.3 Parametric Linear Programs

Consider
max

(
3 2 0 0

)
x

s.t.

[
3/2 1 1 0

1 1 0 1

]
x =

[
60
50

]
x ≥ 0

(P)

B = {1, 2} is optimal basis. x̄ = (20, 30, 0, 0). Then consider

max
(

3 2 0 0
)

x

s.t.

[
3/2 1 1 0

1 1 0 1

]
x =

[
60 + α

50− α

]
x ≥ 0

(Pα)

For every α we get a different LP.

Define g : dom(g)→ R where

1. dom(g) = {α : (Pα) has an optimal solution}.



CHAPTER 9. PRIMAL AND DUAL SIMPLEX 35

2. g(α) = OPT(Pα).

Goal is to describe g.

First we write (Pα) in canonical form for B = {1, 2}

max c̄Tx + z̄
s.t. Āx = b̄

x ≥ 0

We then compute

Ā = A−1
B A =

[
1 0 2 −2
0 1 −2 3

]
, b̄ = A−1

B b =

[
20 + 4α

30− 5α

]
and

y = A−T
B cB =

[
2
0

]
, c̄ =


0
0
−2
0


z̄ = bTy = 120 + 2α

Then the tableau

T{1,2} =

 1 0 0 2 0 120 + 2α

0 1 0 2 −2 20 + 4α

0 0 1 −2 3 30− 5α


For what α is B = {1, 2} optimal? Equivalently, for what α is B = {1, 2} dual and primal feasible? For
all values of α, it is dual feasible. We need to check for primal feasibility:

20 + 4α ≥ 0 =⇒ α ≥ −5

30− 5α ≥ 0 =⇒ α ≤ 6

B optimal for all α ∈ [−5, 6].

Case α > 6 Pivot (2, 3) from T{1,2}:

T{1,3}

 1 0 1 0 3 150− 3α

0 1 1 0 1 50− α

0 0 −1/2 1 −3/2 −15 + 3α/2


For what α is {1, 3} optimal for (Pα)?

50− α ≥ 0 =⇒ α ≤ 50

−15 +
5
2

α ≥ 0 =⇒ α ≥ 6

So {1, 3} optimal if α ∈ [6, 50] and g(α) = 150− 3α.

Case α > 50 Try to run dual simplex, and notice primal is infeasible.

Case α < −5 Similarly, we have

T{2,4}

 1 0 0 2 0 120 + 2α

0 −1/2 0 −1 1 −10− 2α

0 3/2 1 1 0 60 + α


Then similarly, for α ∈ [−60,−5], {2, 4} is optimal. And g(α) = 120 + α.



Picture from Sdo, CC BY-SA 2.5 https://creativecommons.
org/licenses/by-sa/2.5, via Wikimedia Commons

Part III:

Solving Optimization Techniques

36

https://creativecommons.org/licenses/by-sa/2.5
https://creativecommons.org/licenses/by-sa/2.5


10
Cutting planes - review

relaxation

Consider optimization problems (P) & (Q) where

1. (P), (Q) both max/min & same objective function,

2. feasible region of (P) ⊇ feasible region of (Q)

Then (P) is a relaxation of (Q).

Key observation Suppose (P) is relaxation of (Q). If x̄ optimal for (P), x̄ feasible for (Q), then x̄
optimal for (Q).

Let (Q) be an IP. Let x̄ not feasible for (Q). Then αTx ≤ β is a cutting plane for x̄ if

1. αT x̄ > β and

2. αTx ≤ β is valid for (Q).

“valid” here means for all feasible solution to (Q), αTx ≤ β holds.

10.1 Cutting plane algorithm

Consider
max cTx

s.t. Ax ≤ b
x integer

(Q)

and its LP relaxation
max cTx

s.t. Ax ≤ b
(P)

Cutting plane algorithm:

1. If (P) infeasible, then (Q) infeasible. STOP

2. If (P) unbounded, then (Q) infeasible or unbounded ( ). STOP.

3. Find optimal solution x̄ of (P)

37



CHAPTER 10. CUTTING PLANES - REVIEW 38

4. If x̄ integer, then x̄ optimal for (Q). STOP

5. adding cutting plane αTx ≤ β to Ax ≤ b. Then repeat.

Denote LP relaxation by (P), (P)’s dual (D), LP after adding cutting plane by (P’), (P’)’s dual (D’). Then
the procedure is as follows: Solve (P), and get solution ȳ for (D). Then (ȳ

0) is feasible for (D’). Start
from that feasible solution to get an optimal solution to (D’), then we have optimal solution for (P’).

We know want to prove ( ). Suppose A, b, c rational.

Proposition 10.1

If (P) is unbounded, then (Q) is either infeasible or unbounded.

Lemma 10.2

S = {x : Mx ≤ d} where M and d are rational. If S 6= ∅, then S contains a rational point.

Proof of the proposition:
Suppose (P) unbounded, then there exists x̄, r such that

1. Ax̄ ≤ b

2. Ar ≤ 0, cTr > 0

Let S = {r | Ar ≤ 0, cTr ≥ 0}, by lemma, ∃r′ ∈ S which is integer. We may assume (Q) has a
feasible solution x′. Then x′ + λr′ for λ ∈ R+ is feasible for (Q).

cT(x′ + λr′) = cTx′ + λ cTr′︸︷︷︸
≥1

→ ∞

as λ→ ∞.



11
Column generation

Goal is to solve
min 1Tx

s.t. Mx ≥ b, x ≥ 0
(P)

where M is m× n matrix, and n is huge.

Remark:
If (P) has an optimal solution, then it has an optimal solution with ≤ m non-zero variables.

Proof:
If (P) has an optimal solution, it has one that is an extreme point x̄. x̄ is unique solution to set of
tight constraints for x̄. Then at least n tight constraints, at most m arise from Mx ≥ 0. Then at least
n−m arise from x ≥ 0. Then at most m non-zero entries for x̄.

Restriction J ⊆ {1, . . . , n}.
min 1Ts

s.t. MJs ≥ b, s ≥ 0
(PJ)

Remark:
Let s̄ feasible for (PJ). Then x̄ is feasible for (P) where

x̄j =

{
s̄j if j ∈ J

0 otherwise

11.1 Column generation algorithm

First attempt

1. Pick J ⊆ {1, . . . , n}.

2. Find an optimal solution s̄ for (PJ)

3. x̄j =

{
s̄j if j ∈ J

0 otherwise

4. If x̄ optimal for (P), then STOP

5. pick j and set J := J ∪ {j}. Then goto (2).

39



CHAPTER 11. COLUMN GENERATION 40

Lemma 11.1: Key lemma for column generation

Let s̄, ȳ optimal for (PJ) and (DJ). Define

x̄j =

{
s̄j if j ∈ J

0 otherwise

If ȳ is feasible for (D), then x̄ is optimal for (P).

Proof:

We have x̄, ȳ feasible for (P) and (D). By weak duality, check whether 1T x̄ ?
= bT ȳ:

1T x̄ = ∑
j∈J

x̄j + ∑
j/∈J

x̄j = 1T s̄ = bT ȳ

where the last equality is by strong duality: s̄, ȳ optimal for (PJ) and (DJ).

Auxiliary problem

Input: ȳ
Output:

1. certificates ȳ feasible for (D) or

2. find j such that the jth constraint of (D) is violated for ȳ.

Recall the algorithm (slight different than last time):

1. Pick J ⊆ {1, . . . , n}.

2. s̄, ȳ optimal for (PJ) and (DJ).

3. x̄j =

{
s̄j if j ∈ J

0 otherwise

4. If ȳ feasible for (D), then STOP (x̄ optimal for (P))

5. Pic j̄ /∈ J, such that constraint j̄ of (D) is violated for ȳ. J := J ∪ { j̄}.

6. Goto (2)

Step 4 and 5 is “auxiliary problem”: we define a function g whose domain is {1, . . . , n}, and g(j) :=
colj(M)T ȳ. We want to find j̄ maximize g(j) over j ∈ [n]. If g( j̄) ≤ 1, then ȳ feasible for (D). If g( j̄) > 1,
then constraint j of (D) is violated for ȳ.

11.2 Cutting stock

Given

• length of stock = 17m

• demand: 25× 3m, 20× 5m, 15× 9 m

We can have these cuts:

(1) 3 + 3 + 3 + 3 + 3 + · · ·

(2) 5 + 5 + 5 + · · ·



CHAPTER 11. COLUMN GENERATION 41

(3) 5 + 9 + · · ·

(4) 9 + · · ·

Then 5x(1), 2x(2), 14x(3), 1x(4), which satisfies the command. We used 22 stocks. This is not optimal.
The goal is to meet demand and minimize the number of stocks. Then we can formulate as an IP.

There is an IP formulation with small number of variables and constraints. We cannot solve it well.

pattern for a stock

“Way of cutting stock into parts of length 3, 5 and 9”. Formally, the pattern is (u, v, w) where

u = number of parts of length 3

v = number of parts of length 5

w = number of parts of length 9

So the pattern of previous cuts are (5, 0, 0), (0, 3, 0), (0, 1, 1), (0, 0, 1). All possible patterns satisfy

3u + 5v + 9w ≤ 17

where u, v, w ≥ 0, integer.

Now let’s write the IP formulation. Patterns

p1 =

u1

v1

w1

 , . . . , pn =

un

vn

wn


Then the optimization problem

min ∑n
j=1 xj

s.t. Mx ≥ b =

25
20
15


x ≥ 0, x integer

where M = [p1 | p2 | · · · | pn]. And denote its LP relaxation by (P).

Now let’s do column generation on toy example. Let

p1 =

5
0
0

 , p2 =

0
3
0

 , p3 =

0
0
1

 , J = {1, 2, 3}

We write (PJ) as before:
min 1Ts

s.t.

5 0 0
0 3 0
0 0 1

 s ≥

25
20
15


s ≥ 0

(PJ)

Then we found s̄ = (5, 20/3, 15)T , ȳ = (1/5, 1/3, 1)T . Auxiliary problems:

g : {patterns} → ȳT

u
v
w





CHAPTER 11. COLUMN GENERATION 42

Then we have new optimization problem

max 1
5 u + 1

3 v + w
s.t. 3u + 5v + 9w ≤ 17

u, v, w ≥ 0, integer

This only has one constraint, which is knapsack problem. It can be solved efficiently. The optimal
solution is (1, 1, 1)T . Objective value > 1. Then we add a new pattern p4 = (1, 1, 1)T and J = {1, 2, 3, 4}
and solve again.


	Preface
	I Formulations
	LP formulations
	Production problem
	Minimax

	Flows
	Max st-flow model
	Min cost flow model

	IP formulations
	IP tricks
	Modeling piece-wise linear function
	Modeling union of polyhedra
	Perfect formulations
	Application to flows

	Cone programming
	Examples of cones
	Cone programming model
	(General) SOC program

	Robust optimization
	Model uncertainty for a
	Modeling uncertainty by a ball
	Modeling uncertainty by a hypercube


	II Interpretations of optimal solutions
	Duality review
	Weak duality
	Strong duality
	Complementary Slackness conditions

	Economic interpretation of dual variables
	Sensitivity Analysis
	Primal and dual Optimal basis
	Review of simplex
	Changes to the right-hand-side
	Changes in the objective function

	Primal and dual Simplex
	Tableaus
	Primal and Dual Simplex via tableaus
	Parametric Linear Programs


	III Solving Optimization Techniques
	Cutting planes - review
	Cutting plane algorithm

	Column generation
	Column generation algorithm
	Cutting stock



