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1
Introduction

This course is officially titled as “Computational Techniques in Biological Sequence Analysis”. How-
ever, this is an old title and this course has been offered for over approximately twenty years. It should
actually be called “Algorithms in Bioinformatics”. Around 1980, this area has a different name: Com-
putational Biology. You may also hear another name: DNA computing. It is another area, and it does
not solve biological problem. What is bioinformatics? It is biology + informatics. Biology is the reason,
goal, purpose and informatics is the method.

Biology can be studied at different scales. In old days, biology tries to study organisms, namely living
things, such as bacteria, animals. This is because people didn’t have tools to study at a lower level at
that time. Now people study organs and tissues. Then people can look into cell level, molecular level.
At molecular level, DNA is chain of nucleotide bases. Protein is chain of amino acids.

There are a lot of public and free molecular data. There are tremendous amount of public biomolecule
data and free software. For example:

• NCBI’s sequence data bank: https://www.ncbi.nlm.nih.gov/nuccore/NC_045512

• PDB protein structure database: https://www.rcsb.org/structure/6vxx

Why do people do bioinformatics? The goal is to understand life at molecular level. Especially, for
human health. For example, sequencing SARS-Cov2 genomes allowed people study the evolution of
this virus. Study the structure of the spike protein and its interaction with the host cells. A lot of
human diseases are related to genetics.

There are two areas of bioinformatics.

• Determine the molecule information, by analyzing the data produced by measuring instruments.
Typically the data is in large scale and high throughput, which is hard for people to look at.

• Use the molecular data to make inference. For example, make prediction given the existing data.

Consider an example of genome sequencing. From wikipedia,

The Human Genome Project (HGP) was an international scientific research project with the
goal of determining the base pairs that make up human DNA, and of identifying, mapping
and sequencing all of the genes of the human genome from both a physical and a functional
standpoint. It remains the world’s largest collaborative biological project. Planning started
after the idea was picked up in 1984 by the US government, the project formally launched
in 1990, and was declared complete on April 14, 2003. Level “complete genome” was

5
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achieved in May 2021.

Bioinformatics played an essential role in analyzing the data and assemble the genome. Today one can
sequence a human’s genome with < $1000 in a couple of weeks. Bioinformatics is the key to utilize
the NGS (next generation sequencing) data for genome sequencing. As such, today’s cancer treatment
starts to become personalized. And many new drugs now require gene sequencing as companion
diagnostic.

1.1 Objectives of this course

• Know bioinformatics

– Purpose and method

– General topics

• Learn classic problems and algorithms in bioinformatics

• Learn wide-applicable computational techniques

– String algorithms

– Hidden Markov Model

– Log likelihood ratio score

– Statistical validation

– A bit of machine learning

Some typical problems:

• Gene prediction problem

• Find the longest shared substring between human and mouse genomes. If we want to find
similarities instead of exact matches, this will lead us to the homology search problem.

• Peptide Identification



Img src: https://towardsdatascience.com/pairwise-sequence-alignment-using-biopython-d1a9d0ba861f

Part I:

Sequence Alignment
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2
Sequence Alignment

2.1 Biology

Consider two protein sequences:

• AVP78042.1 spike protein: MLFFL...

• YP_009724390.1 surface glycoprotein: MFVFL...

They look similar, how do we know these two proteins are similar? It’s better to visualize them
properly so that we can see the similarity. This is done by sequence alignment, and there are many
existing tools: such as Clustal Omega. It’s a common belief that these two proteins are developed from
a common ancestor, then they evolve from an evolution tree. This is called homology.

There are two classes of nucleotide bases:

• Purine: A and G

• Pyrimidine: T and C

Base pairs are bonded by hydrogen bonds. Also, G-C bind stronger because of 3 H-bonds. DNA
molecule is oriented.

So we know that DNA is double-helical, with two complementary strands. And the complementary
bases: A-T, G-C. For example, the reverse complement of AAGGTAGC is GCTACCTT, because DNA is
oriented.

Now consider DNA mutation. DNA mutates with a small probability when inherited by the offspring.
For example, one base can be substituted by another, because there might be copy errors. This creates
different alleles of the same gene. From wiki, allele is one of two, or more, forms of a given gene
variant. When we inherit the DNA from parents, we only inherit half of each parent’s genome. These
together cause the differences between individuals of the same species.

Single Nucleotide Polymorphisms is a germline substitution of a single nucleotide at a specific position
in the genome. Single base variation between members of a species. For Human, 90% of all human
genetic variation is caused by SNPs. SNPs occur every 100 to 300 bases along the 3-billion-base human
genome. It’s a major risk for genetic disease, because when one base pair mutates, it will cause the
express protein’s functions.

8
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2.2 Compare DNA sequences

The most often used distance on strings in computer science is Hamming distance. This makes some
sense on comparing DNA sequences in some cases: substitution. But there are other mutations:
insertion/deletion (indel), which cannot be modelled correctly by Hamming distance. Other DNA
rearrangements can also happen. But substitutions and indel are the two mutations we concern the
most for this course.

Edit distance

Instead, we can use edit distance. How “far” away are two sequences from each other? Edit distance
is defined to be the minimum number of edit operations needed to convert one to another. Here edit
operations include substitutions and indels.

Note that Edit distance is a distance metric:

• Identity: d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x).

• Triangular inequality: d(x, z) ≤ d(x, y) + d(y, z).

Now we prepare for the algorithm. For convenience of the proof, we treat each occurrence of the
same letter different. For example, ATAA -> ATA, A can be done by either deleting the 2nd or 3rd letter
A from the first string. These are different editing paths. This does not affect our definition of edit
distance, but makes our later proof more precise.

Now it’s ready to develope the dynamic programming algorithm for edit distance. Let D[i, j] = edit
distance between S[1..i] to T[1..j]. Consider the edit operations associated with S[i] and T[j] the optimal
edit operations. One of the following cases will happen:

1. S[i] is deleted: D[i, j] = D[i− 1, j] + 1

2. T[j] is inserted: D[i, j] = D[i, j− 1] + 1

3. S[i] becomes T[j]: D[i, j] = D[i− 1, j− 1] + δ(S[i], T[j])

where δ(S[i], T[j]) = 0 if S[i] = T[j] and 1 if not.

Algorithm 1: Dynamic Programming Algorithm for Edit distance

1 D[0, 0] = 0
2 D[0, i] = i for i = 1..|S|
3 D[i, 0] = i for i = 1..|T|
4 for i← 1..|S| do
5 for j← 1..|T| do
6 D[i, j] = min{D[i− 1, j] + 1, D[i, j− 1] + 1, D[i− 1, j− 1] + δ(S[i], T[j])}

7 return D[|S|, |T|]

Longest Common Subsequence

Another way to evaluate the similarity of two sequences is through LCS. A subsequence is obtained by
deleting some of the letters from the supersequence and concatenating the remaining letters together.
For example, LCS of ATGCATTTA and ATGTACTTTC is ATGATTT. LCS can be computed with dynamic
programming as well.
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2.3 Alignment

The third way to compare to sequences is through sequence alignment. We want to insert spaces (-)
to two sequences so that we can align them together and they are most similar column-wisely. For
example,

ATGCA-TTTA

||| | || |

ATGTACTT-A

By “similar”, we usually need to use a scoring function. We define the alignment score to be the
total of column scores. And each column is assigned by a constant score depending on matching
conditions. For example, simple score scheme would be

• Match = 1

• Mismatch = -1

• indel = -1

Consider two alignments with the score scheme above:

AATGCGA-TTTT

|| | |||

G-TG--ACTTTC

has score 0.
AATG-CGATTTT

|| | ||

G-TGAC-TTTC-

has score −1.

As a side note, alignment can “simulate” LCS and edit distance. We have this following table for the
scoring system:

alignment LCS edit dist
match +1 1 0

mismatch -1 0 -1
indel -1 0 -1

Now we can develop the develop the dynamic algorithm for the alignment. Let f (a, b) be the scoring
scheme for a column with a and b. Here one of a and b can be the dash character -. Thus f (-, x)
and f (x, -) represent scores of indels. The input is S, T. Let D[i, j] be the optimal alignment score for
S[1..i], T[1..j].

Now we want to derive a recurrence relation. Suppose we are to align S[1..i], T[1..j]. Consider the last
column of the optimal alignment. Three cases can happen.

S[1..i− 1] S[i]

T[1..j− 1] T[j]

S[1..i− 1] S[i]

T[1..j− 1] -

S[1..i− 1] -

T[1..j− 1] T[j]

(1) (2) (3)

Note that in each case, the sub-alignment without the last column is an optimal one. Prove by contra-
diction, assume there’s a better sub-alignment without the last column. Then the optimal alignment
(for the whole) should have used this better sub-alignment, instead of the current sub-alignment.
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Then we have the recurrence for these three cases:

(1) D[i, j] = D[i− 1, j− 1] + f (S[i], T[j])

(2) D[i, j] = D[i− 1, j] + f (S[i], -)

(3) D[i, j] = D[i, j− 1] + f (-, T[j])

Algorithm 2: Sequence alignment

1 D[0, 0] = 0
2 for i← 1..m do
3 D[i, 0] = i× indel
4 for j← 1..n do
5 D[0, j] = j× indel
6 for i← 1..m do
7 for j← 1..n do

8 D[i, j] = max


D[i− 1, j− 1] + f (S[i], T[j])

D[i− 1, j] + f (S[i], -)

D[i, j− 1] + f (-, T[j])

9 return D[m, n]

Then the time complexity is O(mn) where |S| = m, |T| = n. In practice, when we run the DP algorithm
and build the DP table, we can add arrows from cell to cell: which of the three cases (sub-alignments)
is chosen to get the current cell. Then we can backtrack the arrows and get the actual alignment. For
backtracking, it is O(n + m). Space complexity is O(nm).

In practice, we don’t need to record/store these arrows. Instead, when we backtrack, we can calculate
the arrows based on the max of three options dynamically, which takes O(m + n). This saves the cost
of storing arrows, which costs O(mn).

Moreover, if only score is needed, then space complexity can be reduced to linear space.

Note that the algorithm is designed for any score scheme f (x, y). We indeed separate the algorithm
and scoring. So we can optimize score scheme and the algorithm independently. Dijkstra once said:

The effective exploitation of his powers of abstraction must be regarded as one of the most
vital activities of a competent programmer.

2.4 Score Function

Transition vs. Transversion
Recall that within DNA, there are two classes. One is purines (A, G), and the other is pyrimidines
(C, T). Within the same class, they have similar chemical structure. Moreover, the mutation within
the same class is called transitions; across the two classes, is called transversions. Transition is
cheaper than transversions.
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Picture from https://dodona.ugent.be/en/activities/1351011626/

Transition happens more frequently 2/3 of SNPs are transitions. In other words, transition is easier
and therefore should be less penalized. For example,

AAAGCAAA

AAAT-AAA
vs

AAAGCAAA

AAA-TAAA

Observe that GT is transversion and CT is transition. The right alignment is probably better. This
can be easily achieved by changing score scheme f (a, b).

So how to build a score function? First, we need to know what you want. There are two purposes:

1. the optimal alignment reveals the true evolutionary history.

2. high score indicates homology (derived from same ancestor).

We want purpose 1 if possible, but purpose 2 is also useful.

For purpose 1, note that we might be wrong: score function might not have the power to reveal the
history. For example, if the history goes as A -> T -> A, then in the sequence alignment, the final
comparison is between A and A, which will not give us the true history. So you should never trust that
an alignment must be right. It just optimizes the score. Should we give up purpose 1 at all?

For purpose 1, the optimal alignment may be approximately correct under certain conditions in practice.
As long as we know the limitation, we can still use it. For example, for the following alignment, it is
“very likely” the alignment is approximately equal to the evolutionary history.

ACGTATTACCGG-TTACCG

||| |||||||| ||||||

ACGGATTACCGGATTACCG

So we should keep in mind that when the score is low, alignment itself is not too useful.

Now let’s try to improve our score function. Consider two alignment (with gaps):

AGATTTTTTTC

AGA---TTTTC

AGATTTTTTTTTC

AGA-T-T-T-T-C

https://dodona.ugent.be/en/activities/1351011626/
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The left seems “simpler” than the right, intuitively. Indeed, during evolution, indels are relatively rare.
However, insertion or deletion a segment of k consecutive bases is much easier than k scattered indels.
But our current scoring method (adding up column scores) cannot distinguish the two. Currently, a
gap of length k costs k×indel. Thus, this is called the linear gap penalty. Denote the penalty function
by g(x), and it should have negative value. Left’s penalty is g(3) and right is 3× g(1).

Consecutive insertions or deletions are called a gap. Suppose the gap penalty of a length k gap is g(k)
instead of the simple c× k. Assume g(x) + g(y) ≤ g(x + y), thus a convex function. Otherwise does
not serve the purpose of grouping indels. In this case, can the old DP algorithm still work? Recall the
three cases:

S[1..i− 1] S[i]

T[1..j− 1] T[j]

S[1..i− 1] S[i]

T[1..j− 1] -

S[1..i− 1] -

T[1..j− 1] T[j]

(1) (2) (3)

First case is the same. The second case might be wrong. The last column might depend on previous
columns. If the second to the last column of T is already a dash, then adding a new dash will increase
the length of gap. The we cannot use DP algorithm anymore, in the sense that we cannot prove its
correctness. We do not know the contribution of the last column to the gap penalty in the last two
cases.

Assume we know the length of gap, then we can apply the recurrence relation. We still use D[i, j] to
denote the optimal alignment score of S[1..i] and T[1..j]. We change cases 2 and 3 to include the last
gap (not the last column). Then three cases change accordingly:

S[1..i− 1] S[i]

T[1..j− 1] T[j]

S[1..i− k] S[i− k + 1..i]

T[1..j] - · · · -

S[1..i] - · · · -

T[1..j− k] T[j− k + 1..j]

(1) (2) (3)

Then D[i, j] = max of the following three cases:

(1) D[i− 1, j− 1] + f (S[i], T[j])

(2) max1≤k≤i D[i− k, j] + g(k)

(3) max1≤k≤j D[i, j− k] + g(k)

Now the time complexity will change: O(mn(m + n)), which is cubic.

In bioinformatics, very often we face the choice between:

• Reality: How close it approximates the real biology.

• Simplicity: How easy it can be computed.

We can simplify g(k) a little bit. We basically want a function that grows slower than linear. We
introduce affine gap penalty, in contrast to linear gap penalty:

g(k) = a + b · k

where a is the gap open penalty: whenever we have a gap, we pay for it; b is the gap extension penalty:
for example, once we open the gap, we pay less for the second indel within a group.
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Example: Affine gap penalty
match = 1; mismatch = −1; gap open = −5; gap extension = −1.

ATAGG--AAG

|| || | |

ATTGGCAATG

6 match, 2 mismatch, 1 gap open, 2 gap extension, then the score is

6− 2 + (−5− 1× 2) = −3

ATAGG-AA-G

|| || || |

ATTGGCAATG

Similarly, the score is
7− 1− 5− 1− 5− 1 = −6

Now the old algorithm doesn’t work anymore. Consider the last column of an alignment again:

AT-GG-

|| ||

ATTGGC

ATGG--

|| |

ATTGGC

When considering the last column, we need to know the second to the last column. When the last
column is an indel, the added cost depends on the previous column. Because by induction we know
the optimal solution for D[i, j− 1], we can encode the previous column’s configuration. We compute
the optimal solution by limiting the last column to one of the following three configurations:

ATAGG

|| ||

ATTGG

ATAGG-

|| ||

ATTGGC

ATAGGC

|| ||

ATTGG-

D0[i, j] D1[i, j] D2[i, j]

D0[i, j] requires that the last column must be S[i] v.s. T[j], not indel. D1[i, j] is - v.s. T[j], and D2[i, j] is
S[i] v.s. -. We then can develop recursion relationship easier by defining more subproblems. We only
distinguish them by the last column, there is no constraint for columns before the last column.

Now let’s examine how to calculate D0[i, j]. There are three cases:

S[1..i− 2]S[i− 1] S[i]
T[1..j− 2]T[j− 1] T[j]

−→ D0[i, j] = D0[i− 1, j− 1] + f (S[i], T[j])

S[1..i− 1] - S[i]
T[1..j− 2] T[j− 1] T[j]

−→ D0[i, j] = D1[i− 1, j− 1] + f (S[i], T[j])

S[1..i− 2] S[i− 1] S[i]
T[1..j− 1] - T[j]

−→ D0[i, j] = D2[i− 1, j− 1] + f (S[i], T[j])

We then can do the similar thing for D1[i, j]:

S[1..i− 1]S[i] -
T[1..j− 2]T[j− 1] T[j]

−→ D1[i, j] = D0[i, j− 1] + gapopen + gapext

S[1..i] - -
T[1..j− 2] T[j− 1] T[j]

−→ D1[i, j] = D1[i, j− 1] + gapext

S[1..i− 1] S[i] -
T[1..j− 1] - T[j]

−→ D1[i, j] = D2[i, j− 1] + gapopen + gapext
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The relation for D2[i, j] is symmetric. In summary, we have the recurrence relation

D0[i, j] = f (S[i], T[j]) + max


D0[i− 1, j− 1];
D1[i− 1, j− 1];
D2[i− 1, j− 1];

D1[i, j] = gapext + max


D0[i, j− 1] + gapopen;
D1[i, j− 1];
D2[i, j− 1] + gapopen;

D2[i, j] = gapext + max


D0[i− 1, j] + gapopen;
D1[i− 1, j] + gapopen;
D2[i− 1, j];

Note the grayed cases can’t be optimal so can be safely removed.

This is still DP algorithm. We need to be careful when backtracking. The running time is O(nm),
might be approximately 3 times slower, but better than the general gap penalty’s cubic time. This is
okay because the model is more expressive. This model is first published in 1982, by Gotoh, O.: An
improved algorithm for matching biological sequences.



3
Local Alignment and Linear Space Alignment

In biology, we are not comparing S, T directly. Instead, we are comparing small areas of S, T.

Interestingly, if we compare chromosome X of mouse and human, they are quite similar. Each colored
block is relatively conserved, but different in orders and orientations. Seven inversions are required
to put them in the correct order and orientation. This is called “sorting by reversals”. This is an
interesting study from Pavel Pevzner.

In this case, if we do the global/sequence alignment, we can align only one part: we will lose yellow
part when we align red. Conserved regions are “local” to the genome/chromosome. But previous
alignment is “global”. We need a proper model to define “local” similarity.

For the problem of local alignment, we are given two sequences S and T. We want to find substrings
of S and T that maximizes the alignment score. I.e., The indels at the beginning and end of the two
strings are free.

Local alignment score is at least 0, because for the worst case, we have two empty strings. The model
only makes sense for alignment but not edit distance nor LCS. Is the optimal local alignment a local

part of an optimal “global” alignment? No. If we align AT and TA, the global alignment would be
AT

TA

16
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if the indel gets the most penalty. While the local alignment would simply be
A

A

3.1 Prefix and suffix alignment

Consider a related different problem: prefix alignment: find the highest-scoring alignment between
two prefixes of the two sequences. We want to find i, j to maximize alignment-score(S[i..i], T[1..j]).

Similarly, consider suffix alignment. That is, we choose two suffixes, and align them together opti-
mally. We want to compute maxi′ ,j′ score(S[i′..m], T[j′..n])

Let D[i, j] denote the optimal “suffix alignment” alignment score of S[1..i], T[1..j]. That is, D[i, j] is
the maximum alignment score for S[i′..i] and T[j′..j] for all i′ and j′. Consider the last column of this
optimal “suffix” alignment. Four cases arise:

1. S[i] v.s. T[j]

2. S[i] v.s. -

3. T[j] v.s. -

4. an empty alignment

Case 4 is the only new case comparing to the basic alignment. Then the DP algorithm’s recurrence
relation would be

D[i, j] = max


D[i− 1, j− 1] + f (S[i], T[j]);
D[i− 1, j] + f (S[i], -);
D[i, j− 1] + f (-, T[j]);
0

Then the D[m, n] will be the last cell in the DP table: optimal suffix alignment between S and T.
Previously, initial cases might have negative scores. Due to the new rule here, we just put zeros.

Consider a suffix alignment example where match = 1, mismatch = indel = -1.

C A T T C

0 0 0 0 0
0

A 0 0 1 0 0
0

T 0 0 0 2 1
0

T 0 0 0 1 3
0

G 0 0 0 0 2 2

A 0 0 0 0 1 1

This gives alignment
ATTGA

C ATTC-
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3.2 Local Alignment

Recall that for suffix alignment, D[i, j] denote the optimal “suffix alignment” alignment score of
S[1..i], T[1..j]. I.e., D[i, j] is the maximum alignment score for S[i′..i] and T[j′..j] for all i′ and j′. There-
fore, optimal local alignment score is just maxi,j D[i, j]. The algorithm will be straightforward:

Algorithm 3: Local alignment

1 Fill the dynamic programming table is the same as suffix alignment.
2 Find (i, j) to maximize D[i, j], and backtrack from there.

For example,

C A T T C

0 0 0 0 0
0

A 0 0 1 0 0
0

T 0 0 0 2 1
0

T 0 0 0 1 3
0

G 0 0 0 0 2
2

A 0 0 0 0 1
1

Then the local optimal alignment is the optimal suffix alignment of T[1..4] and S[1..3].

The algorithm was first proposed by Temple Smith and Michael Waterman in 1981. It works for both
linear and affined gap penalty. It is known popularly as the Smith-Waterman algorithm. The global
alignment algorithm was called the Needleman-Wunsch algorithm, which was published in 1970.

Time complexity is quadratic. Space complexity is O(mn). If we only want the score, we can just use a
max variable, which takes O(1) space. If we want the end positions, namely i, j, we can still introduce
extra two variables max I, max J.

If we want the start positions, namely i′, j′, it would be a bit harder. Recall in suffix alignment, there
are four cases. For case 4, we have i′ = i + 1, j′ = j + 1. For other three cases, we simply copy i′, j′

from the smaller alignment (sub-alignment) because they are same. So we just introduce two variables
max I′, max J′.

Similarly, we can do affine gap local alignment:
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D0[i, j] = f (S[i], T[j]) + max


D0[i− 1, j− 1];
D1[i− 1, j− 1];
D2[i− 1, j− 1];
0

D1[i, j] = gapext + max


D0[i, j− 1] + gapopen;
D1[i, j− 1];
D2[i, j− 1] + gapopen;
0

D2[i, j] = gapext + max


D0[i− 1, j] + gapopen;
D1[i− 1, j] + gapopen;
D2[i− 1, j];
0

Algorithm is as before, except that score is now lower bounded by 0. Afterward, find maximum
element in all 3 tables, and backtrack until reaching a 0.

3.3 Many local alignments

It’s sometimes useful to find many local alignments of S and T. For example, when there are multiple
similar regions between the two input strings. We can let the algorithm output multiple alignments.

3.4 Fit Alignment

There are some scenarios where local alignment is not best model. Given sequences S and T. Find a
global alignment between S and a substring of T, maximizing the alignment score. We are trying to
fit S into T. Deleting the prefix of T is free, deleting the suffix of T is free.

We can use similar idea as before. The DP table aligns T horizontally, S vertically. We can start
from anywhere from T, so all zeros. Then for S, we need to initialize properly, −1,−2, . . .. For local
alignment, we can stop at any i, j. For fit alignment, we can stop at any j but not any i: we need to
find the max value in the last row.
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3.5 Linear Space Alignment

Why linear space? Computer RAM used to be very expensive in 80s. There was a prediction “ The
cost for 128 kilobytes of memory will fall below 100 bucks in the near future” Creative Computing
magazine. December 1981, page 6. Even today, keeping everything in the L2 cache may speed up the
computation. We have learned the linear space if only alignment score, instead of the alignment, is
required. Let’s now develop a linear space alignment. We focus on global alignment model first.

The idea is to use divide and conquer. We want to find j such that the optimal alignment between S
and T consists of two parts:

• S[1..m/2] aligns with T[1..j]

• S[m/2 + 1..m] aligns with T[j + 1..n]

Then we can use divide and conquer. However, we need to compute j in linear space. Note that there
may be more than one j satisfying the condition. Any one of them will do the job.

Claim j satisfies the desired condition iff it maximizes

alignScore(S[1..m/2], T[1..j]) + alignScore(S[m/2 + 1..m], T[j + 1, n])

Then we can loop for all j. Let D be the dynamic programming table for aligning S and T. Note
that alignScore(S[1..m/2], T[1..j]) is stored in the middle column (m/2) of the table, which takes linear
space only. For alignScore(S[m/2 + 1..m], T[j + 1, n]), we can reverse the alignment, which doesn’t
affect the score. So we can fill DP table backward.

Computing the two center columns requires linear space. Then the algorithm is as follows:

Algorithm 4: Linear Space Alignment

1 Align(S, T):
2 if |S| = 1 then
3 return a trivial alignment

4 Use the previous idea to find j that maximizes
alignScore(S[1..m/2], T[1..j]) + alignScore(S[m/2..m], T[j + 1..n])

5 return Concatenation of Align(S[1..m/2], T[1..j]) and Align(S[m/2..m], T[j + 1..n])

To see its time complexity, we can either use induction or do in in a sloppy way. We know that

T(m, n) ≤ mn + T(m/2, j) + T(m/2, n− j)
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Then if we expand the subproblems, the time complexity becomes

T(m, n) ≤ mn + T(m/2, j) + T(m/2, n− j)

≤ mn +
mn
2

+
mn
4

+ · · ·

≤ 2mn

But we have linear space complexity.

Related papers:

• A linear space algorithm for computing longest common subsequences by D.S. Hirschberg.

• Optimal alignments in linear space.

“The goal of this paper is to give Hirschberg’s idea the visibility it deserves by devel-
oping a linear-space version of Gotoh’s algorithm.”

How to do local alignment in linear space? Recall the trick to find the boundaries of optimal local
alignment in linear space. We can use this trick, which takes linear space, to find i, i′, j, j′. Then take
these four numbers, and then call global linear alignment to get the actual alignment. This is called
reduction. Similarly, we can do affined gap penalty in linear space.



4
Score and Significance

Consider the sequence from https://www.ncbi.nlm.nih.gov/protein/6WPT_D:

>pdb|6WPT|D Chain D, S309 neutralizing antibody heavy chain

QVQLVQSGAEVKKPGASVKVSCKASGYPFTSYGISWVRQAPGQGLEWMGWISTYNGNTNYAQKFQGRVTM

TTDTSTTTGYMELRRLRSDDTAVYYCARDYTRGAWFGESLIGGFDNWGQGTLVTVSS

This is the heavy chain sequence neutralizing antibody in the COVID. If we search this sequence in
BLAST, we can find other antibody which has similar sequences, in terms of the scores.

Most optimization problems are of the format:

• Instance: describes the input

• Feasible Solution: describes the format of the output

• Score Function: measures how good a solution is

• Objective: either maximize or minimize the score.

For example, in the context of sequence alignment, we have

• Instance: two sequences S and T

• Feasible Solution: insert gaps into S and T so that they have the same length

• Score Function: ∑coli score(i)

• Objective: to maximize the score

Consider three purposes of the score function.

• Purpose 1: It helps us to compare solutions of the same instance.

Which alignment is the best for the same input (s, t).

• Purpose 2: It helps us to compare solutions of different instances.

Which of (s, t) and (x, y) is more likely to be a homology?

• Purpose 3: It helps us to tell how significant the solution is.

Does the alignment between s and t indicate that they are homologous? Or if we tell our friend
our GPA is 4.0, and they know what that means.

22
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4.1 Purpose 1 of score function

We first examine how the scoring function is designed for the first purpose - compare two alignments
and tell which one is better. Recall that what we really want is to find out homologies. Consider
two sequences ATGCATGTA and ATGTACTGA. We want to find their evolution path. Here first A doesn’t
change, while fourth C and T are different. The better alignment would reflect a higher probability
that this alignment happened in the revolution history.

Now considered a simple (oversimplified) evolutionary model. We assume

• evolution only contains substitution and indel.

• two mutations do not overlap. For example, we do not consider the possibility that A→ C → A.
This guarantees that all evolutionary information but the order is represented by the alignment.

• different columns are independent to each other.

Along the path of evolution, we denote the probability: p unchanged, q substitution, r indel and
p + q + r = 1.

Consider the alignment

ATGCA-TGTA (S)

||| | || |

ATGTACTG-A (T)

we can see that under this model, the probability of the alignment is p7 · q · r2. It’s not convenient to
do multiplication in the program, then we convert it into summation. Thus we want to maximize this
probability

log(p7 · q · r2) = 7 log p + log q + 2 log r

Let match = log p, mismatch = log q, indel = log r. We get a scoring scheme. Then maximizing the
score is equivalent to maximizing the probability of evolutionary history.

This is sufficient to compare the alignments of the same two sequences. However, there are some
problems:

• As probability is always less than 1, log is always negative, which is not intuitive.

• Local alignment becomes meaningless. The score is always negative, and the empty alignment
gives 0 score, which is always the maximum.

• Repeating the alignment twice make the score lower. Imagine we have two strings S, T aligned
perfectly well. Then consider S′ = S | S, T′ = T | T. Intuitively, S′ and T′ produce longer good
alignment, but it has lower (more negative) score.

And above example shows that a score works well when comparing the different alignment of the same
string, but might be useless when in comparison of two alignments of different pairs of sequences.

For the first problem, if we simply add a minus sign to the score, we are basically change maximization
problem to minimization problem, which is the same as before, which doesn’t solve the problem.

4.2 Purpose 2 of score function

Given a scheme that match = 1, mismatch = indel = -1, the motivation behinds it is that in homology,
we see a lot of matches. This brings us to the idea of likelihood ratio.

Consider two contrast models:
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• Model 1 (homology): the alignment A between S and T reflects evolutionary history.

• Model 2 (random): the alignment A between S and T is merely a random event.

If homology model gives us higher probability than random model, then we consider it as homology.
We want to examine the likelihood ratio:

Pr(alignment | homology)/ Pr(alignment | random)

If it’s much bigger than 1 (such as 100000), it’s evidence towards model one being the truth. If it’s
much below 1 (such as 0.00001), it’s evidence towards model two being the truth.

Assume for the homology and random models, we have established the probabilities for each column
type:

• Match: p and p′

• Substitution: q and q′

• Indel: r and r′

For the alignment

ATGCA-TGTA (S)

||| | || |

ATGTACTG-A (T)

we have

Pr(alignment | homology)/ Pr(alignment | random) = (p/p′)7 · (q/q′) · (r/r′)2

We usually take a logarithm. The sore becomes

7 log(p/p′) + log(q/q′) + 2 log(r/r′)

If this is very positive, then homology model explains the alignment better than random model. And
vice versa.

It turns out that this is a better scoring scheme. It prefers column types happens more often in the
homology model than in the random model. Usually,

• p > p′, therefore a matching column has a positive score

• q < q′, therefore a mismatching column has a negative score

• r < r′, therefore an indel column has a negative score.

Thus, log(p/p′) > 0, log(q/q′) < 0. This avoids the problems we had when only probabilities (not the
ratio) were used. In the previous “failed” case, if we put two positive alignments together, we increase
the homology chance. Moreover, it can be not only used to compare the alignments of the same input,
but also compare the alignments of different inputs, or different lengths. This is indeed the scoring
scheme we have seen and have used in practice (in BLAST etc.)

The probability values used in the homology and random models may be obtained by simple counting
their frequencies in some “real” alignments and “random” alignments, respectively. Often, the statis-
tics is only approximate and does not need to be precise. In particular, the “random” model often uses
some (over)- simplified values. For example: Pr(indel) = 0.2, Pr(match) = 1/20× 0.8, Pr(mismatch) =
19/20× 0.8.

We can still refine this statistics model. Some substitutions are between letters that have similar prop-
erties, which then happen more often. The non-indel columns can be further refined to have different
scores for different pairs of letters.
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For each pair of letters a and b, assume the probability of seeing (a, b) in a column is

p(a, b) = Pr(a, b | homology)

for the homology model, and is
q(a, b) = Pr(a, b | random)

for the random model. Then substitution score is then log(p(a, b)/q(a, b)). This is called a substitution
matrix.

Let us assume that q(a, b) = p(a)p(b), i.e., independent and random. Here p(a) is the frequency of
letter a in the sequences. Note that this is an (over)-simplification. But it provides “good enough”
values in practice.

The substitution matrix is particularly important when aligning protein sequences because there are 20

amino acids, some of them share significant similarities and protein alignments have fewer matching
columns.

ungapped alignment

The first gap is circled in red. Anything before the gap is called ungapped alignment. For the purpose
of this course, we call it a block. Blocks do not have indel.
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A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

Consider a substitution matrix shown above: BLOSUM 62. “BLO” stands for block, “SU” for substi-
tution, “M” for matrix. It is the most used amino acid substitution matrix. Note that B, Z, X, * are
non-standard letters:

1. B = D or N

2. Z = E or Q

3. X = any

4. * = translation stop

We can see the red cell in the matrix is also positive even row and col indices are different. Let’s study
how this is constructed.

Now we want to find out the probability that A and B appears in the same column of the real homology
alignment. We first need to find many real homology examples. Henikoff’s published two papers:
Automated assembly of protein blocks for database searching, Amino acid substitution matrices from protein
blocks. If we see ungapped alignment between two sequences that have lots of matches, then we
consider it as conserved regions, then we assume it is real homology.

The identity level is high therefore we know they are homologous without a score matrix. In the two
papers mentioned above, there was such a database consisting those blocks.

In the “block” above, there are 37 columns, and each column 3 pairs. Thus in total 111 pairs. For
example, the pair I-L occurs 3 times; the pair L-L occurs 13 times, then

PIL =
3

111
, PLL =

13
111

https://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt


CHAPTER 4. SCORE AND SIGNIFICANCE 27

There are 111 amino acid in total 1. There are total 2 I’s and 21 L’s, thus

PI =
2

111
, PL =

21
111

BLOSUM’s formula for score are

score(x, y) = 2 log2
Pxy

2PxPy
, if x 6= y

score(x, x) = 2 log2
Pxx

PxPx

In BLOSUM matrices these values are rounded to the nearest integer. The multiplication by 2 at the
front provides tiny benefit when rounding to the nearest integer: the absolute round error gets halved,
which means the rounding is more accurate.

There’s problem with the database. Some blocks might be big, while some might be small. More-
over, there’s sample bias: some protein families are more well studied so they are overrepresented
in the database. Such bias is caused by the studies, not reflecting what’s going on during evolution.
To remove this bias in statistics, those “redundant” proteins are classified together before BLOSUM
calculation.

Consider the first two sequences in the picture. We can see they are overly similar. The sequences
that are 62% or above similarity are grouped together and given total weight 1. This way, the AA pairs
are counted between groups that are 62% similar or below. The lower this number is, the better is the
matrix suitable to distant homology search. The original BLOSUM paper found out 62 is best at the
time the paper was prepared.

4.3 Purpose 3 of score function

Consider that BLAST matches a query sequence with all database sequences, and return the highest
scoring local alignments. The best local alignment score is 100. Does it mean good or bad? The
answer depends on the score scheme you use so we need to standardize it for effective communication.
Intuitively, we would ask “can this happen randomly”? This is the intuition for the significance. This
is formalized as the p-value.

p-value
Imagine we want to prove that a coin is biased on its two sides. We first create null hypothesis H0:
the coin is fair. Or alternative hypothesis: the coin is biased, which is what we try to prove. Then we
conduct the experiment: draw the coin 20 times, and found 14 heads and 6 tails.

Pr(# heads ≥ 14 or # tails ≥ 14 | H0) = 0.1154

This is called the p-value.

In statistical hypothesis testing, the p-value is the probability of obtaining a result at least as extreme
as the one that was actually observed, given that the null hypothesis is true. A small p-value rejects
the null hypothesis. So, we choose to believe the alternative hypothesis.

In the coin example, 0.1154 is certainly not good enough. But what if we draw 40 times, and found
28 heads and 12 tails? Now p-value is 0.0115. This is how scientists show the effectiveness of a
treatment through clinical trials. (null hypothesis: it is not effective).

1a this is coincident, not the same as 111 pairs before. It depends of number of sequences in each block.
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A small p-value rejects the null hypothesis. So, we choose to believe the alternative hypothesis.
This does not mean that the alternative hypothesis is surely correct. It is just the null hypothesis
is unlikely to be correct. It is just a way to communicate the significance. The union of null
hypothesis and alternative hypothesis is not the whole universe. For example, if the two sequences
are irrelevant, then we should not have seen the alignment with such a high score. But they may
be related for reasons other than homology - e.g. convergence evolution.

In practice an arbitrary threshold 0.05 is often used, for no apparent reason.

Now we can use p-value for local alignment to communicate its significance. Null hypothesis: the
query S and the database T are irrelevant. Now we observe a high scoring local alignment with score x.
This is an extreme case. Then the p-value is Pr(score ≥ x | H0). How to compute the p-value. From
now on, S and T are long sequences.

Statistics of Ungapped Local Alignment

First bioinformatics studied statistics form ungapped local alignment. Without indel, things become
easier. For ungapped alignment (no indel), each local ungapped alignment is called an HSP (High
Scoring (Segment) Pair) in the BLAST program. For an individual HSP, the alignment score is the sum
of n identical independent variables. So the score is a binomial distribution. As |S| = n, |T| = m are
quite long, there are about O(mn) HSPs. As we have a lot of such ungapped alignments, and we only
output the best one (with the highest alignment score). For p-value, we need to check how rare this
best alignment has a high score. The maxima of many identical independent variables is a so-called
extreme value distribution.

There are two papers in 90s studying the distribution of ungapped local alignment (HSPs) among two
big sequences via both E-values and P-values: “Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes” and “Limit distribution of maximal
nonaligned two-sequence segmental score”.

Theorem 4.1: E-value

In the limit of sufficiently large sequence lengths m and n, the statistics of HSP scores are
characterized by two parameters, K and λ. Most simply, the expected number of HSPs with
score at least x is given by the formula

E = Kmneλx

This is called the E-value of the alignment. The parameters K and λ can be somehow determined from
the scoring matrix. (Details not given here). Thus, we just convert the alignment score x to E-value.
If it is very small, then random sequences will not often produce HSPs with score ≥ x. This is likely
caused by homology. There are not many false positives if we treat every local alignment with score
≥ x as homologies.

Theorem 4.2: P-value

The number of random HSPs with score ≥ S is described by a Poisson distribution. Therefore
the chance of finding zero HSP with score ≥ S is e−E, where E is the E-value of score S.

When E is small, then e−E → 1, and probability of finding no HSP with that score is high. Therefore,
the p-value is 1− e−E. When E-value is very small, P-value and E-value are almost identical. BLAST
chose to use E-value. Below are comparisons of two values.
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0.5 1

0.5

1

1− e−E

E-value

P-value

0.05 0.1

0.05

0.1

1− e−E

E-value

P-value

Green curve is p-value, which is equal to 1− e−E. We can see from the diagram on the right: when
E-value is between 0 and 0.1, the green curve matches the red curve nicely. All we care are the cases
where both are small. When both are big, it’s hard to see its homology.

The E-value and P-value have their physical meanings. For example, if S and T are random, we expect
to see on average 0.01 HSP with such a high score. The alignment score, however, largely depends
on the scoring matrix one chose. Saying that “the alignment score is 100” is like saying “the length is
100”. There are no units for this measurement.

The statistics of gapped alignments The statistics developed above have a solid theoretical foun-
dation only for local alignments that are not permitted to have gaps. However, many computational
experiments and some analytic results strongly suggest that the same theory applies as well to gapped
alignments. But we need to know how to compute K and λ. We don’t know how to compute/estimate
them mathematically. Thus, we need to do some simulation like repeating random alignments.



5
Multiple Sequence Alignment

Consider an example of multiple sequence alignment.

From this paper:

Contacting residues between SARS-CoV-2 and ACE2. Boxes denote the contacting residues.
Black boxes denote mutations unique to omicron, red boxes denote mutations occurring in
multiple variants, and grey boxes denote no mutations in any variant.

30
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If we consider indels, alignment becomes harder. A multiple sequence alignment of k sequences is an
insertion of gaps in the positions of the sequences, just like a pairwise alignment.

Red ones and yellow ones are almost the same. Arthur M. Lesk once said:

“Two homologous sequences whisper, a multiple alignment shouts loudly.”

5.1 Heuristic Algorithm for Multiple Alignment

There is a simple algorithm that can merge pairwise alignments to a multiple alignment. The algorithm
does not guarantee the optimality of the result. But runs relatively fast.

Suppose we have the following two pairwise alignments:

• t: A-GAGC

• s1: ATGAGC

• and

• t: A-GAGC

• s2: AGTTGC

Our main idea is to use the shared sequence t to construct a multiple alignment of s1, t, and s2.

t: A-GAGC

s1: ATGAGC

and

t: AGA-GC

s2: AGTTGC

t: A-GA-GC

s1: ATGA-GC

and

t: A-GA-GC

s2: A-GTTGC

t: A-GA-GC

s1: ATGA-GC

s2: A-GTTGC

=⇒ =⇒

We observe that pairwise alignment is “induced” by the multiple alignment.

Algorithm Insert gaps to the two alignments, so that the superstrings for t become the same in the
two alignments. Then put the two alignments together. We keep two pointers i and j for t in both
pairs.

Property Maintains the pairwise alignment unchanged if ignoring the all-gap columns of the pair-
wise alignment.

The same idea can be applied to merging two multiple alignments as well. For two multiple align-
ments, as long as they share a common string, we can apply the same idea.
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t: A-GA-GC

s1: ATGA-GC

s2: A-GTTGC

t: AGAGC

s3: ATA-C

t: A-GA-GC

s1: ATGA-GC

s2: A-GTTGC

t: A-GA-GC

s3: A-TA--C

t: A-GA-GC

s1: ATGA-GC

s2: A-GTTGC

s3: A-TA--C

=⇒ =⇒

The process can be continued to merge two multiple alignments together as a bigger one. If we always
use t is the common string, the alignment between other sequences and t have not changed over the
iterations. Note that the obtained multiple alignment may not be optimal. In the example above, if we
only consider the pair alignment between s1 and s3, we should only open the gap between the second
T and third A.

Algorithm 5: Heuristic Algorithm for Multiple Alignment
Input: s1, . . . , sn

1 A← pairwise alignment of s1 and s2.
2 for i← 3..n do
3 Construct pairwise alignment P between s1 and si.
4 A← merge(A, P, s1), i.e., merging A and P using s1 as the template.

5 return A

The order of the merging is important to get good (but not optimal) multiple alignment. We want to
merge similar sequences first, as we don’t want to open gaps in the beginning, which will be carried
over for future merging operations. One way is to construct a minimum spanning tree, and then merge
using the shared vertices.

The exact algorithm for multiple alignment is super-polynomial. Before we study it, let’s examine a
heuristic algorithm. A heuristic algorithm is an algorithm that gives up quality for speed. It usually
does not offer any performance guarantee in terms of quality. Well... We already sacrificed the quality
because of a simple scoring function anyway. If we cannot afford exponential time, the best we can
ask for is a suboptimal solution. But practically, it might work sometimes. We do not want to spend
super-polynomial (e.g. exponential) time.

5.2 Exact Algorithm for Multiple Alignment

When the optimal alignment is needed. There is an exact algorithm as well. First we need to define
score function we want to optimize.

For each column, assuming the letters are a1, . . . , an for the n sequences. Define a column score
S(a1, . . . , an). Then the alignment score is the total of the column score. There are more than one ways
to define the column score. Let us examine the simplest one first.

SP-score

SP (Sum of Pair) score is the most widely used because its simplicity. We have a similarity matrix
s(a, b) for any two given letters (or dashes). For the k-th column with n letters x1, . . . , xn. Define the
SP-score for the k-th column by

Sk = ∑
i,j

s
(
xi, xj

)
The SP-score of the alignment is

∑
1≤k≤m

Sk
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We normally require s(-, -) = 0.

Note that SP-score can be viewed from a different perspective as follows: For each pair of sequences
Si and Sj (including the gaps) in the multiple sequence alignment, define

Si,j = ∑
k

s(Si[k], Sj[k])

The SP score is then ∑i,j Si,j. The two perspectives are equivalent if s(-, -) = 0.

Recall the pairwise alignment algorithm, we then borrow this idea to align three sequences. Use X to
indicate a letter. The last column has 7 cases.

X

X

X

-

X

X

X

-

X

-

-

X

X

X

-

-

X

-

X

-

-

Let f be the column-wise score function. DP[i1, i2, i3] is the optimal score for s1[1..i1], s2[1..i2], s3[1..i3].
DP[i1, i2, i3] is maximum of the 7 cases.

• case XXX: DP [i1, i2, i3] = DP [i1 − 1, i2 − 1, i3 − 1] + S (s1 [i1] , s2 [i2] , s3 [i3])

• case XX-: DP [i1, i2, i3] = DP [i1 − 1, i2 − 1, i3] + S (s1 [i1] , s2 [i2] , -)

• · · ·

It is necessary to introduce some notation for n sequences. . .

Here X indicates a letter and a dash indicates an indel. If you regard X as 1 and - as 0. Then these
cases are all the 3-bit binary numbers but 000. In general, for n sequences, there are 2n − 1 cases. Let
us use δj to indicate whether at sequence j the last column is a letter. δj = 1 if it is a letter; δj = 0 if it
is a dash.

Algorithm 6: Algorithm for Optimal Multiple Alignment

1 Let S(x1, . . . , xn) be a function to compute the column score.
2 Let D[i1, . . . , in] be the optimal multiple alignment score of s1[1..i1], . . . , sn[1..in].
3 Consider the last column of the optimal multiple alignment. There are 2n − 1 cases.
4 For each case, the “sub-alignment” after removing the last column is also optimal.
5 Then

D [i1, i2, . . . , in] = max
δj=0,1

(D [i1 − δ1, . . . , in − δn] + S (b1, . . . , bn))

where

bj =

{
-, if δj = 0

sj
[
ij
]

, if δj = 1

We see that line 5 has a nested loop mn iterations. For each recurrence relation, we need to maximize
for every possible δj, 2n possible cases. Thus the time complexity is O(mn2nT), where T is the time
needed for computing a column score. Space complexity is O(mn).

This problem is NP-hard. So, no polynomial time algorithm exists (unless P = NP). Computing the
optimal alignment with large m and n is hopeless. But at least this works for small m and n.

SP score (either maximization or minimization) is one of the simplest scoring function in use. There
are better proposals to the scoring function. Let’s examine a more sophisticated score called relative
entropy. We want to maximize.
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Relative Entropy

There are n letters x1, . . . , xn in a column. For letter a in alphabet, let na be the number of a in the n
letters. Our two different models assume two different distributions of letters in that column.

• Model 1: (homology model) a occurs with probability pa = na/n.

• Model 2: (random model) a occurs with “background” probability qa, which is learned from a
database.

We want to compute the likelihood ratio. Then we do log likelihood ratio as usual. First find the
conditional probabilities,

Pr (x1, . . . , xn | model 1) = ∏
1≤i≤n

pxi

Pr (x1, . . . , xn | model 2) = ∏
1≤i≤n

qxi

Then log likelihood ratio is

log ∏
1≤i≤n

pxi

qxi

= ∑
1≤i≤n

log
pxi

qxi

= ∑
a∈Σ

na log
pa

qa

This is called the relative entropy at a column. Let Ej be the relative entropy of column j. Then the
alignment score is equal to ∑1≤j≤m Ej, which we want to maximize. Note that Ej ≥ 0, and Ej = 0 only
if pa = qa (This is because of a theorem in information theory).

A few assumptions of relative entropy score:

• Sequences are independent to each other.

• Columns are independent to each other.

These seem to be too strong but at least when these assumptions are true the score has a theory
foundation. Other scores are more empirical. Note: If all qa are equal to each other, then this is
equivalent to the “minimum entropy” introduced in the reference book (Durbin page 138).

5.3 Approximation Algorithm

In the heuristic algorithm, it would be good if we can get some guarantee on the quality of the
suboptimal result. Suppose we want to maximize a score, and the optimal value is OPT, how about
computing a solution with score at least OPT/c for a small constant c > 1? If c = 1.001, this is not
so bad. If this can be done, this is called a ratio-c approximation algorithm for the problem. For
minimization problem, ratio c means the algorithm gives score at most c ·OPT.

The known approximation algorithm for multiple alignment only works for the minimization version
of the problem. Let M[a, b] be a distance metric between two letters (possibly -) a and b satisfying
triangular inequality: M[a, a] = 0, M[a, b] ≥ 0, M[a, c] ≤ M[a, b] + M[b, c].

The distance between two sequences d′(Si, Sj) is the total of their column scores using M as the score
scheme. The SP score is ∑i,j d′(Si, Sj). We want to minimize. Note that this is almost the same as
before, except that now we want to minimize the difference.

For sequences S, T, R taken from the same multiple alignment, we have

d′(S, R) ≤ d′(S, T) + d′(T, R)

Note that S, T, R may have the ‘-’ symbols in the sequence. Here are some notations:
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• When context is clear (the multiple alignment is given), we also use d′(s, t) to denote the distance
between the original sequences s and t (without ‘-’). It is equal to d′(S, T).

• When there are more than one multiple alignments A1, A2, . . . , An, we use d′i(s, t) to indicate the
distance induced by Ai.

• We use d(s, t) to denote the optimal pairwise alignment between s and t. Thus d(s, t) ≤ d′(s, t).

Algorithm 7: Approximation algorithm for multiple alignment
Input: s1, . . . , sn

1 foreach i = 1..n do
2 Build optimal pairwise alignment between si and sj for each j = 1, 2, . . . , n.
3 Use these pairwise alignment to build a multiple alignment Ai.

4 Output the Ai with the minimum SP score.

We want to prove that this algorithm has ratio 2.

Fact 1

d′i(si, sj) = d(si, sj) for every j.

Recall that in Ai, si is in the center. Thus the induced pairwise alignment is optimal. And d′i(sk, s`)
might not be optimal if i 6= k.

We want an upper bound on the score produced by the algorithm:

d′i(sk, s`) ≤ d′i(si, sk) + d′i(si, s`)

Let A∗ be the optimal multiple alignment and d∗ be pairwise alignment score induced by optimal
multiple alignment A∗. Then we have

n

∑
i=1

SP(Ai) = ∑
i

∑
k,`

d′i(sk, s`)

≤∑
i

∑
k,`

(
d′i(si, sk) + d′i(si, s`)

)
= ∑

i

(
∑
k,`

d′i(si, sk) + ∑
k,`

d′i(si, s`)
)

= ∑
i

(
n ·∑

k
d′i(si, sk) + n ·∑

`

d′i(si, s`)
)

= ∑
i

2n ·∑
k

d′i(si, sk)

= ∑
i

2n ·∑
k

d(si, sk)

≤∑
i

2n ·∑
k

d∗(si, sk)

= 2n ·
(
∑

i
∑
k

d∗(si, sk)
)

= 2n · SP(A∗)

= 2n ·OPT

So, at least one of the Ai has score no more than 2 ·OPT.
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Theorem 5.1

The above algorithm is a ratio-2 approximation to multiple alignment under SP score.

For general score scheme (general score matrix) this ratio-2 may not hold. For example, when the
score scheme does not satisfy triangular inequality. Or when the score scheme has both positive and
negative scores.

To get a practical solution, the algorithm might combine different ways. Clustal ω, is the most fre-
quently used multiple sequence alignments. Moreover, multiple sequence alignment has many appli-
cations:

• Motif finding: conserved regions of a protein family may be important motifs.

• Structure prediction: after multiple alignment of a protein family, their structures can be pre-
dicted together. DeepMind, AlphaFold 2.

• Phylogeny: the pairwise alignment induced by the multiple alignment can be more accurate
than the optimal pairwise alignment in reality. Build multiple alignment first then do phylogeny
by examining the evolution on each column.



6
Seeding Methods in Homology Search

Recall that BLAST is very powerful. We will study some of their algorithms.

Consider another example. We want to compare two genomes. Smith-Waterman is the most accurate
method: do dynamic programming, find high scoring entry and find good local alignment. Time
complexity is O(mn). So for human v.s. mouse: 3× 109 × 3× 109 = 9× 1018 which will take many
years.

Observe that in most cases, similarities or local alignments are not long, very short relative to the
genomes.

m

n

sequence 1

sequence 2

j

i

For every pairs of (i, j), build a local alignment around it. This takes O(mnT) where T is time for
sub-area. This is not better than Smith-Waterman. But this leads to an important idea.

Most pairs of (i, j) are useless. We don’t need to compare every i and j. Instead, We only want to
try local alignments on the “promising” pairs of (i, j). In the context of sequence similarity search in
bioinformatics, these “promising” pairs are called “seeds” or “hits”. We then need a proper definition
for hits, and some efficient way to enumerate the hits faster than trying every pair of (i, j).

6.1 Short Consecutive Match

BLAST uses this idea as hits. The idea: find a consecutive (exact) match, and use it as hit. BLAST uses
length 11 exact matches. For random i, j, the probability of exactly length k match between lengths m
and n (random) sequences is (4−k ·mn)T, where T is time spent on each of them. The time complexity
becomes O(4−kmnT). By default, BLAST used k = 11, and it speeds up about four million.

37
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The Idea behind Seeding

A true similarity has a high chance of being hit. Hitting at any position in the similarity will do. A
random pair (i, j) has low chance of being hit. Thus, if we use hit to filter(i, j), we will detect most
true similarities, and not wasting time on random pairs of (i, j).

6.2 Data Structure for Finding Hit

We will discuss a simple data structure using index table, which is different from what BLAST is
using.

From wiki,

Usually, the term k-mer refers to all of a sequence’s subsequences of length , such that the
sequence AGAT would have four monomers (A, G, A, and T), three 2-mers (AG, GA, AT),
two 3-mers (AGA and GAT) and one 4-mer (AGAT). More generally, a sequence of length
will have k-mers and total possible k-mers, where.

For each k-mer, we build an index table to remember all its occurrences in S. Then for each k-mer of
T, find its hits in the index table. The index table can be a trie or a hash table. For example, given
S = AATCTTAA, we fill the index table as follows:

AA −→ 0, 6

AC

AG

AT −→ 1

CA

CC

CG

CT −→ 3

GA

GC

GG

GT

TA −→ 5

TC −→ 2

TG

TT −→ 4

We see AA 2-mer in index 0 and 6 of S. Then we go through 2-mer of T = GAACTTA. Thus we found
that (index) j = 2 (in T) will hit i = 0, 6 (in S).

There are 4k entries. For each entry, it is a list of occurrences of a k-mer in S. All these lists cost |S|
space. The space complexity is not bad.

Building the index using S takes O(n). Find matches between the index and sequence T: O(m) time
to scan T, plus we need to examine all of the N hits found. Let t be the examination time. Thus the
overall runtime is O(n + m + Nt). The term Nt is the most expensive part. Indexing overhead is small.
In practice, most of the hits encountered are random hits.

We can do filtration for multiple rounds. In the previous time complexity, t in Nt will be large if the
examined sequence is long. We can somehow spend extra time t′ � t, to filter out random hits. Then
Nt becomes N · t′ + N′ · t. After finding a hit, instead of trying to build a local alignment directly,
BLAST uses another round of filtration to determine if a hit is a “good” or “bad” hit. Quick search
in both directions; if most symbols match, it’s a good hit. Otherwise it’s bad. More precisely, use
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ungapped extension (linear time) to find HSPs. If an HSP is above a certain score threshold, build a
local alignment around it.

6.3 HSP extension

Algorithm 8: HSP extension

1 for k← 0.. do
2 score += sc(S[i + k], T[j + k]) // go right

3 for k← 1.. do
4 score += sc(S[i− k], T[j− k]) // go left

But when to stop? Score will increase and decrease during the extension.

score

extension lengthk = 0

best score

dropoff>threshold

dropoff

Extension stops when drop off greater than threshold.

How long will the extension continue after reaching best score? We assume that

• After reaching best score, sequence becomes random.
Thus Pr(match) = 1/4 and Pr(mismatch) = 3/4

• match = 1 and mismatch = −1

Thus expected score on each additional base is −0.5. If dropoff = k, then after 2k bases, the expected
dropoff will reach k.

This idea does not guarantee we will find every single good local alignment. BLAST will fail on the
case such that the longest exact match is of length < 11, then BLAST will not find this HSP. This brings
us a dilemma:

• Sensitivity - needs shorter seeds. the success rate of finding a homology

• Speed - needs longer seeds. Mega-BLAST uses seeds of length 28.

6.4 Spaced Seeds

111*1**1*1**11*111 is called a spaced seed. We use * to denote “don’t care” positions. For example,

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT...

|| ||||||||| ||||| || ||||| ||||||

GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT...

111*1**1*1**11*111

Note that * can be match and mismatch: first * is match and second * is mismatch. Hit is all the
required matches are satisfied. BLAST’s seed is 11111111111.
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A homology/similarity region’s actual sequences do not matter, the match/mismatch matters. There-
fore, a region is often denoted by a binary 0-1 sequence:

11011111001110111011111

A hit is then as follows
11011111001110111011111

111*1**1*1**11*111

Now we change the definition of hit, we need to change data structure as well, efficiently. We build
entries/indexes in the same way as consecutive seed. Except that now we have a length l, weight w
seed. E.g. 11*1. Each l-mer, take the w letters out and put in index table. Then for index AAA, it
contains list of occurrences of AA?A in S. So now we take spaced k-mer, instead of consecutive k-mer.
The index table can be a hash table.

The time complexity is the same: still waste the same amount of time on random hits. What about
the sensitivity? Below is simulated sensitivity curves. Define HSP of length 64, and randomly assign
1 with probability p, and p(0) = 1− p. x-axis is similarity level.

Why spaced seeds are better? Consider a HSP with similarity level p and a fixed position/index i, then
it has match with p probability. If we use weight 11, then Pr(seed hit pos i) = p11. This doesn’t change
between spaced seed and consecutive seed. But what we care is Pr(HSP contains at least 1 hit). But as
spaced seeds are longer, the probability is lower. So this explanation doesn’t work.

Consider
TTGACCTCACC?

|||||||||||?

TTGACCTCACC?

11111111111

11111111111

It seems that we hit twice. However, if we hit pos 0, the chance of hitting pos 1 gets increased: we
then only require last position to be matched, of probability p. So the hits between different positions
within HSP are correlated. This idea works vice versa. BLAST’s seed usually uses more than one hits
to detect one homology, which is redundant.
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CAA?A??A?C??TA?TGG?

|||?|??|?|??||?|||?

CAA?A??A?C??TA?TGG?

111*1**1*1**11*111

111*1**1*1**11*111

For spaced seeds, hits are not strongly correlated, more independent. Spaced seeds uses fewer hits
to detect one homology, which is more efficient. We see that PatternHunter’s seed do not overlap
heavily when shifts:

111*1**1*1**11*111

111*1**1*1**11*111

111*1**1*1**11*111

111*1**1*1**11*111

111*1**1*1**11*111

111*1**1*1**11*111

111*1**1*1**11*111

......

The hits at different positions are independent. After first hit, the next three shift gives us 6 matches,
and so on. Thus the probability of having the second hit is 3p6 + · · · . For BLAST’s seed, for the second
position, we only need one additional match; for the third position, we need two additional matches.
Thus probability is roughly p + p2 + p3 + p4 + · · · , which is bigger than spaced seed.

6.5 Lossless Filtration

Filtration is bad, because we give up sensitivity: some of HSPs will be lost. When seeds are short
enough and HSP similarity is high enough, lossless filtration is also possible. For example, seed 111
can guarantee to match when a sufficiently long HSP has similarity 66.7%. To fail being hit by 111,
the HSP must have a mismatch in every 3 adjacent positions. On the other hand, 110110110 · · · , which
has 66.6% similarity, will fail the seed 111.

Now consider spaced seed 11*1. We claim that ∀ε > 0, seed 11*1will hit every sufficiently long region
with similarity 0.6 + ε.

Proof:
Suppose there is a sufficiently long region not hit by 11*1. For every HSP, we can divide it into
different blocks of the form 1a0b. Notice that a ≤ 3, otherwise it’s already hit by 11*1. We then
consider different cases for a:

• a = 3. We know next block starts with at least one 1. So in order to have mismatch, b ≥ 2.
This has identity level ≤ 3

5 as it has 3 matches out of 5: a
a+b .

• a = 2. Similarly, b ≥ 2. Otherwise 11011a′0b′ will produce a match. Identity level ≤ 2
4 .

• a = 1. We need to have b ≥ 1 to form a block. Identity level ≤ 1
2 .

Thus in each block, similarity ≤ 0.6. So the long region’s similarity is < 0.6 + ε.

6.6 Compute Seed’s Sensitivity

We denote a probabilistic distribution of HSP by R, and Pr(R[i] = 1) = p is uniform random distribu-
tion. We want to compute Pr(length-n R is hit by a seed x), where |x| = k.

Denote a length-k binary string by s, and Rs to be the concatenation of R and s. Let D[i, s] be the
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probability Rs is hit by x for a length-i R. Then by total probability law,

Pr(length-n R is hit by a seed x) = ∑
s′∈{0,1}k

Pr(s′) · Pr(Rn−ks′ is hit by x)

= ∑
s′∈{0,1}k

p#1 in s′(1− p)#0 in s′D[n− k, s′]

Then how to compute D[i, s]? Dynamic programming.

• Case I: s is hit by x. Then D[i, s] = 1.

• Case II: s is not hit by x. We have two subcases: R ends with 1 with probability p, and 0 with
probability 1− p. Denote s′ the length-(k− 1) prefix of s. Thus we hav the following recurrence
relation:

D[i, s] = p · D
[
i− 1, 1s′

]
+ (1− p) · D

[
i− 1, 0s′

]
Algorithm 9: Seed x’s sensitivity

1 Initialize D[0, s] // either 0 or 1, depending on whether s is hit by x
2 for i← 1..n− k do
3 for s ∈ {0, 1}k do
4 if s is hit by x then
5 D[i, s] = 1
6 else
7 D[i, s] = p · D [i− 1, 1s′] + (1− p) · D [i− 1, 0s′]

8 return ∑s Pr(s) · D[n− k, s]

Here Pr(s) = p#1 in s′(1− p)#0 in s′ . Time complexity is O(2kn). There exists a more efficient algorithm
O(2#0 in xn), which is beyond the scope of this course.

There’s no good algorithm to directly optimize the spaced seed, but we can do exhaustive search to
enumerate all spaced seeds with weight 11 and no longer than 18, calculate the sensitivity of each,
and output the one with the highest sensitivity. This is the ONLY known algorithm that guarantees
the finding of optimal seed. Many heuristics exist to find suboptimal seeds.

6.7 Multiple Spaced Seeds

Seeds with different shapes can detect different homologies. Some seeds may detect more homologies
than others. This leads to the use of optimized spaced seed. Can use several seeds simultaneously
to hit more homologies. Approaching 100% sensitive homology search. Also the overlap of seeds is
waste of time.

Consider a set of seeds found by optimization algorithm: (homology identity = 0.7, homology length
= 64)

111*11**1*11*1*111

1111***1***1**11*1*111

11**11*1**1*1***11*111

111*1***1111**1***11*1

To use multiple seeds, one only needs to search multiple times with different seeds, and combine
results. Of course, you can search with them simultaneously. In either case, this slows down approxi-
mately k times if k seeds are used. Is it worth it? How does it compare with using one shorter seed?
This is a trade-off. We can consider the tradeoff between weight of seeds and number of multiple
seeds.
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Solid curves: Multiple (1, 2, 4, 8, 16) weight-12 spaced seeds. Dashed curves: Optimal spaced seeds
with weight = 11, 10, 9, 8. Typically, “Doubling the seed number” gains better sensitivity than “de-
creasing the weight by 1”.

6.8 Seeding for Proteins - BLASTP

With nucleotides, we’re requiring k positions with exact matches. However, for proteins, that’s not
really reasonable: some amino acids mutate to another one very often, namely we don’t require exact
matches, but also positive score matches. So BLASTP looks for 3- or 4-letter protein sequences that are
“very close” to each other, and then builds matches from them. Where very close, then total BLOSUM
score in the short window is at least +13 for 4-mer (or +11 for 3-mer).

One way is to find all neighbors of 3-mer, which are all 3-mers give BLOSUM score ≥ 11. Thus we can
use computer to pre-compute all neighbors of every 3-mer, and put in the index table. The details:

1. For every 3-mer, find all “neighboring” 3-mers that, score at least +11 (or whatever). Build these
into a data structure NeighborList.

2. Build a hash table H for S of its 3-mers, just like for the nucleotide case

3. For every 3-mer x in T, retrieve all neighbors from NeighborList. For each neighbor, query H to
find hits in S.

NeighborList is a small structure: there are only 8000 3-mers

The original way is with BLASTP:

• Build an automaton that reflects all string close to short strings in T (the short sequence)

• Scan S (the longer sequence), looking for matches.

Details: https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm

Which sequence to index? That’s actually a tough question. Here’s a typical scenario:

• S is the human genome (length n)

• P1 is a short protein sequence (length m1)

https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
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• P2 is another short protein sequence (length m2)

If we’re smart, build an index for S, once, and then look up the short sequences in it. Added time for
P2 is more like O(m2), not O(n + m2).

Memory is a concern in old days, when indexing the human genome, but not anymore today. We
probably should index the longer sequence. BLASTN (1990) indexes the query, not the database.
BLAT (2000) indexes the database, not the query. BLASTP also indexes the query.

As an extension to this idea, consider two-hit BLAST: it requires two seeds (probably shorter) that
are nearer than k from each other, and base the alignment on their enclosing box. In other words,
two short hits are very close. Potentially even fewer false positives, but one has to use shorter seeds.
There’s quite a tradeoff here. This might lose sensitivity, but we can gain sensitivity back by reducing
weight of seeds.
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Part II:

Proteomics and Mass Spectrometry
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7
Introduction

蛋白质组学和质谱法

7.1 Motivation

Primary structure of protein is a sequence of amino acid. 20 frequent amino acids. Fold into a complex
3D structure.

Fundamental questions Identify, sequence, and quantify all the proteins in a biological sample.

• Identification: determine which proteins in a database present in the sample.

• Sequencing: determine the amino acid sequence without needing a database.

• Quantification: determine the quantity change of each protein under two different biological
conditions.

Example: Biomarker
HER2-positive breast cancer is a breast cancer that tests positive for a protein called human epider-
mal growth factor receptor 2 (HER2), which promotes the growth of cancer cells.

From Mayo Clinic:

HER2-positive breast cancers tend to be more aggressive than other types of breast
cancer. They’re also less responsive to hormone treatment. However, treatments that
specifically target HER2 are very effective.

Example: Immunopeptides (免疫活性肽)
Tumor (肿瘤) or infected cells “present” some abnormal peptides at the MHC on cell surface. CD8+
T cells (aka T killer cells) recognize the abnormal peptides and kill the cell. An actively pursued
method in immunotherapy is to identify/predict the peptides presented and train the T cells to
target them. Mass spec is the best tool to identify these peptides.

Example: Antibody
Our immune system produces antibodies to bind to invasive pathogens (virus etc.) and cancer
neoantigen (抗原). Antibody’s amino acid sequences determine the binding target (antigen). Some
people have stronger immune system. E.g. HIV elite controller. Sequencing their antibodies
provides a new way to discover antibody drugs.

46
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Here is technology overview:

Biology sample Sample preparation Peptides Mass spectrometry

Mass spectral data

What’re in the sample?

7.2 Mass spectrum of a peptide

Consider a mass spectrum.

m/z is the x-axis, which is the ratio from mass (molecular weight) to charge. Each peak indicates the
detection of a particular type of ion (electrically charged molecule) with the corresponding mass to
charge ratio. Mass of an ion can also be derived if the charge state (z) of an ion is known, which is
achievable. A typical proteomics experiment produces tens of thousands spectra per hour.

For each peptide, it tries to produce a Tandem Mass Spectrum (MS/MS). Top → Bottom spectrum is
MS/MS. Bottom to top is bioinformatics.

There are 20 amino acids. All have the same basic structure but with different side chains:

CN

H

H C

O

OH

R

H

R Group (Side Chain)
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Consider two examples. Glycine, or Gly, or G

CN

H

H C

O

OH

H

H

and Arginine, or Arg, or R

H2N

N

NH2NH2

O

OH

A H2O is lost when connecting two amino acids with a peptide bond. Therefore, a peptide is a chain
of amino acid residues (氨基酸残基) plus H at N-term and OH at C-term. 1

Once we have the chain of residues, we can compute the molecular weight, the mass of peptide.
Consider Amino Acid Residue Mass Table. Mass unit is Da (or Dalton). For example, the approximate
(integer) mass of peptide GGK is

57︸︷︷︸
G

+ 57︸︷︷︸
G

+ 128︸ ︷︷ ︸
K

+ 18︸︷︷︸
H2O

= 260

1Sorry, chemfig is so hard to learn...

https://www.ionsource.com/Card/aatable/aatable.htm


CHAPTER 7. INTRODUCTION 49

Peptide Fragmentation in MS/MS. Fragment between peptide bond. We don’t want to do all fragmen-
tation and get single amino acids, which don’t reveal structural information. We want to fragment
once. Then we get MS/MS of a peptide. Left is b-ion, right is y-ion.

For example, we find the difference between y7 and y6 is 129, this tells us there is an E amino acid
in between. Mass difference between two adjacent “ladder” ions can be used to determine the amino
acid (residue).



CHAPTER 7. INTRODUCTION 50

Bottom Up Proteomics

A Typical LC-MS Setup

7.3 Three Basic Components of Spectrometer

• Ionizer

– provide electric charges to the molecules

– MALDI, ESI
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• Mass Analyzer

– Separates the ions according to m/z

– Magnetic Sector, Iontrap, TOF, Quadrupole, FT, Orbitrap

• Detector

– Detect the separated ions

– Electron multiplier, Fourier Transform

7.3.1 Ionization

MALDI (Matrix Assisted Laser Desorption/Ionization) by Koichi Tanaka, ESI (Electrospray Ionization)
by John Fenn

Ionization - ESI

Spray sample solution, provide charge & dry condition. Then charged droplets. Water evaporate. At
some point, charged molecules will be ejected out of droplet, which will become ion. Then ions gets
in. We need to make this hole tiny, because in the spectrometer, there is a big vacuum.

There’s a special property of ESI: ions may have different charge states. That used to be a problem,
but now with proper data analysis, it is a good property.

7.3.2 Mass Analyzer (1) - Quadrupole

We need to control ions, otherwise it will diffuse to everywhere because of the vacuum. Quadrupole
is to hold ions together.
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• Adjusting DC voltage allows different m/z ions to pass. (Mass filter)

• The complete spectrum is obtained by scanning whole range.

Mass range 10 - 4,000 Da

7.3.3 Mass Analyzer (2) – TOF

Time of flight.

Time of flight ∼
√

m/z

7.3.4 Mass Analyzer (3) – Orbitrap

By far, most popular.
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Moving ions are trapped
around an electrode.

By shaping the electrode appropriately,
ions also move left and right. Left-right
frequency ∼

√
m/z

Fourier transform to
convert the time
domain signal to
frequencies.

We can increase the measure accuracy by measuring longer, then the frequency will become more
accurate, then we do Fourier transform. Thus it’s the most accurate affordable machine.

Then the mass spectrometer:

Molecules

A

B

C

Ionizer Mass Analyzer

MS Spectrum

AB

C

However, this is not good enough to identify the peptide because in the database, there are many
peptides of identical molecular weight. To get that information, we need to fragment the peptides
further. For example, let’s select A, which we will use quadrupole. Now from ionizer, instead of
shooting into mass analyzer, we shoot it into quadrupole. We program quadrupole so that we only
allow certain m/z ions to go through.
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Then these selected peptides are called precursor ions. We then put them into collision cell, and
fragment them into pieces. After the process, the remaining fragment ions are called product ions,
which are fragments of precursor peptides. And they can be further measured with another mass
spectrometer. Putting these together, we have tandem mass spectrometer.

Molecules

Ionizer Mass Filter

MS/MS Spectrum

Fragmentation Mass Analyzer

parent ion
precursor ion

To distinguish spectrum of precursors, and spectrum of fragment ions, people call this MS/MS spec-
trum, or tandem (串联) MS, or MS2.

Protease

Proteins are generally too large for mass spec. They need to be cut into short peptides first. A
protease is any enzyme (酶) that conducts proteolysis (蛋白水解). In another word, a protease
breaks protein in water. Trypsin (胰蛋白酶) is the most commonly used enzyme. It digests at
site [KR] | [^P]: After K or R, but not before P.

...–M–A–L–R–Q–V–...

...–M–A–L–R Q–V–...

�

7.4 Liquid Chromotography (LC)

This creates another problem of sample complexity. Suppose there are 10,000 proteins to be analyzed.
Each produces 100 peptides. Then there are 1 million peptides. If all of them are injected into mass
spec simultaneously, we will see a peak everywhere. No useful information at all. To solve this, we
separate them and inject a subset of them to mass spec at any given time. So spectrometer is not busy.

This is done by Liquid Chromotography (LC).
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1. Peptides are loaded to the column.

2. Solvent is pumped into the column to wash peptides off.

3. By gradually adjusting the solvent’s hydrophobicity (疏水性), peptides with different hydropho-
bicity will come off at different time. This is the retention time (RT)2 of the peptide.

4. Peptides are therefore separated. (But the separation is not perfect..)

Put all pieces together, we have

(1) A mixture of protein is digested into
peptides with added enzyme (usually
trypsin).

(2) The resulting peptides are
separated with liquid
chromatography (LC). Different
peptides elute at different time.
The separation may not be
perfect.

(3) The spectrometer scans the peptide
ions at a particular time and obtains a
profile MS scan. Each peak in the MS
spectrum supposedly corresponds to a
peptide.

(4) The spectrometer selects a peak
(a peptide ion) with the first mass
analyzer, fragments it and produces
an MS/MS scan with the second
mass analyzer.

MS spectrum is sometimes called survey scans: produce a survey of all peptides getting into the
spectrometer. We “acquire” MS2 spectrum from survey scan. This flow is called data-dependent
acquisition (DDA).

From wiki:

• In mass spectrometry, data-independent acquisition (DIA) is a method of molecular structure
determination in which all ions within a selected m/z range are fragmented and analyzed in a
second stage of tandem mass spectrometry.

• DIA is an alternative to data-dependent acquisition (DDA) where a fixed number of precursor
ions are selected and analyzed by tandem mass spectrometry.

2In chromatography, retention time (RT) is the interval between the injection of a sample and the detection of substances in
that sample.



8
Database Search

In the previous chapter, we have learnt how the data is produced. Now let’s learn how we can use
and analyze it.

8.1 Reviews

Tandem Mass Spectrometry

mass filter
or ion guide

collision cell TOF Analyzer

• Tandem MS combines different mass analyzers. E.g. Q-Tof.

• Quadrupole can run in either ion guide or ion filter modes.

• To measure the precursor ions: Quadrupole in ion guide mode, Collision off

• To measure the fragment ions of a precursor ion: Quadrupole to select target m/z, Collision on

56
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Tandem Mass Spectrometry Procedure

• Step 1. All precursor ions are measured to produce the survey scan.

• Step 2. A precursor ion is selected (by m/z) and fragmented. All fragment ions are measured to
produce the tandem MS scan (also called as MS/MS or MS2 scan).

• Repeat Step 2 a few times. Then go back to Step 1.

Note: For each MS2 spectrum, we additionally know the precursor m/z.

Orbitrap QE-HF

An actual instrument may consist many components for better sensitivity, accuracy, throughput and
robustness. The figure illustrate the main components of an Orbitrap QE-HF instrument made by
ThermoFisher Scientific.

8.2 Peptide Spectrum Match

We have the formula:

y-ion m/z = (total of amino acid residue mass + 18.011

H2O

+ z× 1.007)/z

b-ion m/z = (total of amino acid residue mass + z× 1.007

proton

)/ z

charge state

Peak matching allows certain mass error tolerance (due to instrument measurement errors). Error can
be specified either in Da or in ppm (part-per-million).

ppm error = 106 × (observed mass− theoretical mass)/theoretical mass

Different instrument has different error tolerance:
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• Low resolution: often 0.5-1 Da

• High resolution: often 1-20 ppm

Precursor ions and fragment ions often have slightly different error tolerances, because instrument
might have different set of parameters to do survey scan and MS2 scan, which is to maximize the
utilization of instruments.

Now we search through database. For example, consider this protein:

>sp|P02769|ALBU_BOVIN Serum albumin OS=Bos taurus GN=ALB PE=1 SV=4

MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGEEHFKGLVLIAFSQYLQQCPFDEH

VKLVNELTEFAKTCVADESHAGCEKSLHTLFGDELCKVASLRETYGDMADCCEKQEPERNEC

FLSHKDDSPDLPKLKPDPNTLCDEFKADEKKFWGKYLYEIARRHPYFYAPELLYYANKYNGVF

QECCQAEDKGACLLPKIETMREKVLASSARQRLRCASIQKFGERALKAWSVARLSQKFPKA

EFVEVTKLVTDLTKVHKECCHGDLLECADDRADLAKYICDNQDTISSKLKECCDKPLLEKSHC

IAEVEKDAIPENLPPLTADFAEDKDVCKNYQEAKDAFLGSFLYEYSRRHPEYAVSVLLRLAKEY

EATLEECCAKDDPHACYSTVFDKLKHLVDEPQNLIKQNCDQFEKLGEYGFQNALIVRYTRKV

PQVSTPTLVEVSRSLGKVGTRCCTKPESERMPCTEDYLSLILNRLCVLHEKTPVSEKVTKCCTE

SLVNRRPCFSALTPDETYVPKAFDEKLFTFHADICTLPDTEKQIKKQTALVELLKHKPKATEEQL

KTVMENFVAFVDKCCAADDKEACFAVEGPKLVVSTQTALA

• Use the enzyme digestion rule to cut each protein into peptides

MK|WVTFISLLLLFSSAYSR|GVFR|R|DTHKSEIAHR|FK|DLGEEHFK|GLVLIAFSQYLQQCPFDEHVK|L

• For each peptide, compare with the spectrum to see how well they match.

We need an empirical score. Recall that y-ion m/z at charge one = total residue mass + 19.0178. Then
we find approximate matching peak. Let x denote relative intensity where

relative intensity =
current peak intensity

max peak intensity

Then

Score contribution = max

{
log10 100 · x if x > 0.01

0 otherwise

We then add up all score contributions of all y-ions. Better score functions will be discussed later.

Note that we can use y-ion with charge state 1, or 2 as well. More ion types, more charge states we
use, we will capture more signals. At the same time, it will increase the change that random peptide
will give us a high score as well.

This then brings us the database search algorithm:

Algorithm 10: Database Search
Input: A list of MS/MS spectra, a protein sequence database

1 foreach MS/MS spectrum do
2 foreach protein in database do
3 In-silico digest the protein into peptides
4 foreach peptide do
5 Evaluate the peptide-spectrum match

6 Assign the highest-scoring peptide to the spectrum

In practice, we can speed up by a constant factor, though it might be huge, which will be achieved via
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filtration.

Algorithm 11: Database Search - with filtration
Input: A list of MS/MS spectra, a protein sequence database

1 foreach MS/MS spectrum do
2 foreach protein in database do
3 In-silico digest the protein into peptides
4 foreach peptide do
5 if precursor mass error < allowed error tolerance then
6 Evaluate the peptide-spectrum match

7 Assign the highest-scoring peptide to the spectrum

Here precursor mass error = | theoretical precursor mass − observed precursor mass |. The mass
filtration reduces the number of PSM evaluation.

We can speed up even further by doing binary search.

Algorithm 12: Database Search - with filtration & binary search
Input: A list of MS/MS spectra, a protein sequence database

1 Sort the spectra according to precursor mass // not m/z because we have different
charge states

2 foreach protein in database do
3 In-silico digest the protein into peptides
4 foreach peptide do
5 foreach spectrum with matching precursor mass do
6 Evaluate the peptide-spectrum match
7 Keep the highest scoring peptide for the spectrum

The process unfolds as follows. We first sort the spectra, which is an array. Then we search for the
location of the array where we would insert this mass value into this sorted array. This location would
most likely give us smaller mass error. Then we search for both directions (left and right) in this
position to find all matches.

8.3 Result Validation

However, the input will sometimes be junk or garbage. Some spectra are of lower quality: peptides
do not fragment well, peptides fragment too much, peptides do not get charged. peptides are of
low concentration, etc. Moreover, some spectra’s true peptides are not in database. Therefore, search
results of some spectra are junk. Computer scientists may think these are not their problems. After
all, they’ve reported the “optimal” peptide for each spectrum.
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These two PSMs are all the best match from database for two different spectra. Their confidences are
clearly different. The first one is a beautiful match, where we can find peak for every single ion. The
bottom one is not a good match, because such a match can happen randomly with only two ions.
However, even both are optimal, bottom one has lower score, which might give us some idea.

Here is a conversation: Biologists vs. Computer Scientists:

computer scientist: I found the optimal solution!

biologist: Is it REAL?

computer scientist: No. Half of them are wrong.

biologist: The result is just like flipping a coin...

biologist: Which half?

computer scientist: I don’t know...

Solution to noisy input: only report results if you’re confident, discard the less confident ones. This
increases accuracy to make the results useful at the price of discarding some data.

Consider the score distribution:

false

true

score

We can only see grey curve, which is the aggregated distribution. It is the sum of orange curve (false)
and blue curve (true). We have a threshold that we only report everything to the right (of black vertical
line). Thus blue region and orange region will be reported. Then the false-discovery rate

FDR =
# reported false hits

# reported hits
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By choosing different score threshold, one can calculate the FDR for all target PSMs above the thresh-
old. Or conversely, one can choose a proper threshold to meet a FDR requirement. As of today, a
typical FDR requirement is 1%. If we know blue curve and orange curve, we can adjust the threshold
to achieve 1%. Unfortunately, we only know the aggregated distribution (grey curve).

We can remove all true matches/peptides, and the rest will be random matches, then the distribution
will approximate the false curves. However, people don’t know how to remove true peptides. Instead,
we can create a false database. The the resulting curve will be similar to the orange curve.

This idea is called FDR Estimation with Target-Decoy, which has been refined many times. Given
blue lines/proteins are from target database. For each of them, we generate a decoy sequence by
shuffling within the protein or other ways.

target

decoy

search engine

Identified Peptides

# false target hits # decoy hits≈

We assume that false matches randomly, where false matches are because some random peptides have
high score matching this spectrum. If we identify a peptide that does not match the spectrum beauti-
fully, then it must be by chance. Then false matches happen by chance will have equal probabilities in
the target and decoy, because they all look similar, then false matches happen randomly in both cases.
In the identified peptides, the round dots are correct ones, which are from target. The squared dots
are false matches, from either target or decoy with the same probabilities. Then

FDR ≈ # decoy hits
# targets

Denominator can be total hits, true target hits, or all target hits. This depends on the context or
definition.

The paper is Target-decoy search strategy for increased confidence in large-scale protein identifications by mass
spectrometry (Joshua E Elias & Steven P Gygi, 2007)
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In assignment 2, we mix N true and N random peptides together. By using your score, from the N
top-scoring peptides, there are about 0.61N true peptides and 0.39N random peptides. How many of
the “true” peptides are selected because your scoring function is truly amazing, and how many are
pure luck?

Suppose we have 200 peptides, 100 target + 100 decoy. The top 100 consists of 61 targets and 39 decoys.
Then out of 61 targets, there are 39 pure luck, and 22 true effort.

Now we can apply target-decoy method to the following problem. Suppose I’m asked to make and
mark a final exam as a substitute teacher. But I know absolutely nothing about the subject. Fortunately,
I have previous year’s exam and all questions are multiple choices. But I do not know the correct
answers. The challenge is that the student will use a randomized algorithm for this exam. Then how
can we mark?

For each question, suppose each has A, B, C, D and A is correct. Then we make up three wrong
options E, F, G, which are decoys, and shuffle options. If the student knows the true answer, then he
will choose from A, B, C, D. If not, he will choose randomly, with same probability from B, C, D, E, F, G.
Then #(A, B, C, D)− #(E, F, G) is the true effort, not pure luck.

8.4 Better score function

The empirical score is only good for start up. Soon competition will get fierce and we’ll need a better
scoring function.

1. Separate true and false as much as possible, which is good for setting up the threshold.

2. Tell which spectrum is better.

Recall the idea of likelihood ratio. Let m be the m/z of a y-ion, and indeed, we see a peak with m/z
= m in the spectrum. We have two assumptions (models):

• The peptide is the real peptide so peak is caused by the y-ion.

Pr(observe a peak at m | m is a y-ion m/z of the real peptide)

• The peptide is a random peptide so the match is purely by chance.

Pr(observe a peak at m | m is a random mass)

To calculate log likelihood ratio:

• Learn two probabilities from large training data. p: Prob(a peak is observed at a y-ion m/z), q:
Prob(a peak is observed at a random m/z). Usually p > q.

• Given a peptide sequence, calculate m/z of all possible y-ions. For each y-ion,

– If a peak observed, log p
q is added to score.

– If no peak is observed, log 1−p
1−q is added to score.

• Thus, matching ion is rewarded and missing ion is penalized.

Other fragment ion types can be considered similarly, and added to the score. For example, we can do
b-ions. Usually, y-ions are stronger than b-ions (the difference between p and q is larger), thus we will
reward y-ion matchings more than b-ions.

Also there are some other ideas to improve the score functions. Machine learning that combines many
factors:
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• Log likelihood ratio score

• Empirical score (log of relative intensity)

• Precursor error tolerance: for example, ppm error with respect to the precursor.

• Number of matching peaks

• Number of unmatched peaks

• Number of unmatched y-ions

• Include b-ions.

• Include charge 2 fragment ions.

• Etc.

Let’s consider some practical concerns.

8.5 Post-Translational Modifications (PTM)

Up to now, we assume there are only 20 animo acids. But this is not the case. There are 20 animo acids
that are synthesized at the very beginning of the protein synthesization. After that, the cell will apply
Post-translational modification (翻译后修饰) on proteins. For example,
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磷酸化 (Phosphorylation),氧化 (Oxidation)

PTM important to protein functions. Phosphorylation is used for biology to turn on or off the function
of protein. Hundreds of different types of PTMs. PTM normally change the mass of an amino acid.
Some PTMs can be on and off. The figures above show two common types of PTMs.

There are many hundreds of different types of PTMs included in the unimod PTM database. 30% of
human proteins are phosphorylated, 50% are glycosylated (糖基化). PTMs are important to the func-
tions of proteins. – For example: Reversible phosphorylation of proteins is an important regulatory
mechanism. Many enzymes are switched “on” or “off” by phosphorylation and dephosphorylation(去
磷酸化). The structural change caused by the PTM changes the function of the protein.

Now consider the idea of variable PTMs. If user selects some PTMs as “variable”, all possible modi-
fication forms of a database peptide need to be tried to match the spectra. This results in exponential
growth of search space. For example, denote Oxidation by M and Phosphorylation by T. Then given a
variable PTM PEPTIDEPTM, we have the following possibilities:

PEPTIDEPTM

PEPT(+80)IDEPTM

PEPTIDEPT(+80)M

PEPT(+80)IDEPT(+80)M

PEPTIDEPTM(+16)

PEPT(+80)IDEPTM(+16)

PEPTIDEPT(+80)M(+16)

PEPT(+80)IDEPT(+80)M(+16)

Consequently, one can only search with a few variable PTMs.

There’s a special type of PTM: fixed PTMs: certain modifications are deliberately added during the
sample preparation and is (almost) 100%.

The most common one is that cysteines (半胱氨酸) are usually modified chemically. And the most
common modification changes the mass from 103.00919 to 160.03065. Roughly 57.02 Da were added.
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For curiosity only, cysteines are modified to avoid the formation of “disulphide (二硫键) bonds”.

Fixed modification changes the amino acid residue mass table, but does not affect the database search
speed.

There are some experimental errors, missed and nonspecific cleavages. The proteolyses may not be
100% efficient. Assume Trypsin digests the following protein with 100% efficiency.

SSAYSR/GVFR/R/DTHK/SEIAHR/F

Missed cleavages: a digestion site not cut. For example, GCFRR should have been cut between R|R.
There are also Non-specific cleavages: a non-digestion site got cut. For example, SEIAH is not a Trypsin
cut. Might because Trypsin is not pure.

Allowing them will both affect the algorithm’s time complexity. If we allow algorithm to consider
both errors, search space will be expanded. Which one has a bigger impact? Suppose N is length,
and n is cutting sites. Missed cleavages is O(n2) as we need to explore places between every cut and
non-specific cleavages is O(N2).



9
Database Search Details

9.1 Even Better Scoring Function

Recall that we can incorporate many other “features” for the scoring by a machine learning method.
Features can apply to compute the matching/mismatching of certain fragment ion: Matched fragment
ion intensities, mass error, correlation between intensity and surrounding amino acids. Features can
apply to the whole peptide score: Precursor ion mass error, Agreement with de novo sequencing
Protein information.

For agreement with de novo sequencing (sequence from the spectrum), we consider the graph below:
two different approaches give the same answer.

We see that the best separation line is the combination of both: x + 4y, or the red line which is the
non-linear model.

Use Protein Information. We are trying to identify the peptide-spectrum match. Peptides on a multi-
hit protein get a bonus on their scores to increase sensitivity.
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strong hits

A weak hit is
“saved” due
to the bonus

false hit

Then more features make the score function better separate true and false matches.

false

before after

true

score

9.2 Speed Concern

General programming wisdom:

• “Make it right, before make it fast.” (??)

• “Premature optimization is the root of all evil” (Knuth)

Consider the idea of two-round search (Craig and Beavis 2004. Bioinformatics 20, 1466-67). For the first
round, we do fast search. For example, we do not allow variable PTS in the first round, digesting
errors and so on, or use high quality spectra. This will produce a short list of proteins. In the second
round, we do more sensitive search, where we allow all things like non-specific cleavages, slower but
better scoring function. Note that we really lose are the weak proteins in the first round.

9.3 Pitfalls in FDR Estimation

These two ideas: protein score and the two-round search were developed before FDR was proposed.
So they are not compatible with FDR estimation. Recall this is how FDR is estimated:
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Pitfall 1 - Multiple Round Search

Red circles indicate false certifications matched by random chance. Then it’s not true that # decoy
matches ≈ # target false matches. This is not the fault of two-round search, just FDR estimation
method is not powerful enough.

target

decoy

Round 1.
Fast Search

# false target hits # decoy hits>

more targets
than decoys

Round 2.
More Sensitive Search

Two-round was first proposed by Craig and Beavis (2004). Then Evertt et al. (2010): fix two-round
search by first throwing decoys away of the result of round 1, then appending decoys to create a new
list. Bern and Kil (2011) said that this approach will make things worse: because this would make the
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results biased. And they proposed to keep decoys of the result of round 1, and create a long list of
decoys and mix them in. Then it will have more decoys than targets. It’s better to be pessimistic than
optimistic.

Later on, Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A.,
& Ma, B. (2012). PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide
identification proposed an idea: Decoy Fusion. Then there’s no bias between target and decoy, except
the bias created by the spectrum data.

Round 1.
Fast Search

# false target hits # decoy hits≈

Round 2.
More Sensitive Search

Pitfall 2 - Mix Protein and Peptide ID

It’s hard to have multiple hits on decoy protein. Recall the previous idea: peptides on a multi-hit
protein get a bonus on their scores to increase sensitivity. Then for all false peptides, false hits in the
decoy proteins will never have bonus because of its low score. This creates imbalance between target
and decoy false matches. Then more multi-hit proteins from target database, then more false hits are
“saved” from target database, resulting in FDR underestimation.

A weak hit is
“saved” due
to the bonus

target false hit

So this is weak
false hit.

decoy hit

false

true

Then decoy fusion can solve this, where target false hits and decoy false hits are the same. We got the
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sensitivity, but still estimate the FDR correctly.

Weak false hits are “saved” with approx.
equal probabilities in target and decoy.

Pitfall 3 - Machine Learning with Decoy

Re-train the coefficients of scoring function for every search after knowing the decoy hits. We adjust
scoring function to remove decoy hits after search. The pitfall is the risk of over-fitting. Fewer target
false hits are removed, resulting in FDR underestimation. Machine learning experts only.

So the solution is

1. Don’t use it. As judges cannot be players.

2. Only use for very large dataset. OR

3. Train coefficients and reuse; don’t re-train for every search.
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De Novo Peptide Sequencing

De Novo Peptide Sequencing is anther approach to identify the peptides. From wiki:

In general usage, de novo (literally ‘of new’) is Latin expression used in English to mean
‘from the beginning’, ‘anew’.

Isotope (同位素). For example, C: ∼ 99% 12C (monoisotope), of 12.000 Da; ∼ 1% 13C of 13. · · · Da.
Then in the spectrum, it might look like this

%

m/z
1 Da

monoisotope

isotope

The problem looks cleaner: we only have one spectrum and we want to determine the sequence. To
construct a sequence that matches the spectrum the best.

10.1 Manual De Novo Peptide Sequencing

In early days, people do it manually. For example, consider the MS2 spectrum of HYNPSLK.
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Now we focus on y-ions. Recall that

y-ion m/z = (total of amino acid residue mass + 18.011 + z× 1.007)/z

We use nominal (integer) mass for simplicity.

128 113

First people look for y1 = 147, because they know the last amino acid must be either P or R. Then
people start to look for another peak that is high and also the difference between y1 and the other peak
is equal to one of 20 amino acids. However, we might have multiple choices for y2 or no choices.

We cannot afford exhaustive search for all combinations. For example, given length-30 peptides, it
takes 2030. Given the speed is 1 billion peptides per sec, it takes over 1022 years to search. Let’s
develop an efficient algorithm instead.
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10.2 Dynamic Programming

where M is total residue mass. A sequence corresponds to a path that connects the y-ions. Note the
reversed sequence in the path because of the use of y-ions.

Let f (m) be the ion matching score at m/z value m. For example, if the log relative intensity score is
used, then

f (m) =

{
log10 100x, if there is a peak nearby m with relative intensity x > 0.01

0, otherwise

where “nearby” means error ≤ error tolerance. Note that this score can be precalculated for each m.

Then path score is the total of f (m) for all y-ions. For example, score of path is ∑i f (mi). Then De
novo sequencing is to find a path with maximum score.

What’s our input? Given spectrum, f (m) can be precomputed for each m/z value m, without knowing
the peptide sequence. Also, the total residue mass M can be computed from the precursor m/z and
charge state.

precursor m/z =
M + m(H2O) + 1.007× z

z
Thus, we assume we have f (m) and M in our input.

Equivalently, we are given an array f (m) and M, and we want to find a path from 19 to M + 19, such
that

• Each step length is an amino acid residue mass.

• The total of the scores in the visited cells is maximized.

Let D[m] be the maximum score a path from 19 to m can achieve. There are two possibilities. One is
empty path. If the path is not empty, assume a is the last amino acid, then D[m] = D[m−m(a)]+ f (m).
Thus, D[m] = f (m) + maxa D[m−m(a)] where a is all possible letters.

Algorithm 13: Dynamic programming for De novo peptide sequencing

1 D[19]← 0 and all other cells to be −∞. // D[< 0] = −∞
2 for m← 20..M + 19 do
3 D[m] = f (m) + maxa D[m−m(a)]

The time complexity is O(M).

The best sequence can be retrieved by a backtracking process by repetitively computing the last amino
acid a that maximizes the recurrence relation. Time complexity is O(length of peptide).

As usual, the basic algorithm looks simple. But the reality is more difficult. In high resolution data,
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nominal mass is not good enough. Error up to ±0.5Da. We can multiple each mass (including both
amino acid mass and peak m/z) with 1000 and round to integer. For example, 123.4567⇒ 123456.7⇒
123457. The rounding error is then limited to ±0.0005Da. However, this increases the complexity.

Variable PTM does not cause major speed slow down for de novo sequencing algorithms. Instead of
trying 20 regular amino acids in the maximization, the algorithm simply tries all modified amino acids
too. The time complexity is increased by a constant factor. (Compare to the exponential growth in
database search approach). However, since the solution space is larger when many variable PTMs are
allowed, the accuracy of the algorithm is reduced.

In database search, we can include other ions in the score. But here, we need to be careful because
dynamic programming becomes complicated for b-ions: not guarantee an optimal solution.

For below average spectrum, as much as 50% error rate! Mostly mass gap error. If the spectrum is
not perfect, for example: ESGPA|L|V|K|PTQ|T. We don’t see fragmentation everywhere. Then there’s
no way to distinguish PTQ with TPQ or QTP. So error source could be spectrum quality or inaccurate
scoring function.

To solve this, we can make use of partially correct de novo sequence tags. Or improve the scoring
function. Next let us examine one such effort, the Novor software.

10.3 Novor

For example, this spectrum might represent TSLN|E|LQK... where first | is y7 and second is y6. The
abundance of y6 and y7 is determined by the easiness of peptide fragmentation on these two locations.
Then the right diagram shows the ratio for 3-mer: x-axis is the ratio in one of the occurrences, and
y-axis is the ratio in a different occurrence/peptide. As the points are scattered around the diagonal
line, we observe that the neighbouring 3 amino acids approximately determine the peak intensity.

Example: Proline (P)

Fragmentation left to P is abundant, and fragmentation right to P is suppressed. Blue arrow shows
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left fragmentation and red shows right fragmentation. So we see right gives 3 ions (bottom red
arrow), and left gives y4. Thus we cannot just reward high abundance peaks.

Most software’s scoring function prefers more abundant peaks. Pro enhances fragmentation at left,
and reduces at right.

Now we can have some scoring features. Pr(E is correct) predicted by features such as mass error;
intensity of y6 and y7; intensity ratio y6/y7; L, E and N; and many others.

In Novor, it uses a decision tree. Then Novor uses NIST Spectrum Library (340,00 spectra) to do
decision tree learning.
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It has 169 features, 14,000 internal nodes, average depth 18.4.

Decision tree has lots of benefits:

• Allows to use of a large number of scoring features (Mass error, sequence pattern, all ion types,
intensity, etc. 169 features)

• Learn a large number of rules (14,000 branching nodes)

• Each evaluation is fast. Path from root to a leaf average length = 18. Only most important
features are examined according to situation.

• The result is interpretable.

A peptide’s score is the sum of amino acid confidence score. Algorithm computes a peptide to maxi-
mize this score.

In Ma, B. (2015). Novor: Real-Time Peptide de Novo Sequencing Software, we see the Novor’s result is
better than PEAKS, in terms of precision and recall, and speed on a laptop PC. Novor is first and only
real-time de novo sequencing software.

10.4 Basic idea of De Novo

We need to ensemble all pieces or peptides to get the protein sequence. The idea is

1. Digest protein with different enzymes.

2. De novo sequence each peptide.

3. Assemble overlapping peptides to derive the protein sequence.

Many de novo sequencing programs: Sherenga (1999), Lutefisk (2001), PEAKS (2003), PepNovo (2005),
Novor (2015), DeepNovo (2017)



11
Peptide Quantification with Mass Spectrome-
try

Why do we need quantification? We want to study difference between two different cohorts.

group 1 group 2

For example, we get both samples from black group and white group and see which proteins are over-
expressed or up-regulated. Then we can understand what are possible consequences of that disease.
Here we compare protein quantity changes across two or more conditions to identify biomarkers.
Then from the result of experiment, we can find those proteins with statistically significant different
between groups.

How do we do the quantification? Traditionally, we can use antibodies or other ways. Today with mass
spectrometry, it provides a high throughput way to measure the protein. However, mass spectrometry
is not a quantitative machine. Given different peptides, they can have different efficiency for producing
MS signals, because of peptide loss in the whole process, ionization efficiency, and so on. Signal
intensity is the amount of ions arriving the detection and not the peptide quantity.

However, if we only look at one peptide, and measure twice, under the same conditions. The rate of
loss would be approximately the same between two experiments for the same peptide. This provides

77



CHAPTER 11. PEPTIDE QUANTIFICATION WITH MASS SPECTROMETRY 78

a way to study the ratio of the changes. Namely, we can study the ratio (relative quantity) of same
peptide between two MS runs.

11.1 Label Free Method

We separate all peptides on the return time dimension. At different time, we do survey scan. We
notice that peptide does not come off at a single time point, but in a time interval. From MS1 scans
at different retention time, we get a curve. The area below the curve is peak area the precursor ions,
which becomes the indicator of the quantity of that peptide. This method allows us to calculate the
peak area of multiple precursor ions in one experiment.

precursor of interestt− 1

m/z

t

m/z

t + 1

m/z

t + 2

m/z

RT

RTt− 1 t t + 1 t + 2

Peak area of the precursor ions

Now suppose we have two samples, and we want to find the relative quantity change. We then calcu-
late the ratio between two areas. Then the ratio between peak areas indicate the ratio between peptide
quantity. We focus more on the concentration change, not the amount change. Thus normalization may
be needed to reflect the sample loading deviation.

In Label Free Method,

• In DDA (Data-dependent acquisition) mass spec, MS1 scans are periodically collected for pre-
cursors. MS2 scans are acquired to identify the peptides for the precursors.

• DDA on two protein samples. Identify the peptides. For each peptide identified in both samples,
use their precursor peak area ratio to measure the peptide quantity change. Then we will have a
list of peptides both identified and quantified.

• Often a housekeeping protein (or a spiked-in protein) is used as the normalization factor to
correct the sample loading error.

However, there’s problem with label free method. Suppose we have another peptide peak, which is
very close by the precursor of interest. We call it co-eluting peptide.
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precursor of interestt− 1

m/z

t

m/z

t + 1

m/z

t + 2

m/z

RT

RTt− 1 t t + 1 t + 2

Peak area of the precursor ions

error caused by
co-eluting peptides

So peak area is not 100% accurate. Especially when the peak area of the precursor ions is small, then
any interference from other peptides will change the ratio significantly.

11.2 SRM (Selected Reaction Monitoring) Method

precursor of interestt− 1

m/z

t

m/z

t + 1

m/z

t + 2

m/z

RT

RTt− 1 t t + 1 t + 2

Peak area of the precursor ions

MS1 scans at different retention time

MS/MS

fragment ion of interest

m/z

m/z

m/z

m/z

Instead of plotting the peak area of precursor directly, we program mass spectrometry to keep mon-
itoring the precursor. Then if we see the precursor in MS1 scan, we also do MS2 scan as well, where
we focus on that precursor and fragment it. Then the chance that the other co-eluting peptides pro-
duce the same fragment ions overlapping with the fragment ion of interest is low. Then we avoid
interference as much as possible.

To summarize, we select precursor, fragment it, and monitor fragment ions. This provides more
accurate way to do quantification.

Label free quantification with MS1 can be easily interfered by co-eluting peptides with the same m/z.
SRM is more specific. Interference signal is only from co-eluting peptides with the same precursor
m/z and the same fragment ion m/z. But it quantifies fewer peptides because it requires many MS2
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scans to quantify one peptide. But this increases sensitivity too. But it requires the prior knowledge
about which precursor and fragment ions to monitor. If multiple fragment ions are monitored simul-
taneously, it’s called the PRM (Parallel reaction monitoring). SRM and PRM are sometimes called the
targeted method.

LC separates the
peptides according to
retention time (RT).

Co-eluting peptides are
further separated by their
mass-to-charge (m/z) in
MS.

Peptides with both the same RT
and m/z are further fragmented
into fragment ions. Fragment ions
specific to the target peptide are
used to determine the quantity.

Such 3-tier separation ensures the specificity of the peptide quantification method.

11.3 Stable Isotope Labeling Method

Atoms have isotopes. E.g. C has C-12 and C-13. They differ by 1 Da. The same peptide from two
samples are labeled with different isotopic reagents, and mixed together for a single MS run. Use
the mass difference to known which peptide is from which sample. Many proposals: ICAT, iTRAQ,
SILAC. We use iTRAQ as an example.

reporter group balancer group

peptide reactive group

Connect to peptide

In labeling method, we dye a labeling region, which puts a label on each peptide. The four available
tags of identical overall mass vary in their stable isotope compositions such that the reporter group
has a mass of 114-117 Da and the balancer of 28-31 Da. The fragmentation site between the balancer
and the reporter group is responsible for the generation of the reporter ions in the region of 114-117

m/z.
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from four different samples
Same precursor with four
differently labeled peptides.

But they produce different
fragment reporter ions.

precursor of the
labeled peptides

reporter ions

Now we have four versions. So we have four different samples, then we react and add this label to
the peptide. Because they have different labels, the reporter groups will be fragmented as well. In b,
these reporter ions indicate the composition of four different labeled peptides. Then the relative ratio
between these four reporter ions becomes the relative quantity of the peptides in the four different
samples.

For labeling based method:

• Pro: Samples are measured in the same MS run. Therefore, more accurate, no run-to-run bias.

• Cons: Labeling efficiency, error and cost.

11.4 Multiple Myeloma (MM)

This (多发性骨髓瘤) is the cancer derived from the plasma cells1 (therefore a blood cancer). It grows
in bone marrow (骨髓). 30,000 new patients each year in US. Lifetime risk 1 in 143. It used to be a
serious problem, but now there are effective treatments. Once it is treated, almost all of the patients
will have a relapse (复发) a few years later. Patients in remission (缓解) requires periodic bone marrow
aspiration (骨髓穿刺) to detect cancer. We want to treat relapse early.

We want a blood test, rather than bone marrow exploration.

1浆细胞(Plasma cell),亦称为效应B细胞(effector B cell)



CHAPTER 11. PEPTIDE QUANTIFICATION WITH MASS SPECTROMETRY 82

1. Myeloma resides in bone marrow.

2. Myeloma produces a monoclonal (单克隆) antibody, known as the M protein. (side-product of
the cancer, not the problem)

3. M protein circulates in blood, making it a perfect marker for non-invasive measurement.

M-protein is hard to detect. M-protein (usually) is just a usual antibody. It is just one of many thou-
sands of different clones of antibodies circulating in blood. These antibodies differ at their sequences,
but are very similar in shapes. With some of the traditional methods, M-protein can only be realized
when it is highly abundant - more than the total of all other antibodies. After treatment, it becomes
too low to be detected. Such MRD (minimal residual disease) causes relapse.

Then people come up the solution with MS spectrometry. Although M-protein looks like a normal
antibody, we know actual clone is different in every sequence. We can read out the animo acid
sequence of each protein, then we can tell which one is from the cancer.

M-protein

Normal pAb

protein sequencing

· · ·

· · ·

Q
A

I

Y
D

1. At diagnosis: Determine the amino acid sequence of the M-protein, pick a characteristic peptide
that is unique to the M-protein.

2. Follow up: Measure the characteristic peptide with targeted mass spectrometry experiment.

So after the treatment, we get a sequence for M-protein. Then do enzymatic digestion, we get peptides
specific to M-protein. Then we monitor the quantity of that peptide using SRM.

Here is Rapid Novor’s Platform:
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At diagnosis:
M protein
dominates

100ul blood

50ul blood

After treatment:
M protein under
other methods’
detection limit.

QVTLRESGPALVKPT

QTLTLTCTFSGFSLS

TAGMSVGWIRQPPGK

ALEWLADIWWDDKKH

YNPSLKDRLTISKDT

SKNQVVLKVTNMDPA

DTATYYCARDMIFNF

YFDVWGQGTTVTVSS

ASTK

Personalized mass spec
SRM/PRM assay (化验)
targeting the M protein’s
unique peptides.

Mass spectrometer

Quantity of the M protein as an
indicator of tumor burden.

M-protein’s sequence

Here is Protein Sequencing with REmAbTM:

1. Digest with multiple enzymes

2. LC-MS/MS

3. Peptide de novo sequencing

4. Sequence assembly

EasyM - Mission Accomplished

• Blood based. No need for bone marrow aspiration. It’s more safer, thus can do more frequently.

• 1000 times more sensitive than other blood based method

• Detect relapse about half year earlier than conventional methods.
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12
Spectrum Prediction with DNN

12.1 Basics

We’ve briefly used machine learning twice now: Use a decision tree to score an amino acid in a de
novo sequence; Combine multiple score features in database search.

We combine multiple features together, with a function, and produce output: e.g., y = f (w1x1 +

w2x2 + b). The output will normally be processed through an activation function, e.g., y = 1
1+e−z

(sigmoid). Train the coefficients w and b to maximize the separation of true and false data points. For
training, a cost function is defined and there are optimization algorithms to minimize the cost. Under
certain cost function and sigmoid activation, this is equivalent to the logistic regression. This is done
by neuron.

For neural network, we simply put neurons together. A neural network just combines many neurons
together to fit a more complex nonlinear function. Often these neurons are organized in layers. The
algorithm for training is usually the so-called backpropagation algorithm. Main idea behind back-
propagation is gradient descent implemented in a nice way.

Some training terms:

• Known correct (input, output) pairs.

• A cost function.

• Adjust the parameters gradually to reduce the total cost over all training data: gradient descent.

• Training, validation and testing data are separate.

• Training: to learn parameters

• Validation: control the training process to avoid overfitting

• Testing: test the real performance after training

Learning and prediction:

• Prepare training, validation, and testing data.

• Specify the network structure in a deep learning framework (e.g. Tensorflow)

• Learn parameters with the training data. Control the learning process with the validation data.
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• Test the performance on the testing data ONLY after the training is done and parameters are
fixed.

• Use the trained parameters to make prediction for future data.

Deep Neural Network is just a neural network with MANY layers. MANY coefficients (parameters)
to train. Require new training algorithms to both learn fast and avoid overfitting. GPU, big data, and
new learning algorithm contribute to the development.

People have a better idea: Convolutional Neural Network. When the input has spatial similarities, one
can reuse the coefficients. A “filter” can be seen as a neutron on a local region of the input (kernel).
By sliding the filter over the input array, one can produce the output array. This is called convolution.
Number of coefficients is reduced significantly. Reduce overfitting. Can afford more layers. Capture
the local spatial correlation by focusing on each local region.

Similar to CNN, deep learning researchers developed other structures to connect between layers that
can boost up the learning performance. Some of these common structures can be reused as building
blocks in other learning tasks. Just like programming patterns. There are deep learning frameworks
that allow the users to assemble the building blocks in a flexible way, and provide the learning and
prediction support: Tensorflow, Pytorch etc.

Another commonly used building block is the residual block: ResNet (Residual Neural Network).
Intuitively, each additional residual block uses one or more layers to predict the difference between x
and the desired output. This approach has proven to both improve the learning performance (both
learning speed and accuracy). Residual blocks are supported by most of the popular deep learning
frameworks.

weight layer

weight layer

relu

+

x identity

x

F (x)

relu

F (x) + x

This requires dimensions of F (x) and x are the same.

12.2 Spectrum Prediction

Now we use it to do spectrum prediction. We start with a peptide sequence, then with MS/MS, we
will have MS2 spectrum, which will identify the peptide sequence. These are all bioinformatics effort.
Then spectrum prediction is to take the sequence, and predict the spectrum, so that it matches the
experimental spectrum. This allows us to confirm the peptide sequence is correct.

Let’s start with a simpler task to learn the basics: To predict whether a peptide is detectable in a DDA
experiment. This is called peptide detectability. Not every peptide of the proteins will be identified
with mass spectrum, e.g., some peptide is hard to get charged.

• Input: A peptide sequence.

• Output: 0 or 1. (or a probability that the peptide is detected).

• We also have a lot of training data: pairs of (input, true/false).

Model adopted from the DNN model in following spectrum prediction paper: Liu et al. Full-Spectrum
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Prediction of Peptides Tandem Mass Spectra using Deep Neural Network. The paper does not predict
detectability but we adopted the model anyway for studying purpose. There can be many different
DNN structures for the same task.

First we need to encode a peptide. We do one-hot encoding of amino acids. Each amino acid is mapped
to a length-20 vector. Only 1 bit is 1, the other 19 bits are 0. However, peptides have variable lengths:
we limit length to be at most 25 amino acids. If less than 25, we pad with a special character. We also
encode the two termini (n-term and c-term).

Thus in total 20+ 2+ 1 = 23 codes are needed. One-hot requires a length-23 vector. In total 25+ 2 = 27
positions to code. Therefore, each peptide is mapped to a 27× 23 array. Note: PTM is not considered.

Then we use CNN.

...

...

27× 23 27× k

k kernels

kernel size

Recall each amino acid is a 23-dimension 1-hot encoding. A kernel is a function that computes a value
from s adjacent amino acids. Sliding the same kernel will produce a 27 dimension vector. This is the
convolution. Padding is needed to keep the dimension 27. There are k kernels. So the output of the
convolutional layer is 27× k. Number of parameters is k × s, which is relatively small. Activation
function for the filters: sigmoid or ReLU (Rectified Linear Unit).

For next layer, we can take each channel (e.g., black channel) in the previous layer, and apply k′

kernels on it. Thus k× k′ kernels, producing k× k′ channels. Three practices are often used to avoid
exponential expansion of number of parameters:

• k′ = 1, where we don’t increase number of channels.

• Stride > 1. Stride denotes how many steps we are moving in each steps in convolution.

• Pooling. The pooling layer summarizes the features present in a region of the feature map
generated by a convolution layer. For example, max pooling.

With controlling of exponential growth, we can keep adding more and more layers.

Then the output of the last convolutional layer (n× k) is connected to a few fully connected (dense)
layers. At last, the output layer computes the output. Output layer can contain one or more neurons
- depending on the actual output format. The fully connected layers have the largest number of
parameters to learn. Most of the time, in the middle, ReLU is used as activation function, due to its
efficiency. At the end, sigmoid is normally done.

Now we have the architecture for handwriting digit recognition (not showing here...). We then can
modify it to predict the spectrum. There are other ions (not y and b-ion). Should these minor ions (not
y and b) be predicted? or only y-ions and b-ions?

There are two lines of research: To predict only the main fragment ions (e.g. b and y ions); to predict
the full spectrum. Both have been done in literature. We study the full spectrum prediction in the
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following paper (previously mentioned).

From this diagram, we see that on the top, it’s the prediction with other ions. Non-backbone ions are
not b and y-ions.

Output format A spectrum usually has a limited m/z range. The work only predicts peaks between
180-2000. The spectrum is represented by a sparse one-dimensional (1-D) vector by binning the m/z
range between 0 and 2000 with a given bin width. The value stored is the peak intensity. If we have
multiple peaks within 0.1Da, it’s ok to take the maximum, which happens rarely. With 0.1 Da bin
width, a spectrum becomes a 20,000-dimension vector. (Note: most dimensions have value 0). The
value in each bin is the relative intensity of the tallest peak in the bin. Prediction is to predict the values
in all the bins.

Input Same as before. Maximum length 25 peptide. Padding if shorter than 25. 1-hot encoding of
each amino acid, the termini, and padding. In paper, they do not distinguish n and c term. Additionally
provide the amino acid residue mass. Thus, 23 dimension vector for each amino acid and termini.

Then this is their CNN Architecture for Spectrum Prediction.

They have kernels of size 2..9, and for each of them, they have 64 kernels. The 8 parallel convolution
layers use kernel size 2 to 9, respectively. SE (Squeeze-and-Excitation) blocks are another type of
commonly used DNN building blocks.

2.2M spectra with known sequences were used for training. The result is quite good.

If peptide is correct, then its predicted spectrum should match the experimental one with high simi-
larity. Whereas the wrong peptides should have low similarity.



13
Protein Structure Prediction with DL

13.1 Four levels of protein structure

There are different levels of protein structure. The basic level is called primal structure, which is just
the protein sequence. Cysteine (半胱氨酸) is special, because on its side chain, there’s sulfur, which is
highly reactive. They are so reactive that they are connected with this disulfide bond.

Below is Beefy meaty peptide (delicious peptide). A torsion angle, also known as a dihedral angle, is
formed by three consecutive bonds in a molecule and defined by the angle created between the two
outer bonds. 1 With the sequence, all distances between atoms, and all torsion angles, we can calculate
3d-coordinates of every single atom that determines the (backbone) structure of the protein, where we
might ignore the sidechain.

Nature doesn’t give us random sequences. Nature needs to the protein to have certain functions so
that it needs to be in certain structure. There are two common patterns for amino acids: α-helix and
β-pleated sheet. It’s common to form hydrogen bonds between O and H. This is called secondary
structure, where we determine α-helix and β-pleated sheet.

1src: https://www3.cmbi.umcn.nl/wiki/index.php/Torsion_angle
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Then we can go further: Tertiary and Quaternary Structures.

Primary protein structure
sequence of a chain of
amino acids

Secondary protein structure
hydrogen bounding of the peptide
backbone causes the amino
acids to fold into a repeating
pattern

Tertiary protein structure
three-dimensional folding
pattern of a protein due to side
chain interactions

Quaternary protein structure
protein consisting of more
than one amino acid chain

Here is SARS-COV2 Spike protein and ACE.
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where RBD is receptor binding domain, a subarea of the protein.

What are the forces that cause the protein to bind in a certain way? We have talked about sulfur bonds.
Above we have ionic bond. This connection will reduce the overall free energy, which will make the
structure more stable. There are other forces, like hydrophobic(疏水) interactions. It is believed that
the natural structure minimizes the free energy.

This becomes the structure prediction problem:

• Free energy function

• Enumerate all torsion angles to minimize

This is not an easy problem. First, even for the same hydrogen bond, the free energy deduction is
different. It’s affected by the surroundings. Second, it’s not efficient to enumerate all torsion angles.

One way to address this problem is to offset the problem of free energy estimation. Instead of the actual
physical free energy for each bond, people build approximations or score functions. One method is
multiple sequence alignment, and search in the database.
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In (a), we search the gray sequence in the database, and find all other similar sequences. Then do
multiple sequence alignment. Then we look at coevolutional information: the two starred amino
acids are conserved, which is very strong signal of coevlolution. Then we have contact map: the same
sequence vertically and horizontally. With contact map, we have extra constraint on our search in
database. Additional information can be incorporated in the “energy” function. It’s therefore just a
scoring function. Image credit: https://www.nature.com/articles/s41598-019-55047-4

For the search, traditionally there are two approaches:

• Monte Carlo: Sampling of the confirmational landspace and minimize energy

• Threading: Use existing protein structures as models

13.2 Deep Learning

Above are two traditional approaches. Lately, people use DL to predict torsion angles directly, instead
of doing searching.

https://www.nature.com/articles/s41598-019-55047-4
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Above is RaptorX. They use contact map to build more accurate protein score, then traditional search.
So the improvement is on the contact map prediction. Traditionally, contact map is predicted by co-
evolution. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate De Novo Prediction of Protein Contact
Map by Ultra-Deep Learning Model.

Then Google’s deepmind started to work on this problem as well. They built AlphaFold: takes
Jinbo Xu’s approach + a gradient descent search strategy to minimize the energy, as they have lots of
computing resources. Then later, they have AlphaFold2

1. Predict the contact map (2D representation of sequence) with neural network.

2. Followed by torsion angle and structure prediction with neural network.

3. New network structures, lots of novelty.

CASP (Critical Assessment of Protein Structure Prediction) is a competition, every two years. Then in
Median Free-Modelling Accuracy, we see AlphaFold is better than Raptor, and AlphaFold2 is better
than AlphaFold.

Structure Prediction Software

• Rosetta: David Baker, University of Washington

• RaptorX: Jinbo Xu, Toyota Technological Institute at Chicago

• Alpha Fold: DeepMind

• Many others..

Use Alpha Fold online: https://colab.research.google.com/github/deepmind/alphafold/blob/
main/notebooks/AlphaFold.ipynb

Protein Structure Resources

• Structure databases

– PDB (Protein Data Bank) https://www.rcsb.org/

– Alpha Fold Predicted https://alphafold.ebi.ac.uk/

• Structure visualization software (one example is Pymol)

There are two remaining problems:

1. How do you predict the structure for the sequences that don’t find the homologs in the database?
Then not possible for multiple alignment.

2. How to design structure? If you have a structure, how to design a sequence that folds into that
structure.

https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://www.rcsb.org/
https://alphafold.ebi.ac.uk/


14
Hidden Markov Model and Gene Prediction

We will use this model to solve gene prediction: we are given a long sequence of DNA molecule,
and we want to annotate the genes. Between genes, we have non-coding areas. More precisely, from
wiki: “In computational biology, gene prediction or gene finding refers to the process of identifying
the regions of genomic DNA that encode genes.”

14.1 Hidden Markov Model

Hidden Markov model was first invented in speech recognition. But are widely used in many other
areas including bioinformatics. It’s basically an automata. An automata that has “hidden states”. At
each time point, it emits a symbol, and change a state with certain probability. We want to derive the
hidden states by the emitted symbols.

Now consider a simple class example. Think of a student in classroom. At any minute, a student is in
one of 3 hidden states that I try to figure out:

• U: understands

• T: does not understand but tries to understand

• L: is lost completely and does not try to understand

Meanwhile, the student emits one of 3 symbols that the teacher can observe:

• Look at me

• Write/Type

• Sleep

Now suppose the teacher see a student’s behavior is the following in the past several minutes. What
is his internal states at each minute?

And below is one possible solution:
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Let’s now try to formulate mathematically. We want to maximize two probabilities. One is emission
probability. For example, when you “U”, you can either look at the board or write. The other way is
transition probability, from previous state to the current state, either can go from “U to U” or “U to
T”. So our task: fill all internal hidden states so that the product of all probabilities are maximized.

Typically, HMM assumes that emission probability depends only on current state; and current state
only depends on previous state. We want to find the most likely path of states given the symbols
(observations).

We then have two matrices (mostly by intuition):

U T L
U 0.8 0.2 0
T 0.4 0.4 0.2
L 0.05 0.05 0.9

Look Write Sleep
U 0.6 0.35 0.05
T 0.9 0.1 0
L 0.1 0.6 0.3

Each row adds up to 1.

For the first table, we can also visualize with a transition graph.

L

TU
0.4

0.2
0.05

0.9

0.8 0.4

0.2

0.05

The input is a sequence of symbols: S = S1S2 . . . Sn, and we want to find path of states: P =

P1P2 . . . Pn. We want to maximize Pr(P | S) = Pr(P, S)/ Pr(S). Therefore, we want to maximize

Pr(P, S) = ∏
i

Pr(Pi | Pi−1)︸ ︷︷ ︸
transition

Pr(Si | Pi)︸ ︷︷ ︸
emission

Note: To deal with the first state, we can define Pr(P1 | P0) = 1 in above formula.

Now we use dynamic programming to solve HMM. Define D[k, p] be the maximum probability
achieved by first k states given that the last state is p:

D[k, p] = max
P[1..k];P[k]=p

∏
1≤i≤k

T [Pi−1, Pi] E [Pi, Si]

Then maxp D[n, p] is the maximum probability achieved by the complete path, which is what we want
to compute. It is not hard to obtain a recurrence relation

D[k, p] = max
p′

D[k− 1, p′]Pr(p | p′)︸ ︷︷ ︸
transition

Pr(Sk | p)︸ ︷︷ ︸
emission
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Then we have an algorithm to solve HMM.

Algorithm 14: Solving HMM
Input: S = S1S2 . . . Sn

Output: P = P1P2 . . . Pn

1 for every state p do
2 D[1, p]← Pr(S1 | p)

3 for k← 2..n do
4 for every state p do
5 D[k, p] = maxp′ D[k− 1, p′]Pr(p | p′)Pr(Sk | p)

6 backtrace to compute the optimal path

For example, given the previous transition graph and emission matrix, and D[1, U] = 0.6, D[1, T] =
0.9, D[1, L] = 0.1, we then find D[2, U] = max{0.288, 0.216, 0.003}.

Note that we should not multiply, because soon the numbers become so small that the double precision
will give you value 0. Do a logarithm and use additions instead:

log D[k, p] = max
p′

(log D[k− 1, p′] + log Pr(p | p′) + log Pr(Sk | p))

All of our computation depends on the transition probabilities and emission probabilities. How do we
estimate these parameters?

If we have an annotated sequence with both symbols and states, then these can be trained by counting.
If we do not, then we can start with a reasonable guess of the parameters and annotate the sequence.
Then we use the annotation to train a new set of probabilities. Repeat until converge. There is some
guarantee to the convergence. But does not guarantee this will converge to the right solution.

Another thing to worry about is that the training data is not enough. If the training data include no
cases of a particular emission from a particular state, then its probability will be 0 in this model. That’s
no good. So we add pseudocounts to make the probabilities not zero when an event should be able to
happen. For example, put a small number in the zero entry.

We can also expand basic HMM model to high order HMM. Let’s still consider the classroom example.
Previously, emission only depends on the current state. Sometimes emission symbol depends on the
previous symbols. The emission of a symbol should not only depend on current state, but sometimes
also the previous symbol. For example, sleeping at previous moment leads to a higher probability
of sleeping now. To accommodate the correlation between the adjacent symbols, the emission matrix
needs to be expanded. The emission matrix becomes Pr(Si | Pi, Si−1). This is first order HMM.

Now the probability
Pr(P, S) = ∏

i
Pr (Pi | Pi−1)Pr (Si | Pi, Si−1)

To find the path P to maximize, we let D[k, p] be the maximum probability obtained by the first k
states ending at p. We can obtain the following recurrence relation similarly as before.

D[k, p] = max
p′

D[k− 1, p′]Pr(p | p′)Pr(Si | p, Si−1)

We can still do dynamic programming.

To generalize, we can let the current emission depend on the current state, and previous k symbols.
Then this is called the k-th order HMM. Solving such a HMM is similar as before. Running time not
changed. The only difficulty is the parameter training because the emission matrix has many more
parameters for larger k.
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14.2 Trivial Gene Finding

The prokaryotes (singular prokaryote, 原核生物) are a group of organisms that lack a cell nucleus (=
karyon). The opposite is the eukaryotes (真核生物). Prokaryote genes do not have introns (内含子). So
their genes is a linear structure. Intron video: https://www.youtube.com/watch?v=o0BQJbLNYSg

Here is the process from gene to protein (in Prokaryotes):

where transcription means转录 and translation means翻译.

The genetic code1 is well studied. Here is a genetic table. Every three letters matches to a single amino
acid. A codon is a trinucleotide2 sequence of DNA or RNA that corresponds to a specific amino acid.

With the genetic table, we can build a trivial gene finder. We know that every gene will start with start
codon ATG and stop at three stop codons TAG, TGA, TAA. So we look for Open Reading Frame (ORF)
is a substring that:

• starts with a start codon

• ends with a stop codon

• no stop codon in the middle

If ORF is long, then likely it is a gene or a part of a gene. Why? Basically we have two hypotheses.

1遗传密码又称遗传编码，是遗传信息的传递规则
2Trinucleotide, or triplet, repeats are 3 nucleotides consecutively repeated (eg, CGG CGG CGG CGG CGG) within a region

of DNA.

https://www.youtube.com/watch?v=o0BQJbLNYSg
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One is that this is a gene, so everything looks natural. The other is that this is not a gene, so everything
is random. Note that probabilities of stop codon is 3

64 . Given a long sequence with many codons, the
probability that there is at least one stop codon in the middle is high.

We have codon bias. A codon XYZ occurs with different frequencies in coding regions and noncoding
regions:

• different amino acids have different freq.

• different codons for the same amino acid have diff. freq.

• in random regions ≈ p(X)× p(Y)× p(Z).

Here is codon bias tables:

http://www.kazusa.or.jp/codon/ is a public database where we can find codon bias.

14.3 Better Gene Finder

Now with this table, we can calculate the probabilities to find whether ORF is random or a gene:
Pr(seq | gene), Pr(seq | random). Then we can use this additional information from codon bias to find
trivial gene finder. More specifically, We can use the log likelihood ratio score to evaluate each ORF.
Each codon XYZ contributes score

log
P(XYZ)

P(X)P(Y)P(Z)

An ORF is predicted as a gene if the sum of codon score is above a threshold. This is better. But it
does not catch the correlation between adjacent codons.

14.4 HMM Gene Prediction

We have used HMM in the classroom example to catch correlations between adjacent events. This can
be used to model gene prediction. For example:

• Symbols: Nucleotide bases.

• (Hidden) states: start codon, stop codon, coding, non-coding (intergenic).

http://www.kazusa.or.jp/codon/
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stop
codon

codingintergenic

start
codon

ATG: 1

AAA

AAT
...
61 in total,
excluding
stop codons.

TAA

TAG

TGA

A: 0.25
C: 0.25
G: 0.25
T: 0.25

where 0.25 means that in the intergenic region, emission of A, C, G, Y is of the same probability. And
for coding state, we can assume emission probability is 1

61 for each codon, or can use codon bias table.
For stop codons, similarly we can use 1

3 or codon bias table.

Then we can make reasonable transition probability. Assume every gene has about 300 codons, then

Pr(start→ coding) = Pr(stop→ intergenic) = 1

Pr(coding→ coding) =
299
300

Pr(coding→ stop) =
1

300

Pr(intergenic→ intergenic) =
99

100

Pr(intergenic→ start) =
1

100

And it’s better to train these parameters.

Symbols:

State path:

A T A A T G A A A T A A C C A

i i i s c t i i i

Top sequence is the genome and bottom sequence is the annotation of the genome. Annotated the
sequence with most probable path of states:

• start codon

• coding

• intergenic

• stop codon

This provides a reasonable answer to gene prediction. A difference here: emission is not fixed length.
But this does not forbid us from solving it with dynamic programming.

We define D[k, p] be the max probability achieved by first k symbols for a path with the last state being
p. For the recurrence relation, there are several cases:

1. For p = intergenic. Assume previous state is p′. Then the emission is of length 1, we have

D[k, p] = max
p′

D[k− 1, p′]× Pr(p | p′)︸ ︷︷ ︸
transition

×Pr(Sk | p)︸ ︷︷ ︸
emission
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2. For p = start, coding, or stop, emission is of length 3, we have

D[k, p] = max
p′

D[k− 3, p′]× Pr(p | p′)︸ ︷︷ ︸
transition

×Pr(Sk−2Sk−1Sk | p)︸ ︷︷ ︸
emission

Once the recurrence relation is obtained. It is straightforward to work out a dynamic programming
algorithm, as well as backtracking. This is very easy to implement. If desired, one can also use a
higher order HMM. Parameter training must be done carefully.

14.5 Promoters

Besides the codon bias that can be captured by HMM, there are other signals in a gene structure that
can be employed by a gene prediction program. E.g. the promoter3 of a gene is a region of DNA
sequence located near the start codon. For example,

<-- upstream downstream -->

5’-XXXXPPPPPPXXXXXXXXXPPPPPPXXXXGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGXXXX-3’

-35 -10 Gene to be translated

Then we have at -10 and -35, the sequence is probability described by the following table:

-10: T A T A A T

77% 76% 60% 61% 56% 82%

-35: T T G A C A

69% 79% 61% 56% 54% 54%

These rules are only approximately correct. The presence of promoters allow a very high transcription
rate. Exercise: How to assign a score to the promoter.

This is the same as log likelihood ratio score, but this is often used concept, called positional specific
weight matrix (PSWM). For example,

1 2 3 4 5 6
A 0.1 0.76 0.1 0.61 0.56 0.1
C 0.1 0.1 0.1 0.1 0.1 0.04
G 0.03 0.1 0.2 0.1 0.2 0.04
T 0.77 0.04 0.6 0.19 0.14 0.82

We have Pi(a) denoting the probability of having the letter a at position i. We define q(a) = 1
4 to be

random probability. Then

score(S1 · · · S6) = log
Pr(S1 · · · S6 | promoter)
Pr(S1 · · · S6 | random)

= log
6

∏
i=1

Pi(Si)

q(Si)

=
6

∑
i=1

log
Pi(Si)

q(Si)

In summary, HMM is a general model to predict some hidden states by examining emitted symbols.
HMM can be used in gene prediction to harvest the codon bias and adjacent codon correlation. Gene
prediction can use more information about the gene structure than codon bias. We only talked about
prokaryote gene prediction. Eukaryote gene prediction is harder because of introns.

3在遗传学中，启动子（promoter）是指一段能使特定基因进行转录的DNA序列。启动子可以被RNA聚合酶辨认，并开始转
录合成RNA。在RNA合成中，启动子可以和调控基因转录的转录因子产生相互作用，控制基因表达（转录）的起始时间和表达的
程度，包含核心启动子区域和调控区域，就像“开关”，决定基因的活动，继而控制细胞开始生产哪一种蛋白质。
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15
Phylogeny

15.1 Introduction & Chain Letter

A phylogeny1 (also known as a phylogenetic tree): a diagrammatic hypothesis about the history of
the evolutionary relationships of a group of organisms.

Above is one example: Phylogenetic Tree of Life.2 Within the animal, we can see further details:
Phylogenetic Tree of Animals3

Phylogeny Tree of Coronavirus:

1系统发生学（又称种系发生学、谱系发生学，简称谱系学，是研究及推理生物个体或群体（例如物种或种群）间演化史及关

系的科学方法，属于系统分类学的一部分。
2https://courses.lumenlearning.com/wmopen-nmbiology1/chapter/phylogenetic-trees/
3https://www.sciencephoto.com/media/780514/view/evolutionary-tree-animals
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In https://nextstrain.org/ncov/gisaid/global, we can see Genomic epidemiology of SARS-CoV-2
with global subsampling.

There are other examples for phylogenetic analysis. For example, outside biology: Study how the
news articles copy each other. Study how chain letters evolve (our example to use). There are several
terminologies:

• Organisms: the studied subjects.

• Taxon (taxa): A taxon4 is a group of one (or more) populations of organism(s).

• Species: (usually) the largest group of organisms in which any two individuals of appropriate
sexes can produce fertile offspring.

In 1997, on a Hong Kong mountain, the story begins. Charles H. Bennett (physicist at IBM) and Ming
Li (professor at University of Waterloo) were hiking on Lion Rock. Charles Bennett collected 33 copies
of chain letters5 that were apparently from the same origin during 1980—1997. How does it work?
Make 20 copies and send to your friends. Yes, then some good things will happen. No, no some bad
things will happen. See https://en.wikipedia.org/wiki/Chain_letter for some examples. People
make errors or typos when handwriting. This is like the evolution of the virus, with mutations. Here
is an article: https://cs.uwaterloo.ca/~binma/cs482/chain-letter.pdf.

Why bother with chain letters? http://www.silcom.com/~barnowl/chain-letter/evolution.html
Like a virus, it has reached billions of people, literally. Like a gene, they are about 2000 characters; It
even resembles some subtle phenomenon in biological evolution! Like co-evolution in protein.

Here is an overall methods for constructing phylogeny:

• Character Based Method: Parsimony Method: (Find a tree topology so that the total number of
mutations on the edges is the smallest.) Perfect Phylogeny, Maximum Likelihood.

• Distance Based Method: UPGMA, Neighbour Joining

• Quartet Method

• Whole Genome Phylogeny.

15.2 Character Based Method

15.2.1 Parsimony Method

The first category of phylogeny methods do three things:

• Define characters/features for each taxon.
4分类单元又称分类单位或分类群，也可简称作类元或类群，是生物分类学上的基本概念，指一群拥有共同特征的生物的集合

体，为分类学工作中的客观操作单位
5A chain letter is a message that attempts to convince the recipient to make a number of copies and pass them on to a certain

number of recipients.

https://nextstrain.org/ncov/gisaid/global
https://en.wikipedia.org/wiki/Chain_letter
https://cs.uwaterloo.ca/~binma/cs482/chain-letter.pdf
http://www.silcom.com/~barnowl/chain-letter/evolution.html
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• Define a score function for each tree based on the characters.

• Find the optimal tree

A character is a “feature” in the species.

• Phenotype (表型): Vertebrate (脊椎动物) / invertebrate, Has hooves (蹄) / does not.

• Genotype (基因型): A letter in multiple sequence alignment

• Or in chain letter: The title is “Trust in lord . . . ” or “With love all things are possible”.

An evolutionary tree is a rooted and leaf-labeled binary tree.

For this method, input is an n×m matrix of aligned characters. (n taxa, m characters). In the case of a
multiple alignment, these are columns with no gaps.

Output: A labeled tree with least number of mutations. Then the cost of tree will be the sum of all
edge costs.

Consider an simple parsimony example. Suppose we have four taxa

• W: AAAA

• X: AGGA

• Y: ATGA

• Z: TTAT

There’re only 3 possible (unrooted) trees on 4 taxa.

Which has the least mutations?
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In this case, we need 5 mutations. The other 2 require 6. So the “cheapest” tree joins W and Z on one
side and X and Y on the other.

Where is the root of the tree? We said that phylogeny is a rooted tree, and this example doesn’t have
a root yet. The root doesn’t matter because the distance is symmetric. For example, root can be at ×.
No matter where we put the root, it doesn’t change the cost of the tree. For simplicity, we can just
copy one of the children leaf.

In that problem, we avoided the ancestor reconstruction. We need to label the internal nodes to
calculate the cost. For a given topology, how to construct the ancestors? (in order to calculate the score
of the tree)

The input includes the given topology and the labels of on all leaves. The goal is to label the internals
to minimize the cost.

First observation: We can solve each column (character) separately. So we can just solve for 1-character
strings. Algorithm by Sankoff: tree-based dynamic programming.

For every node u of the tree and letter a of the alphabet Σ, let D[u, a] = min number of mutations in
Tu if u’s label is a, where Tu is the subtree rooted at u.

Let r be the root. We want minx D[r, x]. For a leaf node v, if the character at leaf v is a, then D[v, a] = 0,
and D[v, b] = 1 for all other letters b. For an internal node u, with children v and w, suppose we know
all of the values of D[v, ∗] and D[w, ∗]. How to compute D[u, ∗]?

u

v w

If we put letter “a” at node u, the cost of the left branch of the tree is the minimum of{
D[v, a], if v = a

1 + minb 6=a D[v, b], if v 6= a

The same argument holds for the right branch. So

D[u, a] = min(D[v, a], 1 + min
b 6=a

D[v, b]) + min(D[w, a], 1 + min
b 6=a

D[w, b])

The order of computation is depth-first. For time complexity, we need enumerate for all nodes u
and for all letter a, and within the recurrence relation, we also need to try every single letter. Thus
O(n× σ2) where σ := |Σ|.

We notice that
min(D[v, a], 1 + min

b 6=a
D[v, b]) ≡ min(D[v, a], 1 + min

b∈Σ
D[v, b])

and minb∈Σ D[v, b] does not depend on a. Thus we can take it outside the inner for loop:

• for every u:
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• x := minb∈Σ D[v, b].

• for every a:

• apply the recurrence relation: D[u, a] = min(D[v, a], 1 + x) + · · · .

So minb∈Σ D[v, b] is only computed once, not once every letter a for minb 6=a D[v, b]. If the tree is binary,
this algorithm takes O(nσ) time, since it’s just O(σ) time at each node.

Now we can use dynamic programming to compute the cost of tree. Parsimony Method: Go through
all tree topologies, find a tree topology so that the total number of mutations on the edges is the
smallest. This problem is NP-hard. Algorithm: For each possible tree topology, uses DP to compute
cost. Output the best tree.

Suppose there are f (n) trees on n taxa. Total runtime is O(nmσ f (n)) where f (n) = 1 · 3 · · · · · (2n− 5) ≈
n!2n and m is the number of characters (columns).

15.2.2 Perfect Phylogeny

Basically, perfect phylogeny is best we can achieve via parsimony method. A perfect phylogeny is
such that for every character (every column), all species with the same state of that character is a
connected component on the tree.

For the “no” example, no matter how we put in “?”, either C or T, no way to have connected compo-
nents for T and C at the same time.

Parsimony method is slow. If there is a perfect phylogeny, here is an algorithm to find it efficiently.
Start with a set of all taxa. Find a character and split the set into two. Recursion until each set has
only one taxon.

So in each node, we keep splitting. For example, for the root node, we split either a = 1 or a = 0 to
get two children nodes.

For binary characters, this algorithm is a polynomial time algorithm. If there is a perfect phylogeny, it
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outputs the perfect phylogeny. Equivalently, if the output is not a perfect phylogeny, then there is no
perfect phylogeny for the input.

Theorem

If there is a perfect phylogeny for the input, and there are constant number of states for the
characters, then a perfect phylogeny can be computed in polynomial time.

r states, n taxa, m characters: O(22rnm2).

If a column has k different states, then any phylogeny requires at least k− 1 mutations for the column.
A perfect phylogeny only has k− 1 mutations for the column. Thus, perfect phylogeny is the best you
can get for parsimony. But not all input matrix can cause a perfect phylogeny.

15.2.3 Maximum Likelihood

It’s same idea as parsimony, but makes score function better. The score function used in parsimony
(and perfect phylogeny) is too simple, especially when sequencing data become available. For exam-
ple: the multiple alignment of proteins can be used as the input:

• Thousands of columns (characters).

• Mutations between different pairs of amino acids have different rates.

• Different substitution matrices on different columns.

The maximum likelihood method aims to provide a better scoring function.

Here is a multiple sequence alignment. We can see some columns are more important than other
columns. Max likelihood method starts with a multiple alignment. Different columns may have
different substitution frequency matrix.

How do we define the score? Remember, each column is independent, so we can only focus on one
column.

• For each possible tree topology T, (e.g., a tree structure like above) for each possible internal
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node assignment, and calculate the probability based on the substitution matrix.

For example, in the first labeling, we have labeled the edge with p1, p2, p3, p4, then this assign-
ment gives P1 = p1 p2 p3 p4.

• For each tree T, add up all probabilities of all possible internal nodes, P1 + P2 + P3 + P4 + · · · .
This is the likelihood of the input tree T. Figure shows a single column of the multiple alignment.

• Find the tree topology that maximizes the likelihood.

Often more accurate than other methods. Very time consuming because we have to enumerate all
possibilities. Usually heuristic algorithms and dynamic programming algorithms are used to assist
the search and estimation of the likelihood. If desired, one can also allow the change of the edge
length (the mutation rate at each edge).

Software available: e.g. PhyML, can help compute the max likelihood tree.

15.3 Distance Based Method

Input of distance based methods is an n× n distance matrix d(i, j). For example, in the ideal situation,
given a true evolution history, and the length of mutation, we then can fill in distance matrix.

A

B

D

C

1

1

1

1
3

A B C D
A 0 2 6 4
B 2 0 6 4
C 6 6 0 4
D 4 4 4 0

We want to compute a tree with n leaves, with edge weights. T(i, j) is the distance of two leaves on the
tree. We want to minimize ∑i,j |d(i, j)− T(i, j)|2, where d(i, j) is our input, and T(i, j) is the distance
we construct with our algorithm. This is also NP-hard. So we use heuristics.

15.3.1 UPGMA

Unweighted Pair Group Method with Arithmetic mean.

We focus on a species, siblings, which are two leaves connected to the same parent. Can we find the
siblings in the distant matrix? If we can confidently determine which are siblings, we can merge them
together as a supernode. We keep doing this until we get only one node. At the end, we can reverse
this process to expand this tree.

It is a heuristic method with no performance guarantee. At each time, it finds i, j with the minimum
distance. Merge the two taxa i, j into a new one u. Update the distance matrix. For any k, let
d(u, k) = (d(i, k) + d(j, k))/2. Then recurse.

Now let’s try to apply this idea to the previous example. We notice that A, B is the closest, we then
merge them to U and get a new matrix:
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U C D
U 0 6 4
C 6 0 4
D 4 4 0

and its corresponding graph:

A

B

D

C

1

1

1

1
3U

There’s a big problem with UPGMA method while it’s still being used widely. Suppose we are given
such a real phylogeny tree:

A

B

D

C

3

3

1

1
1U

We notice that the shortest path between any two pairs is BC, of length 3. Then if we run UPGMA
method on the distance matrix produced by this tree, we will merge B and C, then we will end up
with the tree below:

C

B

A

DU

which is the wrong tree.

15.3.2 Neighbor Joining

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees.
Mol Biol Evol. 1987 Jul;4(4):406-25.

Neighbor Joining uses a similar idea as UPGMA. But it uses a more sophisticated formula to determine
the two neighbors to be joined.

Q(i, j) = (r− 2)d(i, j)−
r

∑
k=1

d(i, k)−
r

∑
k=1

d(j, k) (15.1)

• Find the minimum Q(i, j), merge i, j to a new node u.

• Update d(k, u) = (d(k, i) + d(k, j)− d(i, j))/2

• Recursion on the remaining r− 1 nodes.

With some rearrangements of (15.1), we notice that

−Q(i, j) =
( r

∑
k=1

(d(i, k) + d(j, k)− d(i, j))
)
+ 2d(i, j) (15.2)

We can visualize the update procedure as follows:
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i

j

kud(i, j)

d(k, i)

d(k, j)

So the update formula computes the distance between another species to the parent of i and j.

Therefore, from (15.2) we see that to minimize Q(i, j), we want to maximize RHS of (15.2), especially
the summation in RHS.

This method fixes the previous issue: Q(B, C) > Q(A, B), which correctly picks up the siblings. In the
paper, they proved that if the error in the input matrix is no greater than the minimum edge weight of
the tree, then the neighbor joining method will give us the correct tree all the time.

15.4 Quartet Methods

It’s hard to construct a big tree when we have many species, because it’s hard to enumerate all of
them. Instead, for each group of four species, construct a tree of 4 (quartet), using your most favorite
method, say maximum likelihood.

A

B

C

D

A

C

B

D

A

D

B

C

Then find a tree that is most consistent with all the quartets. The problem is NP-hard (to find the tree
with least error). There is a PTAS to do this. 6

There are other proposals for constructing the phylogeny tree, but they never get popolar.

15.5 Challenges in Phylogeny of Chain Letter

Parsimony or maximum likelihood: How do we know what is a “character” - a feature to look at?

• In case of a chain letters? It’s hard to come up with all the characters that can be used for the
phylogeny. Maximum likelihood is also hard because of the mutation matrix.

• In case of whole genome phylogeny? We have n species and all the genome sequence completely,
so we want to build the phylogeny tree using all the information in the genome. Then it’s hard
to do multiple sequence alignment, e.g., genome rearrangement event.

or use distance based method? Which distance to use? Edit distance doesn’t work due to genome
rearrangement event.

There’s a “universal” solution: information distance.

We need a notion of Kolmogorov Complexity: the length of a shortest computer program (in a pre-
determined programming language) that produces the object as output (wiki).

K(x) is the shortest program length to output x.

K(y | x) is the length of shortest program to take x as input and output y. If x is equal to y, then the
program is just doing copy. So K(y | x) actually reflects the additional information y has, to x.

6(T. Jiang, P. Kearney, and M. Li. Orchestrating quartets: approximation and data (FOCS’98))
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x yK(x | y) K(y | x)

Then the information distance between x and y is defined as

d(x, y) =
max

(
K(x | y), K(y | x)

)
max

(
K(x), K(y)

)
Kolmogorov complexity is incomputable, but we can use compression in practice.

Now we can reconstruct history of chain letters. We estimate K(x | y) ≈ K(xy) − K(y) where xy
denotes the concatenation. Similarly for K(y | x).

For each pair of chain letters (x, y) we computed d(x, y), hence a distance matrix. A DNA compression
program (expand the alphabet size to 26) is used to compute the information distance. Using Neighbor
Joining to construct their evolutionary history based on the d(x, y) distance matrix. The resulting tree
is an almost perfect phylogeny: distinct features are all grouped together. We then see the result is
good.



16
Suffix Tree and Array

So far we learned how to find “approximate” matches - the alignments. And they are difficult. Finding
exact matches are much easier. Suffix Tree and Array are helpful for string matching in bioinformatics.

String matching is to search for a short string P of length m in a large text T of length n.

There are some applications: Keyword searching, DNA reads mapping. Keyword searching has ap-
plication in bioinformatics, for example, next-generation sequencing.

Next-generation sequencing (NGS) is a massively parallel sequencing technology that offers
ultra-high throughput, scalability, and speed. The technology is used to determine the
order of nucleotides in entire genomes or targeted regions of DNA or RNA.

Src: https://www.illumina.com/science/technology/next-generation-sequencing.html.

In short, we are given a reference genome, and we want to map DNA reads back to the reference
genome.

There are two scenarios for string matching:

• Type I: Match only once. E.g. KMP algorithm and Apostolico-Giancarlo algorithm. O(m) to
preprocess, and O(n) to match.

• Type II: Match multiple patterns multiple times. Better index T first to speed up the matching
time.

This actually requires one of the data structures: suffix tree or suffix array. They are related to each
other, and one can show that these two are equivalent. Suffix tree and array are two data structures
for this purpose.

History skipped.

16.1 Suffix Tree

We can construct suffix tree for GAAGAT$. We typically put $ to indicate the end of string.
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Several properties:

• An edge is labelled with a substring of the original string.

• A node’s label is the concatenation of all edge labels for the path leading to that node.

• The path from the root, r, to any leaf x is a suffix of the string S.

• Suppose there is a special “end-of-string” character, each suffix will end at the leaf.

• Each internal node has at least 2 children.

• Edge labels to the child nodes of an internal node start with different letters. (shown in blue: we
can “merge”)

16.1.1 Application I. Search for a substring

If we have suffix tree, we can search for a substring. We note that any substring of S is a prefix of a suffix.

Is the string x a substring of S? Start at the root, and follow paths labelled by the characters of x. If
you can get to the end of x, then yes, it is.

Each edge doesn’t need to be labelled with a string, but just with starting and ending in the sequence.
This is the same suffix tree as before, but in linear space.

How to construct a suffix tree? There is a linear time algorithm to construct a suffix tree. (We will not
study it.)

We’ll examine a quadratic-time algorithm (quite intuitive). The idea is to start with an empty tree, and
iteratively add more suffixes into the tree (from shortest to longest).

Suppose the following is the suffix tree for GAAGA$, add another suffix AGAAGA$.
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First, follow the edges for A and for GA from the root. Then split after the A since the only path in the
tree is for $, and we have an A, instead. Add a new edge for AGA$. This yields this new tree:

Algorithm 15: Suffix tree quadratic time construction
Input: A string S of length m over a finite alphabet. The last character of S is a unique $

character.
1 We’ll build the suffix tree from right to left: S[m..m], S[m− 1..m], S[m− 2..m], . . .
2 Begin with this tree:

3

$

4 for i← m..1 do
5 Follow the letters of S[i..m] along the edges of the tree T.
6 When we reach a point where no path exists, break the current edge and add a new edge

for what is left.

Time complexity: O(m2). (Remember: The best algorithm has linear time.)

16.1.2 Application II: Longest Common Substring

What’s the longest substring common to both S1 and S2? Straightforward algorithm will try to com-
pare all substrings of equal length. This takes cubic time. Can we do better?

We can do local sequence alignment, which is quadratic time. But the best algorithm is to use suffix
tree, which is in linear time.

We build a suffix tree for S = S1#S2$, where # and $ are unique characters. All suffixes of S1 end with
an edge including #S2$. So we can label whether a leaf belongs to S1 or S2. In the example below, we
have ATG#TGC$.



CHAPTER 16. SUFFIX TREE AND ARRAY 115

Substrings are prefixes of suffixes, i.e. internal and leaf nodes of the tree. Each common substring is
the prefix of at least two suffixes, each from an input string (S1 or S2). So we are looking for internal
node, with mixed color leaves, then nodes satisfying these two properties are common substring. We
go through all possible such nodes to find the longest common substring. Circled ones in the picture
are two such nodes.

Algorithm 16: Longest common substring with suffix tree

1 Build suffix tree of #S2$.
2 Color all leaf nodes: red if v’s label is a substring of S1, blue if it’s a substring of S2.
3 Color all internal nodes from bottom up: red (or blue) if all child nodes are red (or blue),

purple if otherwise.
4 Find the purple node with longest path label.

Linear time, linear space.

Sketch proof of correctness Let t be the longest common substring. Follow the path label t starting
from the root. The path can’t stop in the middle of the edge - otherwise t is not the longest. Then the
path has to stop at an internal node. And it has to be purple.

16.1.3 Application III: Maximal Unique Match

Given two strings, a MUM (Maximal Unique Match) is a string that occurs exactly once in each string,
and is maximal (can’t be extended either way and still be a match).

For example, ATGAATC vs. AGATC

• AT is not, because not unique.

• G is not, not maximal because GA is longer.

• GA is a MUM.

• ATC is a MUM.

We build a suffix tree for S = S1#S2$, and color the nodes as in the longest common substring
algorithm.
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Each MUM must be a purple internal node that has exactly two leaf children: one red and one blue.

• Having exactly two leaf children ensures the uniqueness.

• We also want maximality:

– it is shared by the two strings.

– it can’t extend to the right by an additional letter and still be shared.

But a purple internal node may not be a MUM: only because the two occurrences may still extend to
the left. In the example,

• Node G is not: For G’s two occurrences, the left character are both T.

• Node TG is: For TG’s two occurrences, the left characters are A and #, respectively.

But it is easy to compute the left character of each leaf: it is a suffix, and we know its path’s starting
position in the original string. We put the left character of each leaf:

Algorithm 17: Maximal unique match with suffix tree

1 Build suffix tree of #S2$.
2 foreach leaf v do
3 left(v) := letter at left of suffix v.

4 Find the internal nodes that
5 • Have exactly two child leaves
6 • The two child leaves are two suffixes from S1 and from S2, respectively.
7 • The two child leaves must have two different left characters.

This is linear time. After find all MUMs, use them as anchor to speed up global alignment.

16.1.4 MUMMER: Large-scale Global Alignment

The idea of MUM has application in bioinformatics. For example, large-scale global alignment. Previ-
ously, given two genomes of length n, cost is O(n2). The idea is
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• Pick some “anchors” through which the true alignment is very likely to fall.

• This breaks up into two separate alignments.

• Align the regions between the anchors either recursively or just using classical global alignment
tools.

Now the cost is O(2× (n/2)2) = O(n2/2). If we break into k parts, then it’s O(n2/k).

MUMs are good anchors: maximal, unique, match. First program that does so: MUMMER by Delcher
et al.

16.2 Suffix Array

Suffix tree is not a compact data structure as it has a lot of pointers. A suffix array stores the positions
in a string. Each position is an integer so this is a length n integer array. Each position corresponds
to a suffix starting at this position. The suffix array is sorted according to the string order of the
corresponding suffixes.

Consider the string AGAAGAT. We have the starting positions for suffixes:

1 = AGAAGAT

2 = GAAGAT

3 = AAGAT

4 = AGAT

5 = GAT

6 = AT

7 = T

Then we sort according to the alphabetic order on the right, we have

3 = AAGAT

1 = AGAAGAT

4 = AGAT

6 = AT

2 = GAAGAT

5 = GAT

7 = T

This gives us 3, 1, 4, 6, 2, 5, 7.

With sorted suffixes (O(n log n) trivially, but we can do linear time with the algorithm in next section),
we can do query quickly with binary search. Suppose the query substring is of length m:

• O(m log n) if implemented straightforwardly

• O(m + log n) if with an auxiliary data structure called longest common prefix (LCP) array. We
do not study this but we should be aware of this fact.
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16.3 Skew Algorithm For Suffix Sorting

The idea is similar to merge sort, but we can’t afford the cost of recursing on both smaller parts.

Let S0, S1, . . . , Sn−1 be all the n suffixes. Si starts at i-th position. Skew algorithm uses divide and
conquer. But it divides the problem into unequally sized parts. We have two sets:

SA0 = {Si : i = 0 mod 3} SA12 = {Si : i 6= 0 mod 3}

General idea We assume SA12 is sorted already, and learn the other two steps first.

1. Sort SA12 recursively. (pad with 0, 3-mer, and renaming)

2. Sort SA0 in linear time. (radix sort)

3. Merge sorted SA0 and SA12 in linear time. We compare first one or two letters, and the remaining
shorter substrings.

Other sources on skew algorithm:

• https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixarrays.pdf

• http://www.cs.cmu.edu/~guyb/paralg/papers/KarkkainenSanders03.pdf

• https://gist.github.com/markormesher/59b990fba09972b4737e7ed66912e044 (recommended)

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/suffixarrays.pdf
http://www.cs.cmu.edu/~guyb/paralg/papers/KarkkainenSanders03.pdf
https://gist.github.com/markormesher/59b990fba09972b4737e7ed66912e044
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