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1
Introduction & Motivation

1.1 Fermat’s Last Theorem

Fermat’s Last Theorem

The equation xm + ym = zm has no non-trivial solutions in integers for m ≥ 3.

For example, (1, 0, 1), (−1, 0, 1) for m even, are trivial solutions.

In 1897, Gabriel Lamé announced that he has a proof. First he assumed that m is a prime. He writes

zp = xp + yp = (x + y)(x + ζpy)(x + ζ2
py) · · · (x + ζ

p−1
p y)

where ζp = cos( 2π
p ) + i sin( 2π

p ). Consider the ring

Z[ζp] = {a1 + a2ζp + a3ζ2
p + · · ·+ ap−2ζ p−2 : ai ∈ Z}

which is the smallest ring containing Z and ζp.

Then the next step is to show that (x + ζ
j
py)’s are coprime in Z[ζp]. Let qi’s be primes.

∏
i

qpαi
i = zp = (x + y)(x + ζpy) · · · (x + ζ

p−1
p y)

If (x + ζ
j
py)’s are coprime in Z[ζp], then (x + ζ

j
py) = (· · · )p is of p-th power (∗). But this is wrong if

the factorization is non-unique. However, we have Z[ζp] can be a unique factorization domain (UFD).
This means (∗) works. Kummer salvages the argument for approximately (conjecturally) 60% of prime
exponents. And these primes are called regular primes.

1.2 Straightedge and compass construction

We are given a length 1 straightedge ruler, and a compass. With these, we can

• connect two points with a straightedge,

• draw a circle, centered at A, and going through B,

• draw intersections of two line segments, circle & line, two circles.

4
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What lengths are constructible? where length means distance between two points. We can do
+,−,×,÷,√. Then we can do field extensions:

Q→ Q(
√

2)→ Q(
√

2,
√

3)→ · · ·

Is trisection of an angle doable? No, not possible.

Possible to double the cube, square the circle of the same area?

What regular m-gons are constructible? This is equivalent to the question: is cos( 2π
m ) + i sin( 2π

m )

constructible?

These can be answered via field extensions.

Other applications including coding theory.

https://mathworld.wolfram.com/AngleTrisection.html
https://en.wikipedia.org/wiki/Doubling_the_cube
https://en.wikipedia.org/wiki/Squaring_the_circle
https://n.sibp.ro/co331


2
An introduction to Rings

2.1 Definitions and basic properties

ring

A ring is a set with two binary operations +,×, such that

1. (R,+) is an abelian group.

• + is commutative and associative.

• ∃0 ∈ R, 0 + a = a + 0 = a for all a ∈ R.

• ∀a ∈ R, ∃(−a) ∈ R, a + (−a) = (−a) + a = 0.

2. × is associative (a× b)× c = a× (b× c).

3. distributive laws hold: (a + b)× c = (a× c) + (b× c).

The ring is called commutative if × is commutative. The ring is said to have an identity if ∃1 ∈ R,
1× a = a× 1 = a, for all a ∈ R, and this does not require the existence of inverse.

For simplicity, we write
ab := a× b, b− a = b + (−a)

Example:
Z is a commutative ring with identity.

Trivial rings: Let (R,+) be an abelian group. We define a× b = 0 for all a, b ∈ R. The result is a
commutative ring with “trivial structure”.

R = {0} is a zero ring. 0 = 1 in this case, and it is the only such ring. It leads to assumption 0 6= 1,
saying R 6= {0}.

Q, R, C are commutative rings with identity.

Zm = {0, 1, . . . , m− 1} with +,× modm is a ring with identity, and commutative.

The real quaternions: {a + bi + cj + dk : a, b, c, d ∈ R}. Addition is “component-wise”. And the
multiplication follows

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

6
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And this is non-commutative ring, with identity 1.

Let X be a set, A be a ring. Consider the set F = { f : X → A}. Define

( f + g)(x) = f (x) + g(x), ( f × g)(x) = f (x)× g(x)

F commutative & having identity is inherited from the ring A.

Mm(Z) is the ring of square m×m matrices with coefficients in Z. It is non-commutative ring with
identity.

A function f : R → R is said to have compact support, if ∃a, b ∈ R, f (x) = 0 for x /∈ [a, b].
R = { f : R→ R : f has compact support} is a commutative ring, without identity.

Proposition 2.1

Let R be a ring. Then

1. 0a = a0 for all a ∈ R.

2. (−a)b = a(−b) = −(ab) for all a, b ∈ R.

3. (−a)(−b) = ab for all a, b ∈ R.

4. If R has an identity 1, then it is unique, and (−a) = (−1)a.

Proof:
We see that

0a = (0 + 0)a = 0a + 0a

0a− 0a = (0a + 0a)− 0a = 0a + (0a− 0a)

0a = 0

We also see that
(−a)b + ab = ((−a) + a)b = 0b = 0

We would like to be able to cancel with respect to x: ab = ac then b = c. However, this is not true in
general.

Example: (
0 1
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
=

(
0 0
0 0

)(
1 0
0 0

)
However, (

0 1
0 0

)
6=
(

0 0
0 0

)

2.2 Zero divisor and integral domain

zero divisor

A nonzero element a ∈ R is called a zero divisor, if there exists b ∈ R and b 6= 0, such that
ab = 0 or ba = 0.
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integral domain

A commutative ring with identity, 1 6= 0, is called an integral domain, if it contains no zero
divisor.

Proposition 2.2

Let R be a ring. Assume that a, b, c ∈ R, and a is not a zero divisor. If ab = ac, then either a = 0
or b = c (i.e., we can multiplicatively cancel).

Proof:
Observe that

ab = ac

ab− ac = 0

a(b− c) = 0

As a is not zero divisor, then either a = 0 or b− c = 0.

If zero divisors exist, then cancellation does not hold:

ab = 0 = a · 0 6⇒ b = 0

Remark:
In integral domains, ab = 0 =⇒ a = 0 or b = 0.

2.3 Field

division ring

A ring with identity 1, 1 6= 0, is called a division ring, if every nonzero element has a multi-
plicative inverse, i.e., for all a ∈ R, a 6= 0, there exists b ∈ R, such that ab = ba = 1.

Consider an example ab = 1 existing and ba = 1 not existing.

Example:
Real sequences (x1, x2, . . .). Ring of operators on the sequences, × is composition. Take

D : (x1, x2, x3, . . .) 7→ (x2, x3, x4, . . .)

S : (x1, x2, x3, . . .) 7→ (0, x1, x2, x3, . . .)

Then
D(S(x1, x2, . . .)) = Id(x1, x2, . . .)

but S ◦ D 6= Id.

field

A commutative division ring is called a field.

Example:
Q, R, C are fields. Quaternions are “only” a division ring because non-commutative. Zp is a field
for p prime.
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Proposition 2.3

Any finite integral domain is a field.

Z is an integral domain, but far from a field.

Proof:
Check Corollary 10.13 of PMATH 347.

2.4 Subring

subring

Let R be a ring. A nonzero subset S ⊆ R is called a subring of R, if it is a ring with the operations
from (R,+,×) restricted to S.

That means: S 6= ∅. x + (−y) ∈ S, ∀x, y ∈ S. xy ∈ S, ∀x, y ∈ S.

Example:
Z2 ⊆ Z, but Z2 is not a subring of Z.

2Z = {2 · z : z ∈ Z} (ring has no identity) is a subring of Z (ring has identity).

Ring of matrices M2(R) (1 is identity matrix) has a subring S =

{(
a a
a a

)
: a ∈ R

}
and(

1/2 1/2
1/2 1/2

)
is the identity in S.

2.5 Unit

unit

Assume that R is a ring with an identity 1 6= 0. A a ∈ R is called a unit, if there exists b ∈ R
such that ab = ba = 1. Set of units of R is denoted by R×.

Example:
Z× = {±1}

Z×m = {a ∈ Zm : gcd(a, m) = 1}, Z×p = Zp \ {0} for p prime.

Consider ring R of [0, 1] → R, where ( f × g)(x) = f (x) · g(x), 1R = 1(x). Units are the functions
such that f (x) 6= 0 for ∀x ∈ [0, 1]. Then f (x)−1 = 1

f (x) . All non-units are zero divisors. If g(y) = 0,

then h(x) =

{
1 if x = y

0 otherwise
gives (g× h) = 0(x) = 0R.

Ring of all continuous functions [0, 1] → R is a subring of the previous ring. Units as before,
because 1/ f exists and is continuous.

Consider f (x) = x− 1/2.

https://n.sibp.ro/pmath347
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3
Ring Homomorphisms

ring homomorphism

Let R, S be rings.

1. A ring homomorphism is φ : R→ S, such that

(a) φ(a + b) = φ(a) + φ(b), for all a, b ∈ R.

(b) φ(ab) = φ(a)φ(b), for all a, b ∈ R.

2. The kernel of φ, ker φ = {a ∈ R : φ(a) = 0S}.

3. A bijective homomorphism is called isomorphism.

Remark:
Isomorphism means “same ring”, denote R ∼= S.

Example:
{0, 1} = Z2 = R, S = {a, b} with a + a = a, a + b = b, . . . Then R ∼= S.

Example:
Q = { a

b : a, b ∈ Z} with cancellation a
b = ca

cb

Can we say Z ⊆ Q? not in the purest sense. Z corresponds to { a
1 : a ∈ Z}.

Q contains an isomorphic copy of Z. S ⊆ Q such that S ∼= Z.

Example:
φ : Z→ Z2. φ(2k) = 0, φ(2k + 1) = 1. Then

ker φ = 2Z

φ−1(0) = 2Z = ker φ

φ−1(1) = 1 + 2Z

= 1 + ker φ

= 3 + ker φ

11
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Example:
φ : Z[x]→ Z : p(x) 7→ p(0). Then

ker φ = φ−1(0) = {adxd + ad−1xd−1 + · · ·+ a1x + 0 : ai ∈ Z}
= xZ[x] = {x · p(x) : p(x) ∈ Z[x]}

and
φ−1(a) = xZ[x] + ax0 = ker φ + ax0

Example:
φ : Z[x]→ Z2 : p(x) 7→ p(0) mod 2. Then

ker φ = φ−1 = xZ[x] + 2Z

φ−1(1) = 1 + ker φ

Example:
φ : Z→ R : a 7→ a, then ker φ = {0R}.

Proposition 3.1

Let R, S be rings, φ : R→ S be homomorphism.

1. The image of φ, (Im(φ), or φ(R)) is a subring of S.

2. ker φ is a subring of R. Moreover, ∀r ∈ R, ∀α ∈ ker φ, rα ∈ ker φ, α ∈ ker φ. (That is ker φ

is closed under multiplication by the elements from R)

Proof:
1. If a, b ∈ φ(R), then

a− b = φ(xa)− φ(xb) = φ(xa − xb) = φ(xa−b) ∈ φ(R)

2. φ(rα) = φ(r) · φ(α) = φ(r) · 0 = 0

Can we get a ring structure on a + ker φ? There is a factor ring R/ ker φ. For example, Z/2Z ∼= Z2.

3.1 Ideals & Quotient rings

ideal

Let R be a ring, let I ⊆ R be a subring, let r ∈ R.

1. I is called a left ideal, if rI ⊆ I where rI = {ri : i ∈ I}.

2. I is called a right ideal, if Ir ⊆ I.

3. I is an ideal, if it is left & right ideal (two sided ideal).
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Ideal Test

Check K is an ideal of R:

• k− j ∈ K for all j, k ∈ K; and

• rk, kr ∈ K for all k ∈ K, r ∈ R.

It is a quick generalization of previous definition. Reference: Laurent W. Marcoux’s 334 notes.

additive quotient

Let I ⊆ R be an ideal. The additive quotient is defined as R/I = {a + I : a ∈ R}.

Example:

Z/3Z =
{
{. . . ,−6, 3, 0, 3, 6, . . .}, {. . . ,−5,−2, 1, 4, . . .}, {. . . ,−4,−1, 2, 5, 8, . . .}

}
. Additive group.

Let I = 3Z. Then a + I are called (additive) cosets.

Proposition 3.2

Let R be a ring, I an ideal of R, then R/I is a ring with the operations

(a + I) +R/I (b + I) =: (a +R b) + I

(a + I)×R/I (b + I) = (a×R b) + I

The ring properties R/I follow from R being a ring.

quotient ring

R/I is called the quotient ring of R by I.

Remark:
If I is not an ideal, then the definition of the operations on R/I is not well defined.

Example:
Let R be commutative ring with identity 1 6= 0, m ≥ 2. Let Mm(R) be ring of square matrices with
coefficients in R.

Denote
Lj(R) = {A ∈ Mm(R) | Aik = 0, ∀i ∈ [n], k ∈ [m] \ {j}}

which means only the j-th column can have non-zero entries. Then Lj(R) is a left ideal in Mm(R).
This can be verified by the matrix multiplication. Lj(R) is not a right ideal, i.e., Lj(R) ·M /∈ Lj(R)
for some M ∈ Mm(R).

Analogously, a right ideal can be obtained by taking

Ti(R) =
{

A ∈ Mm(R)
∣∣∣ Akj = 0, ∀k ∈ [n] \ {i}, j ∈ [m]

}
Example:
Let R = Z[x] and I = x2Z[x].

Then R/I = {a + bx + p(x) : a, b ∈ Z, p(x) ∈ I}.

http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf
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For a ∈ R/I, ā denotes a + I.

3.2 Isomorphism theorems

Lemma 3.3

Let I be an ideal in R, then a + I = b + I (ā = b̄) if and only if b− a ∈ I. Namely, every member
of the coset can be the representative.

Theorem 3.4: First isomorphism theorem

If φ : R → S is a ring homomorphism, then ker φ is an ideal in R, Im φ is a subring of S, and
R/ ker φ ∼= Im φ.

Proof:
Theorem 4.2 of http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf

Consider τ : R/ ker φ→ φ(R) : r + ker φ 7→ φ(r).

Example:
Z[x]/2Z[x] ∼= Z2[x]. We can define φ : p(x) 7→ p(x) mod 2.

Theorem 3.5

For any ideal I ⊆ R, the map R → R/I defined by π : r 7→ r + I is a surjective ring homo-
morphism with kernel I. It is called the natural projection of R onto R/I. Thus every ideal is a
kernel of some homomorphism.

Proof:
Prove surjectivity is as before in first iso theorem. The prove homomorphism, both × and +. Now
prove ker φ.

• Let i ∈ I, then π(i) = i + I = I = 0R/I .

• Let a ∈ R/I, then π(a) = a + I, but a /∈ I. Thus by lemma, a + I 6= I = 0 + I.

Theorem 3.6: Second isomorphism theorem

Let A be a subring of R, B an ideal of R. Then A + B = {a + b : a ∈ A, b ∈ B} is a subring of R.
A ∩ B is an ideal of R and (A + B)/B ∼= A/A ∩ B.

Proof:
Consider the map φ : A→ (A + B)/B : a 7→ a + B. Then apply first isomorphism theorem.

Or check Theorem 4.3 of http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf.

Remark:

(A + B)/B = {a + b + B : a ∈ A, b ∈ B} = {a + B : a ∈ A} ?
= A/B

This reduction can’t happen because B is not necessarily an ideal of A.

http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf
http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf
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Example:
Let R = Z, then aZ + bZ = gcd(a, b) · Z. aZ∩ bZ = lcm(a, b) ·Z. Then by second iso thm

gcd(a, b)Z
bZ

∼=
aZ

lcm(a, b)Z

Lemma 3.7

If m | n, then nZ is an ideal of mZ, and |mZ/nZ| = n
m .

The coset representative in (mZ/nZ) are {0, m, 2m, . . . , ( n
m − 1)m}. Applying to A + B/B ∼= A/A∩ B,

we have
b

gcd(a, b)
=

lcm(a, b)
a

=⇒ ab = lcm(a, b) · gcd(a, b)

Theorem 3.8: Third isomorphism theorem

Let I ⊆ J be ideals in R. Then J/I is an ideal in R/I and (R/I)/(J/I) ∼= R/J.

Proof:
Define φ : R/I → R/J : a + I 7→ a + J. Then show that ker φ = J/I and then use first isomorphism
theorem.

Or check Theorem 4.4 of http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf

Example:
(Z/6Z)/(3Z/6Z) ∼= Z/3Z ∼= Z3.

Theorem 3.9: Fourth isomorphism theorem/correspodence theorem

Let R be ring, I ideal in R. The correspondence A ↔ A/I is an inclusion preserving bijection
between the set of subrings (A) of R, I ⊆ A ⊆ R, and the set of subrings of R/I. Furthermore,
A/I is an ideal in R/I if and only if A is an ideal in R (I ⊆ A).

Proof:
No first isomorphism theorem. Expand and verify the definitions.

The interesting part is: subring of R/I gives subring of R.

http://www.math.uwaterloo.ca/~lwmarcou/notes/pmath334.pdf


4
More on Ideals

Let A ⊆ R with identity.

(A)

1. (A) = the smallest ideal containing A (in R)

2. Let

RA =
{
∑ riai : ri ∈ R, ai ∈ A

}
AR =

{
∑ airi : ri ∈ R, ai ∈ A

}
RAR =

{
∑ riair′i : ri, r′i ∈ R, ai ∈ A

}
where these are all finite sums.

3. If A = {a}, then (A) =: (a) is called a principal ideal.

4. If an ideal I = (A) for A finite, we call I finitely generated.

Remark:

(A) =
⋂

I ideal of R
A⊆I

I

The intersection is indeed an ideal.

(A) ⊆ ∩I because (A) is the smallest. ∩I ⊆ (A) because it contains I = (A).

Note that ∪Iα is not an ideal in general.

What is (A)?

Assume R is commutative. Then (A) contains a ∈ R, and also ra, r ∈ R, a ∈ R, and their sums. This is
precisely the definition of RA. Thus RA ⊆ (A).

Note that 1 ∈ R. Then A ⊆ RA, and RA is an ideal itself. By minimality, (A) ⊆ RA.

To conclude, (A) = RA = AR = RAR in the commutative case.

16
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In particular, the principal ideal (A) = a · R = {ar : r ∈ R}, because let A = {a}, we have

AR =
{
∑ ari : ri ∈ R

}
=
{

a
(
∑ ri

)
: ri ∈ R

}
works in commutative rings.

Warning In non-commutative rings, we have (A) = RAR, so

(a) = RaR 6= {riar′i : ri, r′i ∈ R}

Example:
R = Z, the principal ideal (m) is mZ.

Example:
Let R = { f : [0, 1]→ R}. Then I = { f ∈ R : f (1/2) = 0} is an ideal. And I = (g) where

g(x) =

{
0 if x = 1/2

1 otherwise

For h ∈ I, h = g · h ∈ (g). Note that g is an identity element of I, but not of R.

Example:
C = { f : [0, 1]→ R | f is continuous} is a subring of R. I = { f ∈ C : f (1/2) = 0} is again an ideal.
BUT! I is not a principal ideal, I is not even finitely generated (not easily proven).

Note that I here is different from last example, where the instructor made a mistake at first.

Example:
Let R = Q[x]. Consider subring S = xQ[x] + Z. An ideal I = xQ[x].

1. I = (x) in R

2. I is an ideal in S where I is not finitely generated

If I is finitely generated in S, then there exists p1, . . . , pk ∈ I

I = (p1, . . . , pk) =

{
k

∑
i=1

pi(x)qi(x) : qi ∈ S

}

As pi are in ideal I = xQ[x], pi don’t have constant term. However, this is not possible. Take an
element a

b x ∈ I, then
a
b

x =
k

∑
i=1

pi(x)qi(x)

As pi’s are fixed, one need to find proper qi’s to make this equation hold. Now consider b to be a
prime such that b does not divide the product of denominators of pi’s, then it’s impossible to find
any qi’s to make this equation holds. Therefore I is not a finite generated ideal in S.

Proposition 4.1

Let I be an ideal in R with identity 1 6= 0.

1. I = R if and only if I contains a unit.

2. Let R be commutative. Then R is a field if and only if the only ideals in R are 0 and R.
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Proof:
Statement 1

(⇒) Because 1 ∈ R = I, and 1 is a unit.

(⇐) Let u ∈ I be a unit. Then u · u−1 = 1 ∈ I. Let r ∈ I, as 1 ∈ I, then 1 · r ∈ I, hence I = R.

Statement 2

(⇒) Let 0 6= I ⊆ R be an ideal. Then it contains a unit. Then by (1), I = R.

(⇐) Take arbitrary 0 6= r ∈ R. The ring (r) can’t be zero ideal, hence (r) = R. Thus 1 ∈ (r). That
means there exists s ∈ R, such that 1 = r · s. Then s = r−1. Hence r is a unit.

Corollary 4.2

A nonzero homomorphism from a field to a ring is an injection.

Proof:
Let φ be such a homomorphism. ker φ is an ideal of the field. This implies ker φ = 0 (injective
homomorphism) or R, the whole field. And the second possibility tells us φ is a zero map, which
is eliminated by the assumption.

4.1 Maximal ideals

maximal ideal

An ideal M is an arbitrary ring R is called a maximal ideal if M 6= R and there is no proper
( 6= R) ideal I, M ⊆ I ⊆ R.

Alternatively, ideal I of a ring R is maximal if the only ideals containing I are I and R.

Theorem 4.3

Assume that R ring is commutative. The ideal M is maximal if and only if R/M is a field.

Proof:
By 4th iso thm, or correspondence theorem, R/M is a field ⇔ ideals of R/M are zero ideals and
R/M ⇔ only ideals of R containing M are M and R ⇔ M is maximal.

Example:
pZ is maximal ideal for any p prime.

Theorem 4.4

pZ is maximal if and only if Z/pZ is a field.

Example:
(2, x) in Z[x] is maximal. Z[x]/(2, x) ∼= Z2 because (2, x) is a kernel of φ : p(x) 7→ p(0) mod 2.

Example:
Let R = { f : [0, 1] → R} and Mc = { f ∈ R : f (c) = 0}. Consider φ : R → R : f 7→ f (c). Then
ker φ = Mc. As R = φ(R), then R/Mc ∼= R is a field. Hence Mc maximal.
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4.2 Maximal ideals and Zorn’s Lemma

Consult Section 10.3 of PMATH 347 if needed.

Is every ideal (proper) contained in some maximal ideal? No. Consider Q with standard + and
a× b = 0+ for all a, b ∈ Q. We have ideals{ a

2
: a ∈ Z

}
⊆
{ a

4
: a ∈ Z

}
⊆ · · · ⊆

{ a
2k : a ∈ Z

}
⊆ · · ·

These ideals are not contained in a maximal ideal. This happens because there’s no identity.

Theorem 4.5

In a ring with an identity, every proper is contained in some maximal ideal.

Wrong idea Given I, then I ⊆ ⋃
I⊆A
A 6=R

A. But this is not an ideal. For example, Z6 ⊆ Z2 ∪Z3 is not

an ideal.

Right idea I ⊆ ⋃A∈C A for C being a “chain”

I ⊆ A1 ⊆ A2 ⊆ · · · ⊆ Am ⊆ · · ·

partial order

A partial order on a set S is a relation on X such that

1. a ≤ a for all a ∈ S,

2. If a ≤ b and b ≤ a then a = b for all a, b ∈ S,

3. If a ≤ b and b ≤ c, then a ≤ c for all a, b, c ∈ S.

So set inclusion ⊆ is a partial order.

The ordering does not have to be “linear”: sth ≤ sth ≤ sth ≤ · · · . For sets, we can have

{a}

{a, b}

{a, c}

{a, b, d}

{a, c, e}

{a, b, c, d, e}
⊆

⊆

⊆

⊆

⊆

⊆

A chain C in a partially ordered set (S,≤) is a subset such that for all x, y ∈ C, x ≤ y or y ≤ x (i.e., all
elements are comparable).

Zorn’s Lemma

Let (S,≤) be a partially ordered set with the property that each chain has an upper bound in S.
Then S contains a maximal element.

Theorem 4.6

Let R be a ring with 1. Then every proper ideal I is contained in some maximal ideal.

https://n.sibp.ro/pmath347
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Proof:
Let F = {J : J is a proper ideal of R, M ⊆ J}. Notice (F,⊆) is a poset (partially ordered set). Recall
some notations/definitions:

• Chain: subset G ⊆ F, s.t. ∀x, y ∈ G, x ⊆ y or y ⊆ x (comparable)

• Upper bound of G ∈ F, m ∈ F, s.t. ∀g ∈ G, g ⊆ m.

• Maximal in F: m ∈ F, s.t. ∀a ∈ F, (m ≤ a) =⇒ (a = m).

Let C ⊆ F be a chain. Put M :=
⋃

A∈C A. M is an ideal because

1. nonempty: A ∈ C, I ⊆ A, then I ∈ M.

2. Let a ∈ A, b ∈ B, and A, B ∈ C. WLOG, assume A ⊆ B. Then a, b ∈ B, then a− b ∈ B, then
a− b ∈ M.

3. ∀r ∈ R, a ∈ M, we have a ∈ A ∈ C, then ra ∈ A, ra ∈ M.

We claim that M is an upper bound of C in F. If M = R, then 1 ∈ A ∈ C. But then by proposition,
A = R. Contradiction.

Then apply Zorn lemma.

Or check proposition 10.8 of PMATH 347.

https://n.sibp.ro/pmath347


5
Polynomial Rings & Rings of Fractions

5.1 How to make new rings from old rings?

I don’t want to put this section to the previous chapter. So here it is.

Direct products

Let (Ri,+i,×i) be rings. R1 × R2 is a ring with

(r1, r2)⊕ (s1, s2) = (r1 +1 s1, r2 +2 s2)

(r1, r2)⊗ (s1, s2) = (r1 ×1 s1, r2 ×2 s2)

Then this applies to ∏i Ri (works for at most countable Ri’s).

Direct sum

For finitely many Ri’s, it is just direct product. For infinitely many Ri’s⊕
i∈I

Ri =
{
(r1, r2, r3, . . .) : ri ∈ Ri, only finitely many r1 6= 0

}

5.2 Basic Definitions and Examples

Let R be a commutative ring with identity. A polynomial with coefficients in R with undeterminate/-
variable x is a formal expression

p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

with ai ∈ R, ∀i ∈ 0, . . . , n. If am 6= 0, then deg p = n. If an = 1, we call p(x) monic.

R[x] = {anxn + an−1xn−1 + · · ·+ a1x + a0 : n ∈N, ai ∈ R} with operations

n

∑
i=0

aixi +
n

∑
i=0

bixi =
n

∑
i=0

(ai + bi) xi

( n

∑
i=0

aixi
)
×
( m

∑
i=0

bixi
)
=

n+m

∑
k=0

( k

∑
i=0

aibk−i

)
xk

Observe that R appears in R[x] as constant polynomials. R[x] is commutative ring with identity.

21
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Proposition 5.1

Let R be an integral domain, let p, q ∈ R[x] be nonzero elements. Then

1. deg pq = deg p + deg q

2. the units of R[x] are precisely the units of R.

3. R[x] is an integral domain.

Proof:
p(x)q(x) = anbm︸︷︷︸

6=0

xn+m + · · ·

Let p(x) ∈ R[x] be invertible, then there exists q such that pq = 1. By (1), deg p = 0. Thus deg q = 0.
p, q are constant polynomials.

pq = 0, then deg p + deg q = 0. Then deg p = deg q = 0. Then they are all constant polynomials.
As R is integral domain, we have p = q = 0.

Formal power series

Ring of all power series R[[x]] =
{

∑∞
i=0 aixi : ai ∈ R

}
with the same operations defined as polynomial

rings.

1. R[[x]] is a commutative ring with identity.

2. Units of R[[x]] are ∑∞
i=0 aixi with a0 unit in R.

Laurent series

R((x)) =
{ ∞

∑
i=N

aixi : ai ∈ R, N ∈ Z
}

5.3 Rings of fractions

Construct Q from R = Z. Define

Q =

{
p
q

: p, q ∈ Z, q 6= 0
}

p
q is a “formal” fraction. (p · q−1 does not work). However, 1

1 , 2
2 , 3

3 are distinct formal fractions. We
want to have them be in equivalent classes.

We define a
b ∼

c
d iff ad = bc (use only the ring operations). Then define Q be the equivalence classes

of ∼. For that, we need to show that ∼ is equivalence: reflexive, symmetric, transitive.

We define addition as
a
b
+

c
d
=

ad + bc
bd

is well-defined on equivalence classes. We can obtain + on the equivalence classes through definition
of +.

We define multiplication as
a
b
× c

d
=

ac
bd

is well-defined on equivalence classes.

Then we obtain Q. Note that the well-definednesses need a proof. See Section 11.1 of PMATH 347.

https://n.sibp.ro/pmath347
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2
1 , 1

2 ∈ Q, then 2
1 ·

1
2 = 2

2 ∼
1
1 is an identity. Thus 2 is invertible in Q. Every integer is a unit in Q.

If R have zero divisors, ab = 0 and a, b 6= 0. Then if a invertible: 1 = a−1 · a, then b = a−1(a · b) = 0.
Contradiction. Thus zero divisors do not have inverses in any ring. Now consider

a =
a
1
=

ab
b

=
0
b
= 0

contradiction to a 6= 0. Thus we will avoid zero divisors.

Theorem 5.2

Let R be a commutative ring. Let D be any subset of R closed under multiplication and not
containing zero divisors and 0. Then there exists a commutative ring Q with identity such that
Q contains R as a subring and every element of D is a unit of Q. Moreover,

1. every element of Q is of the form r
d for some r ∈ R, d ∈ D. If D = R \ {0}, then Q is a

field.

2. The ring Q is the smallest ring containing R in which all elements of D are units.

Here we formalize the definition of “smallest”: Let S be any commutative ring with identity and let
φ : R → S be any injective homomorphism such that φ(d) is a unit of S for each d ∈ D. Then there
is an injective homomorphism Φ : Q → S such that ΦR = φ. In other words, any ring containing an
isomorphic copy of R in which elements of D become units must contain Q.

R Q

S

id

φ
injective

Φ injective

Thus R“⊆”S.

Proof:
Almost the same as the proof of Theorem 11.3 of pmath347. Below are some main points.

F := {(r, s) : r ∈ R, d ∈ D}. Then ∼ is an equivalence relation: (r, s) ∼ (g, h) iff rh = sg. Then
denote by r

d the equivalence class of (r, d). As above, we define + and ×.

Let Q/∼ be the set of equivalence classes of ∼. We verify it is a ring.

Q contains an isomorphic image of R: consider a homomorphism σ : R→ Q, r 7→ rd
d for any d ∈ D

(does not depend on choice of d). We need to prove injectivity here.

Every d ∈ D (i.e., σ(d)) is invertible in Q.

Now let’s prove (1) and (2). (1) is trivial. Now prove (2). We claim that there exists ψ : Q → S
injective such that ψ|R = φ. Note that φ(d) invertible for all d ∈ D, thus we can define ψ( r

d ) =

φ(r)φ(d)−1 for all r ∈ R, d ∈ D. ψ is well defined. ψ is a homomorphism because φ is. Not hard to
see ψ is injective. Finally, we see that ψ|R = φ.

Example:
R = Z, then Q = Q.

If R is a field, then Q = R.

R = 2Z is a ring without identity, then Q = Q. 1Q = 2
2 for example.
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R := R[x], then Q is a ring of p(x)
q(x) , q(x) 6= 0. This is rational functions. If we start with Z[x], then

Q = { p(x)
q(x) : q(x) 6= 0}. If we start with Q[x], then its Q is the same.

R := R[[x]], then Q = R((x)).



6
Chinese Remainder Theorem

comaximal

The ideals A, B ⊆ R are said to be comaximal if A + B = R.

m, n coprime iff ∃a, b ∈ Z, an + bm = 1.

A + B

A + B := {a + b : a ∈ A, b ∈ B}.

Example:
5Z, 3Z ⊆ Z. As 10 + (−9) ∈ 5Z + 3Z, hence 5Z, 3Z are comaximal.

AB

AB := {∑finite sums aibi : ai ∈ A, bi ∈ B}. Similarly we have A1 · · · Ak := {∑ ai1 · · · aik : aij ∈ Aj}.

Theorem 6.1

Let R be a commutative ring with an identity. Let I1, I2, . . . , Ik be ideals in R, such that In, Im are
comaximal for n 6= m. Then

R/I1 I2···Ik = R/I1∩I2∩···∩Ik
∼= R/I1 × R/I2 × · · · × R/Ik

In particular, I1 I2 · · · Ik = I1 ∩ I2 ∩ · · · ∩ Ik.

Proof:
By induction. The proof here is the same as Theorem 11.24 of pmath 347.

Remark:
Consider the units of R/I1 · · · Ik and R/I1 × · · · × R/Ik. The units are the same (under isomor-
phism). That means that

(R/I1 · · · Ik)
× ∼= (R/I1)

×(R/I2)
× × · · · × (R/Ik)

×

Because units in the product of rings are units in each component.

25
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An element of a product ring is a unit iff each component is a unit in its respective ring.

Then apply this remark to integers: m = pα1
1 pα2

2 · · · p
αk
k .

(Z/mZ)× ∼= (Z/pα1
1 Z)× × · · · (Z/pαk

k Z)×

Euler’s totient function: ϕ(m) = |(Z/mZ)×|. Thus from the relation above, we have

ϕ(m) = ϕ(pα1
1 ) · · · ϕ(pαk

k )

which means ϕ(·) is multiplicative arithmetic function.



7
Domains

7.1 Euclidean Domains

norm

A norm on a ring R is a function N : R→ Z+ ∪ {0}, s.t. N(0) = 0.

Euclidean domain

An integral domain (identity, commutative, no zero divisors) for which there exists a Norm,
such that: ∀a, b ∈ R, b 6= 0, there exists q, r ∈ R s.t. a = qb + r with N(r) < N(b) or r = 0. This
is called a Euclidean domain.

Example:
R = Z, N(x) = |x|. Then a = qb + r follows from division with remainder. We don’t have to keep
r positive/negative.

Example:
Fields with N(x) = 0. We have a = (ab−1)b = 0

Example:
F a field. Then F[x] is a Euclidean domain with N(p(x)) = deg(p(x)). Then we can have polyno-
mial long division.

Example:
Consider Gaussian integers.

Z[i] = {a + bi : a, b ∈ Z}

is ED with N(a + bi) = a2 + b2 = (a + bi)(a− bi).

Theorem 7.1

Every ideal in a Euclidean domain is principal.

27
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Proof:
Let I ⊆ R an ideal. Take a nonzero element d in I of the smallest norm. Let x ∈ I, then x = qd + r
where N(r) = 0 or N(r) < N(d). But N(r) < N(d) is not possible. So N(r) = 0. Since r = x− qd ∈
I, then we must have r = 0. Then x = qd. This holds for any x ∈ I. Thus I = (d).

Remark:
Every ideal is principal: principal ideal domain (PID). We have ED ⊆ PID, not other way around.

7.2 GCD & Bézout domains

greatest common divisor

Let R be commutative.

1. We say that b | a (b divides a), if there exists x ∈ R, a = bx.

2. d ∈ R is called a gcd(a, b) if

∗) d | a, d | b

4) if d′ | a and d′ | b, then d′ | d.

We can rephrase two conditions:

∗) (a, b) ⊆ (d) ⊆ R

4) If (a, b) ⊆ (d′), then (a, b) ⊆ (d) ⊆ (d′).

Bézout domain

Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two
principal ideals is again a principal ideal.

Proposition 7.2

In Bezout domains (every (a, b) is principal), (a, b) = (d) where d = gcd(a, b).

Proof:
Assume (a, b) = (α). We know that (a, b) = (α) ⊆ (d) because (d) is the smallest ideal containing
(a, b). Then by definition of gcd, we conclude that (α) = (d).

Bezout domain is not necessary for existence of gcd.

Example:
R = Z[x], what is gcd(2, x)? (2, x) is not principal. It is a maximal ideal, because Z[x]/(2, x) ∼= Z2.

We see that (2, x) ⊆ (1). Because (2, x) is maximal, there are no ideals in between. Hence
gcd(2, x2) = 1.

Theorem 7.3

Let R be an integral domain (commutative ring with identity), then (d) = (d′) if and only if
d = d′u for a unit u ∈ R.
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Example:
In Z[i], units are {±1,±i}, then (2) = (−2i).

Proof:
We know that d ∈ (d′) and d′ ∈ (d). Thus we can find x, y ∈ R such that d = d′x and d′ = dy.
Hence d(1− xy) = 0. If d = 0, then it’s a trivial ring. If d 6= 0, then xy = 1.

Corollary 7.4

If gcd(a, b) = d, then all gcd’s are ud, for u a unit.

7.3 Euclidean Algorithm

It unfolds as follows

a = q0b + r0, N(r0) < N(b)

b = q1r0 + r1

r0 = q2r1 + r2

...

rm−2 = qmrm−1 + rm

rm−1 = qm+1rm + 0

Theorem 7.5

Let R be a Euclidean domain, a, b 6= 0, a, b ∈ R.

1. The last nonzero remainder, rm, in Euclidean algorithm is gcd(a, b).

2. Moreover, rm = ax + by for x, y ∈ R. And x, y can be obtained from Euclidean algorithm.

Proof:
By going backwards in Euclidean algorithm, we obtain inductively that rm | rm−1, rm−2, . . . , r1, r0,
rm | a, b. This shows that (a, b) ⊆ (rm), which means rm is a common divisor. It remains to show
that (rm) ⊆ (a, b). We see that

r0 = a− q0b ∈ (a, b)

r1 = b− q1 r0

∈ (a, b)

∈ (a, b)
...

rm = rm−2 − qmrm−1 ∈ (a, b)

Thus (rm) ⊆ (a, b).

Therefore (rm) = (a, b).
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7.4 Principal Ideal Domain

Example:

Z
[

1+
√
−19

2

]
=
{

a + b 1+
√
−19

2 : a, b ∈ Z
}

is PID, but not Euclidean domain. To prove it is not ED,

we follow the definition: ∀a, b ∈ R, a = qb + r, N(r) < N(b) or b = 0. Take b a non-unit, non-zero
with minimal norm. Then every x can be written as x = qb + r, r = 0 or r is a unit. If b is defined
above, and we know units are {±1}, then x = qb± 1 or x = qb + 0.

Take 2 = qb + r, r ∈ {0,±1}. This gives us three possibilities: b | 2, b | 1, b | 3.

For the rest, check https://math.stackexchange.com/a/23872 or page 282 of Dummit & Foote.

Principal Ideal Domain

An integral domain in which every ideal is principal is called a Principal Ideal Domain (PID).

Example:
Z, F[x] for F a field. Z[x] is not PID.

Proposition 7.6

Let R be a PID, a, b 6= 0, a, b ∈ R. Then if (d) = (a, b), then

1. d = gcd(a, b).

2. d = ax + by for x, y ∈ R.

3. d is unique up to a multiplication by a unit in R.

prime ideal

An ideal I ( R is called a prime ideal if ab ∈ I =⇒ a ∈ I or b ∈ I.

Example:
6Z is not prime ideal as 2× 3 ∈ 6Z and 2, 3 /∈ 6Z.

7Z is prime ideal.

Remark:
A prime p satisfies p | ab =⇒ p | a or p | b.

Proposition 7.7

Every maximal ideal is prime.

Proof:
Maximal⇔ R/I field⇒ R/I integral domain⇔ I prime.

Theorem 7.8

Every nonzero prime ideal in PID is a maximal ideal.

https://math.stackexchange.com/a/23872
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Proof:
Suppose there exists a maximal ideal (m) where m ∈ R such that a prime ideal (p) ⊆ (m) ⊆ R.
Then p = rm. Then rm ∈ (p). As (p) is prime ideal, thus either r ∈ (p) or m ∈ (p).

If m ∈ (p), then (m) ⊆ (p), then (m) = (p).

If r ∈ (p), then r = sp for some s ∈ R. Sub it back, p = rm = spm. Then p(1− sm) = 0. As p 6= 0,
then sm = 1, thus s, m are units. Thus (m) = R.

Corollary 7.9

Q[x]/(p(x)) for p(x) irreducible (thus (p) is primal). Q[x]/(p) ∼= Q(α), where α is a root of p.

Corollary 7.10

If F[x] is a PID (ED), then F is a field.

Proof:

(x) is an ideal. We
know that F ∼= F[x]/(x) is an

integral domain. We also know
that F is integral domain iff (x)
is a prime ideal. As F[x] is

PID, then (x) is also maxi-
mal. Thus we conclude

that F[x]/(x) ∼= F
is a field.

♥

Remark:
In ED, ∀a, b 6= 0, a = qb− r, N(r) < N(b) or b | a.

The norm above generalizes to Dedekind-Hasse norm: N(0) = 0, N(a) > 0 if a 6= 0. Such that
∀a, b ∈ R, a, b 6= 0, ∃s, t ∈ R : 0 < N(sa− tb) < N(b) or b | a.

Proposition 7.11

R is PID iff R has a Dedekind-Hasse norm.

Corollary 7.12

Z
[

1+
√
−19

2

]
is PID.
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7.5 Unique Factorization Domain

irreducible/prime

Let R be an integral domain.

1. Let r ∈ R, r 6= 0, r not a unit. We say that r is irreducible, if r = ab⇒ a or b is a unit of R.

2. p ∈ R, non-unit is called a prime, if p | ab⇒ p | a or p | b.

2’. (alternatively) p is prime if (p) is a prime ideal.

3. a, b ∈ R are associated (a ∼ b) if a = ub for u a unit.

Proposition 7.13

A prime is irreducible.

Proof:

Let p be prime
and p = a · b. Then p | ab,
then p | a or p | b. WLOG,
assume p | a. Then a = px.

Hence p = pxb. This
implies xb = 1, then

x, b are units.
♥

Example:
Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z}. We found that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

are two factorizations into irreducibles, and

2 - (1 +
√
−5) and 2 - (1−

√
−5)

Note that N(a + b
√
−5) = a2 + 5b2 ∈ Z. Then we observe

4 = N(2) = N(αβ) = N(α)N(β)

Even better, we have
(6) = P2

2 P3P′3,

where P2 = (2, 1 +
√
−5), P3 = (3, 2 +

√
−5), P′3 = (3, 2−

√
−5) are all prime ideals. In particular,

(2) = P2
2

(3) = P3P′3
(1 +

√
−5) = P2P3

(1−
√
−5) = P2P′3
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Theorem 7.14

In PID, primes are precisely irreducibles. In other words, irreducible in PID is prime.

Proof:

Let r be an irre-
ducible. We want to show if

(r) is prime ideal. Let (r) ⊆ M = (m)

for some ideal M. Then r = mx. Because
r is irreducible, then either m or x is a
unit. If m is a unit, then M = R. If x is

a unit, then r ∼ m, then (r) = (m).
This proves (r) is maximal. As

this is PID, then (r) is
prime ideal. Hence

r is prime.
♥

Unique Factorization Domain

An integral domain R is called a UFD if every non-zero non-unit r ∈ R satisfies

1. p1 p2 · · · pk where pi’s are irreducibles of R.

2. if r = q1q2 · · · qm, with qi’s irreducibles, then m = k, and there exists a permutation π of
{1, 2, . . . , k}, such that pi ∼ qπ(i).

Example:
A field is a UFD.

Z[x] is a UFD (if R is UFD, then R[x] is UFD)

PID is UFD.

Z[
√
−5] is NOT a UFD.

Proposition 7.15

In UFD, every irreducible is a prime.

Proof:
Let p be irreducible, let p | ab. I.e., ab = px. Then we can write

(a1 · · · an)(b1 · · · bm) = p(x1 · · · xm+n−1)

where ai, bi, p, xi are irreducibles. By UFD property, WLOG assume p ∼ ai, then pu = ai for u a
unit, i.e., p | ai. Then

p(ua1 · · · ai−1ai+1 · · · am) = a

Hence p | a.
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Proposition 7.16

Let a, b 6= 0 in UFD. If

a = upe1
1 pe2

2 · · · p
en
n (7.1)

b = vp f1
1 p f2

2 · · · p
fn
n (7.2)

with u, v units, ei, fi ≥ 0 integers, pi primes. Then

d = pmin{e1, f2}
1 · · · pmin{en , fn}

n

is a gcd(a, b).

Proof:
Obviously, d | a, d | b. In d, pmin{ei , fi}+1

i if for some i, then it is not a divisor for both a, b. Thus the
exponents have to be ≤ min{ei, fi}. If all ≤ are =, then we obtain d. If not all ≤ are strict, then we
get something that divides d.

Example:
Z[i] is UFD, but Z[2i] = {a + 2bi | a, b ∈ Z} is not UFD.

4 = 2 · 2 = (−2i)(2i)

but i /∈ Z[2i], so 2 � (2i) or (−2i).

Also 2i is not a prime, because (2i) is not a prime ideal:

Z[2i]/(2i) ∼= Z/4Z

in which 2× 2 = 0, which is not an integral domain. This isomorphism is obtained by

φ(a + 2bi) = a mod 4

Theorem 7.17

Every PID is UFD.

Proof:
Two steps:

1. Every nonzero non-unit element is a finite product of irreducibles.

2. Uniqueness.

Let r 6= 0, non-unit. Either r is irreducible, or r = r1 · r2, r1, r2 non-units. Then r is irreducible
or r = r1r2 (r1, r2 are non-units). Then either r1 is irreducible or r1 = r11r12; r2 is irreducible or
r2 = r21r22. We continue this process, iteratively factor r. We want to show the factorization is
finite.

Assume factorization does not end. Then we obtain an infinite chain C:

(r) ⊆ (r1) ⊆ (r11) ⊆ (r112) ⊆ · · · ⊆ R

which corresponds to an infinite chain of factorization. Then (m) =
⋃
(rα)∈C(rα) is an ideal in PID.

Since m ∈ (rα), for some rα in chain, then (rα) = (m). Then

(r) ⊆ (r1) ⊆ · · · ⊆ (rα) = (m) ⊆ (m) ⊆ · · · ⊆ R
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The chain stabilizes (Noether Domain). Contradicts infinite factorization.

Let r = p1 p2 · · · pn = q1q2 · · · qm for pi, qi irreducibles. WLOG, assume q1 | p1 then p1 = uq1 for u
a unit. Then p1 ∼ q1. Then

uq1 p2 · · · pn = q1q2 · · · qm =⇒ (up2) · · · pn = q2 · · · qm

Finish by induction on min{m, n}.

Corollary 7.18

If R is a PID, then there exists a Dedekind-Hasse norm on R.

Proof:
Define the norm: N(0) = 0 and N(p1 p2 · · · pk) = 2k where p1 p2 · · · pk is unique factorization to
irreducibles and pi’s do not need to be distinct. We observe that N(ab) = N(a)N(b), and N(a) > 0
iff a 6= 0.

Let a, b ∈ R, then (a, b) = (r) for some r ∈ R, and we know r = gcd(a, b). Then there exist s, t ∈ R
such that sa − tb = r. Taking norms N(sa − tb) = N(r). Here r has less factors than a, b, thus
N(r) < N(b) because r | b.

Remark:
gcd in UFD always exist, but consider an example. In Z[x], gcd(2, x) = 1, but (2, x) ⊆ (1) = Z[x].
And there don’t exist α, β s.t. 1 = α · 2 + β · x, namely gcd is not a combination of a, b in this case.

Field (

Z

ED (

Z[1+
√
−19/2]

PID (

Z[x]

UFD (

Z[
√
−5]

Integral domain
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Polynomial Rings

Previously: If R[x] is PID (or ED), then R is a field.

Remember: If R is ID, then R[x] is ID.

R[x1, x2, · · · , xn]

For commutative ring R with identity, x1, . . . , xn commuting variables, we have

R[x1, x2, · · · , xn] = (R[x1, x2, . . . , xm−1])[xm]

Proposition 8.1

Let I be an ideal in commutative ring R, with identity. Then (R/I)[x] ∼= R[x]/(I), where
(I) = I[x] is in R[x]. Moreover, if I is a prime ideal in R, then (I) = I[x] is a prime ideal in R[x].

Example:
(Z5)[x] ∼= Z[x]/5Z[x]

Proof:
Consider a homomorphism φ : R[x] → (R/I)[x] where φ is a coefficient reduction mod I. To
check φ is a homomorphism, we want to check if φ(pq) = φ(p)φ(q). At xk of p(x)q(x), after φ

applied to ∑k
i=0 piqk−i, we get (∑ piqk−i) mod I = ∑k

i=0(pi mod I)(qk−i mod I). We observe that
ker φ = I[x]. We also see that φ(R[x]) = (R/I)[x], which is just operations.

I prime ideal, then R/I ID, then (R/I)[x] ID, then R[x]/I[x] ID, thus I[x] is prime ideal.

8.1 Polynomial rings over fields

Recall norm on R[x]: N(p(x)) = deg(p).

Theorem 8.2

Let F be a field, then F[x] is a ED. Namely, if a(x), b(x) ∈ F[x], then there exists unique q, r ∈ F[x]
such that a(x) = b(x)q(x) + r(x) with deg(r) < deg(b) or r = 0. (if F ⊆ E, then F[x] ⊆ E[x]),
where E is a ED.

36
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Proof:
By induction for existence.

1. If deg(a) < deg(b), then r = a, q = 0.

2. If deg(a) ≥ deg(b), we can write

a(x) = anxn + an−1xn−1 + · · ·+ a0

b(x) = bmxm + bm−1xm−1 + · · ·+ b0

where m ≤ n.

Then the polynomial ã(x) = a(x)− an

bm
xn−mb(x) and deg(ã) < deg(b). Then there exists q̃, r̃

such that ã(x) = q̃(x)b(x) + r̃(x) with deg(b) > deg(r̃). Sub in a(x), we get

a(x) =
(

q̃(x) +
an

bm
xn−m

)
b(x) + r̃(x)

Note that
an

bm
= anb−1

m is well-defined because F is a field.

As for the uniqueness, assume that a = qb + r = q′b + r′. Subtracting these two, we have

0 = b(x)(q(x)− q′(x)) + (r(x)− r′(x))

where deg(r− r′) < deg(b). Then

b(x)(q(x)− q′(x)) = (r(x)− r′(x)) = 0

Because integral domain,
q(x)− q′(x) = r(x)− r′(x) = 0

Thus q(x) = q′(x) and r(x) = r′(x).

Corollary 8.3

If F is a field, then F[x] is a UFD and a PID.

Example:
Z[x] is not a PID because (2, x) is not principal.

Q[x] is a PID as Q is a field, then (2, x) = (1) = Q[x].

Z[x]/pZ[x] ∼= (Z/pZ)[x] ∼= Zp[x]. What happens to (2, x) in (Z/pZ)[x]. If p = 2, then (2, x) =
(x) in Zp[x]. If p > 2, then 2 is invertible, then (2, x) = (1) in Zp[x].

8.2 Polynomial rings that are UFDs

Proposition 8.4: Gauss’ Lemma

Let R be a UFD with a field of fraction F, and let p(x) ∈ R[x]. If p(x) is irreducible in R[x], then
p(x) is also irreducible in F[x]. (i.e., if p(x) is reducible in F[x], it is also reducible in R[x])

More precisely, if p(x) = a(x)b(x) in F[x], then ∃r, s ∈ F such that p(x) = (ra(x)︸ ︷︷ ︸
∈R[x]

)(sb(x)︸ ︷︷ ︸
∈R[x]

), and

nothing more, with respect to a(x), b(x).
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Proof:
Prove by contrapositive. Let p(x) = a(x)b(x) in F[x]. We can multiply the denominator, then

dp(x) = A(x)B(x) in R[x] (∗)

If d is a unit of R, then p(x) = d−1 A(x)B(x) in R[x].

If d is not a unit, then d = p1 p2 · · · pk is a unique factorization into irreducible primes. Note that
(p1) is a prime ideal of R, then (R/(p1))[x] is ID. We then take (modp1) on both sides of (∗),
then 0 = A(x) B(x), where A(x), B(x) ∈ (R/(p1))[x]. Then A(x) = 0 or B(x) = 0 as in ID. I.e.,
either A(x) and B(x) are in (p1). I.e., either A(x) and B(x) are multiples of p1. Then WLOG
dp(x) = p1 · · · pk p(x) = (p1 A′(x))B(x), then p2 · · · pk p(x) = A′(x)B(x) in R[x].

Inductively, we’ll have p(x) = Ã(x)B̃(x) in R[x]. I.e., p(x) is reducible in R[x]. By contrapositive,
the first part holds.

If we write Ã(x) = sa(x), B̃(x) = tb(x), then p(x) = (sa(x))(tb(x)). Note 1 exists in an UFD.

Example:

In Q[x], x2 = 2x · 1
2 x. We cannot get a factorization in Z[x] by integer multiples. We can only have

x2 = x · x = (−x)(−x).

Does reducibility in R[x] implies reducibility in F[x]? No. In R[x], p(x) = 2 · x has two irreducibles. In
Q[x], p(x) = 2 · x only has one irreducible as 2 is a unit. Reducibility needs (at least) two irreducible
factors.

Corollary 8.5

Let R be UFD, F be its field of fractions and p(x) ∈ R[x] Let gcd of the coefficients of p(x) be 1.
Then p(x) is irreducible if and only if it is irreducible in F[x].

Proof:
⇒ is from Gauss’ lemma. For ⇐, suppose p(x) is reducible in R[x]. Let p(x) = a(x)b(x), then
neither of a(x), b(x) are constants, otherwise gcd of the coefficients of p(x) would be this constant.
So neither a(x) and b(x) is a unit. Then p(x) is reducible in F[x].

Theorem 8.6

R is a UFD if and only if R[x] is a UFD.

Proof:
Suppose R[x] is a UFD, then constant polynomials has a unique factorization.

Now suppose R is a UFD. Assume p(x) ∈ R[x], we want to factorize p(x) into irreducibles. Let
p(x) = dp′(x), where d ∈ R and gcd of coefficients of p′(x) is 1.

Since d ∈ R, which is a UFD, then d has a unique factorization. It remains to show that p(x) can be
factored uniquely. Factor p′(x) = g1(x)g2(x) · · · gr(x) in F[x], where F[x] is the field of factions of
R[x]. By multiplying c1, c2, . . . , cr ∈ F, we get a factorization in R[x], which is the same trick in the
proof of Gauss’ lemma. Then

p′(x) = (c1g1(x))(c2g2(x)) · · · (crgr(x)),

and cigi(x)’s are irreducibles in F[x]. We want to show cigi(x)’s are irreducibles in R[x]. Since
gcd(coeff. of p′(x)) = 1, then gcd(c1, c2, . . . , cr) = 1, otherwise, we can still factor out a constant
from p′(x) and move it to d. This shows that p(x) can be written as a finite product of irreducibles
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in R[x].

Now suppose in R[x],
p(x) = q1(x) · · · qk(x) = q′1(x) = · · · q′r(x)

Since gcd(coeffs) = 1, then irreducibility in R[x] implies irreducibility in F[x]. This implies k = r
and qi(x) ∼ q′

π(i)(x) in F[x]. Then ∃ a
b ∈ F[x] such that b · qi(x) = a · q′

π(i)(x). The gcd of LHS
coefficients is b and RHS coefficients is a. Thus we must have a = ub for u a unit in R. Then
qi(x) = ub

b q′
π(i)(x) and ub

b is a unit of R. This proves that R[x] is a UFD.

Corollary 8.7

Z[x] is a UFD that is not a PID.

Example:
What about Gauss’ lemma for non UFD?

R = Z[2i] = {a + 2bi | a, b ∈ Z} is an ID.

F = Q(i) = {a + bi | a, b ∈ Q} is an ID.

x2 + 1 = (x + i)(x− i) in F[x], but x2 + 1 is irreducible in R[x].

8.3 Irreducibility Criteria

root

α ∈ F is a root of p(x) if p(α) = 0.

Proposition 8.8

Let F be a field and p(x) ∈ F[x], then p(x) has a factor of degree one if and only if p(x) has a
root in F.

Proof:
If p(x) has a factor od degree one, we can assume that the factor is (x − α). Then p(x) =

(1 · x− α)︸ ︷︷ ︸
∈F[x]

q(x), so p(α) = 0 · q(α) = 0.

On the other hand, if p(α) = 0, then p(x) = q(x)(x − α) + r(x) where deg(r) = 0 (r constant
polynomial) or r(x) = 0. As 0 = p(α) = q(α)(α− α) + r(α), thus r(α) = 0. Hence we conclude
p(x) = q(x)(x− α).

Corollary 8.9

Suppose p(x) ∈ F[x] is of degree 2 or 3. p(x) is irreducible if and only if p(x) does not of a root
in F.

Proof:
If p(x) = a(x) · b(x), nonconstant a(x), b(x), then deg(a), deg(b) < deg(p).

Example:
In R[x], (x2 + 1)(x2 + 1) is reducible, but does not have a root in R.
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Proposition 8.10

Let p(x) = ∑n
i=0 aixi ∈ Z[x]. If r

s ∈ Q is a root of p, with gcd(r, s) = 1, then r | a0 and s | an.

Proof:
We just plug in, and get

0 = an

( r
s

)n
+ · · ·+ a1

r
s
+ a0

0 = anrn + · · ·+ a1rsn−1 + a0sn

anrn = −s(· · · · · · )

then s | anrn, then s | an from gcd(s, r) = 1.

Analogously for r | a0.

Example:
p = x3 − 3x− 1 ∈ Z[x] is reducible if and only if it has root in Z. A root r ∈ Z of p divides −1,
then r = ±1. Then we can check if r is a root.

Example:
Similarly we can check reducibility for x2 − p, x3 − p for p prime.

Consider an obvious fact: f reducible in Z[x], then reducible in (Z/mZ)[x]. Now the following
proposition generalizes this fact.

Proposition 8.11

Let I be a proper ideal in an integral domain R. Let p(x) be a nonconstant, monic polynomial in
R[x]. Then if p(x) ∈ (R/I)[x] cannot be factored into two polynomials of smaller degree, then
p(x) is irreducible in R[x].

Proof:
Suppose p(x) = a(x)b(x) ∈ R[x]. Then we know that a(x) and b(x) are monic, and nonconstant.
Reducing the coefficients modulo I gives a factorization in (R/I)[x] with nonconstant factors by
Proposition 8.1.

Example:
x2 + x + 1 in Z2[x] is irreducible because it has no root in Z2. Thus irreducible in Z[x].

x2 + 1 = (x + 1)(x + 1) is reducible in Z2[x]. x2 + 1 is irreducible in Z3[x], thus x2 + 1 is irreducible
in Z[x].

Example:
x4 + 1 is reducible in Zp[x] for any prime p.

x4 − 72x2 + 4 is reducible in Zn[x] for any m ∈N.

But they are irreducible in Z[x].

Theorem 8.12: Eisenstein’s criterion

Let P be a prime ideal of an integral domain R. Let p(x) = xn + an−1xn−1 + · · ·+ a1x+ a0 ∈ R[x]
such that an−1, . . . , a0 ∈ P, and a0 /∈ P2 = P · P. Then p(x) is irreducible.
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Proof:
Assume we have a factorization p(x) = a(x)b(x) in R[x]. Then in (R/P)[x], we reduce the coeffi-
cients mod P: xn = a(x) b(x). Then the constant terms of a(x) and b(x) are zero, i.e., the constant
terms of a(x) and b(x) are elements of P. But then a0 would be the product of these two would be
an element of P2. Contradiction.

Example:
x4 + 10x + 5 in Z[x] is irreducible. Consider prime ideal P = (5).

Example:
xn − a ∈ Z[x] is irreducible for any a ∈ Z such that for some prime p with p | a and p2 - a.

Example:
For p prime,

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + · · ·+ x + 1

is called p-th cyclotomic polynomial.

If f (x) = g(x)h(x), then f (x + 1) = g(x + 1)h(x + 1). We then can investigate reducibility of
Φp(x + 1):

Φp(x + 1) = xp−1 + pxp−2 + · · ·+ p(p− 1)
2

x + p

Since all the coefficients except the first are divisible by p by the Binomial Theorem. As before, this
shows Φp(x) is irreducible in Z[x].
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Field Theory

9.1 Basic Theory of Field Extensions

field extension

Let F be a field. A field K is called an extension of F, if K contains an isomorphic copy of F. We
will denote by K/F.

This is not a quotient.

Fact x2 + 1 ∈ R[x], but no root in R. Make an extension of R so that C has a field: R[x]/(x2 + 1) ∼= C.

Theorem 9.1

Let F be a field, p(x) ∈ F[x] and irreducible polynomial. Then there exists a field K containing
an isomorphic copy of F in which p(x) has a root.

Identifying F with this isomorphic copy shows that there exists an extension of F in which p(x)
has a root.

Proof:
Consider the quotient K = F[x]/(p(x)). As p is irreducible in PID f [x], (p) is maximal. Hence K is
a field. Thus K contains an isomorphic copy of F. Then we have the canonical projection π of F[x]
to the quotient F[x]/(p(x)) restricted to F ⊆ F[x] gives a homomorphism:

φ = π |F : F → K

Then we note that it is a zero map because it maps identity 1 of F to the identity 1 of K. Thus
φ is injective. (or apply Corollary 4.2) Thus φ(F) ∼= F is an isomorphic copy of F contained in K.
We identity F with its isomorphic image in K and view F as a subfield of K. Denote x̄ = π(x) the
image of x in the quotient K, then

p(x̄) = p(x) (since π is a homomorphism)

= p(x)(mod p(x)) in F[x]/(p(x))

= 0 in F[x]/(p(x))

so that K does indeed contain a root of p. Then K is an extension of F in which p has a root.

42
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degree/index of a field extension

The degree (or relative degree or index) of a field extension K/F, denoted [K : F], is the dimen-
sion of K as a vector space over F (i.e., [K : F] = dimF K). The extension is said to be finite if
[K : F] is finite and is said be infintie otherwise.

Theorem 9.2

Let p(x) ∈ F[x] be an irreducible polynomial of degree n ≥ 1 over the field F and let K be the
field F[x]/(p(x)). Let θ = x mod (p(x)) ∈ K. Then the elements

1, θ, θ2, . . . , θn−1

are a basis for K over a vector space over F, so the degree of extension is n, i.e., [K : F] = n.
Hence

K = {a0 + a1θ + a2θ2 + · · ·+ an−1θn−1 | a0, a1, . . . , an−1 ∈ F}

consists of all polynomials of degree < n in θ.

From linear algebra, C is a vector space over R. If we multiply a C by R, it is still C, so it’s well
defined. Basis in this case is 1, i. dim(C) = 2. Thus [C : R] = 2.

Example:
R is a vector space over Q. R are the vectors, Q are scalars. It is infinite dimensional vector space
as it has no finite basis. This is because R is uncountable.

Proof:
First we want to show span{1, θ, . . . , θn−1} = K = F[x]/(p(x)).

Let a ∈ F[x], as F[x] is Euclidean domain, we have

a(x) = h(x)p(x) + r(x), deg r < deg p = n

Then a ≡ r mod p, which shows that every residue class in F[x]/(p(x)) is represented by a poly-
nomial of degree less than n. Hence the images 1, θ, . . . , θn−1 in the quotient span the quotient as a
vector space over F.

Then we want to show the linear independence of 1, θ, . . . , θn−1. Consider the equation

a0 · 1 + a1θ + · · ·+ an−1θn−1 = 0

a0 + a1x + · · ·+ an−1xn−1 + (p(x)) = 0 + (p(x))

in F[x]/(p(x)).
a0 + a1x + · · ·+ an−1xn−1 ≡ 0 mod (p(x))

Namely
p(x) | a0 + a1x + · · ·+ an−1xn−1

But deg(p) = n and deg(a0 + a1x + · · ·+ an−1xn−1) ≤ n− 1, then a0 = a1 = · · · = an−1 = 0.

Addition in K:
n−1

∑
i=0

aiθ
i +

n−1

∑
i=0

biθ
i =

n−1

∑
i=0

(ai + bi)θ
i

Multiplication is done by
a(x)b(x) = h(x)p(x) + r(x)
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then
a(θ)b(θ) = r(θ)

where deg r ≤ n− 1.

Inversion in K: we want to find a(θ)
(
a(θ)

)−1
= 1. This is equivalent to find b(x) :=

(
a(x)

)−1

a(x)b(x) + h(x)p(x) = 1

which can be done via Extended Euclidean Algorithm.

Example:
Consider R[x]/(x2 + 1). Here p(x) = x2 + 1. This is equivalent to {a + bθ : a, b ∈ R} (pretend that
we don’t know the complex number).

The addition is
(a + bθ) + (c + dθ) = (a + c) + (b + dθ)

Multiplication is
(a + bθ)(c + dθ) = ac + (bd + ac)θ + bdθ2

which doesn’t fit the form a + bθ. Using the fact that p(θ) = 0 = θ2 + 1, then

(a + bθ)(c + dθ) = (ac− bd) + (bd + ac)θ

Example:
x2 + 1 ∈ Q[x] has a unit in Q[x]/(x2 + 1) = {a + bθ : a, b ∈ Q}. [Q[x]/(x2 + 1) : Q] = 2. 1, i basis.

Example:
p(x) = x2 − 2 ∈ Q[x], θ2 = 2.

Then K = Q[x]/(x2 − 2) = {a + bθ : a, b ∈ Q}. Addition is same as before, multiplication is

(a + bθ)(c + dθ) = (ac + 2bd) + (ad + bc)θ

Example:
p(x) = x3 − 2. Then Q[x]/(x3 − 2) = {a0 + a1θ + a2θ2 : ai ∈ Q}, where

θ =
3
√

2 or 3
√

2e
2πi

3 =
3
√

2
(−1 + i

√
3

2

)
or 3

√
2e

4πi
3 =

3
√

2
(−1− i

√
3

2

)
Note that if we let θ = 3

√
2, then this field it does not contain other two θ’s. Similar for other θ’s.

This brings the idea of splitting fields.

Example:
Let F = F2 = Z2 = Z/2Z = GF(2) = {0, 1} with operations mod 2.

p(x) = x2 + x + 1 ∈ F2[x] is irreducible, as no roots in F2. Then can get a degree 2 extension of F2.

K = F2[x]/(x2 + x + 1) ∼= {a + bθ : a, b ∈ {0, 1}} which is a field of four elements. In this field,
θ2 = −θ − 1 = θ + 1. The multiplication is defined by

(a + bθ)(c + dθ) = ac + (ad + bc)θ + bdθ2

= ac + (ad + bc)θ + bd(θ + 1)

= (ac + bd) + (ad + bc + bd)θ

Remark:
It is possible to construct of degree pn for any n ≥ 1. All this finite fields are of this form.
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Example:
Let F = k(t) be the field of rational functions in the variable t over a field k (for example, k = Q). F
is a field of fractions of k[t]. Let p(x) = x2 − t ∈ F[x], which is irreducible. This is by Eisenstein’s
criterion, (t) is a primal ideal of k[t].

Then the degree 2 extension is

K = F[x]/(x2 − t) = {a(t) + b(t)θ|a, b ∈ F}

where θ2 = t.

Every p(x) ∈ Q[x] has all roots in C.

field generated by α, β, . . . over F

Let K be a field extension of F, and let α, β, . . . ∈ K. The smallest subfield of K containing α, β, . . .
and F is denoted by F(α, β, . . .), which is called the field generated by α, β, . . . over F.

simple extension & primitive element

If we are adjoining only one element α, then F(α) is called a simple extension and α is called a
primitive element for the extension.

Theorem 9.3

Let F be a field, p(x) ∈ F[x] irreducible of degree n ≥ 1. Suppose that K/F contains a root α of
p(x), i.e., p(α) = 0. Then F(α) ∼= F[x]/(p(x)).

Proof:
There is a natural homomorphism

ϕ : F[x] −→ F(α) ⊆ K

f (x) 7−→ f (α)

Since p(α) = 0 by assumption, the p(x) ∈ ker ϕ. So we obtained an induced homomorphism (also
denoted ϕ):

ϕ : F[x]/(p(x)) −→ F(α)

But since p(x) is irreducible, the quotient on the left is a field, as it is not zero map, thus injective.
Since this image is then a subfield of F(α) containing F and containing α, by the definition of F(α)
the map must be surjective, proving the theorem.

Corollary 9.4

F(α) = {a0 + a1α + · · · + an−1αn−1 | a0, a1, . . . , an−1 ∈ F} where α is a root of an irreducible
polynomial p(x) ∈ F[x].

Example:

Q(
√

2) = {a + b
√

2 : a, b ∈ Q} = {a + b
√
−2 : a, b ∈ Q} = Q(

√
−2) and α is the root of x2 − 2.

Q(
√

2) ∼= Q[x]/(x2 − 2) ∼= Q(−
√

2)
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Q(
√

2) has an automorphism (an isomorphism from a mathematical object to itself):

Q(
√

2)→ Q(
√

2) : a + b
√

2 7→ a− b
√

2

Some facts might be interesting:

• R has no non-trivial automorphisms.

• C has identity, a + bi 7→ a− bi, uncountably many “wild” automorphisms

9.2 Algebraic Extensions

algebraic, transcendental

An element α of an extension K/F is called algebraic over F, if α is a root of some polynomial in
F[x]. If α is not algebraic over F, then α is transcendental over F. The extension K/F is said to be
algebraic if every element of K is algebraic over F.

Example:
√

2 is algebraic over Q.

π is transcendental over Q(
√

2).

e is transcendental over Q.

π is algebraic over Q(π/2), as it is root of x− π.

Liouville’s Constant is Transcendental (1844)
∞

∑
n= 1

1
10n! =

1
101 +

1
102 +

1
106 +

1
1024 + · · ·

= 0.11000 10000 00000 00000 00010 00 . . .

is transcendental.

Hermite (1873): e is transcendental.

Cantor (1874): almost every complex number is transcendental over Q. (countable many polynomials
of Q[x], uncountably many numbers)

1882: π is transcendental.

Proposition 9.5

Let α be algebraic over F. Then there exists unique monic irreducible mα,F ∈ F[x] having α as a
root.

Moreover, f (x) ∈ F[x] has α as a root if and only if mα,F(x) | f (x) in F[x].

Proof:
Take g(x) as polynomial over F of minimal degree, g(α) = 0. We may assume g(x) is monic by
multiplying g(x) by a constant. Suppose g(x) were reducible, g(x) = a(x)b(x) with deg a, deg b <

deg g. As K is a field, a(α)b(α) = 0 implies that a(α) = b(α) = 0, contradicting the minimality of
deg g.

Suppose now h(x) ∈ F[x] has α as a root, namely h(α) = 0. By Euclidean algorithm,

h(x) = q(x)g(x) + r(x),
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then 0 = h(α) = q(α)g(α) + r(α) = 0, but deg r < deg g, thus r(x) = 0. Consequently, h(x) =

q(x)g(q), i.e., g(x) | h(x). In particular, if deg g = deg h, then g(x) = c · h(x).

minimal polynomial

mα,F(x) (in Proposition 9.5) is called the minimal polynomial of α over F. deg α := deg mα,F(x).

Example:
x2 − x− 1 has a root ≈ 1.618 = ϕ

ϕ3 − 2ϕ− 1 = (ϕ + 1)(ϕ2 − ϕ− 1) = 0

Proposition 9.6

Let α be algebraic over F. Then F(α) ∼= F[x]/(mα,F(x)). In particular, [F(α) : F] = deg α.

finite extension

An extension K/F, s.t. [K : F] < ∞ is called a finite extension of F.

Proposition 9.7

α is algebraic over F if and only if F(α)/F is finite.

More precisely, if α is an element of an extension of degree n, then α is a root of a polynomial
of degree at most n, and if α satisfies a polynomial of degree n over F then the degree of F(α)
over F is at most n, i.e., [F(α) : F] ≤ n.

Proof:
Suppose α is algebraic, then F(α)/F is finite as [F(α) : F] = degF α.

Conversely, suppose [K : F] = n, then 1, α, α2, . . . , αn is linear dependent.

b0 + b1α + b2α2 + · · ·+ bnαn = 0

has non-trivial solution. Hence α is the root of a nonzero polynomial with coefficients in F (of
degree ≤ n), then α is algebraic of degree ≤ n.

Example: Quadratic Extensions over Fields of Characteristic 6= 2

Let F be a field, s.t. 1 + 1 6= 0. Let [K : F] = 2. Let α ∈ K \ F, then α satisfies an equation of degree
2, i.e., α is a root of mα,F = x2 + bx + c for b, c ∈ F. Then F ⊆ F(α) ⊆ K, and [F(α) : F] = [K : F] = 2,
which implies F(α) = K.

Roots of mα,F(x) are

α =
−b±

√
b2 − 4c

2
Comments:

1. Derivation of the formula is the same as in C.

2.
√

b2 − 4c is derived as a solution to x2 − (b2 − 4c) = 0.

3. 2 in the denominator is 1 + 1.

We claim that F(α) = F(
√

b2 − 4c).
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As α is obtained by the field operations from F and
√

b2 − 4c. Then F(α) ⊆ F(
√

b2 − 4c).

Conversely, as
√

b2 − 4c = ±(2α + b) ∈ F(α). Then F(
√

b2 − 4c) ⊆ F(α).

Hence F(α) = F(
√

b2 − 4c). And every extension of degree 2 can be written as F(
√

D) for D not a
square of F.

Theorem 9.8

Let F ⊆ K ⊆ L be fields. Then
[L : F] = [L : K][K : F]

i.e. extension degrees are multiplicative, where if one side of the equation is infinite, the other
side is also infinite.

Proof:
Let [L : K] and [K : F] be finite, where [L : K] has basis β1, . . . , βn and [K : F] has basis α1, . . . , αk.

We claim that [L : F] has basis αiβ j for 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Let γ ∈ L, then γ = b1β1 + · · ·+ bnβn for bi ∈ K. As bi ∈ K, we have bi = a1iα1 + · · ·+ akiαk for
a`j ∈ F. Then

γ = ∑
i,j

aijαjβi, aij ∈ F

Note that the indices here are messed up. This proves that αiβ j’s span L as a vector space over F.

Now we want to show αiβ j are linearly independent. Consider the equation

∑ aij(αjβi) = 0, aij ∈ F

We let bi := ∑ aijαj, then

∑ biβi = 0

Since βi are a basis, all bi must be zero. This gives us

0 = bi = ai1α1 + · · ·+ aikαk

as αj are basis, then this implies aij = 0 for all i, j. Hence αiβ j are linearly independent over F, so
form a basis for L over F and [L : F] = nk = [L : K][K : F], as claimed.

infinity proof from textbook If [K : F] is infinite, then there are infinitely many elements of K,
hence of L, which are linearly independent over F, so that [L : F] is also infinite. Similarly, if [L : K]
is infinite, there are infinitely many elements of L linearly independent over K, so certainly linearly
independent over F, so again [L : F] is infinite. Finally, if [L : K] and [K : F] are both finite, then the
proof above shows [L : F] is finite, so that [L : F] infinite implies at least one of [L : K] and [K : F] is
infinite, completing the proof.

Example:
6
√

2 is a root of x6 − 2, which is irreducible. Then [Q( 6
√

2) : Q] = 6. We know that [Q(
√

2) : Q] = 2,
and
√

2 = ( 6
√

2)3, then
√

2 ∈ Q( 6
√

2). Then we have

[Q(
6
√

2) : Q]︸ ︷︷ ︸
6

= [Q(
6
√

2) : Q(
√

2)]︸ ︷︷ ︸
3

[Q(
√

2) : Q]︸ ︷︷ ︸
2

This suggests that 6
√

2 is a root of x3 −
√

2 ∈ (Q(
√

2))[x], which is irreducible.
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Lemma 9.9

F(α, β) = (F(α))(β).

Proof:
F(α, β) contains F, α, β, thus contains F(α), β.

(F(α))(β) ⊆ F(α, β) follows from minimality of F(α).

(F(α))(β) ⊇ F(α, β) follows from α, β, F ∈ (F(α))(β) and minimality of F(α, β).

Corollary 9.10

F(α1, α2, . . . , αk) = (F(α1, α2, . . . , αk−1))(αk). And we denote

F0 = F F1 = F0(α1) · · · Fk−1 = Fk−2(αk−1) Fk = Fk−1(αk)

We see that
[K : F] = [Fk : Fk−1] · · · [F1 : F0]

degree of K/F is a product of degrees of the intermediate extensions.

Example:

We cannot multiply the degree of α’s. For example, Q( 6
√

2,
√

2) = Q( 6
√

2). We have

6 = [Q(
6
√

2) : Q] = Q(
6
√

2,
√

2) : Q(
6
√

2)︸ ︷︷ ︸
1

[Q(
6
√

2) : Q]︸ ︷︷ ︸
6

Example:

Q(
√

2,
√

3) = (Q(
√

2))(
√

3). Since
√

3 is of degree 2 over Q of the extension Q(
√

2,
√

3)/Q(
√

2) is
at most 2.

If its degree is 1, then x2 − 3 is reducible over Q(
√

2),⇔
√

3 ∈ Q(
√

2).

Suppose
√

3 ∈ Q(
√

2). Then
√

3 = a + b
√

2 for a, b ∈ Q. Then with some calculation, we see it’s
impossible. Then

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2 : Q)] = 2× 2 = 4

Theorem 9.11

The extension K/F is finite ([K : F] < ∞) if and only if K is generated over F by a finite number
of algebraic elements over F.

Proof:
Assume K is generated over F by a finite number of algebraic elements over F. Then we have
[K : F] = [Fk : Fk−1] · · · [F1 : F0], where all [Fi+1 : Fi] < ∞. [Fi(αi+1) : F] < ∞ because αi+1 is
algebraic over Fi. This shows [K : F] < ∞.

Assume the extension K/F is finite, then there exists a basis of K over F: α1, . . . , αk, then K =

F(α1, . . . , αk).



CHAPTER 9. FIELD THEORY 50

Theorem 9.12

If α, β are algebraic over F, then α ± β, α · β, α
β (β 6= 0) are algebraic over F. In particular, the

collection of all algebra elements over F is a field.

Proof:
They all lie in F(α, β), which is a finite extension. Hence they are algebraic by Corollary 13 from
textbook:

If the extension K/F is finite, then it is algebraic.

which is based on Proposition 9.7.

Corollary 9.13

Let K/F be field extension, then all the numbers algebraic over F and belonging to K also form
a field (subfield of K).

Example:
Let Q ⊆ C be the algebraic closure of Q, it is the set of all algebraic numbers over Q. Q ∩R is a
field as well. These are infinite extensions of Q.



10
Straightedge & Compass Construction

10.1 Basics & Impossible Constructions

Here is pencil:

Here is ruler: 1

1straightedge is assumed to be infinite in length, have only one edge, and no markings on it. https://en.wikipedia.org/
wiki/Straightedge_and_compass_construction

51

https://en.wikipedia.org/wiki/Straightedge_and_compass_construction
https://en.wikipedia.org/wiki/Straightedge_and_compass_construction
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Here is a compass:

Src: https://tex.stackexchange.com/a/147496

constructible number

A constructible number r ∈ R is a number where absolute value |r| is a length of constructible
line segment.

https://tex.stackexchange.com/a/147496
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constructible point

A point of R2 is called constructible, if it can be constructed by a straightedge and compass with
the rules:

1. We are given unit length, and x, y-axis. So we have (0, 0) and (1, 0).

2. we can construct lines going through two constructible points.

3. We can construct a circle with a center in a constructible point and with radius being a
constructible number.

4. We can make intersections of two lines, line + circle, two circles.

5. Finite number of steps.

Proposition 10.1

Constructible numbers are a field. If a ∈ C, then
√

a ∈ C, where C is constructible numbers.

Proof:
a + b is simple.

Here is ab based on the intercept theorem.

Here is a/b based on the intercept theorem.
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Here is
√

p based on the geometric mean theorem.

Img src: https://en.wikipedia.org/wiki/Constructible_number
Kmhkmh, CC BY 4.0 https://creativecommons.org/licenses/by/4.0, via Wikimedia Commons

Thus we can construct the fields 1→ Q→ Q(
√

2)→ Q(
√

3,
√

2)→ Q(
√

3,
√

2,
√√

3 +
√

2)→ · · ·

What can we construct? Assume that a field F is constructible, i.e., every element is constructible. We
can have these new points:

1. Intersection of two lines is in F:

a1x + b1y + c1 = 0 a2x + b2y + c2 = 0

for ai, bi, ci ∈ F.

2. Intersection of circle and line:

(x− h)2 + (yk)
2 = r2 ax + by = c

for h, k, r, a, b, c ∈ F. This is quadratic for x, solution gives a field of degree 2 or 1.

https://en.wikipedia.org/wiki/Constructible_number
https://creativecommons.org/licenses/by/4.0
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3. Intersection of two circles:

(x− a)2 + (y− b)2 = r2
1 (x− c)2 + (y− d)2 = r2

2

Subtract these two equations, we have a linear equation.

Theorem 10.2

A real number α is constructible if and only if there is a sequence of fields F0 = Q, Fn = Q(α)

and [Fi+1 : Fi] = 2. In particular, if α is constructible, then [Q(α) : Q] = 2n, n ≥ 0.

Consider three problems.

1. Given a cube of volume V, can we construct a cube of volume 2V? Suppose V = 1, we want to
construct volume 2 cube. Then the side length of volume 2 is 3

√
2. But notices that 3

√
2 is a root

x3 − 2, which is irreducible. And deg 3
√

2 = 3.

2. Given a circle of area S, can we construct a square of same area? Suppose S = π, then side length
of square is

√
π. Is

√
π constructible? No because π is not constructible, as π is not algebraic

over Q.

3. Given an arbitrary angle θ, can we construct an angle which is one third of θ? We observe that a
point (x, y) ∈ R2 is constructible if and only if both x, y are constructible.

From https://en.wikipedia.org/wiki/Angle_trisection:

Suppose 60◦ can be trisected, then the degree of a minimal polynomial of cos 20◦ over
Q would be a power of two. Then by the triple-angle formula, 1

2 = cos π
3 = 4x3 − 3x.

Thus 8x3 − 6x − 1 = 0. Define p(t) to be the polynomial p(t) = 8t3 − 6t − 1. Since
x = cos 20◦ is a root of p(t), the minimal polynomial for cos 20◦ is a factor of p(t).
Because p(t) has degree 3, if it is reducible over by Q then it has a rational root. By the
rational root theorem, this root must be ±1,± 1

2 ,± 1
4 ,± 1

8 , but none of these is a root.
Therefore, p(t) is irreducible over by Q, and the minimal polynomial for cos 20◦ is of
degree 3.

Note that angle trisection is possible with a (marked) ruler.

D

C

B

A

c

a b
d

c
e b

https://en.wikipedia.org/wiki/Angle_trisection#/media/File:Trisecting_angles_three.svg

So is 3
√

2.

https://en.wikipedia.org/wiki/Angle_trisection
https://en.wikipedia.org/wiki/Angle_trisection#/media/File:Trisecting_angles_three.svg
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10.2 Regular n-gon & Cyclotomic polynomials and extensions

https://en.wikipedia.org/wiki/Constructible_polygon

The regular n-gon is constructible if and only if

ζm = e
2πi
n = cos

1
n
+ i sin

1
n

is constructible.

Real part of ζn is ζn+ζ−1
n

2 = α, where ζ−1
n = ζ̄n. Is α constructible?

α is a root of ζ2
n − 2αζn + 1 = 0. x2 − 2αx + 1 = 0 has two roots ζn, ζ−1

n , in (Q(α))[x]. We know that
[Q(ζn) : Q(α)] = 2. So we want to determine

2n ?
= [Q(α) : Q] =

[Q(ζn) : Q]

[Q(ζn) : Q(α)]
=

1
2
[Q(ζn) : Q]

Remark:
ζn is called a cyclotomic number, or a root of unity.

Q(ζn)/Q is called a cyclotomic extension.

We observe that ζn, ζ2
n, . . . , ζn

n = 1 are roots of xn − 1. For example,

x6 − 1 = (x− 1)(x2 + x + 1)(x + 1)(x2 − x + 1)

We also observe that there are ϕ(d) of roots 1 of order d | n. ϕ is Euler’s totient function.

We define n-th cyclotomic polynomial as

φm(x) = ∏
gcd(k,m)=1

1≤k≤m

(x− ζk
n)

The roots are primitive n-th roots of unity, because (ζk
n)

a = 1 for a = nk only.

We notice that
xn − 1 = ∏

d|n
φd(x)

and
deg(φd(x) = ϕ(d))

Comparing degrees we have
n = ∑

d|m
ϕ(d)

For example, we know φ1(x) = x− 1, then

x2 − 1 = φ1(x)φ2(x)

x3 − 1 = φ1(x)φ3(x)

x4 − 1 = φ1(x)φ2(x)φ4(x)

Lemma 10.3

φn(x) is monic polynomial in Z[x] and of degree ϕ(n).

https://en.wikipedia.org/wiki/Constructible_polygon
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Funny observation coefficients are in {0,±1} up to φ104(x). φ105(x) contains a 2.

Proposition 10.4

φn(x) is irreducible in Q[x] for any n ∈N.

Similar to theorem 41 in section 13.6 of textbook.

Proof:
Let xn − 1 = φn(x)d(x) and φn(x) = m(x)g(x) where g(x) is minimal polynomial of ζn. Assume
g(x) 6≡ 1, hence some ζ

p
n (for p prime) is a root of g(x). Then g(ζ p

n) = 0, hence ζn is a root of g(xp).
So m(x) | g(xp).

Then mod p on both sides, we have g(xp) = (g(x))p. Thus we have

(g(x))p = m(x)h(x)

in Zp[x] which is UFD. and ...

Corollary 10.5

[Q(ζn) : Q] = ϕ(n).

Then it’s easier to determine whether ϕ(n) = 2k.

derivative D(p(x))

Let p(x) = anxn + · · ·+ a1x + a0 ∈ R[x], then define

D(p(x)) = n · anxn−1 + (n− 1)an−1xn−2 + · · ·+ a1 ∈ R[x]

Claim D(p(x) + q(x)) = D(p(x)) + D(q(x))

Corollary 10.6

If a regular n-gon is constructible, then n = 2a · p1 · · · pk where pi are distinct Fermat primes:
pi = 22r

+ 1.

Theorem 10.7

Exactly n-gons with n = 2a p1 · · · pk, for p1, . . . , pk distinct Fermat primes are constructible.

Lemma 10.8

For p, q primes, gcd(p, q) = 1, if p-gon, q-constructible, then pq-gon constructible.

Proof:

e
2πi

p , e
2πi

q are constructible. Then(
e

2πi
p
)a(

e
2πi

q
)b

= e2πi
(

a
p +

b
q

)
= e

2πi
pq (qa+pb)

= e
2πi
pq

Because gcd(p, q) = 1, qa + pb = 1 has solution in Z.
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Idea of the whole proof, Tk = Q(ζn), T0 = Q, [Ti : Ti−1] = 2.

Q(ζp) has automorphism. They form a group with composition operation. Automorphism group of
Q(ζp) ∼= Zp... didn’t copy the rest, sorry. But it has something to do with Fundamental theorem of
Galois Theory!



Index

A

additive quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

algebraic, transcendental . . . . . . . . . . . . . . . . . . . 46

B

Bézout domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C

comaximal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

constructible number . . . . . . . . . . . . . . . . . . . . . . 52

constructible point . . . . . . . . . . . . . . . . . . . . . . . . . 53

D

degree/index of a field extension . . . . . . . . . . 43

division ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

E

Euclidean domain . . . . . . . . . . . . . . . . . . . . . . . . . . 27

F

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

field extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

field generated by α, β, . . . over F . . . . . . . . . . . 45

finite extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

G

greatest common divisor . . . . . . . . . . . . . . . . . . . 28

I

ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

integral domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

irreducible/prime . . . . . . . . . . . . . . . . . . . . . . . . . . 32

M

maximal ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

minimal polynomial . . . . . . . . . . . . . . . . . . . . . . . 47

N

norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

P

partial order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

prime ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Principal Ideal Domain . . . . . . . . . . . . . . . . . . . . 30

Q

quotient ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

R

ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ring homomorphism . . . . . . . . . . . . . . . . . . . . . . . 11

root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

S

simple extension & primitive element . . . . . . 45

59



INDEX 60

subring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

U

Unique Factorization Domain . . . . . . . . . . . . . . 33

unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Z

zero divisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7


	Preface
	Introduction & Motivation
	Fermat's Last Theorem
	Straightedge and compass construction

	An introduction to Rings
	Definitions and basic properties
	Zero divisor and integral domain
	Field
	Subring
	Unit

	Ring Homomorphisms
	Ideals & Quotient rings
	Isomorphism theorems

	More on Ideals
	Maximal ideals
	Maximal ideals and Zorn's Lemma

	Polynomial Rings & Rings of Fractions
	How to make new rings from old rings?
	Basic Definitions and Examples
	Rings of fractions

	Chinese Remainder Theorem
	Domains
	Euclidean Domains
	GCD & Bézout domains
	Euclidean Algorithm
	Principal Ideal Domain
	Unique Factorization Domain

	Polynomial Rings
	Polynomial rings over fields
	Polynomial rings that are UFDs
	Irreducibility Criteria

	Field Theory
	Basic Theory of Field Extensions
	Algebraic Extensions

	Straightedge & Compass Construction
	Basics & Impossible Constructions
	Regular n-gon & Cyclotomic polynomials and extensions


