Formal Languages and Parsing

CS 462

Jeffrey Shallit

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CS 462 during Winter 2022 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Contents

Pr	eface		1		
1	CS	462 notation	3		
	1.1	Some refreshers from CS 360/365	3		
	1.2	Some notations	4		
	1.3	Other operations on words	4		
	1.4	Properties of infinite words	5		
2	Con	nbinatorics on words	6		
	2.1	The theorems of Lyndon-Schützenberger	6		

CS 462 notation

- Natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ and we use letters $i, j, k, \ell, m, n \in \mathbb{N}$.
- Finite string/word: a map from [0, n-1] (an interval) to Σ (a finite alphabet of symbols) w[i] is ith symbol of w
- infinite strings/words: a map from $\mathbb N$ to Σ . We denote infinite strings by bold-face:

$$\mathbf{w} = \mathbf{w}[0]\mathbf{w}[1]\mathbf{w}[2]\cdots$$

- Σ^* is the set of all finite words over Σ .
- Σ^{ω} is the set of all infinite words over Σ . Also written $\Sigma^{\mathbb{N}}$.
- $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\mathbb{N}}$.

Finite words typically denote by s, t, u, v, w, x, y, z

1.1 Some refreshers from CS 360/365

- x is a **prefix** of z if there exists y such that z = xy
- x is a **suffix** of z if there exists y such that z = yx
- x is a **subword** (factor) of z if there exists w, y such that z = wxy.
- *x* is a **subsequence** of *z* if *x* can be obtained from *z* by striking out zero or more symbols.

Remark.

Does substring mean contiguous (like subword)? or noncontiguous (like subsequence)? This definition depends the author of the book.

Empty string ϵ is a first-class string like any other string and is not ruled out unless done so explicitly.

Then we have "proper" prefix, suffix, etc. If z = xy and $x \neq z$, then x is a **proper prefix** of z.

1.2 Some notations

A shorthand for subword:

$$w[a..b] = w[a]w[a+1] \cdots w[b]$$

Concatenation of strings:

which is not commutative in general. Because we write concatenation in a multiplicative way, we can raise strings to powers: $x^n = \underbrace{xx \cdots x}_{n \text{ times}}$, or formally

$$x^{0} = \epsilon$$

$$x^{n} = x \cdot x^{n-1} \qquad n \ge 1$$

$$x^{m+n} = x^{m}x^{n}$$

A word is not of the form z^n , $n \ge 2$, $z \ne \epsilon$ is called **primitive**. The set of binary primitive words are denoted

$$P_2 = \{0, 1, 01, 10, 001, 010, 011, \ldots\}$$

One open question: is P_2 context-free? Probably not! But no one knows a proof.

1.3 Other operations on words

We define perfect shuffle on x and y, for |x| = |y| = n as

$$x \coprod y = x[1]y[1]x[2]y[2] \cdot \cdot \cdot x[n]y[n]$$

where III is the Russian "sha". For example,

term III hoes = theorems

Single symbols are denoted by $a, b, c \in \Sigma$.

The reversal: x^R , symbols of x in reverse order. If you feel stressed, we can reverse it and get

$$(stressed)^R = (desserts)$$

Palindromes: $x = x^R$.

Ordering

lexicographic order We define it for the words of same length, |x| = |y|. Then x < y means there exists i such that $1 \le i \le n = |x| = |y|$, and x[j] = y[j] for j < i and x[i] < y[i]. $x \le y$ means x = y or x < y.

radio order x < y in radix order, if |x| < |y| or |x| = |y| and x < y in lexicographic order. For example,

$$\{0,1,2\}^* = \{\epsilon,0,1,2,00,01,02,10,\ldots\}$$

cyclic shift of a string One example is eat, ate, tea

If x, y are cyclic shifts of each other, we say they are conjugates. Formally, x, y are conjugates if there exists u, v such that x = uv and y = vu.

¹need underlying order on Σ. For example, $a < b < c < \cdots$, $0 < 1 < 2 < \cdots$

Borders A word w is **bordered** if it has a proper nonempty prefix that is also a suffix. Otherwise, it's **unbordered**. One example is entanglement, whose border is ent. Also, we can have overlapping border: alfalfa.

1.4 Properties of infinite words

periodicity of infinite words Let $x \in \Sigma^+$, finite nonempty words over Σ . Then we can define

$$x^{\omega} = xxx \cdots$$

If $z=x^{\omega}$ for some x, we say z is **purely periodic**. If $z=yx^{\omega}$ for some finite y, then z is **ultimately periodic**.

Combinatorics on words

2.1 The theorems of Lyndon-Schützenberger

Suppose we have an equation from number theory,

$$x^2 + xy = y^2 - 1$$

and let's find solution in natural numbers:

$$x = 0$$
 $y = 1$

$$x = 1$$
 $y = 2$

$$x = 3$$
 $y = 5$

Then we can guess the solutions are $x = F_{2n}$, $y = F_{2n+1}$ for $n \ge 0$.

Now we can consider equations in words: $x, y, z \in \Sigma^+$ (nonempty)

- 1. xy = yx characterizes commuting words
- 2. xy = yz characterizes bordered words

For the second equation, one solution would be x = alf, y = alfa, z = lfa.

Theorem 2.1

Suppose $x, y, z \in \Sigma^+$, xy = yz if and only if $\exists u \in \Sigma^+ \text{m } v \in \Sigma^*$, $e \ge 0$ such that

$$x = uv$$

$$z = vu$$

$$y = (uv)^e u = u(vu)^e$$

This theorem gives complete characterization to the equation.

Proof:

 \Leftarrow is easy to see:

$$xy = uv(uv)^e v = (uv)^e uvu = yz$$

For \Rightarrow , we prove by induction on |y|.

Base case |y| = 1. Let y = a, a single symbol. Then we have

$$xa = az$$

and then we find that $\exists x', z'$ such that x = ax' and z = z'a. Then

$$ax'a = az'a$$

So x' = z'. Then we can take u = a, v = x' = z', e = 0. Then we are done with the base case.

Now induction step. We discuss by cases (imposing length conditions) to break the symmetry.

Case I $|x| \ge |y|$.

x		y
	w	
у		x

We define w (could be empty) as in the picture. Then let u = y, v = w, e = 0.

Case II |x| < |y|.

х		y
	w	
y		x

We define w as in the picture. We observe that $w \neq \epsilon$, otherwise |x| = |y|. Also $x \neq \epsilon$, $z \neq \epsilon$. Then we observe that

$$y = wz = xw$$

which is our original equation with w playing the role of y. In order to apply induction, we need |w| < |y|, which is achieved by $x \neq \epsilon$. So induction says $\exists u, v, e, x = uv, z = vu, w = (uv)^e u$. Sub it back in, we get

$$wz = y = (uv)^e uvu = (uv)^{e+1}u$$

Consider the equation $x^2 = y^3$ in \mathbb{N} . We can parametrize the solution by $x = z^2$, $y = z^2$. This suggests the equation $x^2 = y^3$ over Σ^* only has the solution

$$x = z^3 = zzz$$

$$y = z^2 = zz$$

When does xy = yx? In other words, when does a word commute? Recall a classic theorem in linear algebra: two diagonalizable matrices commute if and only if they are simultaneously diagonalizable.

Theorem 2.2

Let $x, y \in \Sigma^+$. (Nonempty) Then the following 8 conditions are equivalent.

- (1) There exist $z \in \Sigma^+$, and integers $k, \ell > 0$ such that $x = z^k$, $y = z^\ell$.
- (2) $x^{\omega} = y^{\omega}$.
- (3) There exist integers i, j > 0 such that $x^i = y^j$.
- (4) xy = yx.
- (5) There exist integers r, s > 0 such that $x^r y^s = y^s x^r$.
- (6) Define the morphism $h: \{a,b\}^* \to \Sigma^*$: h(a) = x, h(b) = y. Then there exist two distinct words, $u,v \in \{a,b\}^*$ such that h(u) = h(v).
- (7) $x\{x,y\}^* \cap y\{x,y\}^* \neq \emptyset$.
- (8) $x\{x,y\}^{\omega} \cap y\{x,y\}^{\omega} \neq \emptyset$.

Proof:

- (1) \Rightarrow (2) $x^{\omega} = (z^k)^{\omega} = z^{\omega} = (z^{\ell})^{\omega} = y^{\omega}$.
- (2) \Rightarrow (3) Let i = |y|, j = |x|. Then consider the prefix of length ij of x^{ω} and y^{ω} . They have to be the same, and this implies $x^i = y^j$.
- (3) \Rightarrow (4) WLOG, assume $|y| \leq |x|$. Then there exists w such that x = yw. Then note that

$$y^{j} = x^{i} = (yw)^{i} = y^{j} = y(wy)^{i-1}w$$

Take off *y* at the front:

$$y^{j-1} = (wy)^{i-1}w$$

Add y at the back:

$$y^j = (wy)^{i-1}wy = (wy)^i$$

Observe that

$$(yw)^i = (wy)^i$$

Look at the first |y| + |w| symbols gives us yw = wy. Then sub x = yw

$$x = yw = wy$$

Then append y at the back

$$xy = (yw)y = y(wy) = yx$$

- $(4) \Rightarrow (5)$
- $(5) \Rightarrow (6)$
- $(6) \Rightarrow (7)$
- $(7) \Rightarrow (8)$